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6 On bisecants of Rédei type blocking sets and

applications

Bence Csajbók˚

Abstract

If B is a minimal blocking set of size less than 3pq`1q{2 in PGp2, qq,
q is a power of the prime p, then Szőnyi’s result states that each line
meets B in 1 pmod pq points. It follows that B cannot have bisecants,
i.e. lines meeting B in exactly two points. If q ą 13, then there is
only one known minimal blocking set of size 3pq ` 1q{2 in PGp2, qq,
the so called projective triangle. This blocking set is of Rédei type
and it has 3pq ´ 1q{2 bisecants, which have a very strict structure. We
use polynomial techniques to derive structural results on Rédei type
blocking sets from information on their bisecants. We apply our results
to point sets of PGp2, qq with few odd-secants.

In particular, we improve the lower bound of Balister, Bollobás,
Füredi and Thompson on the number of odd-secants of a pq `2q-set in
PGp2, qq and we answer a related open question of Vandendriessche.
We prove structural results for semiovals and derive the non existence
of semiovals of size q ` 3 when p ‰ 3 and q ą 5. This extends a
result of Blokhuis who classified semiovals of size q ` 2, and a result
of Bartoli who classified semiovals of size q ` 3 when q ď 17. In the
q even case we can say more applying a result of Szőnyi and Weiner
about the stability of sets of even type. We also obtain a new proof to
a result of Gács and Weiner about pq ` t, tq-arcs of type p0, 2, tq and
to one part of a result of Ball, Blokhuis, Brouwer, Storme and Szőnyi
about functions over GFpqq determining less than pq ` 3q{2 directions.
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RÉDEI TYPE BLOCKING SETS AND APPL.

1 Introduction

A blocking set B of PGp2, qq, the Desarguesian projective plane of order q,
is a point set meeting every line of the plane. B is called non-trivial if it
contains no line andminimal if B is minimal subject to set inclusion. A point
P P B is said to be essential if BztP u is not a blocking set. For a point set S
and a line ℓ we say that ℓ is a k-secant of S if ℓ meets S in k points. If k “ 1,
k “ 2, or k “ 3, then we call ℓ a tangent to S, a bisecant of S, or a trisecant of
S, respectively. We usually consider PGp2, qq as AGp2, qq, the Desarguesian
affine plane of order q, extended by the line at infinity, ℓ8. Throughout the
paper q will always denote a power of p, p prime. For the points of AGp2, qq
we use cartesian coordinates. The infinite point (or direction) of lines with
slope m will be denoted by pmq, the infinite point of vertical lines will be
denoted by p8q. Let U “ tpai, biquqi“1

be a set of q points of AGp2, qq. The

set of directions determined by U is DU :“
!´

bi´bj
ai´aj

¯

: i ‰ j
)

. It is easy to

see that B :“ U Y DU is a blocking set of PGp2, qq with the property that
there is a line, the line at infinity, which meets B in exactly |B| ´ q points.
If |DU | ď q, then B is minimal. Conversely, if B is a minimal blocking set
of size q ` N ď 2q and there is a line meeting B in N points, then B can
be obtained from the above construction. Blocking sets of size q ` N ď 2q
with an N -secant are called blocking sets of Rédei type, the N -secants of
the blocking set are called Rédei lines. If the q-set U does not determine
every direction, then U is affinely equivalent to the graph of a function f

from GFpqq to GFpqq, i.e. U “ tpx, fpxqq : x P GFpqqu. Note that fpxq ´ cx

is a permutation polynomial if and only if pcq is a direction not determined
by the graph of f , see [14] by Evans, Greene, Niederreiter. A blocking set
is said to be small, if its size is less than q ` pq ` 3q{2. Small minimal
Rédei type blocking sets, or equivalently, functions determining less than
pq ` 3q{2 directions, have been characterized by Ball, Blokhuis, Brouwer,
Storme, Szőnyi and Ball, see [3, 2]. From these results it follows that such
blocking sets meet each line of the plane in 1 pmod pq points. This property
holds for any small minimal blocking set, as it was proved by Szőnyi in [25].

It follows from the above mentioned results that minimal blocking sets
with bisecants cannot be small. If q is odd, then the smallest known non-
small minimal Rédei type blocking set is the following set of q ` pq ` 3q{2
points (up to projective equivalence):

B :“ tp0 : 1 : aq, p1 : 0 : aq, p´a : 1 : 0q : a a square in GFpqqu Y tp0 : 0 : 1qu.
In the book of Hirschfeld [17, Lemma 13.6 (i)] this example is called the
projective triangle. B has three Rédei lines and has the following properties.
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RÉDEI TYPE BLOCKING SETS AND APPL.

Through each point of B there passes a bisecant of B. If H Ă B is a set of
collinear points such that there passes a unique bisecant of B through each
point of H and there is a Rédei line ℓ disjoint from H, then the bisecants
through the points of H are contained in a pencil. In Theorem 2.4 we show
that this property holds for any Rédei type blocking set. In fact, we prove
the following stronger result. If R1 and R2 are points of Bzℓ, such that for
i “ 1, 2 there is a unique bisecant of B through Ri and there is a point T P ℓ,
such that TR1 and TR2 meet B in at least four points, then for each M P ℓ

the lines R1M and R2M meet B in the same number of points. The essential
part of our proof is algebraic, it is based on polynomials over GFpqq. We
apply our results to point sets of PGp2, qq with few odd-secants, which we
detail in the next paragraphs.

A semioval S of a finite projective plane is a point set with the property
that at each point of S there passes exactly one tangent to S. For a survey
on semiovals see [19] by Kiss. In PGp2, qq Blokhuis characterized semiovals
of size q ´ 1 ` a, a ą 2, meeting each line in 0,1,2, or a points. He also
proved that there is no semioval of size q ` 2 in PGp2, qq, q ą 7, see [6] and
[9], where the term seminuclear set was used for semiovals of size q ` 2. For
another characterization of semiovals with special intersection pattern with
respect to lines see [15] by Gács. We refine Blokhuis’ characterization to
obtain new structural results about semiovals of size q ´ 1 ` a containing a

collinear points. As an application, we prove the non-existence of semiovals
of size q ` 3 in PGp2, qq, 5 ă q odd when p ‰ 3. For q ď 17 this was also
proved by Bartoli in [4]. When q is small, then the spectrum of the sizes
of semiovals in PGp2, qq is known, see [23] by Lisonek for q ď 7 and [20] by
Kiss, Marcugini and Pambianco for q “ 9. When q is even, then a stronger
result follows from [27, Theorem 5.3] by Szőnyi and Weiner on the stability
of sets of even type.

In the recent article [1] by Balister, Bollobás, Füredi and Thompson,
the minimum number of odd-secants of an n-set in PGp2, qq, q odd, was
investigated. They studied in detail the case of n “ q ` 2. In our last
section we improve their lower bound and we answer a related open question
of Vandendriessche from [28].

Our Theorem 2.3 yields a new proof to [16, Theorem 2.5] by Gács and
Weiner about pq ` t, tq-arcs of type p0, 2, tq. In Section 3 we explain some
connections between Theorem 2.3 and the direction problem.
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2 Bisecants of Rédei type blocking sets

Lemma 2.1. Let U be a set of q points in AGp2, qq and denote by DU the
set of directions determined by U . Take a point R “ pa0, b0q P U and denote
the remaining q ´ 1 points of U by pai, biq for i “ 1, 2, . . . , q ´ 1. Consider
the following polynomial:

fpY q :“
q´1
ź

i“1

ppai ´ a0qY ´ pbi ´ b0qq P GFpqqrY s. (1)

For m P GFpqq the following holds.

