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Abstract

We present a conjecture for the exact expression of finite volume expectation values
in excited states in integrable quantum field theories, which is an extension of an earlier
conjecture to the case of general diagonal factorized scattering with bound states and a
nontrivial bootstrap structure. The conjectured expression is a spectral expansion which
uses the exact form factors and the excited state thermodynamic Bethe Ansatz as building
blocks. The conjecture is proven for the case of the trace of the energy-moment tensor.
Concerning its validity for more general operators, we provide numerical evidence using
the truncated conformal space approach. It is found that the expansion fails to be well-
defined for small values of the volume in cases when the singularity structure of the TBA
equations undergoes a non-trivial rearrangement under some critical value of the volume.
Despite these shortcomings, the conjectured expression is expected to be valid for all
volumes for most of the excited states, and as an expansion above the critical volume for
the rest.

1 Introduction

Finite temperature expectation values play an important role in various applications of quan-
tum field theory, and have been intensively studied in recent years in the context of 1 + 1
dimensional integrable quantum field theories. For the one-point function a series expansion
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was conjectured by Leclair and Mussardo in [1], based on the thermodynamic Bethe Ansatz [2]
as applied to integrable quantum field theories [3], and the exact form factors from the boot-
strap program [4, 5, 6]. Recently, the Leclair-Mussardo series found applications in quantum
quenches [7, 8] and the investigations of one-dimensional quantum gases [9, 10, 11].

Another method to obtain finite temperature correlators is based on finite temperature
form factors [12, 13]; so far, however, this approach seems limited to free theories such as
the Ising model. Other approaches that can be used to construct finite temperature expec-
tation values in integrable models use separation of variables [14, 15], or exploit the hidden
Grassmannian/fermionic structure of the XXZ spin chain [16, 17, 18].

In [19, 20] a description of form factors in finite volume was introduced, which was sub-
sequently used to prove the Leclair-Mussardo series [8]. This formalism was also used to
compute the finite-temperature two-point function [21, 22], for which a systematic expansion
was developed in [23, 24]. Besides further applications to two-point functions in condensed
matter systems [25, 26], the finite volume form factor formalism have found numerous other
applications, in computing one-point functions in the presence of boundaries [27], in the study
of quantum quenches in field theories [28, 29, 30], and in the context of holographic duality
[31, 32]. They also provide a useful tool for testing exact form factor solutions obtained from
the form factor bootstrap, recently in the boundary [33] and defect [34] settings.

The finite volume form factor formalism introduced in [19, 20] only included the corrections
that decay with a power of the volume; exponential corrections were neglected. However, soon
after [19, 20] a method was proposed in [35] to construct certain exponential corrections, the
so-called µ-terms which are related to the bootstrap fusion between the particles. It was found
that these can be very important in determining matrix elements and resonance parameters
[36].

However, for integrable quantum field theories one expects that an exact determination of
finite volume form factors is also possible. For the Ising model on a lattice this was known
before [37, 38]; however, until recently there have been no such results for generic models.

In [39] an extension of the Leclair-Mussardo series was conjectured to describe exact excited
state expectation values (a.k.a. diagonal form factors) in finite volume. The methods of [39]
apply to theories like the sinh-Gordon model which have no bound states in their bootstrap,
and the thermodynamic Bethe Ansatz equations describing excited states in finite volume
have a particularly simple structure [40].

In the present work we extend this conjecture to theories with a diagonal factorized scat-
tering that have a nontrivial bootstrap structure. In such models, the excited state levels in
finite volumes are described by excited TBA systems of the type introduced in [41, 42, 43].
This conjecture is verified in two ways. First, we show for the trace of stress-energy tensor the
conjectured series is equivalent to the result obtained directly from the thermodynamic Bethe
Ansatz. Second, we make use of the truncated conformal space approach (TCSA) [44] to get
a nontrivial further check of the series. For the latter, we use the methods developed in [45],
to which the interested reader is referred to for details.

The outline of the paper is as follows. In Section 2 we introduce our notations and state
the conjecture. In section 3 we present the proof that the conjectured series gives the same
result as the thermodynamic Bethe Ansatz when evaluated for the trace of the stress-energy
tensor. In Section 4 we turn to the so-called T2 model used as testing ground, and specify
the expansion for the case of the excited state thermodynamic Bethe Ansatz of this particular
field theory. The resulting expectation value are then compared to numerical results from the
TCSA in Section 5, while Section 6 contains our conclusions and outlook. As the method
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used for numerically evaluating the connected diagonal form factors contains some non-trivial
tricks, and could be useful for other applications, it is presented in Appendix A.

2 Finite volume expectation values in excited states: the con-
jecture

The Leclair-Mussardo series for the finite volume vacuum expectation value of a local operator
in an integrable model with diagonal scattering and k species of massive particles takes the
following form [1]:

〈O〉L =
∞∑

n1,...,nk=0

(
k∏
i=1

ni!

)−1 ˆ ∞
−∞

Ñ∏
j=1

dθj

2π
[
1 + e

εβj (θj)
]FO2n1,...,2nk,c

(
θ1, . . . , θÑ

)
(2.1)

where FO2n1,...,2nk,c
are the connected diagonal form factors of the operator O, ni the number

of particles of species i, Ñ =
∑
ni the total number of particles, and the jth particle has

rapidity θj and species βj . The εα(θ) are the pseudo-energy functions satisfying the TBA
integral equation [3]:

εα (θ) = mαL cosh (θ)−
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

)
log
(

1 + e−εβ(θ′)
)

(2.2)

where the kernels are given by the logarithmic derivatives of the two-particle scattering phases

ϕαβ (θ) = −i ∂
∂θ

logSαβ (θ) (2.3)

The finite volume ground state energy is given by

ETBA(L) = E (L)− BL = −
∑
β

ˆ
dθ′

2π
mβ cosh (θ) log

(
1 + e−εβ(θ)

)
(2.4)

where B is the bulk energy density. The connected diagonal form factors are defined by
regularizing the diagonal matrix element

FO(θn + iπ + εn, . . . , θ1 + iπ + ε1, θ1, . . . , θn) (2.5)

and retaining the terms which are independent of the ratios εi/εj . We remark that the form
factor has a finite, but direction dependent limit when all the εi are taken to zero simultane-
ously, so the regularized matrix elements can only depend on their ratios.

From the work by Dorey and Tateo [42, 43] it is known that starting from the TBA
equation of the ground state one can reach the Riemann surface of excited states by ana-
lytic continuation in the volume parameter; the same equations were also obtained in [41]
using a different approach. When performing the analytic continuation singularities of the
log (1 + e−εβ ) terms, corresponding to locations where Yβ = eεβ = −1, cross the integration
contour modifying the TBA equations as
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εα (θ) = mαL cosh (θ)−
N∑
i=1

ηi logSααi
(
θ − θ̄i

)
−
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

)
log
(

1 + e−εβ(θ′)
)

ETBA (L) =

N∑
i=1

imαiηi sinh
(
θ̄i
)
−
∑
β

ˆ
dθ

2π
mβ cosh (θ) log

(
1 + e−εβ(θ)

)
(2.6)

where the θ̄i are the positions of the singularities of the pseudo-energy of species αi, which
satisfy the quantization conditions

εαi
(
θ̄i
)

= iπ (2ni + 1) ni ∈ Z (2.7)

and the ni can be viewed as quantum numbers specifying the excited state. Such singularities
are called active; their contribution further depends on the orientation ηi of the integration
contour around the singularity, which take the values ±1 if the singularity crossed the real
axis from above/below, respectively. The number and type of the active singularities depends
on the excited state and the position of these singularities at a fixed volume L fully specifies
the excited state. Therefore the corresponding finite volume state can be denoted as∣∣θ̄i, . . . , θ̄N〉L (2.8)

The term log (1 + e−εβ ) also has singularities where the Yβ = eεβ = 0. In [42, 43] it was shown
that whenever a singularity that corresponds to a zero of a Y function crosses the integration
contour, it does not generate new source terms to the TBA equations, but only rearranges the
active singularities already present. The only exception is when such a singularity pinches the
integration contour; for more details about dealing with this situation see Subsection 4.1.2.

The TBA system (2.6) can be recast in a universal functional form called the Y -system
[46, 47]

Yα

(
θ − iπ

h

)
Yα

(
θ +

iπ

h

)
=

k∏
β=1

(1 + Yβ(θ))Iαβ (2.9)

Ya(θ) = eεa(θ)

where h is the Coxeter number and Iαβ is the incidence matrix of some diagram. In Subsection
4.1.2 we shall use the fact that Y -system relates the positions of the two types of logarithmic
singularities of the TBA equations.

The analytical continuation is expected to connect not only the energy, but also other
quantities such as e.g. expectation values corresponding to the different finite volume levels.
It was shown in [39] how to perform the residue integrals over the modified contours and re-
sum the terms into a compact form for an analytically continued Leclair-Mussardo conjecture.
This calculation was carried out for the sinh-Gordon theory, where the excited TBA system
is still a conjecture [40], but the result passes several consistency checks. Namely, the first
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e−mR corrections in the infrared limit agree with theoretical expectations and the result also
agrees with the TBA results for the trace of the stress-energy tensor.

Let us now state the conjecture for the general form of the finite volume expectation values
in excited states. It contains two kind of quantities, the “dressed version” of the diagonal form
factors and the densities of the active singularities.

Definition 1. The dressed diagonal form factors of the local operator O are

DOε
(
θ̄1, . . . , θ̄l

)
:=

∞∑
n1,...,nk=0

1∏
i ni!

ˆ ∞
−∞

Ñ∏
j=1

dθj

2π
[
1 + e

εβj (θj)
]

×FO2l,2n1,...,2nk,c

(
θ̄1, . . . , θ̄l, θ1, . . . , θÑ

)
(2.10)

where θ̄i are a subset of the active singularities, with the ith one corresponding to species αi.
To obtain the densities of the active singularities, consider the derivative matrix with

respect to the singularity positions

Kjk =
∂Qj

∂θ̄k
(2.11)

of the quantization conditions (2.7)

Qj = iηjεαj
(
θ̄j |θ̄1, . . . , θ̄N

)
(2.12)

satisfied by the position of the active singularities.

