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ABSTRACT

In this paper a set of analytic formulae are presented with which the partial derivatives
of the flux obscuration function can be evaluated – for planetary transits and eclipsing
binaries – under the assumption of quadratic limb darkening. The knowledge of these
partial derivatives is crucial for many of the data modeling algorithms and estimates
of the light curve variations directly from the changes in the orbital elements. These
derivatives can also be utilized to speed up some of the fitting methods. A gain of ∼ 8
in computing time can be achieved in the implementation of the Levenberg-Marquardt
algorithm, relative to using numerical derivatives.

Key words: Stars: Binaries: Eclipsing – Stars: Planetary Systems – Methods: Ana-
lytical

1 INTRODUCTION

In recent years, the discovery and further characterization of
transiting extrasolar planets (TEPs) has provided unique in-
formation about the nature of planetary systems. The anal-
ysis of a planet which periodically eclipses its host star yields
the physical radius, the inclination and the mass of the sys-
tem in addition to the parameters which are gathered from
the radial velocity measurements. Since the discovery of the
first such system (see Charbonneau et al. 2000; Brown et al.
2001), more than 40 other TEPs were discovered around
other stars. Currently operating ground-based surveys are
producing numerous new discoveries. The doubling period
of the number of known TEPs is below one year. Moreover,
existing (CoRoT, see Barge et al. 2008; Alonso et al. 2008)
and planned space-borne instruments (e.g. Kepler Mission,
see Borucki et al. 2007) are expected to yield hundreds of
new discoveries of such systems, even with planetary radii
comparable to that of Earth. Also, subsequent observations
of a given transiting system can provide some informa-
tion on the variations in the timing of successive transits
and the light curve shape. These detections can be used
to constrain other planetary companions (Agol et al. 2005;
Steffen & Agol 2007; Holman & Murray 2005) or co-orbital
companions (Trojans, see Ford & Holman 2007).

In order to optimize the precision and speed of TEP ob-
servations, a careful analysis of the light curves is required.
The basis of such light curve analysis is to find an adequate
model of planetary obscuration, which causes a small de-
crease in the stellar flux. Since both the stellar and the
planetary body can be well modelled by a spheroidal shape,
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the decrease in the stellar flux can be estimated from the
full or partial overlap of two circles. The star itself has a
non-negligible limb darkening which depends on both the
stellar properties and the photometric band and quantified
by a small set of coefficients (see e.g. Claret 2004, for such
tables of limb darkening constants). At present, the most
widely used models for this problem have been given by
Mandel & Agol (2002) and Giménez (2006). Mandel & Agol
(2002) calculate closed form expressions for the flux decrease
assuming non-linear or quadratic limb darkening (quantified
by 4 or 2 coefficients, respectively) while Giménez (2006)
gives an infinite series where the limb darkening can be
taken into account up to arbitrary order. In most cases the
quadratic case is adequate because the photometric preci-
sion of typical data is not good enough for the higher order
limb darkening models to make a difference.

Most data modeling algorithms, including the well
known nonlinear Levenberg-Marquardt fitting method (see
Press et al. 1992) utilize the partial derivatives of the model
function with respect to the model parameters. The un-
certainties in the model parameters can be well charac-
terized by the Fisher information matrix (see e.g. Finn
1992), also requiring knowledge of the same partial deriva-
tives. Therefore, in the case of planetary transits, the para-
metric derivatives of the flux decrease function can be ex-
tremely valuable. Moreover, partial derivatives can be used
to construct a set of uncorrelated parameters of the light
curve which is preferred by most of the parameter fitting
algorithms (e.g. Levenberg-Marquardt, downhill simplex,
Markov Chain Monte Carlo). Also, the analysis of the par-
tial derivatives with respect to the limb darkening coeffi-
cients themselves yields a combination of these with which
consistent sanity checks can be done verifying the stellar at-
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2 A. Pál

Table 1. Exclusion cases of different occultation geometries. To
figure out the respective case for a certain value of p and z, check
the relations step by step: if the current relation is true, that case
can be assigned to the given values of p and z, otherwise go to
the next step. The final case G is when there is no obscuration.
Cases with subscripts can only occur if the radius of the planet
is not smaller than 1/2.

