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Abstract

A previously conjectured set of exact form factors of boundary exponential op-

erators in the sinh-Gordon model is tested against numerical results from boundary

truncated conformal space approach in boundary sine-Gordon theory, related by an-

alytic continuation to sinh-Gordon model. We find that the numerical data strongly

support the validity of the form factors themselves; however, we also report a dis-

crepancy in the case of diagonal matrix elements, which remains unresolved for the

time being.

1 Introduction

The investigation of integrable boundary quantum field theories started with the seminal
work of Ghoshal and Zamolodchikov [1], who set up the boundary R-matrix bootstrap,
which makes possible the determination of the reflection matrices and provides complete
description of the theory on the mass shell.

For the calculation of correlation functions, matrix elements of local operators between
asymptotic states have to be computed. In a boundary quantum field theory there are
two types of operators, the bulk and the boundary operators, where their names indicate
their localization point. The boundary form factor program for calculating the matrix
elements of local boundary operators between asymptotic states was initiated in [2]. The
validity of form factor solutions was checked in the case of the boundary scaling Lee-Yang
model by calculating the two-point function using a spectral sum and comparing it to
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the prediction of conformal perturbation theory. In [3] the spectrum of independent form
factor solutions in the scaling Lee-Yang model and the sinh-Gordon model was compared
to the boundary operator content of the ultraviolet boundary conformal field theory and
a complete agreement was found. It is also possible to compare form factors to matrix
elements of local operators evaluated directly from the boundary quantum field theory
in a non-perturbative framework. For periodic boundary conditions, this was developed
in [4, 5]; the extension to boundary form factors was obtained in [6] and used to verify
the results of the form factor bootstrap in the scaling Lee-Yang model by comparison to
boundary truncated conformal space approach.

Further solutions of the boundary form factor axioms were constructed and their struc-
ture was analyzed for the sinh-Gordon theory at the self-dual point in [7], and for the
A2 affine Toda field theory in [8]. One of the present authors constructed a solution for
boundary exponential operators in sinh-Gordon theory [9], and the solution was checked
by computing the conformal dimensions and vacuum expectation values of the fields in a
cumulant expansion ordered by powers of the coupling constant, which can be compared
to known exact results. However, the conformal dimension essentially tests only the part
constructed out of the bulk form factors, and the expectation value was checked only to
the lowest nontrivial order in the coupling constant.

Our aim in this paper is to provide a detailed non-perturbative verification of the
solution presented in [9]: using the ideas of [6] we aim to compare the form factors to
numerically computed finite volume matrix elements. However, this cannot be performed
directly in the sinh-Gordon theory as we have no way to construct a truncated conformal
space in this case. Fortunately, it is easy to argue that (at least to all order of perturbation
theory) an analytic continuation to sine-Gordon model should work, and for this model
working truncated conformal space program was developed in [10, 11]. This forms the
basis of the present work.

The paper is structured as follows. In Section 2 the boundary form factors of exponential
operators in the sinh-Gordon model are recalled (in doing so some unfortunate typos in
the paper [9] are also fixed). In Section 3 these form factors are analytically continued to
obtain breather form factors in sine-Gordon theory, and summarize briefly the necessary
ingredients to obtain predictions finite volume matrix elements. Section 4 contains our
numerical analysis, and we present our conclusions in section 5.

2 Boundary form factors in the sinh-Gordon model

2.1 Boundary sinh-Gordon model

The sinh-Gordon theory in the bulk is defined by the Lagrangian density

L =
1

2
(∂µΦ)

2 − m2

b2
(cosh bΦ − 1)
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It can be considered as the analytic continuation of the sine-Gordon model for imaginary
coupling. The S-matrix of the model is

S(θ) = −
(

1 +
B

2

)

θ

(

−B

2

)

θ

=

[

−B

2

]

θ

; B =
2b2

8π + b2
(2.1)

where

(x)θ =
sinh 1

2
(θ + iπx)

sinh 1
2
(θ − iπx)

, [x]θ = −(x)θ(1− x)θ =
sinh θ + i sin πx

sinh θ − i sin πx

The minimal bulk two-particle form factor belonging to this S-matrix is [12]

f(θ) = N exp

[

8

∫ ∞

0

dx

x
sin2

(
x(iπ − θ)

2π

)
sinh xB

4
sinh(1− B

2
)x
2
sinh x

2

sinh2 x

]

(2.2)

where

N = exp

[

−4

∫ ∞

0

dx

x

sinh xB
4
sinh(1− B

2
)x
2
sinh x

2

sinh2 x

]