1. The line through R with direction m meets U in km points if and only
if m is a pkm ´ 1q-fold root of fpY q.

2. If pmq R DU , then fpmq “ ´1.

3. If p8q R DU , then the coefficient of Y q´1 in f is ´1.

Proof. We have paj ´ a0qm ´ pbj ´ b0q “ 0 for some j P t1, 2, . . . , q ´ 1u if
and only if pmq, R and paj , bjq are collinear. This proves part 1. To prove
part 2, note that paj ´ a0qm ´ pbj ´ b0q “ pak ´ a0qm ´ pbk ´ b0q for some
j, k P t1, 2, . . . , q ´ 1u, j ‰ k, if and only if paj ´ akqm ´ pbj ´ bkq “ 0, i.e.
if and only if paj , bjq, pak, bkq and pmq are collinear. If pmq R DU , then this
cannot be and hence tpai ´ a0qm ´ pbi ´ b0q : i “ 1, 2, . . . , q ´ 1u is the set
of non-zero elements of GFpqq. It follows that in this case fpmq “ ´1. If
p8q R DU , then tai ´ a0 : i “ 1, 2, . . . , q ´ 1u is the set of non-zero elements
of GFpqq, and hence

śq´1

i“1
pai ´ a0q “ ´1.

Remark 2.2. For a set of affine points U “ tpai, biquki“0
the Rédei polyno-

mial of U is
śk

i“0
pX`aiY ´biq “ řk`1

j“0
hjpY qXk`1´j P GFpqqrX,Y s, where

hjpY q P GFpqqrY s is a polynomial of degree at most j. Now suppose that

U is a q-set and pa0, b0q “ p0, 0q. Then hq´1pY q “ řq´1

j“0

ś

i‰jpaiY ´ biq “
śq´1

i“1
paiY ´biq is the polynomial associated to the affine q-set U as in Lemma

2.1. This polynomial also appears in Section 4 of Ball’s paper [2].

Theorem 2.3. Let B be a blocking set of Rédei type in PGp2, qq, with Rédei
line ℓ.

1. If there is a point in Bzℓ which is not incident with any bisecant of B,
then B is minimal and |ℓ X B| ” 1 pmod pq.

2. If R,R1 P Bzℓ such that R and R1 are not incident with any bisecant
of B, then |RM X B| “ |R1M X B| for each M P ℓ.

4
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Proof. It is easy to see that if there is a point R P Bzℓ, such that there is
no bisecant of B through R, then |B X ℓ| ď q ´ 1. First we show that B is
minimal. As B is of Rédei type, the points of Bzℓ are essential in B. Take
a point D P B X ℓ. As there is no bisecant through R, it follows that DR

meets B in at least three points and hence there is a tangent to B at D, i.e.
D is essential in B.

We may assume that ℓ “ ℓ8 and p8q R B. Let R “ pa0, b0q be a point
of Bzℓ which is not incident with any bisecant of B and let U “ Bzℓ8 “
tpai, biquq´1

i“0
. Consider the polynomial fpY q “ śq´1

i“1
ppai ´ a0qY ´ pbi ´ b0qq

introduced in (1). Let m P GFpqq. According to Lemma 2.1 we have the
following.

• If pmq P B, then fpmq “ 0,

• if pmq R B, then fpmq “ ´1,

• the coefficient of Y q´1 in f is ´1.

Now let ℓ8zpB Y tp8quq “ tpm1q, pm2q, . . . , pmkqu and consider the polyno-
mial

gpY q :“
k

ÿ

i“1

pY ´ miqq´1 ´ k.

For m P GFpqq we have gpmq “ fpmq. As both polynomials have degree at
most q ´ 1, it follows that gpY q “ fpY q. The coefficient of Y q´1 is k in g

and hence p � k ` 1. As k ` 1 “ q ` 1 ´ |B X ℓ8|, part 1 follows.
For pmq R B the line through any point of U with slope m meets B in

1 point. For pmq P B the line through R with slope m meets B in km ` 2
points if and only if m is a km-fold root of fpY q. As fpY q “ gpY q, and the
coefficients of gpY q depend only on the points of B X ℓ8, it follows that km
does not depend on the initial choice of the point R, as long as the chosen
point is not incident with any bisecant of B. This proves part 2.

Theorem 2.4. Let B be a blocking set of Rédei type in PGp2, qq, with Rédei
line ℓ.

1. If there is a point in Bzℓ contained in a unique bisecant of B, then
|B X ℓ| ı 1 pmod pq.

2. If R1, R2 P Bzℓ, each of them is contained in a unique bisecant of B
and there is a point T P ℓ such that R1T and R2T both meet B in at
least four points, then for each M P ℓ we have |MR1XB| “ |MR2XB|.

5
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3. If R1, R2 P Bzℓ, each of them is contained in a unique bisecant of B
and the common point of these bisecants is on the line ℓ, then for each
M P ℓ we have |MR1 X B| “ |MR2 X B|.

Proof. Let R be a point of Bzℓ contained in a unique bisecant r of B. First
suppose |B X ℓ| “ q. Then part 1 is trivial and there is no line through R

meeting B in at least 4 points, since otherwise we would get more than one
bisecants through R. Suppose that R1 is another point of Bzℓ contained in a
unique bisecant r1 of B and rXr1 P ℓ. Let tQu “ ℓzB. Then RQ and R1Q are
tangents to B and |MRXB| “ |MR1 XB| “ 3 for each M P pℓXBqztrX r1u.
From now on, we assume k :“ q ´ |B X ℓ| ě 1.

First we prove the theorem when B is minimal. We may assume ℓ “ ℓ8

and ℓ8zB “ tp8q, pm1q, . . . , pmkqu.
As in the proof of Theorem 2.3, let U “ Bzℓ8 “ tpai, biquq´1

i“0
and define

fpY q as in (1). Take m P GFpqq and let t be the slope of the unique bisecant
through R. From Lemma 2.1 we obtain the following.

fpmq “

$

&

%

´1 if pmq R B,

0 if pmq P Bztptqu,
fptq ‰ 0 if m “ t.

Consider the polynomial

gpY q :“ fptq ` |B X ℓ8| `
k

ÿ

i“1

pY ´ miqq´1 ´ fptqpY ´ tqq´1. (2)

For m P GFpqq we have gpmq “ fpmq. As both polynomials have degree
at most q ´ 1, it follows that gpY q “ fpY q. The coefficient of Y q´1 is
´|B X ℓ8| ´ fptq in g and ´1 in f . It follows that p � |B X ℓ8| ` fptq ´ 1
and hence fptq ” 1 ´ |B X ℓ8| ” k ` 1 pmod pq. If |B X ℓ8| ” 1 pmod pq,
then fptq “ 0, a contradiction. This proves part 1.

Now consider

BY gpY q “ ´
k

ÿ

i“1

pY ´ miqq´2 ` pk ` 1qpY ´ tqq´2,

and

wpY q :“ pY ´ tq
k

ź

i“1

pY ´ miqBY gpY q “

´
k

ÿ

i“1

pY ´ miqq´1pY ´ tq
ź

j‰i

pY ´ mjq ` pk ` 1qpY ´ tqq´1

k
ź

j“1

pY ´ mjq.

6
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If pmq P Bztptqu, then

wpmq “ ´
k

ÿ

i“1

pm ´ tq
ź

j‰i

pm ´ mjq ` pk ` 1q
k

ź

j“1

pm ´ mjq.