Step Relation Case M&A case

1 z = 0 & p < 1 A 10
2 z 6 p− 1 AG 11
3 z < p & z < 1− p B 9
4 z < p & z = 1− p BT –
5 z < p BG 8
6 z = p & z < 1− p C 5
7 z = p = 1/2 CT 6
8 z = p CG 7
9 z < 1− p D 3

10 z = 1− p E 4
11 z < 1 + p F 2
12 – G 1

mospheric properties in an independent way. Finally, these
derivatives can be used to directly calculate how the varia-
tions in the orbital parameters affect transit timing and the
shape of the light curve.

In this paper, we present the partial derivatives of the
flux decrease function assuming a quadratic limb darkening
law. In the next section, the formalism and the derivatives
are presented. In Section 3, we apply these derivatives to
construct a set of well behaved parameterizations of transit-
ing light curves which yield an always finite and moderate
correlation between the adjusted quantities in all important
cases and limits. The correlations between the limb darken-
ing coefficients are also discussed. The results are summa-
rized in the last section.

2 PARAMETRIC DERIVATIVES OF THE

FLUX DECREASE

In this section the partial derivatives of the flux decrease are
presented. The surface brightness of a star as a function of
the normalized distance 0 6 r 6 1 assuming quadratic limb
darkening is given by the equation

I(r) = 1−
X

m=1,2

γm
“

1−
p

1− r2
”m

, (1)

where the constants γ1 and γ2 quantify the limb darkening.
Recalling Mandel & Agol (2002), the relative apparent flux
of an eclipsed star with a quadratic limb darkening can be
written as f = 1 − ∆f (assuming a unity flux out of the
transit), where flux decrease ∆f can be calculated using the
equation

∆f = W0F0 +W2F2 + (2)

W1[F1 + FKK(k) + FEE(k) + FΠΠ(n, k)].

In this equation the quantities Wi (i = 0, 1, 2) are only func-
tions of the limb darkening coefficients, namely

W0 =
6− 6γ1 − 12γ2

W
, (3)

W1 =
6γ1 + 12γ2

W
, (4)

W2 =
6γ2
W

, (5)

where W = 6− 2γ1 − γ2. In equation (2) the terms F0, F1,
FK , FE , FΠ and F2 are only functions of the occultation
geometry, namely the relative planetary radius p ≡ Rp/R⋆

and the normalized projected distance z between the center
of the star and the center of the planet. In equation (2) the
functions K(·), E(·) and Π(·, ·) denote the complete ellip-
tic integrals of the first, second and third kind, respectively.
The variation in the occultation geometry yields 12 distinct
cases of obscuration, which are summarized in Table 1. This
table is an exclusion table and should be interpreted as fol-
lows. For a given value of (p, z), the first relation (in step 1) is
checked. If it is true, the appropriate case can be assigned to
the geometry, otherwise the next relation should be checked
and so on. The different cases are denoted by bold capi-
tals for planetary radii smaller than 1/2 and capitals with
a subscript which can only occur if the radius of the planet
is greater than or equal to 1/2 In practice it would barely
occur for planetary companions for earlier types of stars but
it might happen in the cases when a Jovian planet transits
a later main sequence star (M dwarf). For the actually most
common planet-like applications (p < 1/2), the 7 major
cases (A,. . . ,G) are in the order of growing distance between
the geometrical centers of the planet and the star. In equa-
tion (2) the expressions for the terms Fi (i = 0, 1, K,E,Π, 2),
k and n can be found in tables A1 and A2 in Appendix A;
after the appropriate geometrical case has been obtained.
We should note here that equation (2) is completely equiv-
alent with the equation found in Mandel & Agol (2002), in
the first line of the second paragraph in their Section 4 at
page L173. However, this expansion of equation (2) clearly
separates the terms which depend only on the limb darken-
ing coefficients (Wm) and the terms which depend only on
the occultation geometry (Fi).