(2.3)

It satisfies f(θ, B) → 1 as θ → ∞, and approaches its asymptotic value exponentially fast.
Sinh-Gordon theory can be restricted to the negative half-line with the following action

A =

∫ ∞

−∞

dt

∫ 0

−∞

dx

[
1

2
(∂µΦ)

2 − m2

b2
(cosh bΦ− 1)

]

(2.4)

+

∫ ∞

−∞

dtM0

[

cosh

(
b

2
(Φ(0, t)− Φ0)

)

− 1

]

which maintains integrability [1]. The corresponding reflection factor depends on two
continuous parameters and can be written as [14]

R(θ) =

(
1

2

)

θ

(
1

2
+

B

4

)

θ

(

1− B

4

)

θ

[
E − 1

2

]

θ

[
F − 1

2

]

θ

(2.5)

It can be obtained as the analytic continuation of the first breather reflection factor in
boundary sine-Gordon model which was calculated by Ghoshal in [13]. The relation of the
bootstrap parameters E and F to the parameters of the Lagrangian is known both from
a semi-classical calculation [14, 15] and also in an exact form in the perturbed boundary
conformal field theory framework [16].

2.2 Boundary form factors in sinh-Gordon theory

Here we recall the results of [9], but with a few typos corrected in the expression of the
form factor polynomials in (2.12) and (2.16). For a local operator O(t) localized at the
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boundary (located at x = 0, and parametrized by the time coordinate t) the form factors
are defined as

out〈θ
′

1, θ
′

2, . . . , θ
′

m|O(t)|θ1, θ2, . . . , θn〉in =

FO
mn(θ

′

1, θ
′

2, . . . , θ
′

m; θ1, θ2, . . . , θn)e
−imt(

∑
cosh θi−

∑
cosh θ

′

j)

for θ1 > θ2 > . . . > θn > 0 and θ
′

1 < θ
′

2 < . . . < θ
′

m < 0, using the asymptotic in/out
state formalism introduced in [17]. They can be extended analytically to other values of
rapidities. With the help of the crossing relations derived in [2] all form factors can be
expressed in terms of the elementary form factors

out〈0|O(0)|θ1, θ2, . . . , θn〉in = FO
n (θ1, θ2, . . . , θn)

The general form factor solution can be written as [2]

Fn(θ1, θ2, . . . , θn) = Hn
Qn(y1, y2 . . . , yn)
∏

i yi
∏

i<j

(yi + yj)

n∏

i=1

r(θi)
∏

i<j

f(θi − θj)f(θi + θj) (2.6)

where
y = 2 cosh θ (2.7)

The Qn are symmetric polynomials of its variables, and the minimal one-particle boundary
form factor is given by

r(θ) =
i sinh θ

(sinh θ − i sin γ)(sinh θ − i sin γ′)
u(θ, B) , γ =

π

2
(E − 1) γ′ =

π

2
(F − 1) (2.8)

where

u(θ) = exp

{∫ ∞

0

dt

t

[
1

sinh t
2

− 2 cosh
t

2
cos

[(
iπ

2
− θ

)
t

π

]]

×

sinh tB
4
+ sinh

(
1− B

2

)
t
2
+ sinh t

2

sinh2 t

}

(2.9)

and

Hn =

(
4 sin πB/2

f(iπ)

)n/2

(2.10)

is a convenient normalization factor. The polynomials Qn satisfy the following recursion
relations:

K : Q2(−y, y) = 0

Qn+2(−y, y, y1, . . . , yn) =

(y2 − 4 cos2 γ)(y2 − 4 cos2 γ′)Pn(y|y1, . . . , yn)Qn(y1, . . . , yn) for n > 0

B : Q1(0) = 0

Qn+1(0, y1, . . . , yn) =

4 cos γ cos γ′Bn(y1, . . . , yn)Qn(y1, . . . , yn) for n > 0 (2.11)
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where

Bn(y1, . . . , yn) =
1

4 sin πB
2

(
n∏

i=1

(

yi − 2 sin
πB

2

)

−
n∏

i=1

(

yi + 2 sin
πB

2

))

= −
[n−1

2 ]
∑

l=0

(

2 sin
πB

2

)2l

σn−1−2l (2.12)

and

Pn(y|y1, . . . yn) =
1

2(y+ − y−)

[
n∏

i=1

(yi − y−)(yi + y+)−
n∏

i=1

(yi + y−)(yi − y+)

]

(2.13)

with the notations

y+ = ωz + ω−1z−1 (2.14)

y− = ω−1z + ωz−1 , ω = eiπ
B
2

with the auxiliary variable z defined as a solution of y = z + z−1; i.e. from (2.7) one has
z = eθ.