Suppose that the line through R with direction m meets B in at least four
points. Then m is a multiple root of fpY q and hence it is also a root of
wpY q. It follows that m is a root of

w̃pY q :“ ´pY ´ tq
k

ÿ

i“1

ź

j‰i

pY ´ mjq ` pk ` 1q
k

ź

j“1

pY ´ mjq. (3)

Note that
řk

i“1

ś

j‰ipm ´ mjq “ 0 and w̃pmq “ 0 together would imply

pk ` 1q śk
j“1

pm ´ mjq “ 0, which cannot be since pmq R tpm1q, . . . , pmkqu
and p ffl k ` 1. It follows that t can be expressed from m and m1, . . . ,mk in
the following way:

t “ m ´
pk ` 1q śk

j“1
pm ´ mjq

řk
i“1

ś

j‰ipm ´ mjq
. (4)

Now let R1 and R2 be two points as in part 2 and let T “ pmq. It follows
from (4) that the bisecants through these points have the same slope. Then,
according to (2), fpY q “ gpY q does not depend on the choice of Ri, for
i “ 1, 2. The assertion follows from Lemma 2.1 part 1.

If R1 and R2 are two points as in part 3, then the bisecants through
these points have the same slope. It follows that fpY q “ gpY q does not
depend on the choice of Ri, for i “ 1, 2. As above, the assertion follows
from Lemma 2.1 part 1.

Now suppose that B is not minimal and R1 P Bzℓ is contained in a
unique bisecant of B. As B is a blocking set of Rédei type, the points of
Bzℓ are essential in B. Let C P B X ℓ such that B1 :“ BztCu is a blocking
set. In this case for each P P Bzℓ the line PC is a bisecant of B and R1C

is the unique bisecant of B through R1. It follows that there is no bisecant
of B1 through R1. Then Theorem 2.3 yields that |ℓ X B1| ” 1 pmod pq. As
|ℓ X B| “ |ℓ X B1| ` 1, we proved part 1.

If R2 is another point of Bzℓ such that R2 is contained in a unique
bisecant of B, then there is no bisecant of B1 through R2 and hence parts 2
and 3 follow from Theorem 2.3 part 2.

7
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3 Connections with the direction problem

Let B be a blocking set in PGp2, qq. We recall q “ ph, p prime. The exponent
of B is the maximal integer 0 ď e ď h such that each line meets B in 1
pmod peq points. We recall the following two results about the exponent.

Theorem 3.1 (Szőnyi [25]). Let B be a small minimal blocking set in
PGp2, qq. Then B has positive exponent.

Theorem 3.2 (Sziklai [24]). Let B be a small minimal blocking set in
PGp2, qq. Then the exponent of B divides h.

Proposition 3.3. Let B be a blocking set of Rédei type in PGp2, qq, with
Rédei line ℓ . Suppose that B does not have bisecants. Then B has positive
exponent and for each point M P ℓ X B the lines through M different from ℓ

meet B in 1 or in pt ` 1 points, where t is a positive integer depending only
on the choice of M .

Proof. Theorem 2.3 part 1 yields that ℓ meets B in 1 pmod pq points. Lines
meeting ℓ not in B are tangents to B. For any M P ℓ X B Theorem 2.3 part
2 yields that MR meets Bzℓ in the same number of points for each R P Bzℓ.
Denote this number by k. Then k divides |Bzℓ| “ q. As B does not have
bisecants, it follows that k ą 1 and hence k “ pt for some positive integer t.

The following result is a consequence of the lower bound on the size of
an affine blocking set due to Brouwer and Schrijver [11] and Jamison [18].

Theorem 3.4 (Blokhuis and Brouwer [7, pg. 133]). If B is a minimal
blocking set of size q `N , then there are at least q ` 1´N tangents to B at
each point of B.

Theorem 3.5. Let f be a function from GFpqq to GFpqq and let N be the
number of directions determined by f . If any line with a direction determined
by f that is incident with a point of the graph of f is incident with at least
two points of the graph of f , then each line meets the graph of f in pt points
for some integer t and

q{s ` 1 ď N ď pq ´ 1q{ps ´ 1q,

where s “ mintpt : there is line meeting the graph of f in pt ą 1 pointsu.

Proof. If U denotes the graph of f , then B :“ U Y DU is a blocking set of
Rédei type without bisecants. Proposition 3.3 yields that each line meets

8
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U in pt points for some integer t, with t “ 0 only for lines with direction
not in DU . Take a point R P U and let DU “ tD1,D2, . . . ,DNu. Then
|DiRXB| ě s`1 yields |B| “ q`N ě Ns`1 and hence pq´1q{ps´1q ě N .
Take a line m meeting U in s points and let M “ m X ℓ8. According to
Proposition 3.3 the lines through M meet U in 0 or in s points. Theorem
3.4 yields that the number of lines through M that meet U is at most N ´1.
It follows that pN ´ 1qs ě q and hence N ě q{s ` 1.

Applying Theorems 3.5 and 3.1 we can give a new proof to the following
result.

Theorem 3.6 (part of Ball et al. [3] and Ball [2]). Let f be a function from
GFpqq to GFpqq and let N be the number of directions determined by f . Let
s “ pe be maximal such that any line with a direction determined by f that
is incident with a point of the graph of f is incident with a multiple of s
points of the graph of f . Then one of the following holds.

1. s “ 1 and pq ` 3q{2 ď N ď q ` 1,

2. q{s ` 1 ď N ď pq ´ 1q{ps ´ 1q,

3. s “ q and N “ 1.

Proof. The point set B :“ U Y DU is a minimal blocking set of Rédei type.
If s “ 1, then B cannot be small because of Szőnyi’s Theorem 3.1 and hence
N ě pq ` 3q{2. If s ą 1, then the bounds on N follow from Theorem 3.5.

In [3] and [2] it was also proved that for s ą 2 the graph of f is GFpsq-
linear and that GFpsq is a subfield of GFpqq. Note that Theorem 3.2 by
Sziklai generalizes the latter result.

4 Small semiovals

An oval of a projective plane of order q is a set of q ` 1 points such that no
three of them are collinear. It is easy to see that ovals are semiovals. The
smallest known non-oval semioval, i.e. semioval which is not an oval, is due
to Blokhuis.

Example 4.1 (Blokhuis [6]). Let S be the following point set in PGp2, qq,
3 ă q odd, S “ tp0 : 1 : sq, ps : 0 : 1q, p1 : s : 0q : ´s is not a squareu. Then
S is a semioval of size 3pq ´ 1q{2.

9
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Conjecture 4.2 (Kiss et al. [20, Conjecture 11]). If a semioval in PGp2, qq,
q ą 7, has less than 3pq ´ 1q{2 points, then it has exactly q ` 1 points and it
is an oval.

Let S be a semioval and ℓ a line meeting S in at least two points. Take
a point P P S X ℓ. As there is a unique tangent to S at P , it follows that
|Szℓ| ě q ´ 1, and hence |S| ě |S X ℓ| ` q ´ 1 ě q ` 1. It is convenient to
denote the size of S by q ´ 1 ` a, where a ě 2 holds automatically. Then
each line meets S in at most a points.

Theorem 4.3 (Blokhuis [6]). Let S be a semioval of size q´1`a, a ą 2, in
PGp2, qq and suppose that each line meets S in 0, 1, 2, or in a points. Then
S is the symmetric difference of two lines with one further point removed
from both lines, or S is projectively equivalent to Example 4.1.

If S is a semioval of size q ` 2, then each line meets S in at most three
points, thus Theorem 4.3 yields the following.