2.1 Partial derivatives with respect to the limb

darkening coefficients

Since in equation (2) the only quantities which depend on
the limb darkening coefficients are W0, W1 and W2, the par-
tial derivatives of ∆f with respect to γm (m = 1, 2) can
easily be obtained, namely

∂∆f

∂γm
=

∂W0

∂γm
F0 +

∂W2

∂γm
F2 + (6)

∂W1

∂γm
[F1 + FKK(k) + FEE(k) + FΠΠ(n, k)],

where the appropriate derivatives ∂Wi/∂γm are the follow-
ing:

∂W0

∂γ1
=

2W0 − 6

W
(7)

∂W0

∂γ2
=

W0 − 12

W
(8)

∂W1

∂γ1
=

2W1 + 6

W
(9)

∂W1

∂γ2
=

W1 + 12

W
(10)
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∂W2

∂γ1
=

2W2

W
(11)

∂W2

∂γ2
=

W2 + 6

W
. (12)

2.2 Partial derivatives with respect to the

geometric parameters

In equation (2), the terms Fi explicitly depend on the rela-
tive planetary radius p and the normalized distance z. There
is also an implicit dependence via the complete elliptic in-
tegrals since their parameters k and n are also functions
of p and z. The derivation of these partial derivatives are
quite straightforward for the non-degenerate cases, i.e. for
the cases B, BG, D and F since all of the appearing func-
tions in these domains are analytic. For the other cases, the
partial derivatives can be calculated as the appropriate lim-
its, namely

∂FA

i ≡ lim
z→0

∂FB

i , (13)

∂FBT

i ≡ lim
z→(1−p)−0

∂FB

i , (14)

∂FC

i ≡ lim
z→p−0

∂FB

i = lim
z→p+0

∂FD

i , (15)

∂FCT

i ≡ lim
p→1/2

∂FC

i , (16)

∂FCG

i ≡ lim
z→p+0

∂FF

i , (17)

∂FE

i ≡ lim
z→(1−p)−0

∂FB

i . (18)

For AG and G, all of the derivatives are obviously 0, except
for the case (p = 1, z = 0) when the partial derivatives do
not exist.

Utilizing the parametric derivatives of the elliptic inte-
grals (see Appendix B), the final form of the partial deriva-
tives of ∆f with respect to z and p is

∂∆f

∂g
= W0F0,g +W1F1,g +W2F2,g + (19)

W1K(k)

»

FK,g − (FK + FE)kg
k

+
FΠng

2n(n− 1)

–

+

W1E(k)

»

FE,g +
FKkg

k(1− k2)
+

FEkg
k

+

+
FΠkkg

(k2 − n)(1− k2)
+

FΠng

2(k2 − n)(n− 1)

–

,

where g denotes either p or z, the appropriate geometric
parameter. The expressions for F0,g , F1,g , FK,g, FE,g, F2,g,
kg and ng can be figured out for all cases using the tables
in Appendix C, namely Table C1 and Table C2.

We note here that the computation of these derivatives
are even more simple and faster than the computation of
equation (2) since equation (19) lacks the complete elliptic
integral of the third kind for which evaluation requires most
of the computing time.

3 APPLICATIONS

In this section we present three simple applications which
utilize the partial derivatives of the flux decrease function.

All of these applications assume a transiting planetary sys-
tem on a circular orbit with a given semimajor axis (rel-
ative to the radius of the star) a/R⋆, an impact parame-
ter, b ≡ (a/R⋆) cos i, the planetary companion has a fixed
mean motion of n = 2π/P and the transit occurs at the
instance E. The relative radius of the planet is denoted by
p ≡ Rp/R⋆. Therefore, the distance between the center of
the stellar and planetary disk has a time dependence,

z2(t) =

„

a

R⋆

«2

sin2[n(t − E)] + b2 cos2[n(t− E)]. (20)

From now on we assume that the semimajor axis is relatively
large, i.e. the distance can be approximated by

z2(t) ∼=
„

n
a

R⋆

«2

(t−E)2 + b2. (21)

In the following parts of this section, we first calculate the
correlations between the limb darkening coefficients, assum-
ing the orbital parameters and the relative planetary radius
to be known. In the second part of this section, we construct
a set of adjusted parameters which always yields finite (i.e.
definitely smaller than unity) correlations between them in
the cases of non-grazing eclipses. This is relevant for studies
of transiting planets since equation (21) yields a unity cor-
relation between a/R⋆ and b in the limit of p → 0 with or
without limb darkening for all impact parameters. In the last
part of this section we present an analytical calculation how
the uncertainties in the light curve parameters depend on
the photometric passbands, assuming a Jupiter-sized planet
orbiting a solar-type star. In all of these cases we use the
Fisher matrix method (Finn 1992) to obtain the uncertain-
ties and correlations of the fitted parameters. This method
gives the covariance matrix as