Definition 2. The density of active singularities (in rapidity space) is the determinant of the
derivative matrix

ρ
(
θ̄1, . . . , θ̄N

)
= detKij (2.13)

Definition 3. For any bipartite partition
{
θ̄1, . . . , θ̄N

}
=
{
θ̄+

}
∪
{
θ̄−
}
of the active singulari-

ties, the restricted density of active singularities in the subset
{
θ̄+

}
relative to

{
θ̄−
}
is defined

by
ρ
({
θ̄+

}
|
{
θ̄−
})

= detK+ (2.14)

where K+ is the submatrix corresponding to the subset of active singularities
{
θ̄+

}
.

Using the above definitions, the main result can be stated as follows:

Conjecture 4. The exact finite volume expectation values of an operator O in any finite
volume state can be written as

L

〈
θ̄i, . . . , θ̄N

∣∣O ∣∣θ̄i, . . . , θ̄N〉L =
1

ρ
(
θ̄1, . . . , θ̄N

)
×

∑
{θ̄+}∪{θ̄−}

DOε
({
θ̄+

})
ρ
({
θ̄−
}
|
{
θ̄+

})
(2.15)
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This conjecture was verified by explicit calculation for the case of one and two active
singularity in the sinh-Gordon theory [39]. For the trace of the stress-energy tensor the
conjecture is equivalent to the excited state TBA equations for any state, similarly to the
Leclair-Mussardo series (2.1) which for the trace of the stress-energy tensor is equivalent to
the ground state TBA (2.2,2.4) [1]. The proof of this equivalence is given in Section 3.

The infrared limit of the formula also reproduces previously known results for finite volume
diagonal form factors which were obtained in [19, 20]. In large volume the imaginary parts
of the active singularities tend to fixed values, which are determined by the poles of the
scattering matrix [42, 43], and the real parts {ϑj} = {Re θ̄i} of the singularity positions can
be interpreted as rapidities of on-shell particles, where usually one particle is described by
more than one singularity positions, which all have the same real parts. The quantization
conditions reduce to the Bethe-Yang equations

mαj sinhϑj − i
∑
k 6=j

logSαjαk(ϑj − ϑk) = 2πIj (2.16)

where the momentum quantum numbers Ij can be obtained from the quantum numbers ni.
The density of active singularities specified in Definition 2 reduces to the usual density of
states in rapidity space, while the restricted density in Definition 3 turns into the restricted
density used in the diagonal form factor formula in [20].

In the same limit, the “dressed” diagonal form factors reduce to connected diagonal form
factors, and for theories where particles are represented by a single active singularity, formula
(2.15) reduces to the results obtained in [19, 20] for the finite-volume diagonal matrix elements,
which are valid up to exponential corrections in the volume.

In theories where a particle is represented by several active singularities, the particle can
be considered as a bound state of the active singularities. In infinite volume this does not
make any difference due to bootstrap equations satisfied by the scattering matrix, but in
finite volume the composite nature of the particles gives exponential corrections, which are
exactly the µ-term corrections to the form factor described in [35]. However, while in [35] the
description of the particles as composite objects was still ambiguous, the excited state TBA
equation gives a clear prescription valid for every value of the volume.

In line with the usual terminology of finite volume corrections [48, 49, 33], the terms in
(2.15) containing rapidity integration, originating from either the quantization conditions (2.7)
or the dressed form factors (2.10), give so-called F -term corrections, which describe virtual
particle loops winding around the finite volume cylinder.

3 Equivalence of the form factor series and the TBA for the
trace of the stress-energy tensor

In this section we present the equivalence of the conjectured form factor series for excited
states (2.15) and the TBA equations for Θ the trace of the stress-energy tensor. We proceed
in three steps. First we explicitly evaluate the TBA prediction for 〈Θ〉, then recast it in a
form which can be matched with the dependence of (2.15) on the densities, and then prove
that the rest of the formula matches the dressed form factors of Θ.
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3.1 〈Θ〉 from TBA

As described in [3] the expectation value of the trace of the stress-energy tensor can be
expressed in the following way

〈Θ〉L = 〈Θ〉∞ + 2π

[
ETBA (L)

L
+

dETBA (L)

dL

]
(3.1)

For an excited state with N active singularities we obtain

ETBA (L) =

N∑
i=1

imαiηi sinh
(
θ̄i
)
−
∑
β

ˆ
dθ

2π
mβ sinh (θ)

∂θεβ (θ)

1 + eεβ(θ)

dETBA (L)

dL
=

N∑
i=1

imαiηi cosh
(
θ̄i
) dθ̄i
dL

+
∑
β

ˆ
dθ

2π
mβ cosh (θ)

∂Lεβ (θ)

1 + eεβ(θ)
(3.2)

where we performed a partial integration in the energy expression. The derivatives of the
pseudo-energy satisfy the following linear equations

∂θεα (θ) = mαL sinh (θ)−
N∑
i=1

iηiϕααi
(
θ − θ̄i

)
+
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) ∂θεβ (θ′)

1 + eεβ(θ′)

∂Lεα (θ) = mα cosh (θ) +
N∑
i=1

iηiϕααi
(
θ − θ̄i

) dθ̄i
dL

(3.3)

+
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) ∂Lεβ (θ′)

1 + eεβ(θ′)

The linearity of the above equations can be exploited by introducing new functions f satisfying
the following equations

fs,α (θ) = mα sinh (θ) +
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) fs,β (θ′)

1 + eεβ(θ′)

fc,α (θ) = mα cosh (θ) +
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) fc,β (θ′)

1 + eεβ(θ′)

fi,α (θ) = ϕααi
(
θ − θ̄i

)
+
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) fi,β (θ′)

1 + eεβ(θ′)
(3.4)

which can be used to express the derivatives as

∂θεα (θ) = Lfs,α (θ) +

N∑
i=1

(−iηi) fi,α (θ)

∂Lεα (θ) = fc,α (θ) +

N∑
i=1

(
iηi
dθ̄i
dL

)
fi,α (θ) (3.5)
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Inserting these relation into (3.3)

ETBA (L) =
N∑
i=1

imαiηi sinh
(
θ̄i
)
−
∑
β

ˆ
dθ

2π
mβ sinh (θ)

Lfs,β (θ) +
∑N

i=1 (−iηi) fi,β (θ)

1 + eεβ(θ)

dETBA (L)

dL
=

N∑
i=1

imαiηi cosh
(
θ̄i
) dθ̄i
dL

+
∑
β

ˆ
dθ

2π
mβ cosh (θ)

fc,β (θ) +
∑N

i=1

(
iηi

dθ̄i
dL

)
fi,β (θ)

1 + eεβ(θ)
(3.6)

th expectation value 〈Θ〉 takes the form

〈Θ〉
2π

=
〈Θ〉∞

2π
+

N∑
i=1

i

L
mαiηi sinh

(
θ̄i
)
−
∑
β

ˆ
dθ

2π
mβ sinh (θ)

fs,β (θ) +
∑N

i=1

(
− i
Lηi
)
fi,β (θ)

1 + eεβ(θ)

+
N∑
i=1

imαiηi cosh
(
θ̄i
) dθ̄i
dL

+
∑
β

ˆ
dθ

2π
mβ cosh (θ)

fc,β (θ) +
∑N

i=1

(
iηi

dθ̄i
dL

)
fi,β (θ)

1 + eεβ(θ)

=
〈Θ〉∞

2π
+
∑
β

ˆ
dθ

2π

mβ cosh (θ) fc,β (θ)−mβ sinh (θ) fs,β (θ)

1 + eεβ(θ)

+
N∑
i=1

i

L
ηi

mαi sinh
(
θ̄i
)

+
∑
β

ˆ
dθ

2π
mβ sinh (θ)

fi,β (θ)

1 + eεβ(θ)


+

N∑
i=1

iηi
dθ̄i
dL

mαi cosh
(
θ̄i
)

+
∑
β

ˆ
dθ

2π
mβ cosh (θ)

fi,β (θ)

1 + eεβ(θ)

 (3.7)

Using that the derivatives of phase shift are even functions ϕαβ (θ) = ϕβα (−θ), and the
definition of fi and fs,c one can easily see that

∑
β

ˆ
dθ

2π
mβ sinh (θ)

fi,β (θ)

1 + eεβ(θ)
=

∑
β

ˆ
dθ

2π
ϕαiβ

(
θ̄i − θ

) fs,β (θ)

1 + eεβ(θ)

∑
β

ˆ
dθ

2π
mβ cosh (θ)

fi,β (θ)

1 + eεβ(θ)
=

∑
β

ˆ
dθ

2π
ϕαiβ

(
θ̄i − θ

) fc,β (θ)

1 + eεβ(θ)
(3.8)

and so 〈Θ〉 simplifies to

〈Θ〉
2π

=
〈Θ〉∞

2π
+
∑
β

ˆ
dθ

2π

mβ cosh (θ) fc,β (θ)−mβ sinh (θ) fs,β (θ)

1 + eεβ(θ)

+

N∑
i=1

i

L
ηifs,αi

(
θ̄i
)

+

N∑
i=1

iηifc,αi
(
θ̄i
) dθ̄i
dL

(3.9)
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The derivatives of the active singularity positions can be expressed using the quantization
conditions (2.12)

dQi
dL

=
∑
j

∂Qi
∂θ̄j

dθ̄j
dL

+
∂Qi
∂L

= 0

dθ̄i
dL

= −
∑
j

K−1
ij

∂Qj
∂L

(3.10)

where

Kij =
∂Qi
∂θ̄j

= iηi
∂εαi

(
θ̄i|θ̄1, . . . , θ̄N

)
∂θ̄j

= iηi

{
Lfs,αi

(
θ̄i
)

+
∑

k 6=i (−iηk) fk,αi
(
θ̄i
)

i = j

(iηj) fj,αi
(
θ̄i
)

i 6= j
(3.11)

Introducing the following combinations

Ni = iηifs,αi
(
θ̄i
)

Nϕ,ij = ηiηjfj,αi
(
θ̄i
)

(3.12)

where Nϕ,ij = Nϕ,ji , K can be rewritten as

Kij =

{
LNi +

∑
k 6=iNϕ,ik i = j

−Nϕ,ik i 6= j
(3.13)

The explicit volume derivative of the quantization condition is

∂Qi
∂L

= iηi
∂εαi

(
θ̄i|θ̄1, . . . , θ̄N

)
∂L

= iηifc,αi
(
θ̄i
)

(3.14)

Introducing

Mi = iηifc,αi
(
θ̄i
)

(3.15)

the derivative of the singularity position takes the following form

dθ̄i
dL

= −
∑
j

K−1
ij Mj (3.16)

such as 〈Θ〉

〈Θ〉
2π

=
〈Θ〉∞

2π
+
∑
β

ˆ
dθ

2π

mβ cosh (θ) fc,β (θ)−mβ sinh (θ) fs,β (θ)

1 + eεβ(θ)

+

N∑
i=1

Ni
L
−

N∑
i,j=1

MiK−1
ij Mj (3.17)

This is our final form for the TBA result for 〈Θ〉.
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3.2 Isolating the singularity density terms

To see the equivalence of 〈Θ〉 to the form factor series (2.15) the terms containing Ni and
Mi need to be rearranged in order to match the structure of the singularity density terms in
(2.15).