Let us define the elementary symmetric polynomials by

n∏

i=1

(x+ xi) =

n∑

l=1

xn−lσ
(n)
l (x1, . . . , xn)

σ
(n)
l ≡ 0 if l < 0 or l > n

The upper index will be omitted in the sequel, as the number of variables will always be
clear from the context. Let us also denote

[n] =
ωn − ω−n

ω − ω−1
=

sin nπB
2

sin πB
2

Let us also introduce the polynomials P
(k)
n :

P
(k)
1 = [k]

P (k)
n = [k] detM (n)(k) n > 1

M
(n)
ij (k) = [i− j + k]σ2i−j(x1, x2 . . . , xn) i, j = 1, . . . , n− 1

which are ingredients of the bulk form factor solution [18].
In terms of these definitions, the form factor solution can be written as

Q(k)
n = ǫ1ǫ2Bn−1Q

(k)
n−1 + σnP

(k)
n + σnA

(k)
n (2.15)

5



where A
(k)
n is a linear combination of products of σl with total degree strictly less than

n(n− 1)/2, and the first term is understood with the replacement

σ
(n−1)
l → σ

(n)
l

and the notation
ǫ1 = 2 cos γ , ǫ2 = 2 cos γ′

was introduced. The A-polynomials are given by

A
(k)
2 = 0

A
(k)
3 = [k](ǫ21 + ǫ22 + [k]ǫ1ǫ2)σ1

A
(k)
4 = 4 sin2 πB

2
[k]2σ1σ3 + [k]2(ǫ21 + ǫ22 + [k]ǫ1ǫ2)σ

2
1

(

σ2 + 4 sin2 πB

2

)

(2.16)

up to 4-particle level, and it can easily be extended to higher levels using any symbolic
algebra software.

These form factors correspond to the field

1
〈

ek
b
2
Φ(0,t)

〉ek
b
2
Φ(0,t)

which is normalized to have unite vacuum expectation value.

3 Breather boundary form factors in the sine-Gordon

model

3.1 The boundary form factors of multi-B1 states

The theory is defined by the following action

AbsG =

∫

d2x

[
1

4π
(∂tφ)

2 − 1

4π
(∂xφ)

2 − 2µ cos 2βφ

]

− 2µB

∫

dt cosβ(φ(t, 0)− φ0) (3.1)

The bulk spectrum of this theory consists of a soliton-antisoliton doublet of mass M , with
a number of breathers (depending on the coupling β) and their S-matrices are known [19].
For the full boundary spectrum and associated reflection factors the interested reader is
referred to [20] (and references therein). For the purposes of the present work only the
consideration of the first breather B1 is needed.

In this model, the exact expectation values of boundary exponential operators are
known [21, 11]:

〈
0
∣
∣eiaφ(t,0)

∣
∣ 0
〉
=

(
πµΓ(1− β2)

Γ(β2)

) a2

2(1−β2)

g0(a, β)gS(a, β, z, z̄)gA(a, β, z, z̄) (3.2)

6



where

g0(a, β) = exp







∫ ∞

0

dt

t




2 sinh2(aβt)

(

e(1−β2)t/2 cosh(t/2) cosh(β2t/2)− 1
)

sinh(β2t) sinh(t) sinh((1− β2)t)
− a2e−t











gS(a, β, z, z̄) = exp

{∫ ∞

0

dt

t

sinh2(aβt) (2− cos(2zt)− cos(2z̄t))

2 sinh(β2t) sinh(t) sinh((1− β2)t)

}

gA(a, β, z, z̄) = exp

{∫ ∞

0

dt

t

sinh(2aβt) (cos(2zt)− cos(2z̄t))

sinh(β2t) sinh(t) cosh((1− β2)t)

}

and

cosh2 πz = e−2iβφ0
µ2
B sin πβ2

µ
, cosh2 πz̄ = e2iβφ0

µ2
B sin πβ2

µ
(3.3)

provided the operators are normalized as

e2iaφ(x)e−2iaφ(x) ∼ 1

|x− y|4a2
+ . . .

eiaφ(t,0)e−iaφ(t′,0) ∼ 1

|t− t′|2a2
+ . . .

which also defines the normalization of the couplings µ and µB. The coupling µ can be
related to the mass M of the soliton as follows [22]:

µ =
Γ(β2)

πΓ(1− β2)



M

√
πΓ
(

1
2(1−β2)

)

