On bisecants of Rédei type blocking sets and applications

Bence Csajbók*

Abstract

If \mathcal{B} is a minimal blocking set of size less than $3(q+1) / 2$ in $\operatorname{PG}(2, q)$, q is a power of the prime p, then Szőnyi's result states that each line meets \mathcal{B} in $1(\bmod p)$ points. It follows that \mathcal{B} cannot have bisecants, i.e. lines meeting \mathcal{B} in exactly two points. If $q>13$, then there is only one known minimal blocking set of size $3(q+1) / 2$ in $\mathrm{PG}(2, q)$, the so called projective triangle. This blocking set is of Rédei type and it has $3(q-1) / 2$ bisecants, which have a very strict structure. We use polynomial techniques to derive structural results on Rédei type blocking sets from information on their bisecants. We apply our results to point sets of $\mathrm{PG}(2, q)$ with few odd-secants.

In particular, we improve the lower bound of Balister, Bollobás, Füredi and Thompson on the number of odd-secants of a $(q+2)$-set in $\mathrm{PG}(2, q)$ and we answer a related open question of Vandendriessche. We prove structural results for semiovals and derive the non existence of semiovals of size $q+3$ when $p \neq 3$ and $q>5$. This extends a result of Blokhuis who classified semiovals of size $q+2$, and a result of Bartoli who classified semiovals of size $q+3$ when $q \leqslant 17$. In the q even case we can say more applying a result of Szőnyi and Weiner about the stability of sets of even type. We also obtain a new proof to a result of Gács and Weiner about $(q+t, t)$-arcs of type $(0,2, t)$ and to one part of a result of Ball, Blokhuis, Brouwer, Storme and Szőnyi about functions over $\mathrm{GF}(q)$ determining less than $(q+3) / 2$ directions.

AMS subject classification: 51E20, 51E21

[^0]
RÉDEI TYPE BLOCKING SETS AND APPL.

1 Introduction

A blocking set \mathcal{B} of $\operatorname{PG}(2, q)$, the Desarguesian projective plane of order q, is a point set meeting every line of the plane. \mathcal{B} is called non-trivial if it contains no line and minimal if \mathcal{B} is minimal subject to set inclusion. A point $P \in \mathcal{B}$ is said to be essential if $\mathcal{B} \backslash\{P\}$ is not a blocking set. For a point set \mathcal{S} and a line ℓ we say that ℓ is a k-secant of \mathcal{S} if ℓ meets \mathcal{S} in k points. If $k=1$, $k=2$, or $k=3$, then we call ℓ a tangent to \mathcal{S}, a bisecant of \mathcal{S}, or a trisecant of \mathcal{S}, respectively. We usually consider $\mathrm{PG}(2, q)$ as $\mathrm{AG}(2, q)$, the Desarguesian affine plane of order q, extended by the line at infinity, ℓ_{∞}. Throughout the paper q will always denote a power of p, p prime. For the points of $\operatorname{AG}(2, q)$ we use cartesian coordinates. The infinite point (or direction) of lines with slope m will be denoted by (m), the infinite point of vertical lines will be denoted by (∞). Let $\mathcal{U}=\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{q}$ be a set of q points of $\operatorname{AG}(2, q)$. The set of directions determined by \mathcal{U} is $\mathcal{D}_{\mathcal{U}}:=\left\{\left(\frac{b_{i}-b_{j}}{a_{i}-a_{j}}\right): i \neq j\right\}$. It is easy to see that $\mathcal{B}:=\mathcal{U} \cup \mathcal{D}_{\mathcal{U}}$ is a blocking set of $\operatorname{PG}(2, q)$ with the property that there is a line, the line at infinity, which meets \mathcal{B} in exactly $|\mathcal{B}|-q$ points. If $\left|\mathcal{D}_{\mathcal{U}}\right| \leqslant q$, then \mathcal{B} is minimal. Conversely, if \mathcal{B} is a minimal blocking set of size $q+N \leqslant 2 q$ and there is a line meeting \mathcal{B} in N points, then \mathcal{B} can be obtained from the above construction. Blocking sets of size $q+N \leqslant 2 q$ with an N-secant are called blocking sets of Rédei type, the N-secants of the blocking set are called Rédei lines. If the q-set \mathcal{U} does not determine every direction, then \mathcal{U} is affinely equivalent to the graph of a function f from $\operatorname{GF}(q)$ to $\operatorname{GF}(q)$, i.e. $\mathcal{U}=\{(x, f(x)): x \in \operatorname{GF}(q)\}$. Note that $f(x)-c x$ is a permutation polynomial if and only if (c) is a direction not determined by the graph of f, see 14 by Evans, Greene, Niederreiter. A blocking set is said to be small, if its size is less than $q+(q+3) / 2$. Small minimal Rédei type blocking sets, or equivalently, functions determining less than $(q+3) / 2$ directions, have been characterized by Ball, Blokhuis, Brouwer, Storme, Szőnyi and Ball, see [3, 2]. From these results it follows that such blocking sets meet each line of the plane in $1(\bmod p)$ points. This property holds for any small minimal blocking set, as it was proved by Szőnyi in [25].