Let’s start with the term
N∑

i,j=1

MiK−1
ij Mj (3.18)

The inverse of K can be expressed by its co-factor matrix C

K−1
ij =

Cji
detK

(3.19)

The diagonal elements of the co-factor matrix are just the principal minors of K:

Cii = detK ({i}) (3.20)

where K (I) denotes the matrix obtained by omitting from K the rows and columns that are
indexed by the set I. The non-diagonal elements of the co-factor matrix can be expressed
with principal minors and sequences of the elements of K [50]

Cji =
N−2∑
n=0

∑
{α}

(−1)n+1Kiα1Kα1α2 . . .Kαnj detK ({j, i, α1, . . . , αn})

=
N−2∑
n=0

∑
{α}

Nϕ,iα1Nϕ,α1α2 . . .N,ϕαnj detK ({j, i, α1, . . . , αn}) (3.21)

where {α} ⊂ {1, . . . , N} \ {i, j} . With the help of (3.20) and (3.21) one can write

N∑
i,j=1

MiK−1
ij Mj =

∑
i

detK (i)

detK
MiMi +

∑
i 6=j

N−2∑
n=0

∑
{α}

detK (j, i, {α})
detK

×MiMjNϕ,iα1Nϕ,α1α2 . . .N,ϕαnj (3.22)

Now we turn to rearranging the term
N∑
i=1

Ni
L

(3.23)

in a similar manner. For this we need the following theorem:

Theorem 5. If the N ×N matrix K(N) has the form

K(N)
ij =

{
LNi +

∑
k 6=iNϕ,ik i = j

−Nϕ,ik i 6= j
(3.24)

its determinant can be expanded as

detK(N) = LNi detK(N) ({i}) (3.25)

+
N−1∑
n=1

∑
{α}

Nϕ,iα1Nϕ,α1α2 . . .Nϕ,αn−1αnLNαn detK(N) ({i, α1, . . . , αn})
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where i is any chosen row, {α} ⊂ {1, . . . , N} \ {i} and K(N) (I) is the submatrix of K(N) as
defined before.

Proof. Up to N = 3 it is easy to check the statement by direct evaluation. For N > 3 we
proceed by induction. Let us suppose the theorem is valid for N − 1

detK(N−1) = LNi detK(N−1) ({i}) +
N−2∑
n=1

∑
{α}

{
Nϕ,iα1Nϕ,α1α2 . . .Nϕ,αn−1αnLNαn

×detK(N−1) ({i, α1, . . . , αn})
}

(3.26)

The determinant for the matrix K(N) of size N can be expanded by its row j

detK(N) = K(N)
jj C

(N)
jj +

∑
i 6=j
K(N)
ji C

(N)
ji (3.27)

where C(N) is the co-factor matrix of K(N). Using (3.20) and (3.21) leads to

detK(N) = K(N)
jj detK(N) ({j}) +

∑
i 6=j
K(N)
ji

N−2∑
n=0

∑
{α}

{
(−1)n+1Kiα1Kα1α2 . . .Kαnj

×detK(N) ({j, i, α1, . . . , αn})
}

=

LNj +
∑
i 6=j
Nϕ,ji

 detK(N) ({j})−
∑
i 6=j

{
Nϕ,ji

×
N−2∑
n=0

∑
{α}

Nϕ,iα1Nϕ,α1α2 . . .Nϕ,αnj detK(N) ({j, i, α1, . . . , αn})
}

(3.28)

Now K(N) ({j}) can be related to K(N−1) by observing that their off-diagonal elements are
the same, while K(N)

ii = K(N−1)
ii +Nϕ,ij . Implementing this by shifting LNi → LNi +Nϕ,ij in

(3.26) one obtains

detKN ({j}) = detK(N−1)
∣∣∣
LNi→LNi+Nϕ,ij

= (LNi +Nϕ,ij) detK(N) ({j, i}) +
N−2∑
n=1

∑
{α}

{
Nϕ,iα1Nϕ,α1α2 . . .Nϕ,αn−1αn

× (LNαn +Nϕ,αnj) detK(N) ({j, i, α1, . . . , αn})
}

(3.29)
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and inserting this back to (3.28) gives

detK(N) = LNj detK(N) ({j}) +
∑
i 6=j
Nϕ,ji (LNi +Nϕ,ij) detK(N) ({j, i})

+
∑
i 6=j
Nϕ,ji

N−2∑
n=1

∑
{α}

{
Nϕ,iα1Nϕ,α1α2 . . .Nϕ,αn−1αn

× (LNαn +Nϕ,αnj) detK(N) ({j, i, α1, . . . , αn})
}

−
∑
i 6=j
Nϕ,ji

N−2∑
n=0

∑
{α}

Nϕ,iα1Nϕ,α1α2 . . .Nϕ,αnj detK(N) ({i, j, α1, . . . , αn})

= LNj detK(N) ({j}) +

+
N−1∑
n=1

∑
{α}

Nϕ,jα1Nϕ,α1α2 . . .Nϕ,αn−1αnLNαn detK(N) ({j, α1, . . . , αn})(3.30)

which is just the statement we wanted to prove. Q.e.d.

Using the above theorem we can rewrite

∑
i

Ni
L

=
∑
i

Ni
L

detK
detK

=
∑
i

NiNi
detK ({i})

detK
+
∑
i 6=j

N−2∑
n=0

∑
{α}

detKN ({i, j, α1, . . . , αn})
detK

×NiNjNϕ,iα1Nϕ,α1α2 . . .Nϕ,αnj (3.31)

which has the same structure as (3.22). Substituting the definitions of N (3.12) andM (3.15)
into (3.22) and (3.31) we can see that every ηi factor appears twice and so drops out. Therefore
the expression for 〈Θ〉 (3.17) simplifies to

〈Θ〉
2π

=
〈Θ〉∞

2π
+
∑
β

ˆ
dθ

2π

mβ cosh (θ) fc,β (θ)−mβ sinh (θ) fs,β (θ)

1 + eεβ(θ)

+
∑
i

detK ({i})
detK

[
fc,αi

(
θ̄i
)
fc,αi

(
θ̄i
)
− fs,αi

(
θ̄i
)
fs,αi

(
θ̄i
)]

+
∑
i 6=j

N−2∑
n=0

∑
{α}

detK ({i, j, α1, . . . , αn})
detK

[
fc,αi

(
θ̄i
)
fc,αj

(
θ̄j
)
− fs,αi

(
θ̄i
)
fs,αj

(
θ̄j
)]

×fα1,αi

(
θ̄i
)
fα2,α1

(
θ̄1

)
. . . fj,αn

(
θ̄n
)

(3.32)

The determinant ratios are exactly the density factors in (2.15); what remains to be shown is
that the other terms reproduce the dressed form factors of Θ.

3.3 Dressed form factors of Θ

Theorem 6. In the absence of active singularities of the TBA equations, the dressed form
factors of Θ are given by

DΘ
ε =

∞∑
n1,...,nk=0

1∏
i ni!

ˆ ∞
−∞

Ñ∏
j=1

dθj

2π
[
1 + e

εβj (θj)
]FΘ

2n1,...,2nk,c

(
θ1, . . . , θÑ

)
(3.33)

12



which is equal to

DΘ
ε = 〈Θ〉∞ + 2π

∑
β

ˆ
dθ

2π

mβ cosh (θ) fc,β (θ)−mβ sinh (θ) fs,β (θ)

1 + eεβ(θ)
(3.34)

Proof. The connected diagonal form factors of Θ are given by [1]

FΘ
2n,c (θ1, . . . , θn) = 2πϕ12ϕ23 . . . ϕn−1,nmβ1mβn cosh (θ1n) + permutations

where θij = θi − θj , βi denotes the species of the ith particle and ϕij is a short-hand for
ϕβiβj (θij). (3.33) is symmetric under re-ordering particles of the same species which results
in a combinatorial factor

∏
i ni! canceling the denominators in front of the integrals. To take

into account the rest of the permutations we can rewrite DΘ
ε like

DΘ
ε = 2π

∞∑
n=0

∑
β1,...,βn

ˆ ∞
−∞

n∏
j=1

dθj

2π
[
1 + e

εβj (θj)
]ϕ12ϕ23 . . . ϕn−1,nmβ1mβn cosh (θ1n)

=
∞∑
n=0

DΘ
ε,n (3.35)

Following [1] every DΘ
ε,n can be graphically represented as seen in Fig. 3.1a where every node

represents a particle with a given rapidity and species, including the integrationˆ
dθi

2π
[
1 + eεβi (θi)

]
and the first and last node is multiplied by its mass. Every horizontal line represents a factor
ϕij and the dashed line represents the factor cosh θ1n. The whole graph is multiplied by 2π
to account for the normalization of the operator Θ, and summed over every possible type
configuration for the nodes. The empty graph (with zero node) represents DΘ

ε,0 = 〈Θ〉∞.
Using hyperbolic addition formulas for the cosh θ1n terms every graph can be represented as
difference of two chains where the two end nodes instead of being connected by dashed line,
are multiplied by cosh or sinh of the rapidity at the given node as shown in Fig. 3.1b.

Since the functions fc and fs in (3.34) satisfy the self-consistent equations (3.4), it is
convenient to expand them in the following way

fc,β (θ) =

∞∑
n=0

Kn,β (θ)

fc,β (θ) =
∞∑
n=0

Jn,β (θ) (3.36)

where

K0,β (θ) = mβ cosh (θ)

J0,β (θ) = mβ sinh (θ)

Kn,β (θ) =
∑

β1,...,βn

ˆ ∏
i

dθi

2π
[
1 + eεβi (θi)

]ϕββ1 . . . ϕβn−1βnmβn cosh (θn)

Jn,β (θ) =
∑

β1,...,βn

ˆ ∏
i

dθi

2π
[
1 + eεβi (θi)

]ϕββ1 . . . ϕβn−1βnmβn sinh (θn) (3.37)

13



cosh (θ1 − θn)

m1 mn

(a) DΘ
ε,n.

m1 sinh (θ1) mn sinh (θn)

m1 cosh (θ1) mn cosh (θn)

-

(b) DΘ
ε,n expanded.