2Γ
(

β2

2(1−β2)

)





2−2β2

The analytic continuation between the sinh-Gordon and sine-Gordon theory in the bulk is
defined by

β =
ib√
8π

Under this substitution the sinh-Gordon particle’s S-matrix (2.1) becomes the S-matrix of
the first breather in sine-Gordon theory:

SB1B1(θ) = [ξ]θ =
sinh θ + i sin πξ

sinh θ − i sin πξ

ξ = −B

2
=

β2

1− β2

The mass of the first breather is related to the soliton mass M as

m1 = 2M sin
πξ

2
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The identification of the two models can be completed by relating the boundary parameters.
Introducing the Ghoshal-Zamolodchikov parameters [1]

z =
β2

π
(ϑ− iη) , z̄ =

β2

π
(ϑ+ iη)

the reflection factor of the first breather can be written in the form

R
(α)
B1

(ϑ) =

(
1

2

)

θ

(
1

2
− ξ

2

)

θ

(

1 +
ξ

2

)

θ

[
ξη

π
− 1

2

]

θ

[
iξϑ

π
− 1

2

]

θ

(3.4)

where α denotes the boundary condition parametrized by η and ϑ. Under this identifi-
cation the relation (3.3) coincides with the relation between the GZ parameters and the
Lagrangian boundary parameters derived by Alyosha Zamolodchikov [16, 11].

Comparing this to (2.5) one obtains the identification

E =
2ξη

π
, F =

2iξϑ

π

As a result, the form factors of the boundary operator

Ok = eikβφ(0,t)

can be written in terms of the sinh-Gordon form factor solution (presented in subsection
2.2) as follows

F
(k)

1 . . . 1
︸ ︷︷ ︸

n

(θ1, . . . , θn) = GkHn
Q

(k)
n (y1, y2 . . . , yn)
∏

i yi
∏

i<j

(yi + yj)

n∏

i=1

r(θi)
∏

i<j

f(θi − θj)f(θi + θj)

with B → −2ξ , γ = ξη − π

2
, γ′ = iξϑ− π

2
(3.5)

and
Gk =

〈
0
∣
∣eikβφ(t,0)

∣
∣ 0
〉

is the exact vacuum expectation value (3.2).

3.2 Finite volume form factors

We now briefly recall the formalism developed in [6] for the description of matrix elements of
boundary operators in finite volume, specialized for the levels that consist of first breathers.

3.2.1 Finite volume energy levels

Introduce the bulk phase-shifts
SB1B1 (θ) = eiδ(θ)
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and their boundary counterparts

R
(α)
B1

(θ) = eiδ
(α)(θ) (3.6)

where α denotes the boundary condition. Putting the theory on a strip of width L with
boundary conditions α and β, the finite volume levels can be obtained by solving the
Bethe-Yang equations [23]:

Qj (θ1, . . . , θn) = 2πIj (3.7)

where the phases describing the wave function monodromy are given by

Qj (θ1, . . . , θn) = 2m1L sinh θj +
∑

k 6=j

{δ (θj − θk) + δ (θj + θk)}+ δ(α) (θj) + δ(β) (θj)

Here all rapidities θj (and accordingly all quantum numbers Ij) are taken to be positive.
The quantum numbers can be taken ordered as I1 < . . . < In; they must all be different due
to the exclusion principle (S(0) = −1). The corresponding multi-particle state is denoted
by

|{I1, . . . , In}〉L
and its energy (relative to the ground state) is given by

EI1...In(L) =
n∑

j=1

m1 cosh θ̃j +O(e−µL)

where
{

θ̃j

}

j=1,...,n
is the solution of eqns. (3.7) at the given volume L. The Bethe-Yang

equations gives the energy of the multi-particle states to all order in 1/L, neglecting only fi-
nite size effects decaying exponentially with L (where µ is some finite mass scale, dependent
on the details of the spectrum).

3.2.2 Non-diagonal matrix elements

For non-diagonal matrix elements, it was shown in [6] that

|〈{I ′1, . . . , I ′m}|O(0)|{I1, . . . , In}〉L| =
∣
∣
∣
∣
∣
∣

FO
1 . . . 1
︸ ︷︷ ︸

n+m

(θ̃′m + iπ, . . . , θ̃′1 + iπ, θ̃1, . . . , θ̃n)

∣
∣
∣
∣
∣
∣

√

ρ(θ̃1, . . . , θ̃n)ρ(θ̃′1, . . . , θ̃
′
m)

+O(e−µL) (3.8)

where

ρ(θ̃1, . . . , θ̃n) = det

{
∂Qk(θ1, . . . , θn)

∂θl

}

k,l=1,...,n

(3.9)
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is the finite volume density of states, which is the Jacobi determinant of the mapping be-
tween the space of quantum numbers and the space of rapidities given by the Bethe-Yang
equations (3.7). In general, the phase conventions used for the exact form factors and the
finite volume matrix elements differ, so only the absolute values can be compared. Eval-
uating the above expansion requires analytic continuation of the form factors to complex
values of θ which can be accomplished using the formulae given in Appendix A.