〈δamδan〉 =
`

Γ−1
´

mn
, (22)

where

Γmn =
X

i

∂mf(a, ti)∂nf(a, ti)

σ2
i

, (23)

f(a, ti) is the observed flux at the instance ti, a = (a1, a2) =
(γ1, γ2) or a = (a1, a2, a3, a4) = (p, a/R⋆, b, E) is the vector
of the adjusted parameters (depending on the actual appli-
cation) and ∂m ≡ ∂/∂am. Since we are interested only in the
correlations between the parameters and we can expect uni-
form uncertainties in the measurements and uniform data
sampling, therefore Γ can be multiplied by any arbitrary
constant and the sum in equation (23) can be replaced by
the integral

Γmn ∝
t2
Z

t1

∂mf(a, t)∂nf(a, t)dt. (24)

Here t1 < E − (na/R⋆)
−1(1 + p) and E + (na/R⋆)

−1(1 +
p) < t2, assuring that the ingress and egress are completely
observed, independently from the impact parameter.

3.1 Correlations between the limb darkening

coefficients

Now, we determine the correlations between the limb dark-
ening coefficients when the adjusted parameters are a =

c© 2008 RAS, MNRAS 000, 1–7
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Figure 1. The dependence of the correlation between the limb
darkening coefficients, C(γ1, γ2) as a function of the impact pa-
rameter. Thin lines are for p = 0.01, moderately thick lines are
for p = 0.1 and thick lines are for p = 0.2. The continuous,
long dashed, short dashed, dotted and dotted-dashed lines repre-
sents the cases when limb darkening coefficients are γ1 = γ2 = 0,
γ1 = γ2 = 0.1, γ1 = γ2 = 0.2, γ1 = γ2 = 0.3 and γ1 = γ2 = 0.4,
respectively.

(γ1, γ2). It is easy to show that this correlation would only
depend on the impact parameter, the planetary radius and
the two limb darkening parameters themselves while it does
not depend on the mean motion, geometrical ratio of a/R⋆

and the transit center time E. We have obtained these cor-
relations for very small (p = 0.01), average (p = 0.1) and
large (p = 0.2) planetary radii assuming limb darkening co-
efficients between 0.0 and 0.4, while the impact parameter
was varied between 0 and 1. We found that the correlation
is always negative, relatively large, i.e. |C(γ1, γ2)| & 0.93
and it strongly depends on the impact parameter. For these
certain values, the correlation is plotted as a function of b
on Fig. 1. It can easily be seen that the smallest correla-
tion is around b ≈ 0.7− 0.8, almost independent of the limb
darkening and the radius of the planet.

Let us now calculate the optimal linear combination
of the limb darkening coefficients which can be adjusted to
yield no correlation. Define the parameters u1 and u2 as
 

u1

u2

!

=

 

cosϕ sinϕ

− sinϕ cosϕ

! 

γ1
γ2

!

. (25)

For simplicity, let us denote the above orthogonal matrix by
O = Omn. It can be shown that the covariance matrix of
(u1, u2) and that of (γ1, γ2) are related to each other as

〈δukδuℓ〉 = Okm 〈δγmδγn〉 Õnℓ. (26)

To make the matrix 〈δukδuℓ〉 diagonal, the rotation param-
eter ϕ should be in coincidence with the orientation of the
eigenvectors of 〈δγmδγn〉, namely

ϕ =
1

2
arctan

〈δγ1δγ2〉+ 〈δγ2δγ1〉
〈δγ1δγ1〉 − 〈δγ2δγ2〉

. (27)

We have obtained the optimal values of the rotation pa-
rameter ϕ for very small (p = 0.01), average (p = 0.1) and
large (p = 0.2) planetary radii assuming limb darkening co-
efficients between 0.0 and 0.4, while the impact parameter
was varied between 0 and 1. We found that like above, this
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Figure 2. The optimal rotation parameter (in degrees) to avoid
correlations between the limb darkening parameters as a func-
tion of the impact parameter (see text for definition and further
details). Thin lines are for p = 0.01, moderately thick lines are
for p = 0.1 and thick lines are for p = 0.2. The continuous,
long dashed, short dashed, dotted and dotted-dashed lines repre-
sents the cases when limb darkening coefficients are γ1 = γ2 = 0,
γ1 = γ2 = 0.1, γ1 = γ2 = 0.2, γ1 = γ2 = 0.3 and γ1 = γ2 = 0.4,
respectively.