ϕβ1 (θ − θ1) mn sinh (θn)

ϕβ1 (θ − θ1) mn cosh (θn)

(c) Kn,β (θ) and Jn,β (θ).

Figure 3.1: Graphical representation of DΘ
ε,n, Kn,β (θ) and Jn,β (θ).

The graphical representation of Kn,β (θ) and Jn,β (θ) can be seen in Fig. 3.1c; the dashed
node indicates that the corresponding rapidity integral and the filling fraction belonging to
that node is not included in the contribution. Comparing to Fig. 3.1b it is clear that Kn,β (θ)
and Jn,β (θ) describe the contribution of the chain between one of the end nodes and a dashed
node with type β which is n steps away from the end node. Multiplying Kn,β (θ) and Jn,β (θ)

with 2π
∑

β

´
dθ
2π

mβ cosh(θ)

1+e
εβ(θ) and −2π

∑
β

´
dθ
2π

mβ sinh(θ)fs,β(θ)

1+e
εβ(θ) as in (3.34) closes the chains and

they become identical to the ones in Fig. 3.1b with length n + 1, i.e. equal to DΘ
ε,n+1. The

sum for n in fc and fs then generates all the contributions in DΘ
ε . Q.e.d.

Theorem 7. The dressed form factor of Θ with one active singularity θ̄i with type αi is

DOε
(
θ̄i
)

=

∞∑
n1,...,nk=0

1∏
i ni!

ˆ ∞
−∞

Ñ∏
j=1

dθj

2π
[
1 + e

εβj (θj)
]FΘ

2n1,...,2nk,c

(
θ̄i, θ1, . . . , θÑ

)
(3.38)

which is equal to

DOε
(
θ̄i
)

= fc,αi
(
θ̄i
)
fc,αi

(
θ̄i
)
− fs,αi

(
θ̄i
)
fs,αi

(
θ̄i
)

(3.39)

Proof. The proof follows the ideas used in demonstrating theorem 6. The factor
∏
i ni! for the

non-active singularities cancels as before, but now one must sum over all possible positions of
the active singularity:

DΘ
ε

(
θ̄i
)

= 2π
∞∑

n,m=0

∑
β1,...,βn+m

ˆ ∞
−∞

n+m∏
j=1

dθj

2π
[
1 + e

εβj (θj)
]ϕ12ϕ23 . . . ϕni

×ϕi,n+1 . . . ϕn+m−1,n+mmβ1mβn+m cosh (θ1,n+m) =
∞∑

n,m=0

DΘ
ε,nm

(
θ̄i
)
(3.40)
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cosh (θ1 − θn+m)

m1 mn+m
n n+1

(a) DΘ
ε,nm

(
θ̄i
)
.

m1 sinh (θ1) mn sinh (θn)

m1 cosh (θ1) mn cosh (θn)

-

(b) DΘ
ε,nm

(
θ̄i
)

expanded.

ϕαi1
(
θ̄i − θ1

)
mn sinh (θn)

ϕαi1
(
θ̄i − θ1

)
mn cosh (θn)

(c) Kn,αi

(
θ̄i
)

and Jn,αi

(
θ̄i
)
.

Figure 3.2: Graphical representation of DΘ
ε,nm

(
θ̄i
)
, Kn,αi

(
θ̄i
)
and Jn,αi

(
θ̄i
)
.

where the sum runs for the number and the species nodes between the active singularity and
the end nodes (for n = 0, the active singularity is the end node on the left, while for m = 0
it is the end node on the right). The active singularity is marked by a black node in Figs.
3.2a and 3.2b. Kn,αi

(
θ̄i
)
and Jn,αi

(
θ̄i
)
are represented in Fig. 3.2c; they are equal to the

contribution of the chain between one of the end nodes and the active singularity. Multiplying
them as in 3.39 it follows that

DΘ
ε,nm

(
θ̄i
)

= Kn,αi

(
θ̄i
)
Km,αi

(
θ̄i
)
− Jn,αi

(
θ̄i
)
Jm,αi

(
θ̄i
)

(3.41)

and the summation in both of fc/s the result exactly reproduces DΘ
ε

(
θ̄i
)
. Q.e.d.

Theorem 8. The dressed form factor of Θ with N active singularities
{
θ̄1, . . . , θ̄N

}
is

DOε
(
θ̄1, . . . , θ̄N

)
=

∞∑
n1,...,nk=0

1∏
i ni!

ˆ ∞
−∞

Ñ∏
j=1

dθj

2π
[
1 + e

εβj (θj)
]

×FO2n1,...,2nk,c

(
θ̄1, . . . , θ̄N , θ1, . . . , θÑ

)
(3.42)

which is equal to

DOε
(
θ̄1, . . . , θ̄N

)
=

∑
i 6=j

∑
{α}

[
fc,αi

(
θ̄i
)
fc,αj

(
θ̄j
)
− fs,αi

(
θ̄i
)
fs,αj

(
θ̄j
)]

×fα1,αi

(
θ̄i
)
fα2,α1

(
θ̄1

)
. . . fj,αn

(
θ̄n
)

(3.43)

where {α} = {1, . . . , N} \ {i, j}.

Proof. As in the proofs of the previous theorems, (3.42) can be organized into a sum over terms
corresponding to individual permutations of the active singularities. For a given permutation,
the contribution is the sum of graphs represented in Figs. 3.3a and 3.3b, where the number
and type of nodes separating end nodes and the active singularities is varying.
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cosh (θ1 − θn)

m1 mn

(a) DΘ
ε

(
θ̄1, . . . , θ̄N

)
.

m1 sinh (θ1) mn sinh (θn)

m1 cosh (θ1) mn cosh (θn)

-

(b) DΘ
ε

(
θ̄1, . . . , θ̄N

)
expanded.

ϕαj1
(
θ̄j − θ1

)
ϕnαi

(
θn − θ̄i

)
(c) Ln,ji .

Figure 3.3: Graphical representation of the terms of DΘ
ε

(
θ̄1, . . . , θ̄N

)
and Ln,ji .

The functions fαq ,αp
(
θ̄p
)
can be expanded as fc/s previously, using their definition in (3.4)

fαq ,αp
(
θ̄p
)

=

∞∑
n=0

Ln,pq (3.44)

where

L0,pq = ϕpq

Ln,pq =
∑

β1,...,βn

ˆ ∏
i

dθi

2π
[
1 + eεβi (θi)

]ϕαpβ1 . . . ϕβnαq (3.45)

Ln,pq is represented in Fig. 3.3c; it generates all the possible contribution to Fig. 3.3b between
two active singularities. In a given permutation of the active singularities let us take θ̄i and
θ̄j as the two active singularities closest to the left/right end nodes; then the terms

fc,αi
(
θ̄i
)
fc,αj

(
θ̄j
)
− fs,αi

(
θ̄i
)
fs,αj

(
θ̄j
)

generate all the contributions between the active singularities and the ends, and

fα1,αi

(
θ̄i
)
fα2,α1

(
θ̄1

)
. . . fj,αn

(
θ̄n
)

generate all the contributions between the other active singularities. Summing up for all the
permutations of the active singularities proves the theorem. Q.e.d.

Theorems 6, 7 and 8 prove the equivalence of the form factor series (2.15) and the TBA
equations for 〈Θ〉 in any excited state described by the TBA system (2.6).

4 Finite volume expectation values in the T2 model

For the numerical validation of the conjecture (2.15) we follow a similar strategy as we did
for the Leclair-Mussardo conjecture in [45], where we chose the T2 model for the numerics.
The T2 model is the perturbation of theM2,7 conformal minimal model [51] by the primary
operator Φ1,3.
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There are several advantages in this choice. First, all the data necessary to calculate the
series (2.15): the scattering theory, the form factors (of primary fields) and the excited state
TBA equations, are known for this model. Second, the T2 model contains operators with
known form factors that are not related to the trace of the stress-energy tensor; the trace
of the stress energy tensor is not interesting since the conjecture is equivalent to the TBA
equation as shown in Section 3. Finally for the T2 model the Truncated Conformal Space
Approach (TCSA) improved by renormalization group methods [45] gives an efficient way
to evaluate the expectation values directly solving the dynamics of the model. The TCSA
was introduced in [44] while renormalization techniques were proposed in [52, 53] and further
developed in [54, 55, 56]; the development of related methods is now a very active field of
investigation [57, 58, 59, 60]. For details on TCSA in the T2 model and the renormalization
method we refer the interested reader to [45].