3.2.3 Diagonal matrix elements

In the diagonal case, there are disconnected contributions which can be taken care of by
regularizing the appropriate form factor as

F1 . . . 1
︸ ︷︷ ︸

2n

(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn) = (3.10)

n∏

i=1

1

ǫi
·

n∑

i1=1

...
n∑

in=1

Ai1...in(θ1, . . . , θn)ǫi1ǫi2 ...ǫin + . . .

where Ai1...in is a completely symmetric tensor of rank n in the indices i1, . . . , in, and the
ellipsis denote terms that vanish when taking ǫi → 0 simultaneously. The connected matrix
element can be defined as the ǫi independent part of eqn. (3.10), i.e. the part which does
not diverge whenever any of the ǫi is taken to zero:

F c(θ1, θ2, ..., θn) = n!A1...n(θ1, . . . , θn) (3.11)

where the appearance of the factor n! is simply due to the permutations of the ǫi. The
formula for the diagonal matrix element reads

〈{I1 . . . In}|O(0)|{I1 . . . In}〉L = (3.12)
1

ρ(θ̃1, . . . , θ̃n)

∑

A⊂{1,2,...n}

F c({θ̃k}k∈A)ρ̃a1...an(θ̃1, . . . , θ̃n|A) +O(e−µL)

The summation runs over all subsets A of {1, 2, . . . n}. For any such subset the appropriate
sub-determinant

ρ̃(θ̃1, . . . , θ̃n|A) = detJA(θ̃1, . . . , θ̃n)

of the n× n Bethe-Yang Jacobi matrix

J (θ̃1, . . . , θ̃n)kl =
∂Qk(θ1, . . . , θn)

∂θl
(3.13)

can be obtained by deleting the rows and columns corresponding to the subset of indices
A. The determinant of the empty sub-matrix (i.e. when A = {1, 2, . . . n}) is defined to
equal 1 by convention.

Note that in contrast to (3.8) in (3.12) it is not necessary to take the absolute value,
as phase redefinitions drop out from a diagonal matrix element.

Eqns. (3.10) and (3.12) are expected to give the finite volume matrix elements to all
order in 1/L, neglecting only finite size effects decaying exponentially with L [4, 5, 6].
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4 Numerical verification

The finite volume energy levels and matrix elements can be evaluated using the boundary
truncated conformal space approach (BTCSA) [24] which is an extension of the method
developed by Yurov and Zamolodchikov [25] to boundary quantum field theories. For the
sine-Gordon model the program used here was developed in [10, 11], to which the interested
reader is referred for details.

To perform a specific check of the boundary form factor solution (3.5) we choose the
operator (corresponding to k = 1)

O1 = eiβφ(0,t)

and evaluate its matrix elements between the BTCSA eigenvectors numerically. As in [6],
all energies and matrix elements are measured in units of (appropriate powers of) the char-
acteristic mass scale (here given by the soliton mass M), and we also use the dimensionless
volume variable l = ML. States can be identified by matching them with the energy levels
predicted by the Bethe-Yang equations, and the appropriate matrix elements can then be
compared to the predictions of (3.8) and (3.12), obtained by substituting the exact form
factor solution (2.6). The typical BTCSA cutoff value was 16, resulting in a truncated
Hilbert space with several thousand states. Only a small, but representative sample of our
numerical results are presented; we took care to verify our results for numerous different
values of the model parameters ξ, η, ϑ.