It follows from the above mentioned results that minimal blocking sets with bisecants cannot be small. If q is odd, then the smallest known nonsmall minimal Rédei type blocking set is the following set of $q+(q+3) / 2$ points (up to projective equivalence):
$\mathcal{B}:=\{(0: 1: a),(1: 0: a),(-a: 1: 0): a$ a square in $\operatorname{GF}(q)\} \cup\{(0: 0: 1)\}$.
In the book of Hirschfeld [17, Lemma 13.6 (i)] this example is called the projective triangle. \mathcal{B} has three Rédei lines and has the following properties.

RÉDEI TYPE BLOCKING SETS AND APPL.

Through each point of \mathcal{B} there passes a bisecant of \mathcal{B}. If $\mathcal{H} \subset \mathcal{B}$ is a set of collinear points such that there passes a unique bisecant of \mathcal{B} through each point of \mathcal{H} and there is a Rédei line ℓ disjoint from \mathcal{H}, then the bisecants through the points of \mathcal{H} are contained in a pencil. In Theorem 2.4 we show that this property holds for any Rédei type blocking set. In fact, we prove the following stronger result. If R_{1} and R_{2} are points of $\mathcal{B} \backslash \ell$, such that for $i=1,2$ there is a unique bisecant of \mathcal{B} through R_{i} and there is a point $T \in \ell$, such that $T R_{1}$ and $T R_{2}$ meet \mathcal{B} in at least four points, then for each $M \in \ell$ the lines $R_{1} M$ and $R_{2} M$ meet \mathcal{B} in the same number of points. The essential part of our proof is algebraic, it is based on polynomials over $\mathrm{GF}(q)$. We apply our results to point sets of $\operatorname{PG}(2, q)$ with few odd-secants, which we detail in the next paragraphs.

A semioval \mathcal{S} of a finite projective plane is a point set with the property that at each point of \mathcal{S} there passes exactly one tangent to \mathcal{S}. For a survey on semiovals see [19] by Kiss. In PG $(2, q)$ Blokhuis characterized semiovals of size $q-1+a, a>2$, meeting each line in $0,1,2$, or a points. He also proved that there is no semioval of size $q+2$ in $\operatorname{PG}(2, q), q>7$, see [6] and [9], where the term seminuclear set was used for semiovals of size $q+2$. For another characterization of semiovals with special intersection pattern with respect to lines see [15] by Gács. We refine Blokhuis' characterization to obtain new structural results about semiovals of size $q-1+a$ containing a collinear points. As an application, we prove the non-existence of semiovals of size $q+3$ in $\mathrm{PG}(2, q), 5<q$ odd when $p \neq 3$. For $q \leqslant 17$ this was also proved by Bartoli in [4]. When q is small, then the spectrum of the sizes of semiovals in $\mathrm{PG}(2, q)$ is known, see [23] by Lisonek for $q \leqslant 7$ and [20] by Kiss, Marcugini and Pambianco for $q=9$. When q is even, then a stronger result follows from [27, Theorem 5.3] by Szőnyi and Weiner on the stability of sets of even type.

In the recent article 11 by Balister, Bollobás, Füredi and Thompson, the minimum number of odd-secants of an n-set in $\operatorname{PG}(2, q), q$ odd, was investigated. They studied in detail the case of $n=q+2$. In our last section we improve their lower bound and we answer a related open question of Vandendriessche from [28].

Our Theorem 2.3 yields a new proof to [16, Theorem 2.5] by Gács and Weiner about $(q+t, t)$-arcs of type $(0,2, t)$. In Section 3 we explain some connections between Theorem 2.3 and the direction problem.

RÉDEI TYPE BLOCKING SETS AND APPL.

2 Bisecants of Rédei type blocking sets

Lemma 2.1. Let \mathcal{U} be a set of q points in $\mathrm{AG}(2, q)$ and denote by $\mathcal{D}_{\mathcal{U}}$ the set of directions determined by \mathcal{U}. Take a point $R=\left(a_{0}, b_{0}\right) \in \mathcal{U}$ and denote the remaining $q-1$ points of \mathcal{U} by $\left(a_{i}, b_{i}\right)$ for $i=1,2, \ldots, q-1$. Consider the following polynomial:

$$
\begin{equation*}
f(Y):=\prod_{i=1}^{q-1}\left(\left(a_{i}-a_{0}\right) Y-\left(b_{i}-b_{0}\right)\right) \in \operatorname{GF}(q)[Y] . \tag{1}
\end{equation*}
$$

For $m \in \operatorname{GF}(q)$ the following holds.

1. The line through R with direction m meets \mathcal{U} in k_{m} points if and only if m is a $\left(k_{m}-1\right)$-fold root of $f(Y)$.
2. If $(m) \notin \mathcal{D}_{\mathcal{U}}$, then $f(m)=-1$.
3. If $(\infty) \notin \mathcal{D}_{\mathcal{U}}$, then the coefficient of Y^{q-1} in f is -1 .