4.1 Excited state TBA equations for a single type-1 state

4.1.1 General form and solution of the excited TBA equations

The simplest excited states in the excited TBA formalism for the T2 model [43] are those with
a single type-1 particle. For these excited states the TBA equations contain only two active
singularities of type-2 with η1 = −1, η2 = 1:

εa (θ) = maL cosh (θ) + log

(
Sa2

(
θ − θ̄1

)
Sa2

(
θ − θ̄2

)) (4.1)

−
∑
b

ˆ
dθ′

2π
ϕab

(
θ − θ′

)
log
(

1 + e−εb(θ
′)
)

e−ε2(θ̄1/2) = −1 (4.2)
ETBA (L) = −im2

(
sinh

(
θ̄1

)
− sinh

(
θ̄2

))
−
∑
a

ˆ
dθ

2π
ma cosh (θ) log

(
1 + e−εa(θ)

)
(4.3)

which are related by θ̄2 = θ̄
∗
1 for states with nonzero momentum, where ∗ is the complex

conjugation; or θ̄2 = −θ̄1 for zero momentum.
In large volume (IR limit) the integral term is negligible in (4.1), and the cosh term goes

to infinity with the volume, while the value of ε2

(
θ̄1

)
is finite, which forces the imaginary

part of the active singularity’s position to iπ
10 , since S22 is singular around θ̄1 − θ̄2 ∼ iπ

5 . The
position of the active singularity can be written as

θ̄1 = θ̃ + i
( π

10
+ δ
)

(4.4)

where θ̃ and δ are real; δ is a correction to the imaginary part that decays exponentially in
the dimensionless variable m1L. Substituting this form into condition (4.2) and keeping only
the first order corrections in δ, the solution for the position of the active singularity is

m1L sinh θ̃ = 2πs

δ = cos (πs) tan

(
3π

10

)
tan2

(
2π

5

)
e−m2 cos( π10)

√
m2

1L
2+(2πs)2

(4.5)
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where s is an integer number giving the momentum quantum number of the state. Using this
solution for TBA energy (4.3) and expanding the log (1 + e−ε) term in the integral, the energy
takes the following form

ETBA (L) = E(L)− BL

= 2 sin
( π

10

)
m2 cosh

(
θ̃
)

+ 2m2 cosh
(
θ̃
)

sin
( π

10

)
δ

−
∑
a

ˆ
dθ

2π
ma cosh (θ) e−maL cosh(θ)

Sa2

(
θ − θ̃ + i π10

)
Sa2

(
θ − θ̃ − i π10

)
=

√
m2

1 +

(
2πs

L

)2

+ 2

√
m2

2 +

(
2πs

L

m2

m1

)2

cos
( π

10

)
× cos (πs) tan

(
3π

10

)
tan2

(
2π

5

)
e−m2 cos( π10)

√
m2

1L
2+(2πs)2

−
∑
a

ˆ
dθ

2π
ma cosh (θ) e−maL cosh(θ)Sa1

(
θ − θ̃ + i

π

2

)
(4.6)

where the bootstrap identity

Sa2

(
θ + i π10

)
Sa2

(
θ − i π10

) = Sa1

(
θ + i

π

2

)
(4.7)

was used. The first term gives L−1 corrections related to the kinetic energy of the particle
in finite volume, while the second and third terms are the leading exponential corrections,
the so-called µ and F terms [49], which for a zero-momentum particle were first derived by
Lüscher in [48].

In the small volume (UV) limit the energy is proportional to the effective central charge
of the state

ETBA (L) = −6π

L
ceff (L) (4.8)

which has the ultraviolet limit

ceff (0) = c− 12(∆ + ∆̄) (4.9)

where c = −68/7 is the central charge of the minimal modelM2,7 and ∆, ∆̄ are the left/right
conformal weights of the state in the ultraviolet limit. Using the dilogarithm trick introduced
in [3] one can confirm the expected effective central charge for these states [43]. In Fig. 4.1
we plot ceff for the states s = 0, 1 showing that the TBA results match perfectly with the
TCSA calculation and also reproduces the expected asymptotics.

The excited state TBA equations are solved numerically by simultaneously iterating eqns.
(4.1) and (4.2) in large volume, where the asymptotic of the pole position (4.5) can be used as
a starting point. Using this solution the volume is decreased and the equations iterated, and
continuing this process the solution can be tracked to small volume. For s 6= 0 the numerics is
straightforward to perform up to precision of order 10−12, and all the ingredients to calculate
the conjecture (2.15) can be readily constructed. For s = 0 there exists a critical volume rc
under which it is necessary to be more careful with the numerical calculation.
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Figure 4.1: Effective central charge for the excited states with momentum quantum number
s = 0, 1 from TBA and TCSA, with the UV (CFT value) and IR asymptotics (µ and F term).

4.1.2 Zero-momentum state: desingularization in small volume

As described in details in [41, 42, 43], for states containing a zero-momentum particle it can
happen that under a given critical volume rc some singularity ends up being on the integration
contour. To describe this situation, we recall that the Y -system (2.9) gives relations between
positions where the functions Yα = eεα take the values 0 and −1, which are the logarithmic
singular points of the TBA equations. For the T2 model the incidence matrix is given by

I [T2] =

(
0 1
1 1

)
and h = 5 (4.10)

For the excited state containing a single type-1 particle with zero momentum in large volume
there are active singularities on the imaginary axis at ±θ̄1 with

θ̄1 = i
π

10
+ iδ (4.11)

with δ > 0 where Y2 = −1. From (2.9) it follows that Y2 = −1 at θ̄1 − i2π
5 and −θ̄1 + i2π

5 ,
and Y1 = Y2 = 0 at positions θ̄1 − iπ5 and −θ̄1 + iπ5 . As the volume decreases, the value of δ
increases till at some critical value of the volume given by m1L = rc it reaches δc = π

10 . At this
point θ̄1 = −θ̄1 + i2π

5 resulting in a coincidence of singularities, and also of zeros. Decreasing
the volume to m1L < rc results in the “scattering“ of the singularities on each other at right
angles pushing them away from the imaginary axis with fixed imaginary part in the form

θ̄1 = i
π

5
+ α (4.12)

As a result, the zeros of Y1 and Y2 sit exactly on the integration contour, making the equation
for the pseudo-energy (4.1) singular and leading to instabilities in the numerical solution of
the TBA equations.

One way to handle the numerical treatment of the problem is to shift the integration
contour, while an alternative is to rearrange the self-consistent equations appropriately, which
is called desingularization. The latter approach relies on the relation [43]

ϕad (θ) = −ϕh (θ) I
[T2]
ad +

∑
b

ˆ
dθ′

2π
ϕab

(
θ − θ′

)
ϕh
(
θ′
)
I

[T2]
bd
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ϕh (θ) =
h

2 cosh
(
h
2θ
) = ±i∂θ log

(
σh

(
θ ± iπ

h

))
σh (θ) = tanh

(
h

4
θ

)
(4.13)

which allows the TBA equations to be recast as

ε̂a (θ) = εa (θ)− log
(
σ
(
θ′ − θ̃1

)
σ
(
θ′ − θ̃2

))
ε̂a (θ) = maL cosh (θ)−

∑
b

ˆ
dθ′

2π
ϕab

(
θ − θ′

)
log
(
σ
(
θ′ − θ̃1

)
σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ

′)
)

eε̂a(θ̄1) = i coth

(
5

2
θ̃1 + i

π

4

)
ETBA (L) = −

∑
a

ˆ
dθ

2π
ma cosh (θ) log

(
σ
(
θ − θ̃1

)
σ
(
θ − θ̃2

)
+ e−ε̂b(θ)

)
(4.14)

where θ̃1 = θ̄1 − iπh , θ̃2 = θ̄2 + iπh . These equations are regular and can be iterated in a stable
way, however, the available precision using double precision numbers drops to the order of
10−10. Fortunately, that is still more than sufficient for our purposes.

To calculate the densities and 〈Θ〉 under rc we need to desingularize fs, fc, fi in (3.4) as
well. It’s easy to see, that the equation for fs and fc is regular under rc , since 1

1+eεα at the
singularity position is regular, because Yα = eεα = 0. For fi the source term ϕ is singular at
θ̃1,2, hence it is necessary to desingularize it:

f̂i,α (θ) = fi,α (θ) + ϕh
(
θ − θ̄i

)
f̂i,α (θ) =

∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) eεβ(θ′)ϕh
(
θ − θ̄i

)
+ f̂i,β (θ′)

1 + eεβ(θ′)
(4.15)

For numerical calculations the form

f̂1,α (θ) =
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) ∂σ (θ′ − θ̃1

)
σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ

′)f̂1,β (θ′)

σ
(
θ′ − θ̃1

)
σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ′)

f̂2,α (θ) =
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ − θ′

) σ (θ′ − θ̃1

)
∂σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ

′)f̂1,β (θ′)

σ
(
θ′ − θ̃1

)
σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ′)

(4.16)

is more convenient.

4.2 Densities and the conjecture for states with a single type-1 particle

The derivatives of the quantization condition can be written like (3.11) with the help of the
definitions in (3.4), (3.12) for the single type-1 state

∂ (Q1, Q2)

∂
(
θ̄1, θ̄2

) =

(
LN1 +Nϕ −Nϕ
−Nϕ LN2 +Nϕ

)
(4.17)
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where

N1 = −ifs,2
(
θ̄1

)
= −im2 sinh

(
θ̄1

)
− i
∑
β

ˆ
dθ′

2π
ϕ2β

(
θ̄1 − θ′

) fs,β (θ′)

1 + eεβ(θ′)

N2 = ifs,2
(
θ̄2

)
= im2 sinh

(
θ̄2

)
+ i
∑
β

ˆ
dθ′

2π
ϕ2β

(
θ̄2 − θ′

) fs,β (θ′)

1 + eεβ(θ′)

Nϕ = −f2,2

(
θ̄1

)
= −ϕ22

(
θ̄1 − θ̄2

)
−
∑
β

ˆ
dθ′

2π
ϕ2β

(
θ̄1 − θ′

) f2,β (θ′)

1 + eεβ(θ′)

= −f1,2

(
θ̄2

)
= −ϕ22

(
θ̄2 − θ̄1

)
−
∑
β

ˆ
dθ′

2π
ϕ2β

(
θ̄2 − θ′

) f1,β (θ′)

1 + eεβ(θ′)
(4.18)

For the case s = 0 and m1L < rc

Nϕ = −f̂2,2

(
θ̄1

)
+ ϕh

(
θ̄1 − θ̄2

)
= +ϕh

(
θ̄1 − θ̄2

)
−
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ̄1 − θ′

) σ (θ′ − θ̃1

)
∂σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ

′)f̂1,β (θ′)

σ
(
θ′ − θ̃1

)
σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ′)

= −f̂1,2

(
θ̄2

)
+ ϕh

(
θ̄2 − θ̄1

)
= +ϕh

(
θ̄2 − θ̄1

)
−
∑
β

ˆ
dθ′

2π
ϕαβ

(
θ̄2 − θ′

) ∂σ (θ′ − θ̃1

)
σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ

′)f̂1,β (θ′)

σ
(
θ′ − θ̃1

)
σ
(
θ′ − θ̃2

)
+ e−ε̂b(θ′)

(4.19)

With the above densities the conjecture for the form factor series (2.15) for this state takes
the form

〈
θ̄1, θ̄2

∣∣O ∣∣θ̄1, θ̄2

〉
L

=
∞∑

n1,n2=0

1

n1!n2!