4.1 Ground state energy and vacuum expectation value

Before embarking on the evaluation of the form factors, the accuracy of BTCSA data can
be tested by extracting the bulk and boundary vacuum energy constants. For each bulk
coupling ξ we considered a number of different boundary conditions. In all cases, on one
side of the strip (x = L) the boundary condition β is a pure Neumann one

η0 = ηN =
π(1 + ξ)

2ξ
ϑ0 = 0

and varied the boundary condition α on the other side x = 0; from now on we only give
the parameters η, ϑ of this other boundary condition α which is also where the boundary
operator O1 is located for the matrix element calculations. As discussed in [10], the energy
of the ground state is predicted to be

E0(L) = BM2L+ (Bb(ηN , 0) + Bb(η, ϑ))M +O
(
e−µL

)

where

B = −1

4
tan

πξ

2

Bb(η, ϑ) = − 1

2 cos πξ
2

(

cos (ξη) + cosh (ξϑ)− 1

2
cos

(
πξ

2

)

+
1

2
sin

(
πξ

2

)

− 1

2

)

11



ξ η/ηN ϑ B (exact) B (BTCSA) Bb (exact) Bb (BTCSA)

50/391 0.5 0 -0.050904 -0.05009 -0.33307 -0.33238
50/311 0.7 0 -0.064512 -0.06350 -0.16625 -0.16802
50/239 0.9 0 -0.085246 -0.08355 0.04476 0.03796
50/311 0.5 0.2 -0.064512 -0.06030 -0.33289 -0.33204
50/391 0.7 0.5 -0.050904 -0.05039 -0.17695 -0.17767

Table 4.1: Bulk and boundary energy constants from BTCSA compared to the exact
predictions, with Bb = Bb(ηN , 0) + Bb(η, ϑ).

are the bulk and boundary energy constants in units of the soliton mass M . The comparison
between the BTCSA results and the above exact predictions is illustrated in table 4.1.

It is also possible to test the exact vacuum expectation value against the BTCSA. The
finite volume expectation value is expected to behave as

〈0|eiβφ(0,t)|0〉L = G1 +O
(
e−µL

)

where the exact vacuum expectation value

G1 = 〈0|eiβφ(0,t)|0〉

can be evaluated from eqn. (3.2). This is illustrated in figure 4.1; the deviations at
large volume (l & 5) are due to truncation effects. Note that agreement is better for
smaller ξ, which agrees with the general trend observed from all the spectral data (masses,
energy levels, bulk and boundary energy constants) that (B)TCSA converges better if the
perturbing operator is more relevant (i.e. its conformal dimension is smaller)1. It is also
important to notice that the derivative of the boundary energy with respect the coupling
constant µB is the expectation value of the boundary perturbation [11], and so the boundary
parameter dependence of these expectation values have already been implicitly checked by
the data in table 4.1.

4.2 Level identification

In order to evaluate matrix elements it is necessary to identify the finite volume levels. As
illustrated in figure 4.2, this is performed by matching predictions from the Bethe-Yang
equations (3.7) to the BTCSA spectrum. It is apparent that this is not an easy task,
in fact, a magnitude harder than in the case of bulk theories. In contrast to the case of
periodic boundary conditions [26], there is no conserved momentum, and so the Hilbert
space cannot be split into sectors on the basis of momentum. As a result, the continuum
(in infinite volume limit) starts at the one-particle threshold, as opposed to the bulk case.
Since topological charge is not conserved either, another way of reducing dimensionality is

1It also happens to be the case that for a given value of ξ convergence is better for smaller values of

the boundary parameter η.
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Figure 4.2: Level identification for ξ = 50/391, η = 0.5ηN , ϑ = 0. The dots are the BTCSA
energy levels (with the vacuum subtracted), the continuous lines are Bethe-Yang predic-
tions for three one-particle levels |{1}〉, |{2}〉, |{3}〉 and two two-particle levels |{1, 2}〉 and
|{1, 3}〉.

also lost, resulting in an extremely dense spectrum. Additional complexity arises from the
complicated particle spectrum and the presence of boundary bound states [27, 20] (in fact,
the lowest excited level in figure 4.2 is precisely such a state and the next two are also clearly
visible in the spectrum). As a result, in contrast to the bulk theories investigated in [4, 5]
there is no way of reliably identifying states with more than two particles. It is also apparent
from the figure that the two-particle states are already in a very dense part of the spectrum,
and their identification is made harder by the numerous level crossings characteristic of
integrable models. At certain values of the volume L there can be more than one BTCSA
candidates for a given Bethe-Yang solution; identification can be completed by selecting
the candidate on the basis of one of the form factor measurements, which still leaves other
matrix elements involving the state as cross-checks.