parameter mostly depends on the impact parameter. The
results are plotted on Fig. 2. The usefulness of such a plot is
somewhat limited if we have no a priori knowledge from the
limb darkening coefficients themselves since the correlation
between them and therefore the optimal rotation parame-
ter depends on the actual values of γ1 and γ2. However, in
practice if we have a hint for the planetary radius and the
impact parameter, this angle can be estimated within a few
degrees since the correlation depends more strongly on b and
p than γ1 or γ2. If we do not know any reasonable value for
p or b before the fit, an angle of ϕ ≈ 35◦ − 40◦ is a plausible
selection in general.

3.2 Correlations between the light curve

parameters

In this subsection we investigate the correlations between
the light curve parameters utilizing the previously obtained
partial derivatives and Fisher information matrix method.
The classical formalism of adjusting parameters of a tran-
siting system uses the same parameters as in equation (20),
namely the ratio a/R⋆, the impact parameter b and the in-
stance of the center of the transit E as well as the radius
of the planet, p = Rp/R⋆. Since the flux decrease depends
directly on the radius p and indirectly on a/R⋆, b and E
(assuming a fixed limb darkening), the partial derivatives
of the light curve f(t) = 1 − ∆f(t) can be obtained by us-
ing equation (19) and the chain rule. These derivatives can
then be plugged into equation (24) while the adjusted set
of parameters will be a = (p, b, a/R⋆, E). We have obtained
the correlations between these variables and we have found
that the correlation between b and a/R⋆ tends to unity as
the radius of the planet is decreased. This correlation is plot-
ted as a function of the impact parameter for planetary radii
p = 0.01, p = 0.1 and p = 0.2 and for various limb darkening
parameters on Fig. 3. It can clearly be seen that C(b, a/R⋆)

c© 2008 RAS, MNRAS 000, 1–7
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Figure 3. Correlation between the adjusted values of a/R⋆ and
the impact parameter b for various values of planetary radii and
limb darkening coefficients: Thin lines are for p = 0.01, moder-
ately thick lines are for p = 0.1 and thick lines are for p = 0.2.
The cases for different limb darkening constants are almost indis-
tinguishable.

is almost independent from the actual limb darkening. From
further analysis of the correlation, it turns out that for small
impact parameters (b . 0.5), C(b, a/R⋆) can be well approx-
imated by 1 − p2/2. Therefore, for very small planets, this
correlation can be undesirable and most of the fitting meth-
ods would distort the results.

At this point we have checked the correlations between
an alternative parametrization proposed by Bakos et al.
(2007). In that work the light curve was parametrized by
the equation

z2(t) =

„

ζ

R⋆

«2

(1− b2)(t− E)2 + b2, (28)

where ζ/R⋆ = n(a/R⋆)/
√
1− b2. This parameter is re-

lated to the duration of the transit, namely (ζ/R⋆)
−1 =

Tduration/2, where Tduration is the time between the instances
when the center of the planet crosses the limb of the star.
Since the above parametrization of z2 is linear in b2, we have
chosen b2 instead of b as an independent parameter. We have
found that utilizing the parameter set a′ = (p, b2, ζ/R⋆, E)
yields practically no correlation between b2 and ζ/R⋆ for
non-grazing eclipses and increases only up to unity near
b & 1 − p. This correlation is plotted on Fig. 4 for various
planetary radii and limb darkening coefficients.

We should mention here that the recent work of
Carter et al. (2008) gives an exhaustive analysis of the un-
certainties and correlations for various kind of transiting
light curve characterizations. Their work focuses on the an-
alytical calculations for light curves with no limb darkening
and compares these results with numerical derivations for
the limb darkened cases.