ˆ ∞
−∞

Ñ∏
j=1

dθj

2π
[
1 + eεαj (θj)

][

FO2n1,2n2,c

(
θ1, . . . , θÑ

)
+

1

L2N1N2 +NϕL (N1 +N2)

{
+ (LN1 +Nϕ)FO2n1,2n2+2,c

(
θ̄1, θ1, . . . , θÑ

)
+ (LN2 +Nϕ)FO2n1,2n2+2,c

(
θ̄2, θ1, . . . , θÑ

)
+FO2n1,2n2+4,c

(
θ̄1, θ̄2, θ1, . . . , θÑ

)}]
(4.20)

5 Numerical results

The last ingredient needed to compute the form factor series (2.15) is the numerical evaluation
of the connected diagonal form factors of the T2 model. This is rather nontrivial to perform
in a sufficiently quick and numerically stable way for large number of particles. Since this is a
task that is also important for evaluating the spectral series for correlation functions at finite
temperature [20, 23, 24, 61], we describe the required tricks in Appendix A. The procedure
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label 0 1 2 11 12 111 22 112

# of type-1 integrals 0 1 0 2 1 3 0 2

# of type-2 integrals 0 0 1 0 1 0 2 1

magnitude/L 0 m1 m2 2m1 m1 +m2 3m1 2m2 2m1 +m2

Table 5.1: The terms incorporated from the form factor series into the numerical calculation.

can be straightforwardly generalized to connected diagonal form factors in other integrable
models.

In large volume a rough estimate for the magnitude of the terms in the series comes from
the behaviour of the filling fractions∏

i

1

1 + eεαj (θj)
. e−(

∑
imi)L

where mi are the masses of the particles contained in the given state. Using this estimate we
can identify the terms of the series that give the dominant contribution to the expectation
value. However, with decreasing volume the ordering of the terms can change depending on
the behaviour of the pseudo-energy functions; in addition, to maintain accuracy it is necessary
to add progressively more terms. As a result, the form factor series (2.15) is effectively an
infrared (low energy/large volume) expansion for the expectation value.

For our numerical calculations we implemented the terms with less than 4 integrals, since
for higher terms the number of integrals and the size of the form factors makes the numerical
integration too time-consuming; in addition, the terms incorporated already show an excellent
agreement with the conjecture. Table 5.1 shows the terms calculated for numerics.

In the T2 model there are two primary operators, namely Φ1,3 and Φ1,2. Φ1,3 is the operator
perturbing the UV limit of the model, hence it’s proportional to Θ

Θ = 2πλ (2h1,3 − 2) Φ1,3 (5.1)

where h1,3 is the conformal weight of the Φ1,3 and λ is the coupling constant of the perturbation
that is proportional to the mass gap [62]

λ = κm
2−2h1,3

1 (5.2)

with

κ = −0.04053795542... (5.3)

Because of this, the form factor series for Φ1,3 is equivalent to the TBA equation as proved
in Section 3, and the numerical calculation for Φ1,3 is therefore not a real further test for
the general validity of the form factor series (2.15). However it is still useful since with
its expectation value known from TBA equations one can get an independent check of the
numerical precision of TCSA, and the convergence of the form factor series. For Φ1,2 there
is only TCSA and the form factor series, with the numerical deviation for Φ1,3 setting the
expected precision for the agreement between them.

For the numerical integration we used the Cuba library routines [63], called from inside
Wolfram Mathematica [64].

22



••
••

••
••

••
••

••
••

••
••

••
••

••
•••

•••
•••

•••
•••

••••
••••

•
•

•
•

1 2 3 4 5 6
m1L0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
1X81<ÈF13È81<\1

+112
+22
+111
+12
+11
+2
+1
+0
TBA
TCSA

Figure 5.1: 1〈{1}|Φ1,3 |{1}〉1 evaluated by the form factor series including different contribu-
tions, RG extrapolated TCSA and TBA. Here and in all subsequent plots matrix elements are
given in units of m1.

5.1 Moving one-particle state, s = 1

For the moving type-1 excited state with momentum quantum number s = 1, Figure 5.1 shows
the expectation value 1 〈{1}|Φ1,3 |{1}〉1 calculated with RG-extrapolated TCSA, from TBA
together with the results from the form factor series (4.20) obtained by adding progressively
more terms. The precision of the TBA is of the order 10−12 and comparing it with the TCSA
data, we find that the precision of the RG-extrapolated TCSA is of order 10−6 − 10−7. Table
5.2 shows the difference between the form factor series with different terms involved and the
TCSA data. For volume m1L > 5 the difference between the form factor series up to and
including the 112 term, and the TCSA is in the order of the TCSA error, and including more
terms make the agreement better for smaller volume as well.

For Φ1,2 the results for the quantity i1〈{1}|Φ1,2 |{1}〉1 are shown in Figure 5.2, and the
difference between the form factor series and the TCSA is given in Table 5.3. We note that
since from (A.14) it follows that the matrix elements of Φ1,2 are imaginary, here and in all
subsequent figures and tables concerning Φ1,2 we multiply all data by i. The form factor series
shows excellent agreement with the TCSA for volume m1L > 5, and again including more
terms the agreement is better for smaller volumes. As noted before, the correctness of the
form factor series does not follow from TBA, hence this is a nontrivial verification of the form
factor series.
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Figure 5.2: i 1〈{1}|Φ1,2 |{1}〉1 evaluated by the form factor series including different contri-
butions and RG-extrapolated TCSA.

m1L 0 +1 +2 +11 +12 +111 +22 +112

0.5 −0.8115 −1 · 10−2 1.039 0.7047 −0.3024 −0.1995 −0.8307 −0.3166

1 −0.6554 −0.1143 0.5094 0.3528 −7 · 10−2 −4 · 10−2 −0.2652 −0.1089

1.5 −0.5173 −0.1256 0.2649 0.1813 −2 · 10−2 −2 · 10−3 −9 · 10−2 −4 · 10−2

2 −0.3966 −0.1079 0.1362 9 · 10−2 −2 · 10−3 4 · 10−3 −3 · 10−2 −1 · 10−2

2.5 −0.2947 −8 · 10−2 7 · 10−2 4 · 10−2 5 · 10−4 3 · 10−3 −1 · 10−2 −4 · 10−3

3 −0.2124 −6 · 10−2 3 · 10−2 2 · 10−2 6 · 10−4 2 · 10−3 −3 · 10−3 −1 · 10−3

3.5 −0.1489 −4 · 10−2 1 · 10−2 8 · 10−3 3 · 10−4 6 · 10−4 −9 · 10−4 −3 · 10−4

4 −0.102 −2 · 10−2 6 · 10−3 3 · 10−3 1 · 10−4 2 · 10−4 −2 · 10−4 −5 · 10−5

4.5 −7 · 10−2 −1 · 10−2 3 · 10−3 1 · 10−3 4 · 10−5 8 · 10−5 −5 · 10−5 −1 · 10−5

5 −5 · 10−2 −7 · 10−3 1 · 10−3 4 · 10−4 1 · 10−5 2 · 10−5 −1 · 10−5 −2 · 10−6

5.5 −3 · 10−2 −4 · 10−3 5 · 10−4 1 · 10−4 4 · 10−6 7 · 10−6 −3 · 10−6 −4 · 10−7

6 −2 · 10−2 −2 · 10−3 2 · 10−4 4 · 10−5 8 · 10−7 2 · 10−6 −7 · 10−7 −2 · 10−7

6.5 −1 · 10−2 −1 · 10−3 7 · 10−5 1 · 10−5 4 · 10−7 6 · 10−7 3 · 10−8 1 · 10−7

7 −8 · 10−3 −5 · 10−4 3 · 10−5 5 · 10−6 4 · 10−7 4 · 10−7 3 · 10−7 3 · 10−7

Table 5.2: The difference between the evaluations of 1〈{1}|Φ1,3 |{1}〉1 from the RG-
extrapolated TCSA and the form factor series, depending on the multi-particle contributions
included in the latter.
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m1L 0 +1 +2 +11 +12 +111 +22 +112

0.5 −1.203 −0.5712 1.113 0.9523 0.1086 0.1457 −0.7935 −0.5066

1 −0.9067 −0.4563 0.5275 0.4431 7 · 10−2 8 · 10−2 −0.252 −0.1539

1.5 −0.6803 −0.3379 0.2661 0.2171 4 · 10−2 4 · 10−2 −9 · 10−2 −5 · 10−2

2 −0.5 −0.2361 0.1325 0.1038 2 · 10−2 2 · 10−2 −3 · 10−2 −2 · 10−2

2.5 −0.3581 −0.1561 6 · 10−2 5 · 10−2 7 · 10−3 9 · 10−3 −9 · 10−3 −5 · 10−3

3 −0.2498 −1 · 10−1 3 · 10−2 2 · 10−2 3 · 10−3 3 · 10−3 −3 · 10−3 −1 · 10−3

3.5 −0.1701 −6 · 10−2 1 · 10−2 8 · 10−3 1 · 10−3 1 · 10−3 −8 · 10−4 −3 · 10−4

4 −0.1136 −3 · 10−2 5 · 10−3 3 · 10−3 3 · 10−4 4 · 10−4 −2 · 10−4 −6 · 10−5

4.5 −7 · 10−2 −2 · 10−2 2 · 10−3 1 · 10−3 9 · 10−5 1 · 10−4 −5 · 10−5 −1 · 10−5

5 −5 · 10−2 −1 · 10−2 9 · 10−4 4 · 10−4 3 · 10−5 3 · 10−5 −1 · 10−5 −3 · 10−6

5.5 −3 · 10−2 −5 · 10−3 4 · 10−4 1 · 10−4 6 · 10−6 8 · 10−6 −3 · 10−6 −2 · 10−6

6 −2 · 10−2 −3 · 10−3 1 · 10−4 4 · 10−5 2 · 10−7 8 · 10−7 −2 · 10−6 −2 · 10−6

6.5 −1 · 10−2 −1 · 10−3 5 · 10−5 1 · 10−5 −1 · 10−6 −1 · 10−6 −2 · 10−6 −2 · 10−6

7 −8 · 10−3 −6 · 10−4 2 · 10−5 2 · 10−6 −2 · 10−6 −2 · 10−6 −2 · 10−6 −2 · 10−6

Table 5.3: The difference between the evaluations of i 1〈{1}|Φ1,2 |{1}〉1 from the RG-
extrapolated TCSA and the form factor series, depending on the multi-particle contributions
included in the latter.

5.2 Zero-momentum one-particle state, s = 0

As seen for the s = 1 case the form factor series reproduce the expectation value of local
operators with very good precision in large volume, even by including only few terms from the
series. The expectation is that for any state in small volume it is necessary to include higher
contributions of the series, but for any desired accuracy a finite number of them is sufficient.