Level crossings also present a problem in numerical stability, since in their vicinity the
state of interest is nearly degenerate to another one. Since the truncation effect can be
considered as an additional perturbing operator, the level crossings are eventually lifted.
However, such a near degeneracy greatly magnifies truncation effects on the eigenvectors
and therefore the matrix elements [6].
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4.3 The one-particle form factor

One of the most important ingredients of the boundary form factor bootstrap is the minimal
boundary form factor (2.8) which can be obtained via measuring the one-particle matrix
elements

F1(θ) = 〈0|eiβφ(0,t)|B1(θ)〉
= G1 H1r(θ)

(note that the polynomial Q1(y) = P1(y) = [k]y = y for k = 1). Eqn. (3.8) can be used to
express

∣
∣
∣F1(θ̃)

∣
∣
∣ =

√

ρ1(θ̃) |〈0|O(0)|{I}〉L|+O(e−µL)

where θ̃ solves the Bethe-Yang equation

Q1(θ) = 2m1L sinh θ + δ(α) (θ) + δ(β) (θ) = 2πI (4.1)

and
ρ1(θ̃) = Q′

1(θ̃) (4.2)

Therefore it is possible to compare the values extracted from several different one-particle
lines (distinguished by the value of I) on the same plot. The numerics and the theoretical
prediction are in excellent agreement, as shown in figure 4.3. Note that the numerics
deviate from the prediction for small θ (large L) due to truncation errors, while for large
θ (small L) the exponential corrections show up. The advantage of lower I states is that
the scaling regime corresponds to the low-θ domain, while higher I states are useful in
scanning the large-θ behaviour of the form factor function.

4.4 Two-particle form factors

For the two-particle form factor, three independent tests can be performed:

1. Vacuum–two-particle matrix element:

∣
∣〈0|eiβφ(0,t)|{I1, I2}〉L

∣
∣ =

∣
∣
∣F11(θ̃1, θ̃2)

∣
∣
∣

√

ρ11(θ̃1, θ̃2)
+O(e−µL)

where θ̃1, θ̃2 are solutions of the two-particle Bethe-Yang equations, ρ11 is the corre-
sponding Bethe-Yang Jacobian, F11 is given by the n = 2 case of (3.5), and the exact
G is inserted for proper normalization of the operator (figure 4.4).

2. Non-diagonal one-particle–one-particle matrix element:

∣
∣〈{I ′}|eiβφ(0,t)|{I}〉L

∣
∣ =

∣
∣
∣F11(iπ + θ̃′, θ̃)

∣
∣
∣

√

ρ1(θ̃′)ρ1(θ̃)
+O(e−µL)
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Figure 4.3: One-particle form factors extracted from BTCSA and compared to the boot-
strap prediction. Continuous lines are the bootstrap predictions, while the circles, squares
and triangles show data extracted using I = 1, 2, 3 one-particle lines respectively. The
parameters (ξ, η/ηN , ϑ) for the three figures are: (50/391, 0.5, 0), (50/311, 0.5, 0.2) and
(50/391, 0.7, 0.5). 16
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Figure 4.4: Vacuum-two-particle matrix elements for two different two-particle states, at
ξ = 50/311, η = 0.7ηN , ϑ = 0.

where θ̃ and θ̃′ are solutions of the one-particle Bethe-Yang equations (4.1) with
quantum numbers I and I ′ and ρ1 is the one-particle Bethe-Yang Jacobian (4.2)
(figure 4.5).

3. Diagonal one-particle–one-particle matrix element (I = I ′ case):

〈{I}|eiβφ(0,t)|{I}〉L =
F11(iπ + θ̃, θ̃)

ρ1(θ̃)
+ G1 +O(e−µL)

(figure 4.6).

The first two tests show excellent agreement2, while the third one reveals a striking discrep-
ancy. Since this disagreement is only seen in diagonal matrix elements, we think that the
exact form factors are correct, and the issue is with the finite size corrections in diagonal
matrix elements. A detailed discussion is given in the conclusions.

2Even so, some points are slightly displaced. As discussed in subsection 4.2, this is due to the occurrence

of line crossings at the particular value of the volume, where identification of the state becomes more

difficult and BTCSA cutoff errors are also magnified.
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Figure 4.5: Non-diagonal one-particle–one-particle matrix elements for three different
choices of the one-particle states, at ξ = 50/391, η = 0.7ηN , ϑ = 0.5.
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Figure 4.6: Diagonal one-particle–one-particle matrix elements for three different choices
of the one-particle state, at ξ = 50/391, η = 0.7ηN , ϑ = 0.5.
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Figure 4.7: One-particle–two-particle matrix elements for ξ = 50/391, η = 0.5ηN , ϑ = 0.