Theorem 4.4 (Blokhuis [6]). Let S be a semioval of size q ` 2 in PGp2, qq.
Then S is the symmetric difference of two lines with one further point re-
moved from both lines in PGp2, 4q, or S is projectively equivalent to Example
4.1 in PGp2, 7q.

We also recall the following well-known result by Blokhuis which will be
applied several times. For another proof and possible generalizations see
[26, Remark 7] by Szőnyi, or [12, Corollary 3.6] by Csajbók, Héger and Kiss.

Proposition 4.5 (Blokhuis [6, Proposition 2]). Let S be a point set of
PGp2, qq, q ą 2, of size q ´ 1 ` a, a ě 2, with an a-secant ℓ. If there is a
unique tangent to S at each point of ℓXS, then these tangents are contained
in a pencil. The carrier of this pencil is called the nucleus of ℓ and it is
denoted by Nℓ. For the sake of simplicity, the nucleus of a line ℓi will be
denoted by Ni.

If A and B are two point sets, then A∆B denotes their symmetric dif-
ference, that is pAzBq Y pBzAq.
Example 4.6 (Csajbók, Héger and Kiss [12, Example 2.12]). Let B1 be a
blocking set of Rédei type in PGp2, qq, with Rédei line ℓ. Suppose that there is
a point P P B1zℓ such that the bisecants of B1 pass through P and there is no
trisecant of B1 through P . For example, if B1 has exponent e and pe ě 3 (cf.
Section 3), then B1 has no bisecants or trisecants and hence one can choose
any point P P B1zℓ. Take a point W P ℓzB1 and let S “ pℓ∆B1qztW,P u.
Then S is a semioval of size q ´ 1 ` a, where a “ |ℓ X S|.

10
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Remark 4.7. The blocking set B1 in Example 4.6 is necessarily minimal.
To see this consider any point R P B1zpℓ Y tP uq. As the bisecants of B1 pass
through P , it follows that there is no bisecant of B1 through R and hence
Theorem 2.3 part 1 yields that B1 is minimal.

Lemma 4.8. Let S be a semioval of size q ´ 1 ` a in PGp2, qq and suppose
that there is a line ℓ which is an a-secant of S. Denote the set of tangents
through the points of Szℓ by L and let B “ tNℓu Y pS∆ℓq. Then one of the
following holds.

1. S is an oval.

2. L is contained in a pencil with carrier C. Then C P ℓ and B1 :“ BztCu
is a blocking set of Rédei type with Rédei line ℓ. In this case S can be
obtained from B1 as in Example 4.6 with P “ Nℓ and W “ C.

3. L is not contained in a pencil. Then B is a minimal blocking set of
Rédei type with Rédei line ℓ and

(a) p ffl a,

(b) for any R P Szℓ the line RNℓ is not a tangent to S,

(c) if R1, R2 P Szℓ and there is a point T P ℓ such that RiT meets
S Y tNℓu in at least three points for i “ 1, 2, then for each M P ℓ

we have |R1M X pS Y tNℓuq| “ |R2M X pS Y tNℓuq|,
(d) if R1, R2 P Szℓ and the tangents to S at these two points meet

each other on the line ℓ, then for each M P ℓ we have |R1M X
pS Y tNℓuq| “ |R2M X pS Y tNℓuq|.

Proof. First we show that B is a blocking set of Rédei type. Take a point
R P Szℓ. As there is a tangent to S at R it follows that ℓ meets S in at most
q points and hence ℓ is blocked by B. Lines meeting ℓ not in S are blocked
by B since ℓzS Ă B. If a line m meets ℓ in S, then either m is a tangent to
S and hence Nℓ P m, or m is not a tangent to S and hence there is a point
of Szℓ contained in m. As tNℓu Y pSzℓq Ă B, it follows that m is blocked by
B and hence B is a blocking set. The line ℓ meets B in |B| ´ q points, thus
B is of Rédei type and ℓ is a Rédei line of B.

If a “ 2, then S is an oval. From now on we assume a ě 3. First suppose
that L is contained in a pencil with carrier C. If C R ℓ, then |L| ď q ` 1´a,
but |L| “ |Szℓ| “ q ´ 1. It follows that C P ℓ.

Let B1 “ BztCu. In this paragraph we prove that B1 is a blocking set. It
is enough to show that the lines through C are blocked by B1. This trivially

11



RÉDEI TYPE BLOCKING SETS AND APPL.

holds for the q ´ 1 lines in L. First we show that B1 blocks ℓ too. Suppose
to the contrary that ℓzpS Y tCuq “ H and hence a “ q. As a ě 3, we have
q ě 3 and hence there are at least two points in Szℓ. Take R,Q P Szℓ and
let M “ RQ X ℓ. Since M ‰ C, we have M P S. Then there are at least
two tangents to S incident with M and this contradiction shows that ℓ is
blocked by B1. Now we show CNℓ R L. Suppose to the contrary that CNℓ is
a tangent to S at some V P Szℓ. Then V C is a trisecant of B. If there were
a bisecant v of B through V , then, by the construction of B, v would be a
tangent to S at V . This cannot be since the unique tangent to S at V is
V C, which is a trisecant of B and hence v ‰ V C. For any V 1 P SzpℓY tV uq,
there is a unique bisecant of B through V 1, namely V 1C. We have shown
that there is a point in Bzℓ not incident with any bisecant of B and there are
points in Bzℓ incident with a unique bisecant of B. This cannot be because
of Theorem 2.3 part 1 and Theorem 2.4 part 1. It follows that CNℓ is not
a tangent to S. As CNℓ is blocked by B1 and the other q lines through C,
ℓ and the lines of L, are also blocked, it follows that B1 is a blocking set. It
is easy to see that ℓ is a Rédei line of B1.

We show that there is no bisecant of B1 through the points of Szℓ. Take
a point R P Szℓ and suppose to the contrary that there is a bisecant b of B1

through R. Then, by the construction of B1, the line b is a tangent to S at
R. This is a contradiction since b ‰ RC. It follows that if B1 has bisecants,
then they pass through Nℓ. If there were a trisecant t of B1 through Nℓ,
then let V “ t X S. It follows that t is a tangent to S at V . But we have
already seen that there is no line of L incident with Nℓ. This finishes the
proof of part 2.

Now suppose that S is as in part 3. If B were not minimal, then the
line set L would be contained in a pencil with carrier on ℓ, a contradiction.
Take a point R P Szℓ. If RNℓ is the tangent to S at R, then there is no
bisecant of B through R, thus p � a (cf. Theorem 2.3 part 1). If RNℓ is not
the tangent to S at R, then there is a unique bisecant of B through R (the
tangent to S at R), thus p ffl a (cf. Theorem 2.4 part 1). It follows that if
any of the lines of L is incident with Nℓ, or if p � a, then the whole line set
L is contained in the pencil with carrier Nℓ, a contradiction. This proves
parts (a) and (b). Parts (c) and (d) follow from Theorem 2.4 parts 2 and 3,
respectively.

Remark 4.9. The properties (a)-(d) in part 3 of Lemma 4.8 also hold when
S is as in Example 4.6. From the properties of the point P in Example 4.6
it follows that for R P Szℓ the line RP is not a tangent to S and this proves
(b). As for any two points R1, R2 P Szℓ there is no bisecant of B1 incident

12
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with R1 or R2, properties (a), (c) and (d) follow from Theorem 2.3.

Theorem 4.10. Let S be a semioval of size q ´ 1 ` a, a ą 2, which admits
an a-secant ℓ, and let m ‰ ℓ be a k-secant of S.