3.3 Uncertainties of the light curve parameters

In this subsection we calculate the dependence of uncer-
tainties of the light curve parameters a/R⋆, E and b (see
equation 20) and the fractional planetary radius p for var-
ious photometric passbands from near-ultraviolet to mid-
infrared. It is known that the limb-darkening parameters

decrease for longer wavelengths, therefore the transits them-
selves become shallower and flattened. Using the Fisher
information matrix method, as described earlier gives a
simple and straightforward way to obtain these uncertain-
ties. Assuming a solar-type star – i.e. with metallicity of
[Fe/H] = 0.00, surface gravity of log g⋆ = 4.44 (CGS) and
atmospheric temperature of Teff = 5780K – we estimated
these uncertainties for photometric passbands u′, g′, r′, i′,
z′, J , H and K, when such a star is transited by a hy-
potetical planet with the orbital parameters of a/R⋆ = 10,
P = 3.67 days and p = Rp/R⋆ = 0.1. The appropriate limb
darkening coefficients for each filter have been obtained us-
ing the tables provided by Claret (2004). The results are
plotted on Fig. 5 for various impact parameters (b = 0.2,
b = 0.5 and b = 0.8). During these estimations, the transits
are assumed to be observed with a cadence of 10 seconds
and with a photometric precision of ∆m = 1.4mmag. Note
that this photometric precision is attainable by ∼ 1− 1.2m
class telescopes for relatively bright stars (z′ ≈ 9.5mag) and
using such cadence (see e.g. Winn et al. 2007).

It can clearly be seen from the plots of Fig. 5 that the
uncertainties for all of the parameters decrease for longer
wavelengths; moreover, this decrement can reach a factor of
∼ 10 (between the near-ultraviolet and mid-infrared bands)
for the planetary radius. We note here that these analytical
results agrees well with numerical estimations (Joshua N.
Winn, personal communication).

4 DISCUSSION AND SUMMARY

In this paper the partial derivatives of the flux decrease func-
tion of exoplanetary transits (or stellar binary eclipses) has
been calculated assuming a quadratic limb darkening law.
These derivatives can then be applied for various analyses
from which we have demonstrated the correlation analysis of
the limb darkening coefficients and two of the known tran-
sit light curve parameterizations. The most time consuming
part of the evaluation of the flux decrease (and its deriva-
tives) is the computing of the complete elliptic integrals.
Therefore, the calculation of the partial derivatives does not
increase significantly the total computing time of both. The
presented analytical analysis of light curve parametrization
is extremely fast comparing to such an analysis based on
Monte-Carlo methods: the integral in equation (24) should
be calculated only once instead of the evaluation of the χ2

function O(104) times1. The knowledge of these derivatives
also allows straightforward calculations about how the vari-
ations in the orbital elements affect the light curves and the
timings of the successive transits.

Here we note that such derivatives are also helpful in
the implementation of the Levenberg-Marquardt algorithm.
Since this method requires the partial derivatives of the func-
tion to be adjusted, these must be evaluated either analyti-
cally or numerically. The numerical evaluation of the partial
derivatives requires the computation of the original function
twice in all directions of the parameter space. Therefore for
such a problem like transit light curve fitting, the numerical

1 which is necessary to obtain a reliable a posteriori distribution
of the parameters

c© 2008 RAS, MNRAS 000, 1–7
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Figure 4. Correlation between the adjusted values of ζ/R⋆ ≡
n(a/R⋆)/

√
1− b2 and the square of the impact parameter, b2 for

various values of planetary radii and limb darkening coefficients.
Thin lines are for p = 0.01, moderately thick lines are for p = 0.1
and thick lines are for p = 0.2. The continuous, long dashed,
short dashed, dotted and dotted-dashed lines represents the cases
when limb darkening coefficients are γ1 = γ2 = 0, γ1 = γ2 = 0.1,
γ1 = γ2 = 0.2, γ1 = γ2 = 0.3 and γ1 = γ2 = 0.4, respectively.

approximation requires approximately 10 times more com-
putation time (note that in practice the gain will be less,
∼ 8 due to other overheads resulted by the computation
of increased number of coefficients and the gain will clearly
depend on the used programming environment and its fea-
tures). Moreover – because the derivatives of a transiting
light curve function lack the Lipschitz property of continu-
ity – the numerical approach can also be unstable at the
points of contacts.

The routines for calculating both the transit decrease
function and its derivatives are available2 in Fortran77 and
C languages along with the codes used to calculate the cor-
relations between the limb darkening parameters and the
light curve parameters.