4.5 Higher form factors

The identified one- and two-particle states can be used to obtain tests of the three- and
four-particle form factors from (3.5), according to the formulae

∣
∣〈{I ′}|eiβφ(0,t)|{I1, I2}〉L

∣
∣ =

∣
∣
∣F111(iπ + θ̃′, θ̃1, θ̃2)

∣
∣
∣

√

ρ1(θ̃′)ρ11(θ̃1, θ̃2)
+O(e−µL)

and

∣
∣〈{I ′1, I ′2}|eiβφ(0,t)|{I1, I2}〉L

∣
∣ =

∣
∣
∣F1111(iπ + θ̃′2, iπ + θ̃′1, θ̃1, θ̃2)

∣
∣
∣

√

ρ11(θ̃′1, θ̃
′
2)ρ11(θ̃1, θ̃2)

+O(e−µL)

(the latter is only valid for the non-diagonal case). These tests, illustrated by figures 4.7 and
4.8, also show a good agreement between numerical results and theoretical expectations.
Using (3.12) diagonal two-particle–two-particle matrix elements can also be constructed,
and they reveal the same disagreement as the one-particle ones in the previous subsection.

5 Conclusions

We have performed an extensive test of the form factors conjectured in [9] by comparing
them to results obtained using the boundary truncated conformal space approach. For gen-
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Figure 4.8: Off-diagonal two-particle–two-particle matrix elements for ξ = 50/311, η =
0.5ηN , ϑ = 0.2.

eral matrix elements an excellent agreement was found. However, for the case of diagonal
matrix elements theoretical expectations and numerical results clearly disagree.

The first point to make that the conjectured form factors are probably correct, as
they survived all the tests with the exception of diagonal matrix elements. Our methods
probed them up to four particles, at which level all of the ingredients of the form factor
bootstrap (minimal form factors, recursion relations from bulk and boundary poles) are
already heavily involved. Therefore we do not expect the problem to be related to the
bootstrap.

The finite size description, on the other hand, have only been obtained for diagonal
scattering theories and the formula (3.12) for the diagonal matrix elements is only an
educated guess based on the bulk case. One issue is that sine-Gordon model is a theory
with a non-diagonal scattering; however, the breather scattering is diagonal, and therefore
it is unlikely that this is the cause of the discrepancy. The other issue is the validity of the
conjectured form of disconnected terms for the diagonal case; however, this was thoroughly
tested both in the bulk and the boundary cases [5, 6] and there is no reason to expect any
modification for sine-Gordon model.

The most likely reason for the disagreement is the presence of so-called µ-terms which
can be attributed to the fact that the first breather is a soliton-antisoliton bound states.
Such effects were observed in [4, 5] and their detailed description was given in [28]. It is a
very interesting fact that similar effects were found for bulk breather form factors (but not
for solitonic ones!) in sine-Gordon theory with periodic boundary conditions [29], which
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strengthens our suspicions about their origin. However, detailed investigation of this issue
requires a knowledge of solitonic form factors of the exponential operators, which have not
yet been constructed. We intend to investigate this issue further in the near future.

Acknowledgments

This work was partially supported by the Hungarian OTKA grants K75172 and K81461.

A Analytic continuation of minimal form factors

The integral representations for the bulk (2.2) and boundary (2.8) minimal form factors
only converge in a suitable strip around the real axis. To evaluate them at complex values
with imaginary parts as large as π, as required in (3.8) and (3.12) they must be continued
analytically by separating pole factors that fall inside the strip of interest. This can be
accomplished using the identity

V(θ; a) = exp

[
∫ ∞

0

dt

t

(

a

2 sinh t
2

− cos
(
θt
π

)
sinh at

sinh2 t

)]

=

N∏

k=1

(
π2(2k − a)2 + θ2

π2(2k + a)2 + θ2

)

× exp

[
∫ ∞

0

dt

t

(

a

2 sinh t
2

−
(
N + 1−Ne−2t

)
e−2Nt cos

(
θt
π

)
sinh at

sinh2 t

)]

where the natural number N is a regulatory parameter such that the value of the functions
are independent of N , but the width of the convergence strip of the integral part grows
with increasing N .

The bulk minimal form factor can be expressed as

f(θ) = V(θ − iπ;B/2− 1)V(θ − iπ;−B/2)V(θ − iπ; 1) (1.1)

and for the boundary minimal form factor function u(θ) (2.9) one can use

u(θ) = U(θ;B/4)U(θ; 1/2− B/4)U(θ; 1/2) (1.2)

where

U(θ; a) = V(θ; a)V(θ − iπ; a)

= exp

[
∫ ∞

0

dt

t

(

a

sinh t
2

− 2 cosh t
2
cos
((
iπ
2
− θ
)

t
π

)
sinh at

sinh2 t

)]
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