1. For each R P Szℓ, the line RNℓ is not a tangent to S.

2. If k ě 3, then the tangents to S at the points of m are contained in a
pencil with carrier on ℓ.

3. If k ą pa ´ 1q{2, then k “ a and Nℓ P m, or k “ ra{2s and Nℓ R m.

Proof. Part 1 follows from Lemma 4.8 part 3 (b), and part 2 follows from
Lemma 4.8 part (c) with T “ m X ℓ.

To prove part 3 first suppose k ą pa ` 1q{2 and Nℓ R m. Let m X S “
tR1, R2, . . . , Rku. The lines RiNℓ for i “ 1, 2, . . . , k cannot be bisecants
of S Y tNℓu since they are not tangents to S. Thus each of these lines
meets S Y tNℓu in at least three points. Let Bi “ ℓ X RiNℓ, then we have
|RiBi X pS Y tNℓuq| ě 3 for i P t1, 2, . . . , ku. We apply Lemma 4.8 part 3 (c)
with T “ ℓ X m (note that k ą pa ` 1q{2 ě 2). For j P t2, . . . , ku we obtain
|R1Bj X pS Y tNℓuq| “ |RjBj X pS Y tNℓuq|, thus also |R1Bj X pS Y tNℓuq| ě
3 for j P t2, 3, . . . , ku. We have Nℓ P R1B1 and hence Nℓ R R1Bj for
j P t2, 3, . . . , ku. It follows that R1B2 Y R1B3 Y . . . R1Bk Y m contains at
least 2pk ´ 1q ` k “ 3k ´ 2 points of S. As there is a unique tangent to S

at R1, we must have a ` pq ´ 1q ´ p3k ´ 2q ě q ´ k. This is a contradiction
when k ą pa ` 1q{2. It follows that lines meeting S in more than pa ` 1q{2
points have to pass through Nℓ.

Now suppose that m is a k-secant of S with pa ´ 1q{2 ă k ă a and
Nℓ P m. Take a point R P m X S. As k ă a, there is at least one other line
m1 through R meeting S in at least three points. Let R1 P pm1 X SqztRu.
Lemma 4.8 part 3 (c) with T “ m1 X ℓ and M “ m X ℓ yields that the line
joining R1 and mX ℓ meets S in |pS Y tNℓuq Xm| “ k`1 ą pa`1q{2 points.
Then, according to the previous paragraph, this line also passes through Nℓ,
a contradiction. It follows that either k “ a and hence Nl P m, or Nl R m

and hence pa ´ 1q{2 ă k ď pa ` 1q{2.

Lemma 4.11. Let S be a semioval of size q ´ 1 ` a in PGp2, qq. For each
point R P S the number of lines through R meeting S in at least three points
is at most a ´ 2.

Theorem 4.12. Let S be a semioval of size q ´ 1 ` a, a ą 2, in PGp2, qq.
If S has two a-secants, then one of the following holds.

13
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1. S is the symmetric difference of two lines with one further point re-
moved from both lines.

2. S is projectively equivalent to Example 4.1.

Proof. Let ℓ1 and ℓ2 be two a-secants of S and let S 1 “ Szpℓ1Yℓ2q. Theorem
4.10 yields N1 P ℓ2 and N2 P ℓ1. If S

1 “ H, then S Ď ℓ1 Yℓ2 and it is easy to
see that S is as in part 1. If S 1 ‰ H, then take any point R P S 1. We show
that the tangent to S at R passes through P :“ ℓ1 X ℓ2. As a ą 2, there is a
line r through R meeting S in at least 3 points. According to Theorem 4.10
part 2, the tangents to S at the points of r XS pass through a unique point
of ℓ1, and also through a unique point of ℓ2. It follows that these tangents
pass through the point P .

We show that S 1 is contained in the line ℓ3 :“ N1N2. Suppose, contrary
to our claim, that there is a point R P S 1zℓ3. There is a line r through R

meeting S in at least three points. Since R R ℓ3, r cannot be incident with
both N1 and N2. We may assume N2 R r. Let M “ r X ℓ1. Note that
M R S Y tN2, P u. Take a point Q P ℓ2 X S. Since the unique tangent to S

at Q is QN2, it follows that QM is a bisecant of S and it contains a unique
point of S 1. Denote this point by R1. The tangents to S at R and R1 pass
through the same point of ℓ1, namely P , and hence we can apply Lemma 4.8
part 3 (d). It follows that 2 “ |MR1 XpSYtN1uq| “ |MRXpS YtN1uq| ě 3.
This contradiction shows S 1 Ă ℓ3. Lines meeting each of ℓ1, ℓ2 and ℓ3 meet
S in at most two points. Take any point H P S X ℓ3. Since the tangent to
S at H is PH, and the other lines through H are not tangents, we obtain
2a “ |ℓ1 X S| ` |ℓ2 X S| “ q ´ 1 and hence a “ pq ´ 1q{2. The size of S is
q ´ 1 ` a “ 2a ` |S 1|, so |S 1| “ a “ pq ´ 1q{2. It is easy to show that S

is projectively equivalent to Example 4.1. For the complete description of
semiovals contained in the sides of a vertexless triangle see the paper of Kiss
and Ruff [21].

A pk, nq-arc of PGp2, qq is a set of k points such that each line meets the
k-set in at most n points.

Theorem 4.13. Let S be a semioval of size q ` 3 in PGp2, qq, q is a power
of the prime p. Then q “ 5 and S is the symmetric difference of two lines
with one further point removed from both lines, or q “ 9 and S is as in
Example 4.1, or p “ 3 and S is a pq ` 3, 3q-arc.

Proof. It is easy to see that the points of S fall into the following two types:

• points contained in a unique 4-secant and in q ´ 1 bisecants,
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• points contained in two trisecants and in q ´ 2 bisecants.

If S does not have 4-secants, then the number of trisecants of S is pq`3q2{3,
thus 3 � q. Now suppose that S has a 4-secant, ℓ. Theorem 4.10 with a “ 4
yields that S does not have trisecants. The assertion follows from Theorem
4.12.

5 Small semiovals when q is even

We will use the following theorem by Szőnyi and Weiner. This result was
proved by the so called resultant method. We say that a line ℓ is an odd-
secant (resp. even-secant) of S if |ℓ X S| is odd (resp. even). A set of even
type is a point set H such that each line is an even-secant of H.

Theorem 5.1 (Szőnyi and Weiner, [27]). Assume that the point set H in
PGp2, qq, 16 ă q even, has δ odd-secants, where δ ă p

X?
q
\

`1qpq`1´
X?

q
\

q.
Then there exists a unique set H1 of even type, such that |H∆H1| “

Q

δ
q`1

U

.

As a corollary of the above result, Szőnyi and Weiner gave a lower bound
on the size of those point sets of PGp2, qq, 16 ă q even, which do not have
tangents but have at least one odd-secant, see [27]. In this section we prove
a similar lower bound on the size of non-oval semiovals.

Lemma 5.2. Let S be a semioval in Πq, that is, a projective plane of order
q. If |S| “ q ` 1 ` ǫ, then S has at most |S|p1 ` ǫ{3q odd-secants.

Proof. Take P P S, then there passes exactly one tangent and there pass
at most ǫ other odd-secants of S through P . In this way the non-tangent
odd-secants have been counted at least three times.

Corollary 5.3. If S is a semioval in PGp2, qq, 16 ă q even, and |S| ď
q ` 3

X?
q
\

´ 11, then S is an oval.

Proof. If δ denotes the number of odd-secants of S, then Lemma 5.2 yields:

δ ď pq ` 3 t
?
qu ´ 11qpt

?
qu ´ 3q ă pt

?
qu ` 1qpq ´ t

?
qu ` 1q.