As shown below, this expectation is challenged by the nontrivial transition in the TBA
equation for standing state at rc. Figure 5.3 and 5.4 shows the result for the expectation values
of Φ1,3 and Φ1,2, while Table 5.4 and 5.5 list the numerical deviations from RG-extrapolated
TCSA.

For large volume (m1L & 6) the agreement between the form factor series and the TCSA
is again excellent. However, towards the critical volume (rc ∼ 2.66) the terms of the form
factor series tend to diverge. This can be understood from the fact that the total density of
the states

ρtot = detK = L2N1N2 +NϕL (N1 +N2) (5.4)

which the denominator of the form factor series (4.20), is zero at rc. Figure 5.5 shows the
behaviour of ρtot around rc; fitting the location where ρtot (r̃c) = 0, the result is

r̃c = 2.6646510318 (5.5)

which is perfect agreement with the value of rc obtained in [43].
The reason for ρtot vanishing at rc can be understood from the excited TBA. Since the

active singularities coincide at this point, the density which is the Jacobi determinant of
the quantization condition for the active singularities, is zero due to the degeneracy. Such
singularities of the density were observed previously for the finite volume form factors formula
in [45]; however in that case including the exponential corrections resolved (or at least shifted)
the singularity. The present situation is different as all exponential corrections to the density
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Figure 5.3: 1〈{0}|Φ1,3 |{0}〉1 calculated by the form factor series including different contribu-
tions, RG extrapolated TCSA and TBA.

are already included. To resolve the singularity it would be necessary to include every term
of the form factor series, to compensate the zero of the denominator.

This conclusion is also supported by the behaviour of the pseudo-energies and the filling
fractions around rc. Approaching rc the filling fractions no more suppress the higher order
terms in the series and the ordering of terms by their magnitude is not valid anymore, i.e. every
terms is important in the series. This is consistent with the procedure of desingularization,
whereby to describe the excited state level with the TBA equation under rc it was necessary
to redefine the pseudo-energy to have a form which is finite and convergent under iterations.

For the form factor series a similar rearrangement is necessary close to and under rc.
Unfortunately such a rearrangement is not yet known, and this sets the practical validity of
the form factor series to IR regions where no nontrivial transitions occur in the TBA equations.

6 Conclusions and outlook

In this paper we presented a conjecture for the finite volume excited state expectation values
of local operators in integrable quantum field theories. This conjecture is an extension of an
earlier one [39] to models with a non-trivial bootstrap structure. The conjecture was supported
by a combination of analytic and numerical evidence.

An important aspect of our result is that it gives the full specification of the µ-terms from
the excited state TBA. In the previous approach [35, 36], the determination of these terms
was ambiguous due to the fact that in many cases a particle could be represented in several
ways as bound state of others. The series (2.15) specifies the µ-term as the one corresponding
to the way the particle is composed in terms of the singularities entering the excited state
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Figure 5.4: i 1〈{0}|Φ1,2 |{0}〉1 calculated by the form factor series including different contri-
butions and RG extrapolated TCSA.

m1L 0 +1 +2 +11 +12 +111 +22 +112

4 0.3114 −0.4977 −0.9218 −0.4061 0.3695 0.2265 0.494 9 · 10−2

4.5 −0.1529 −0.1416 −8 · 10−2 −2 · 10−2 3 · 10−2 2 · 10−2 3 · 10−2 3 · 10−3

5 −0.1637 −6 · 10−2 9 · 10−4 5 · 10−3 3 · 10−3 2 · 10−3 1 · 10−3 −3 · 10−5

5.5 −0.114 −3 · 10−2 4 · 10−3 2 · 10−3 3 · 10−4 3 · 10−4 −4 · 10−5 −3 · 10−5

6 −7 · 10−2 −1 · 10−2 2 · 10−3 8 · 10−4 5 · 10−5 5 · 10−5 −2 · 10−5 −5 · 10−6

6.5 −4 · 10−2 −6 · 10−3 7 · 10−4 2 · 10−4 7 · 10−6 1 · 10−5 −5 · 10−6 −9 · 10−7

7 −3 · 10−2 −3 · 10−3 2 · 10−4 6 · 10−5 1 · 10−6 2 · 10−6 −1 · 10−6 −4 · 10−7

7.5 −2 · 10−2 −1 · 10−3 8 · 10−5 2 · 10−5 1 · 10−7 4 · 10−7 −2 · 10−7 −1 · 10−7

Table 5.4: The difference between the evaluatons of1〈{0}|Φ1,3 |{0}〉1 from the RG-extrapolated
TCSA and the form factor series, depending on the multi-particle contributions included in
the latter.
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m1L 0 +1 +2 +11 +12 +111 +22 +112

4 −0.5274 −0.3774 −0.6113 −0.3511 0.2018 0.1321 0.3664 0.1129

4.5 −0.5513 −0.139 −2 · 10−2 −9 · 10−3 2 · 10−2 1 · 10−2 2 · 10−2 4 · 10−3

5 −0.3645 −6 · 10−2 1 · 10−2 7 · 10−3 1 · 10−3 1 · 10−3 3 · 10−4 4 · 10−6

5.5 −0.2176 −3 · 10−2 7 · 10−3 3 · 10−3 2 · 10−4 2 · 10−4 −1 · 10−4 −3 · 10−5

6 −0.1255 −1 · 10−2 3 · 10−3 9 · 10−4 3 · 10−5 5 · 10−5 −3 · 10−5 −5 · 10−6

6.5 −7 · 10−2 −7 · 10−3 9 · 10−4 2 · 10−4 5 · 10−6 1 · 10−5 −6 · 10−6 −2 · 10−6

7 −4 · 10−2 −3 · 10−3 3 · 10−4 6 · 10−5 −2 · 10−7 1 · 10−6 −2 · 10−6 −1 · 10−6

7.5 −2 · 10−2 −1 · 10−3 9 · 10−5 1 · 10−5 −1 · 10−6 −1 · 10−6 −2 · 10−6 −2 · 10−6

Table 5.5: The difference between the evaluations of i 1〈{0}|Φ1,2 |{0}〉1 from the RG-
extrapolated TCSA and the form factor series, depending on the multi-particle contributions
included in the latter.
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Figure 5.5: ρtot for s=0
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TBA equations, which provides a solution for the case of integrable models where the excited
state TBA system is known. In addition, the series is exact, at least for values of the volume
where it is convergent.

Unfortunately, for certain excited states this does not cover the whole volume range, as
the TBA singularity configuration undergoes some rearrangement below some critical value
of the volume. In the series (2.15) this is manifested in a singular behaviour of the terms,
which prevent the extension of the series below the critical volume. Note that for the trace of
the stress-energy tensor, the desingularized excited TBA gives such an extension. However, it
is presently unclear how to implement the desingularization procedure directly for the series
(2.15), so the description cannot be extended to other operators. In order to achieve that, one
needs to separate the singularly behaved contributions and re-sum them to all orders, which
is not an obvious task.

In this context we remark that based on the available studies of excited state TBA systems,
the problematic rearrangement is only expected to happen for excited states for which some
singularities are “stuck in the middle”, as opposed to going to the left/right asymptotic regions
logarithmically with decreasing volume. Therefore, for most states the conjecture is expected
to be valid for any value of the volume; obviously the smaller is the volume, the larger is the
number of terms needed for a given precision. For states with a non-trivial transition in their
singularity structure, the conjecture in its present form is expected to be valid for values of
the volume above the critical one.

Another interesting issue is to extend the series to theories with non-diagonal scattering,
starting with the series introduced in [61]. The formalism of finite volume form factors has
been partially extended to these theories [65, 66]; unfortunately, it is exactly the general form
of diagonal matrix elements that is at present not known in full generality.

Furthermore, the form of the terms in the series (2.15) is very suggestive for an extension
to non-diagonal finite volume matrix elements; however, finding the precise form of such an
extension is still an open question.

Finally, establishing the relation between the present framework, and the approaches based
on separation of variables [14, 15] or fermionic structures [16, 17, 18] would be of interest,
as it could lead to more efficient construction of finite size matrix elements and a deeper
understanding of the underlying principles.

Acknowledgments

IMSZ is grateful to Roberto Tateo for the help with excited state TBA numerics and his hos-
pitality in Turin, and also to the INFN and Campus Hungary Scholarship for financial support
of the visit. IMSZ was also supported by funding from the People Programme (Marie Curie
Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under
REA Grant Agreement No 317089 (GATIS). BP and GT were supported by the Momentum
grant LP2012-50/2014 of the Hungarian Academy of Sciences.

A Evaluation of connected diagonal form factors

Here we present a fast and efficient way to evaluate the connected diagonal form factors
(defined in Section 2), which proceeds via the so-called symmetric form factors.
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A.1 Form factors of the T2 model

The form factors of primary fields in the T2 model were constructed in [67]. For states
containing only type-1 particles they are the same as form factors of certain exponential
operators in the sinh-Gordon model with a specific value for the coupling constant. The form
factors of the exponential operator

ekgΦ (A.1)

in the sinh-Gordon model
L =

1

2
∂µΦ∂µΦ− λ cosh gΦ (A.2)

have the following form [68]

F (k)
n (θ1, . . . , θn) = Hn [k]Qn (x1, . . . , xn)

∏
i<j

Fmin (θij)

xi + xj
(A.3)

where

[n] =
sinnπB2
sinπB2

B =
2g2

8π + g2
(A.4)

and the minimal two-particle form factor is

Fmin (θ,B) = N exp

[
8

ˆ ∞
0

dx

x

sinh xB
4 sinh x

2

(
1− B

2

)
sinh x

2

sinh2 x
sin2

[
x(iπ − θ)

2π

]]
= N eI(θ,B)

N = exp

[
−4

ˆ
dx

x

sinh xB
4 sinh x

2

(
1− B

2

)
sinh x

2

sinh2 x

]
(A.5)

with

I (θ,B) = 8

ˆ ∞
0

dx

x

sinh xB
4 sinh x

2

(
1− B

2

)
sinh x

2

sinh2 x
sin2

[
x(iπ − θ)

2π

]
=

= 8

ˆ ∞
0

dx

x

sinh xB
4 sinh x

2

(
1− B

2

)
sinh x

2

sinh2 x

[
N + 1−Ne−2x

]
e−2Nx sin2

[
x(iπ − θ)

2π

]
+

+
N−1∑
k=0

(k + 1)

{
log ν

[
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1
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]
+ log ν

[
θ, k +

3

2
− B
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]
+ log ν

[
θ, k + 1 +

B
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−

− log ν

[
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3
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]
− log ν

[
θ, k +
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+
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]
− log ν

[
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]}
(A.6)

and

ν(θ, a) = 1 +
(iπ − θ)2

(2π)2a2
(A.7)

The normalization factors read

Hn =

(
4 sin πB

2

Fmin(iπ,B)

)n/2
(A.8)
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Introducing the notations

xi = eθi and θij = θi − θj (A.9)

the Qn are given in a determinant form

Qn(k) = detMij(k)

Mij(k) = [i− j + k]σ
(n)
2i−ji, j = 1, . . . , n− 1 (A.10)

where the σ
(n)
k are the elementary symmetric polynomials of order k in the n variables

x1, . . . , xn defined by
n∏
i=1

(x+ xi) =
∑
k

xn−kσ
(n)
k (x1, . . . , xn) (A.11)

(this means in particular that σ(k)
n = 0 for k > n or k < 0). To obtain the form factors of

local operators in the T2 model it is necessary to set the coupling as

B = −4

5
(A.12)

Following the procedure in Appendix A of [69], the form factors for type-2 particles can be
efficiently calculated with the help of writing the bootstrap fusion in the form

F2... (θ, . . . ) = Γ2
11F11...