The recent review of Southworth (2008) concludes that
the determination of some of the light curve parameters,
especially the radius of the planet can be sensitive to the
applied limb darkening model and its parameters, yielding a
possibility of systematic errors. Therefore, analytic descrip-
tion of transit light curves for other different limb darkening
laws would also be a point of interest.
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Figure 5.Uncertainties of the geometrical ratio a/R⋆, the impact
parameter b, the fractional planetary radius p ≡ Rp/R⋆ and the
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as the function of the photometric passbands, for various impact
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Properties of analytic transit light curve models 7

APPENDIX A: COEFFICIENTS FOR THE

CALCULATION OF THE FLUX DECREASE

FUNCTION

In this section, the coefficients required to evaluate the flux
decrease function – as it is given by equation (2) – are sum-
marized. The evaluation of the quantities F0, F1, FK , FE ,
FΠ, F2, n and k is done in two steps. First, using Table A1,
a set of auxiliary variables should be evaluated, all of them
are a function only of p and z, i.e. do not depend on the
limb darkening coefficients. Note that for a given geomet-
rical case, not all of these quantities have to be calculated,
only those that referred to in the appropriate row of Ta-
ble A2. (Moreover, it might happen that for some of these
equations the value of p or z are out of the allowed domain
if they are used in the cases when there is no need for them.)
Second, using Table A2, the quantities Fi, k and n should
by calculated by substituting the previously obtained values
of the auxiliary variables.

APPENDIX B: PARAMETRIC DERIVATIVES

OF THE COMPLETE ELLIPTIC INTEGRALS

The derivatives of the complete elliptic integrals of the first
and second kind are the following:

dK(k)

dk
=

E(k)

k(1− k2)
− K(k)

k
, (B1)

dE(k)

dk
=

E(k)−K(k)

k
. (B2)

If the complete elliptic integral of the third kind is defined
with the sign convention as

Π(n, k) =

π/2
Z

0

dϕ

(1− n sin2 ϕ)
p

1− k2 sin2 ϕ
, (B3)

then its partial derivatives are the following:

∂Π(n, k)

∂n
=

1

2(k2 − n)(n− 1)

»

E(k) +
(k2 − n)K(k)

n
+

+
(n2 − k2)Π(n, k)

n

–

, (B4)

∂Π(n, k)

∂k
=

k

n− k2

»

E(k)

k2 − 1
+ Π(n, k)

–

. (B5)

Throughout this paper we are using the sign convenction for
Π(n, k) as it is defined by equation (B3).

APPENDIX C: COEFFICIENTS FOR THE THE

CALCULATION OF THE PARTIAL

DERIVATIVES OF THE FLUX DECREASE

FUNCTION

In this section, the coefficients required to evaluate the par-
tial derivatives of the flux decrease function are summarized,
which are needed to evaluate equation (19). The evaluation
of these coefficients are also done in two steps. First, using
Table C1, a set of auxiliary variables should be evaluated,
all of them are a function only of p and z (i.e. do not de-
pend on the limb darkening coefficients). Note that for a
given geometrical case, not all of these quantities have to be

calculated, only those that are referred to in the appropriate
row of Table C2. Second, using Table C2, the quantities Fi,g,
kg and ng should by calculated (where g is either p or z), by
substituting the previously obtained values of the auxiliary
variables.

c© 2008 RAS, MNRAS 000, 1–7



8 A. Pál

Table A1. Auxiliary quantities for the calculation of the flux decrease. Note that the quantities a, b, k0 and k1 are defined similarly as
were defined by Mandel & Agol (2002) and the former two should not be confused with the same notations for the semimajor axis and
the impact parameter.

a = (p− z)2 b = (p + z)2 t2 = p2 + z2 p̂ =
p

p(1− p) p′ =
p

1− p2

CI = 2
9π

√
1−a

CIK = 1− 5z2 + p2 + ab CIE = (z2 + 7p2 − 4)(1 − a) CIΠ = −3 p+z
p−z

CG = 1
9π

√
pz

CGK = 3− 6(1− p2)2 − 2pz(z2 + 7p2 − 4 + 5pz) CGE = 4pz(z2 + 7p2 − 4) CGΠ = −3 p+z
p−z

TI = 2
3π

arccos(1 − 2p)− 4
9π

(3 + 2p − 8p2)p̂ k0 = arccos
“

p2+z2−1
2pz

”

k1 = arccos
“

z2+1−p2

2z

”

G0 =
p2k0+k1−

q

z2− 1

4
(1+z2−p2)2

π
G2 =

k1+p2(p2+2z2)k0−
1

4
(1+5p2+z2)

√
(1−a)(b−1)

2π

Table A2. Coefficients for the flux decrease function.