By Theorem 5.1 we can construct a set of even type H from S by modifying

(add to S or delete from S)
Q

δ
q`1

U

ď
X?

q
\

` 1 points of PGp2, qq.
If P P S is a modified (and hence deleted) point, then the number of

lines through P which are not tangents to S and do not contain modified

points is at least q ´
´Q

δ
q`1

U

´ 1
¯

. These lines are even-secants of H and
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hence they are non-tangent odd-secants of S. It follows that the size of S is
at least 1 ` 2pq ´

X?
q
\

q, a contradiction.
Thus each of the modified points has been added. Suppose |S| ą q ` 1.

As there is a tangent to S at each point of S, we have 2 ď
Q

δ
q`1

U

. Let A and

B be two modified (and hence added) points. If the line AB contains another
added point C, then through one of the points A, B, C there pass at most
p|S| ´ 1q{3 ` 1 tangents to S. If AB does not contain further added points,
then AB cannot be a tangent to S and hence through one of the points A,
B there pass at most |S|{2 tangents to S. Let A be an added point through
which there pass at most |S|{2 tangents to S and denote the number of

these tangents by τ . Through A there pass at least q ` 1´ τ ´
´Q

δ
q`1

U

´ 1
¯

lines meeting S in at least two points. Thus from τ ď |S|{2 and from the
assumption on the size of S we get

q`3 t
?
qu´11 ě τ `2pq`1´τ ´t

?
quq ě 2pq´t

?
qu`1q´pq`3 t

?
qu´12q{2.

After rearranging we obtain 0 ě q ´ 13
X?

q
\

` 38, which is a contradiction.
It follows that |S| ď q ` 1, but also |S| ě q ` 1 and S is an oval in the case
of equality.

6 Point sets with few odd-secants in PGp2, qq, q odd

Some combinatorial results of this section hold in every finite projective
plane. As before, by Πq we denote an arbitrary projective plane of order q.

Definition 6.1. Fix a point set S Ď Πq. For a positive integer i and a
point P P S we denote by tipP q the number of i-secants of S through P . The
weight of P , in notation wpP q, is defined as follows.

wpP q :“
ÿ

i odd

tipP q{i.

For a subset P Ď S, let wpPq “ ř

PPP wpP q. Suppose that wpP q is known
for P P tP1, P2, . . . , Pmu Ď S X ℓ, where ℓ is a line meeting S in at least m
points. Then the type of ℓ is

rwpP1q, wpP2q, . . . , wpPmqs.

Suppose that the value of tipP q is known for a point P P S and for 1 ď i ď
q ` 1. Let ta1, a2, . . . , aku “ ti : tipP q ‰ 0u, then the type of P is

ra1 ta1 pP q, a2 ta2 pP q, . . . , ak tak pP qs.
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RÉDEI TYPE BLOCKING SETS AND APPL.

Example 6.2 (Balister et al. [1]). Let S “ C Y tP u, where C is a conic
of PGp2, qq, q odd, and P R C is an external point of C, that is, a point
contained in two tangents to C. Then the type of P is r1pq´1q{2, 22, 3pq´1q{2s
and wpP q “ pq ´ 1q{2` pq´ 1q{6. If T1 and T2 are the points of C contained
in the tangents to C at P , then the type of Ti is r2q`1s and wpTiq “ 0 for
i “ 1, 2. Each point of CztT1, T2u has type r11, 2q´1, 31s and weight 4{3. The
number of odd-secants of S is 2q ´ 2.

Theorem 6.3 (Balister et al. [1, Theorem 6]). The minimal number of
odd-secants of a pq ` 2q-set in PGp2, qq, q odd, is 2q ´ 2 when q ď 13. For
q ě 7, it is at least 3pq ` 1q{2.

Conjecture 6.4 (Balister et al. [1, Conjecture 11]). The minimal number
of odd-secants of a pq ` 2q-set in PGp2, qq, q odd, is 2q ´ 2.

The following propositions are straightforward.

Proposition 6.5. The number of odd-secants of S is wpSq “ ř

PPS wpP q.

Proposition 6.6. Let S be a pq ` 2q-set in Πq and let P be a point of S.
The smallest possible weights of P are as follows:

• wpP q “ 0 if and only if the type of P is r2q`1s,

• wpP q “ 4{3 if and only if the type of P is r11, 2q´1, 31s,

• wpP q “ 2 if and only if the type of P is r12, 2q´2, 41s,

• wpP q “ 8{3 if and only if the type of P is r12, 2q´3, 32s,

• wpP q “ 16{5 if and only if the type of P is r13, 2q´2, 51s,

• wpP q “ 10{3 if and only if the type of P is r13, 2q´3, 31, 41s.

Proposition 6.7. Let S be a point set of size q ` 2 in Πq and let P be a
point of S.

1. If P is contained in a k-secant, then wpP q ě k ´ 2,

2. if P is contained in at least k trisecants, then wpP q ě 4

3
k.

Proof. In part 1, the number of tangents to S at P is at least q´pq`2´kq “
k ´ 2. In part 2, P is incident with at least q ` 1´ k´ pq ` 2´ p2k ` 1qq “ k

tangents to S, thus wpP q ě k{3 ` k.
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Theorem 6.8 (Bichara and Korchmáros [5, Theorem 1]). Let S be a point
set of size q ` 2 in PGp2, qq. If q is odd, then S contains at most two points
with weight 0, that is, points of type r2q`1s.

Lemma 6.9. Let S be a point set of size q ` k in PGp2, qq for some k ě 3.
Suppose that ℓ1 is a k-secant of S meeting S only in points of type r2q, k1s.
Then the k-secants of S containing a point of type r2q, k1s are concurrent.

Proof. Let ℓ2, ℓ3 be two k-secants of S with the given property and let
Ri P ℓi X S be a point of type r2q, k1s for i “ 2, 3. It is easy to see that
B :“ ℓ∆S is a blocking set of Rédei type and R2, R3 are not incident with
any bisecant of B. It follows from Theorem 2.3 part 2 that ℓ2 X ℓ3 P ℓ1.

Definition 6.10. A pq ` t, tq-arc of type p0, 2, tq is a point set T of size
pq ` tq in PGp2, qq such that each line meets T in 0,2 or t points. In honor
of Korchmáros and Mazzocca such point sets are also called KM-arcs in the
literature.

Let T be a pq ` t, tq-arc of type p0, 2, tq. It is easy to see that for t ą 2
there is a unique t-secant through each point of T . It can be proved that
2 ď t ă q implies q even, see [22] by Korchmáros and Mazzocca. As the
points of T are of type r2q, t1s, the following theorem by Gács and Weiner
also follows from Lemma 6.9. For recent results on KM-arcs we refer the
reader to [13].

Theorem 6.11 (Gács and Weiner [16, Theorem 2.5]). Let T be a pq ` t, tq-
arc of type p0, 2, tq in PGp2, qq. If t ą 2, then the t-secants of T pass through
a unique point.

The proof of our next result is based on the counting technique of Segre.
A dual arc is a set of lines such that no three of them are concurrent.

Theorem 6.12. Let S be a point set of size q ` k in PGp2, qq, q odd.