(
θ − iū1

12, θ + iū1
12, . . .

)
(A.13)

where ū1
12 = π

5 and Γ2
11 =

√
2 tan (2π/5).

The value of k = 1 corresponds to the operator Φ1,3 and k = 2 to the operator Φ1,2. The
above form factors are normalized so that the vacuum expectation value of the field is 1. To
obtain the conformal normalization used in TCSA, it is necessary to multiply the form factors
with the exact vacuum expectation values known from [70]

〈Φ1,2〉 = −2.3251365527···×im−4/7
1

〈Φ1,3〉 = 2.2695506880···×m−6/7
1 (A.14)

A.2 Symmetric form factors

The symmetric form factors are defined as

F s1, . . . , 1︸ ︷︷ ︸
n

,2, . . . , 2︸ ︷︷ ︸
m

(θ1, . . . , θn, θn+1, . . . , θn+m)

= lim
ε→0

F2, . . . , 2︸ ︷︷ ︸
m

,1, . . . , 1︸ ︷︷ ︸
n

,1, . . . , 1︸ ︷︷ ︸
n

,2, . . . , 2︸ ︷︷ ︸
m

(θn+m + iπ + ε, . . . , θn+1 + iπ + ε

, θn + iπ + ε, . . . , θ1 + iπ + ε, θ1, . . . , θn, θn+1, . . . , θn+m) (A.15)

where there are n numbers of type-1 particles and m numbers of type-2 particles. This
definition corresponds to a particular specification for the direction of the limit to the diagonal
matrix element. To compute the above expression, we use fusion (A.13) for type-2 particles,
and calculate the limit in terms of a form factor with 2 (n+ 2m) type-1 particles.
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A.2.1 Denominator and minimal form factors

The denominator has the following form

2(n+2m)∏
i<j

(x̃i − x̃j) (A.16)

where

x̃i =

{
−eεxn+2m+1−i i ≤ n+ 2m

xi−n−2m i > n+ 2m
(A.17)

To leading order in ε, the denominator of the symmetric form factor takes the form

(−ε)n+2m

[
n+2m∏
i

xi

]n+2m∏
i<j

(
x2
i − x2

j

)2 (A.18)

From the minimal form factor part we get an Fmin (iπ) factor for every particle when the
rapidities meet with their crossed version, i.e. a factor of [Fmin (iπ)]n+2m altogether.

To simplify the other contribution we use the following relation for the sinh-Gordon form
factors [71]

Fmin (iπ + ϑ)Fmin (ϑ) =
sinh (ϑ)

sinh (ϑ) + i sin
(
πB
2

) (A.19)

There result for two type-1 particle including the denominator term is
Fmin (ϑij)Fmin (ϑji)Fmin (iπ + ϑij)Fmin (iπ + ϑji)(

x2
i − x2

j

)2 =
1(

x2
i − x2

j

)2
+ 4x2

ix
2
j sin2

(
πB
2

)
(A.20)

The result between one type-1 and a type-2 rapidity is

1(
x2
i − x2

j,+

)2
+ 4x2

ix
2
j,+ sin2

(
πB
2

) × 1(
x2
i − x2

j,−

)2
+ 4x2

ix
2
j,− sin2

(
πB
2

) (A.21)

where xj,± = xje
±iū1

12 . The result for rapidities from the same type-2 particle is (xi =

xe−iū
1
12 ,xj = xe+iū1

12)

[Fmin (ϑij)]
2 Fmin (iπ + ϑij)Fmin (iπ + ϑji)(

x2
i − x2

j

)2 =
−1

16x4 sin2
(

2π
5

) (A.22)

The result for rapidities from different type-2 particles is

[Fmin (θij)Fmin (iπ + θij)]
2 [Fmin (θji)Fmin (iπ + θji)]

2(
x2
i − x2

j

)4 (
x2
i e
i2ū − x2

je
−i2ū

)2 (
x2
i e
−i2ū − x2

je
i2ū
)2 (A.23)

× [Fmin (θij − 2iū)Fmin (iπ + θij − 2iū)] [Fmin (θij + 2iū)Fmin (iπ + θij + 2iū)]

× [Fmin (θji − 2iū)Fmin (iπ + θji − 2iū)] [Fmin (θji + 2iū)Fmin (iπ + θji + 2iū)]

=
[(
x2
i − x2

j

)2
+ 4x2

ix
2
j sin2 (2ū)

]−2 [(
x2
i e
i2ū − x2

je
−i2ū)2 + 4x2

ix
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j sin2 (2ū)

]−1

×
[(
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i e
−i2ū − x2

je
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)2

+ 4x2
ix

2
j sin2 (2ū)

]−1
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A.2.2 Symmetric polynomial part

There are 2 (n+ 2m) type-1 rapidities due to the fusion, so the polynomial part of the form
factor is a determinant of a (2 (n+ 2m)− 1)× (2 (n+ 2m)− 1) matrix

Mij(k) = [i− j + k]σ
(2(n+2m))
2i−j (A.24)

In the ε→ 0 limit the symmetric polynomials are

σ
(2p)
l (x1, x2, . . . xp,

−eεx1,−eεx, . . . ,−eεxp)
→


σ

(2p)
l (x1, x2, . . . xp,−x1,−x2, . . . ,−xp) +O (ε) l even∑p
i=1 (−εxi)σ(2p−1)

l−1 (x1, x2, . . . , xi, . . . xp, l odd
−x1,−x2, . . . ,−xi−1,−xi+1, . . . ,−xp) +O

(
ε2
)

(A.25)
Since every term in the determinant contains (n+ 2m) factors of odd symmetrical polyno-
mials, the determinant is proportional to εn+2m, which exactly cancels the ε powers in the
denominator (A.18). From the definition (A.11) of the elementary symmetric polynomials it
is easy to show that

σ
(2p)
l (x1, x2, . . . xp,

−eεx1,−eεx, . . . ,−eεxp)
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2
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2
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)
(A.26)

A.2.3 Result for symmetric form factor

Introducing the following definitions

σ̂pl (x1, x2, . . . xp) =


(−1)l/2 σ

(p)
l/2
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2
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2
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)
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(−1)(l−1)/2∑p
i=1 xiσ

p−1
(l−1)/2
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2
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2
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x2
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2
p

)
Q̂n+2m(k) = det M̂ij(k) M̂ij(k) = [i− j + k] σ̂

(n+m)
2i−j

i, j = 1, . . . , 2 (n+ 2m)− 1 (A.27)
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and

Fmin,denom (x1, x2) =


F 11
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F 12
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x2
i − x2

j

)2
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(A.28)

the symmetric form factor can be rewritten as:

F s1, . . . , 1︸ ︷︷ ︸
n

,2, . . . , 2︸ ︷︷ ︸
m

(θ1, . . . , θn, θn+1, . . . , θn+m) (A.29)

= [k]

(
−4 sin

2π

5

)n+2m (
Γ2

11

)2m
Q̂n+2m (x1, . . . , xn+2m)

×
∏n+m
i<j Fmin,denom (xi, xj)∏n

i=1 xi

m∏
j=n+1

F 22,self
min,denom (xj)

x2
j

For a large number of particles and/or large rapidities this formula is difficult to evaluate
with the required numerical precision, because the determinant Q̂ is badly conditioned (the
magnitude of its matrix elements differ by many orders). For a better precision it is necessary
balance the matrix the following way:

Q̂n+2m(k) =
[
σ̂

(n+2m)
1 /(n+ 2m)

]2(n+2m)2−(n+2m)
det

˜̂
M ij(k)

˜̂
M ij(k) = [i− j + k]

σ̂
(n+m)
2i−j[

σ̂
(n+2m)
1 /(n+ 2m)

]2i−j

i, j = 1, . . . , 2 (n+ 2m)− 1 (A.30)

A.3 Evaluation of the connected diagonal form factors

There are two ways to calculate the connected diagonal form factors using the symmetric form
factors. One way is to use the symmetric-connected relations derived in [20] in a recursive
manner; this is a lengthy procedure for form factors with several variables and not very
convenient for numerical calculations.

However, from the same relations it also follows that the connected diagonal form factor
is the only part of the symmetric form factor that is fully periodic in all of its variables
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with period iπ. This is related to unitarity and crossing invariance, which in theories with
self-conjugate particles take the form

Sαβ(−θ) = Sαβ(θ)−1

Sαβ(θ) = Sαβ(iπ − θ) (A.31)

As a result the kernel functions (2.3) have the anti-periodicity property

ϕαβ(θ + iπ) = −ϕαβ(θ) (A.32)

Applying this property to the connected-symmetric relations of [20] leads to

F cn (θ1, . . . , θn) =
1

2n

∑
αi=0,1

F sn (θ1 + α1iπ, θ2 + α2iπ, . . . , θn + αniπ)

=
1

2n−1

∑
αi=0,1

F sn (θ1, θ2 + α2iπ, . . . , θn + αniπ) (A.33)

which gives a faster and numerically much more stable evaluation.
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