Step Case F0 F1 FK FE FΠ F2 k n

1 A p2 2
3
(1− (p′)3) 0 0 0 1

2
p4 – –

2 AG 1 2
3

0 0 0 1
2

– –

3 B p2 2
3

CICIK CICIE CICIΠ
1
2
p2(p2 + 2z2)

q

4pz
1−a

− 4pz
a

4 BT p2 TI 0 0 0 1
2
p2(p2 + 2z2) – –

5 BG G0
2
3

CGCGK CGCGE CGCGΠ G2

q

1−a
4pz

a−1
a

6 C p2 1
3

2
9π

(1− 4p2) 8
9π

(2p2 − 1) 0 3
2
p4 2p –

7 CT
1
4

1
3
− 4

9π
0 0 0 3

32
– –

8 CG G0
1
3

− 1
9πp

(1− 4p2)(3 − 8p2) 1
9π

16p(2p2 − 1) 0 G2
1
2p

–

9 D p2 0 CICIK CICIE CICIΠ
1
2
p2(p2 + 2z2)

q

4pz
1−a

− 4pz
a

10 E p2 TI 0 0 0 1
2
p2(p2 + 2z2) – –

11 F G0 0 CGCGK CGCGE CGCGΠ G2

q

1−a
4pz

a−1
a

12 G 0 0 0 0 0 0 – –

Table C1. Auxiliary quantities for the calculation of the partial derivatives of the flux decrease function.

CIK,p = +2p(1 + 2(p2 − z2)) CIE,p = 14p(1 − a) − 2(p − z)(z2 + 7p2 − 4)
CIK,z = −2z(5 + 2(p2 − z2)) CIE,z = 2z(1− a) + 2(p − z)(z2 + 7p2 − 4)
CGK,p = −2(p2(12p + 21z) + z(z2 − 4) + 2p(5z2 − 6)) CGE,p = 4z(−4 + 21p2 + z2)
CGK,z = 2p(4− 7p2 − 10pz − 3z2) CGE,z = 4p(−4 + 7p2 + 3z2)
G0,p = p

π
(2k0) G2,p = p

π

`

2t2k0 − 4zp sink0
´

G0,z = p
π
(−2 sin k0) G2,z = p

π

`

2zpk0 − (p2 + z2 + 1) sink0
´

Table C2. Coefficients for partial derivatives of the flux decrease function.

Step Case ∂ F0,∂ F1,∂ FK,∂ FE,∂ F2,∂ k∂ n∂

1 A p 2p 2pp′ 0 0 2p3 – –
1 A z 0 0 0 0 0 – –

2, 12 AG, G p 0 0 0 0 0 – –
2, 12 AG, G z 0 0 0 0 0 – –

3, 9 B, D p 2p 0 CICIK,p + CICIK
p−z
1−a

CICIE,p + CICIE
p−z
1−a

2pt2
2z(1+p2−z2)

(1−a)2k
+

4z(p+z)
(p−z)a

3, 9 B, D z 0 0 CICIK,z − CICIK
p−z
1−a

CICIE,z − CICIE
p−z
1−a

2p2z 2p(1−p2+z2)
(1−a)2k

− 4p(p+z)
(p−z)a

4, 10 BT, E p 2p 8pp̂
π

0 0 2pt2 – –

4, 10 BT, E z 0 − 8pp̂
3π

0 0 2p2z – –

5, 11 BG, F p G0,p 0 −FK

2p
− CGCGK,p −FE

2p
+ CGCGE,p G2,p − 1+p2−z2

8kp2z
+ 2

(p−z)3

5, 11 BG, F z G0,z 0 −FK

2z
− CGCGK,z −FE

2z
+ CGCGE,z G2,z − 1−p2+z2

8kpz2
− 2

(p−z)3

6 C p 2p 0 4p
9π

− 1
3πp

28p
9π

+ 1
3πp

4p3 1 –

6 C z 0 0 − 20p
9π

+ 1
3πp

4p
9π

− 1
3πp

2p3 1 –

7 CT p 1 2
π

0 0 1
2

– –

7 CT z 0 − 2
3π

0 0 1
4

– –

8 CG p G0,p 0 3+16p2(2−9p2)
18πp2

72p2−2
9π

G2,p − 1
4p2

–

8 CG z G0,z 0
3+8p2(1−6p2)

18πp2
24p2−14

9π
G2,z − 1

4p2
–
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