1. If k “ 1, then the tangents to S at points of type r11, 2qs form a dual
arc.

2. If k “ 2, then there are at most two points of type r2q`1s.

3. If k ě 3, then the k-secants of S containing a point of type r2q, k1s
form a dual arc.

18
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Proof. Suppose the contrary. If k “ 1, then let A, B and C be points
of type r11, 2qs such that the tangents through these points pass through a
common point D. If k “ 2, then let A, B and C be three points of type
r2q`1s and take a point D R pS Y AB Y BC Y CAq. If k ě 3, then let A, B
and C be points of type r2q, k1s such that the k-secants through these points
pass through a common point D R pAB Y BC Y CAq. In all cases, A, B,
C and D are in general position, thus we may assume A “ p8q, B “ p0, 0q,
C “ p0q and D “ p1, 1q. Let S 1 “ SztA,B,Cu. Note that AB, BC and CA

are bisecants of S and CA is the line at infinity, thus S 1 is a set of q ` k ´ 3
affine points, say S 1 “ tpai, biquq`k´3

i“1
. For i P t1, 2, . . . , q ` k ´ 3u we have

the following.

• The line joining pai, biq and A meets BC in pai, 0q,

• the line joining pai, biq and B meets AC in pbi{aiq,

• the line joining pai, biq and C meets AB in p0, biq.

The lines AD, BD and CD meet S 1 in k ´ 1 points. The lines AP for
P P S 1zAD meet S 1 in a unique point. Since the first coordinate of the

points of AD X S 1 is 1, it follows that taiuq`k´3

i“1
is a multiset containing

each element of GFpqqzt0, 1u once, and containing 1 k ´ 1 times. Thus
śq`k´3

i“1
ai “ ´1. Similarly, the lines through B yield

śq`k´3

i“1
bi{ai “ ´1,

and the lines through C yield
śq`k´3

i“1
bi “ ´1. It follows that

1 “ p´1qp´1q “
˜

q`k´3
ź

i“1

ai

¸ ˜

q`k´3
ź

i“1

bi

ai

¸

“
q`k´3

ź

i“1

bi “ ´1,

a contradiction for odd q.

The following immediate consequence of Theorem 6.12 and Lemma 6.9
will be used frequently.

Corollary 6.13. Let S be a point set of size q ` k, k ě 3, in PGp2, qq. If
there exist three k-secants of S, ℓ1, ℓ2 and ℓ3, such that the points of ℓ1 X S

are of type r2q, k1s and both ℓ2 X S and ℓ3 X S contain at least one point of
type r2q, k1s, then q is even.

Proof. Lemma 6.9 yields ℓ2Xℓ3 P ℓ1, but then Theorem 6.12 implies q even.

For the definition of a nucleus Ni of a line ℓi see Proposition 4.5.
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Lemma 6.14. Let S be a set of q ´ 1 ` a points, a ě 3, in PGp2, qq, where
q is a power of the prime p. Suppose that ℓ1 and ℓ2 are a-secants of S such
that there is a unique tangent to S at each point of S X ℓi, for i “ 1, 2.

1. Either N1 P ℓ2 and N2 P ℓ1, or

2. N1 “ N2, p � a and for each R P S if there is a unique tangent r to S

at R, then r passes through the common nucleus.

3. Let ℓ3 be another a-secant of S such that there is a unique tangent to
S at each point of S X ℓ3. If q or a is odd, then ℓ3 “ N1N2, thus in
this case ℓ3 is uniquely determined.

Proof. If ℓ1 X ℓ2 P S, then |S| ě 2a ` q ´ 3, which cannot be since a ě 3.
First assume N1 ‰ N2 and suppose to the contrary N2 R ℓ1. Then B :“
tN1u Y pℓ1∆Sq is a blocking set of Rédei type. There is a unique bisecant of
B at each point of S X ℓ2 (the tangent to S). This is a contradiction since
these bisecants should pass through the same point of ℓ1 (apply Theorem
2.4 part 2 with T “ ℓ1 X ℓ2).

If N1 “ N2 “: N , then we define B in the same way. Then there is no
bisecant of B through the points of BX ℓ2. Theorem 2.3 yields p � a. Take a
point R P Szpℓ1 Yℓ2q incident with a unique tangent r to S. If N R r, then r

is the unique bisecant of B through R, a contradiction because of Theorem
2.4 part 1.

Suppose that ℓ3 is an a-secant with properties as in part 3. Then either
ℓ3 “ N1N2 and N3 “ ℓ1 X ℓ2, or N3 “ N1 “ N2 “: N and p � a. In the
latter case Corollary 6.13 applied to S Y tNu and to the lines ℓ1, ℓ2 and ℓ3
yields p “ 2.

Lemma 6.15. Let S be a set of q`2 points in PGp2, qq, q is a power of the
odd prime p, and suppose that ℓ is a trisecant of S of type r4{3, 4{3, 4{3s.

1. If p “ 3, then the tangents at the points of S with weight 4/3 pass
through Nℓ. There is at most one other trisecant of S of type r4{3s.

2. If p ‰ 3, then the trisecants of type r4{3, 4{3s pass through Nℓ. Suppose
that there is another trisecant ℓ1 of type r4{3, 4{3, 4{3s. Then there is
at most one other trisecant of type r4{3, 4{3s, which is NℓN1. If NℓN1

is a trisecant of type r4{3, 4{3s, then the tangents at the points of NℓN1

with weight 4/3 pass through ℓ X ℓ1.

Proof. Let B denote the Rédei type blocking set pℓ∆Sq Y tNℓu.
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First we prove part 1. Take A P Szℓ such that wpAq “ 4{3 and denote
the tangent to S at A by a. If Nℓ R a, then there is a unique bisecant of
B through A, thus Theorem 2.4 yields p ‰ 3, a contradiction. Denote the
trisecant through A by ℓ1. If there were a trisecant ℓ2 of type r4{3s different
from ℓ and ℓ1, then Corollary 6.13 applied to S Y tNℓu and to the lines ℓ, ℓ1
and ℓ2 would yield q even, a contradiction.

Now we prove part 2. First suppose to the contrary that there is a
trisecant ℓ2 of type r4{3, 4{3s with Nℓ R ℓ2. Let A,B P ℓ2 X S such that
wpAq “ wpBq “ 4{3. Denote the tangents to S at these two points by a

and b, respectively. We have Nℓ R a and Nℓ R b, since otherwise we would
get points not incident with any bisecant of B, a contradiction as p ‰ 3
(cf. Theorem 2.3). It follows that NℓA and NℓB are 4-secants of B. Let
M “ NℓA X ℓ. Then Theorem 2.4 part 2 (with T “ ℓ X ℓ2) yields that MB

is also a 4-secant of B and hence a trisecant of S (we have Nℓ R MB). A
contradiction, since MB ‰ ℓ2. It follows that Nℓ P ℓ2.

Let ℓ1 be trisecant of S of type r4{3, 4{3, 4{3s and let ℓ2, A, B, a and
b be defined as in the previous paragraph. It follows from Lemma 6.14
that Nℓ P ℓ1 and N1 P ℓ. It also follows from the previous paragraph that
N1 P ℓ2 and Nℓ P ℓ2, thus ℓ2 “ N1Nℓ. Theorem 2.4 applied to B and to
pℓ1∆Sq Y tN1u yields that a and b pass through a unique point of ℓ and
through a unique point of ℓ1, thus they pass through ℓ X ℓ1.

Let S be a set of q ` 2 points of PGp2, qq, q odd. Since q ` 2 is odd,
each point P R S is incident with an odd-secant of S. It follows that the
odd-secants of S cover the points of PGp2, qq except for the points of S

with weight zero. For partial covers of PGp2, qq we refer the reader to [8,
Proposition 1.5]. The lower bound on the size of an affine blocking set
[11, 18] yields the following result. Its proof can be found in [10] at the top
of page 211, as part of a more complex argument. For a proof in the dual
setting see [1, Lemma 10].

Lemma 6.16 (Blokhuis and Mazzocca [10]). Let S be a set of q`2 points of
PGp2, qq, q odd. If S has d P t1, 2u points with weight zero, then the number
of odd-secants of S is at least 2q ´ d.

Theorem 6.17. Let S be a point set of size q ` 2 in PGp2, qq, 13 ă q odd.
Then the number of odd-secants of S is at least

P

8

5
q ` 12

5

T

.

Proof. Let d denote the number of points of S with weight zero. Theorem
6.8 of Bichara and Korchmáros yields d ď 2. If d P t1, 2u, then Lemma 6.16
yields wpSq ě 2q ´ 2, which is at least

P

8

5
q ` 12

5

T

when q ě 11. From now
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on we assume d “ 0. Consider the following subsets of S:

B :“ tP P S : P is contained in a trisecant of type [4/3,4/3,4/3]u,

C :“ tP P S : wpP q ‰ 4{3, P is contained in a trisecant of type [4/3]u.
Denote the size of C by m and let C “ tP1, P2, . . . , Pmu. For i “ 1, 2, . . . ,m,
let

Vi “ tQ P S : wpQq “ 4{3 and QPi is a trisecantu Y tPiu.
Also, let D1 :“ V1 and Di :“ VizpYi´1

j“1
Vjq for i P t2, 3, . . . ,mu. Of course

the sets D1,D2, . . . ,Dm are disjoint and Pi P Di Ď Vi. The point set
D :“ Ym

i“1
Di contains each point of SzB with weight 4/3. Note that each

point of Di has weight 4/3, except Pi. We introduce the following notion.
For a point set U Ď S let αpUq denote the average weight of the points in U ,
that is, αpUq “ wpUq{|U |. First we prove αpDiq ě 8{5 for i “ 1, 2, . . . ,m. If
t3pPiq “ k (cf. Definition 6.1), then

|Di| ď |Vi| ď 2k ` 1. (5)

If k “ 1, then Proposition 6.6 yields wpPiq ě 10{3 (since wpPiq ‰ 4{3),
hence in this case we have

αpDiq ě 10{3 ` p|Di| ´ 1q4{3
|Di|

“ 4{3 ` 2

|Di|
ě 2. (6)

If k ě 2, then Proposition 6.7 yields wpPiq ě 4k{3, thus

αpDiq ě 4k{3 ` p|Di| ´ 1q4{3
|Di|

“ 4{3 ` pk ´ 1q4{3
|Di|

ě 2 ´ 2

2k ` 1
ě 8{5. (7)

We define a further subset of S, E :“ SzpB Y Dq. Note that wpDq ě
|D|8

5
and wpEq ě |E |2, since each point of E has weight at least 2 (see

Porposition 6.6). The point sets B, D and E form a partition of S, thus
wpSq “ wpBq ` wpDq ` wpEq. We distinguish three main cases.

1. There is no trisecant of S of type r4{3, 4{3, 4{3s. Then we obtain
wpSq ě pq ` 2q8

5
.

2. There is at least one trisecant of S of type r4{3, 4{3, 4{3s and p ‰
3. Denote the number of trisecants of S of type r4{3, 4{3, 4{3s by s.
Lemma 6.15 yields s ď 3. If s “ 1, then wpsq ě 34

3
`pq´1q8

5
“ q 8

5
` 12

5
.

If s “ 2, then according to Lemma 6.15 there is at most one other
trisecant of type r4{3, 4{3s. Thus in (5) we have |Di| ď |Vi| ď k ` 2,
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where k “ t3pPiq. If k “ 1, then similarly to (6) we obtain αpDiq ě 2.
If k ě 2, then similarly to (7) we obtain αpDiq ě 5

3
. It follows that

wpSq ě 64

3
` pq ´ 4q5

3
“ q 5

3
` 4

3
. If s “ 3, then according to Lemma

6.15 there is no other trisecant of type r4{3, 4{3s. Thus in (5) we have
|Di| ď |Vi| ď k`1. If k “ 1, then similarly to (6) we obtain αpDiq ě 7

3
,

if k ě 2, then similarly to (7) we obtain αpDiq ě 16

9
. It follows that

wpSq ě 94

3
` pq ´ 7q16

9
“ q 16

9
´ 4

9
.

3. There is at least one trisecant ℓ of S of type r4{3, 4{3, 4{3s and p “ 3.
It follows from Lemma 6.15 that the number g of further trisecants
of type r4{3s is at most one. First suppose g “ 0. As D is empty,
we obtain wpSq ě 34

3
` pq ´ 1q2 ě 2q ` 2. If g “ 1, then let r ‰ ℓ

be the other trisecant of S of type [4/3]. Let t P t1, 2, 3u be the
number of points with weight 4/3 in r X S. It follows that wpSq ě
p3 ` tq4

3
` p3 ´ tq8

3
` pq ´ 4q2 ě 64

3
` pq ´ 4q2 “ 2q.

For a line set L of AGp2, qq, q odd, denote by w̃pLq the set of affine
points contained in an odd number of lines of L. [28, Theorem 3.2] by
Vandendriessche classifies those line sets L of AGp2, qq for which |L|`w̃pLq ď
2q, except for one open case ([28, Open Problem 3.3]), which we recall here.
For applications in coding theory we refer the reader to the Introduction of
the paper of Vandendriessche and the references there.

Example 6.18 (Vandendriessche [28, Example 3.1 (i)]). L is a set of q ` k

lines in AGp2, qq, q odd, with the following properties. There is an m-set
S Ă ℓ8 with 4 ď m ď q ´ 1 and an odd positive integer k such that exactly
k lines of L pass through each point of S and w̃pLq “ q ´ k.

Proposition 6.19. Example 6.18 cannot exist.

Proof. The dual of the line set L in Example 6.18 is a point set B of size q`k

in PGp2, qq, such that there is a point O R B (corresponding to ℓ8), with
the properties that through O there pass m k-secants of B, ℓ1, ℓ2, . . . , ℓm,
and the number of odd-secants of B not containing O is q ´ k (q, m and k

are as in Example 6.18).
As q ` k is even and k is odd, it follows for i P t1, 2, . . . ,mu and for any

R P ℓizpB Y tOuq that through R there passes at least one odd-secant of B,
which is different from ℓi. As the number of odd-secants of B not containing
O is q ´ k, and |ℓizpB Y tOuq| “ q ´ k, it follows that there is a unique
odd-secant of B through each point of B X ℓi, namely ℓi. But |Bzℓi| “ q,
thus lines not containing O and meeting ℓi in B are bisecants of B (otherwise
we would get tangents to B not containing O at some point of ℓi XB). Then

23
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for i P t1, 2, . . . ,mu the points of B X ℓi are of type r2q, k1s. As m ě 3 and
the lines ℓ1, . . . , ℓm are concurrent, Theorem 6.12 yields a contradiction for
odd q.

Remark 6.20. Together with other ideas, our method yields lower bounds
on number of odd-secants of pq ` 3q-sets and pq ` 4q-sets as well. We will
present these results elsewhere.

Acknowledgement. The author is grateful to the referees for their
useful comments, in particular for the insight that a previous version of
Theorem 4.12 can be improved.
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e-mail: csajbok.bence@gmail.com

26


	1 Introduction
	2 Bisecants of Rédei type blocking sets
	3 Connections with the direction problem
	4 Small semiovals
	5 Small semiovals when q is even
	6 Point sets with few odd-secants in PG(2,q), q odd