Proof. We have $\left(a_{j}-a_{0}\right) m-\left(b_{j}-b_{0}\right)=0$ for some $j \in\{1,2, \ldots, q-1\}$ if and only if $(m), R$ and $\left(a_{j}, b_{j}\right)$ are collinear. This proves part 1 . To prove part 2, note that $\left(a_{j}-a_{0}\right) m-\left(b_{j}-b_{0}\right)=\left(a_{k}-a_{0}\right) m-\left(b_{k}-b_{0}\right)$ for some $j, k \in\{1,2, \ldots, q-1\}, j \neq k$, if and only if $\left(a_{j}-a_{k}\right) m-\left(b_{j}-b_{k}\right)=0$, i.e. if and only if $\left(a_{j}, b_{j}\right),\left(a_{k}, b_{k}\right)$ and (m) are collinear. If $(m) \notin \mathcal{D} \mathcal{U}$, then this cannot be and hence $\left\{\left(a_{i}-a_{0}\right) m-\left(b_{i}-b_{0}\right): i=1,2, \ldots, q-1\right\}$ is the set of non-zero elements of $\mathrm{GF}(q)$. It follows that in this case $f(m)=-1$. If $(\infty) \notin \mathcal{D}_{\mathcal{U}}$, then $\left\{a_{i}-a_{0}: i=1,2, \ldots, q-1\right\}$ is the set of non-zero elements of $\operatorname{GF}(q)$, and hence $\prod_{i=1}^{q-1}\left(a_{i}-a_{0}\right)=-1$.

Remark 2.2. For a set of affine points $\mathcal{U}=\left\{\left(a_{i}, b_{i}\right)\right\}_{i=0}^{k}$ the Rédei polynomial of \mathcal{U} is $\prod_{i=0}^{k}\left(X+a_{i} Y-b_{i}\right)=\sum_{j=0}^{k+1} h_{j}(Y) X^{k+1-j} \in \operatorname{GF}(q)[X, Y]$, where $h_{j}(Y) \in \operatorname{GF}(q)[Y]$ is a polynomial of degree at most j. Now suppose that \mathcal{U} is a q-set and $\left(a_{0}, b_{0}\right)=(0,0)$. Then $h_{q-1}(Y)=\sum_{j=0}^{q-1} \prod_{i \neq j}\left(a_{i} Y-b_{i}\right)=$ $\prod_{i=1}^{q-1}\left(a_{i} Y-b_{i}\right)$ is the polynomial associated to the affine q-set \mathcal{U} as in Lemma 2.1. This polynomial also appears in Section 4 of Ball's paper [2].

Theorem 2.3. Let \mathcal{B} be a blocking set of Rédei type in $\mathrm{PG}(2, q)$, with Rédei line ℓ.

1. If there is a point in $\mathcal{B} \backslash \ell$ which is not incident with any bisecant of \mathcal{B}, then \mathcal{B} is minimal and $|\ell \cap \mathcal{B}| \equiv 1(\bmod p)$.
2. If $R, R^{\prime} \in \mathcal{B} \backslash \ell$ such that R and R^{\prime} are not incident with any bisecant of \mathcal{B}, then $|R M \cap \mathcal{B}|=\left|R^{\prime} M \cap \mathcal{B}\right|$ for each $M \in \ell$.

RÉDEI TYPE BLOCKING SETS AND APPL.

Proof. It is easy to see that if there is a point $R \in \mathcal{B} \backslash \ell$, such that there is no bisecant of \mathcal{B} through R, then $|\mathcal{B} \cap \ell| \leqslant q-1$. First we show that \mathcal{B} is minimal. As \mathcal{B} is of Rédei type, the points of $\mathcal{B} \backslash \ell$ are essential in \mathcal{B}. Take a point $D \in \mathcal{B} \cap \ell$. As there is no bisecant through R, it follows that $D R$ meets \mathcal{B} in at least three points and hence there is a tangent to \mathcal{B} at D, i.e. D is essential in \mathcal{B}.

We may assume that $\ell=\ell_{\infty}$ and $(\infty) \notin \mathcal{B}$. Let $R=\left(a_{0}, b_{0}\right)$ be a point of $\mathcal{B} \backslash \ell$ which is not incident with any bisecant of \mathcal{B} and let $\mathcal{U}=\mathcal{B} \backslash \ell_{\infty}=$ $\left\{\left(a_{i}, b_{i}\right)\right\}_{i=0}^{q-1}$. Consider the polynomial $f(Y)=\prod_{i=1}^{q-1}\left(\left(a_{i}-a_{0}\right) Y-\left(b_{i}-b_{0}\right)\right)$ introduced in (1). Let $m \in \operatorname{GF}(q)$. According to Lemma 2.1 we have the following.

- If $(m) \in \mathcal{B}$, then $f(m)=0$,
- if $(m) \notin \mathcal{B}$, then $f(m)=-1$,
- the coefficient of Y^{q-1} in f is -1 .

Now let $\ell_{\infty} \backslash(\mathcal{B} \cup\{(\infty)\})=\left\{\left(m_{1}\right),\left(m_{2}\right), \ldots,\left(m_{k}\right)\right\}$ and consider the polynomial

$$
g(Y):=\sum_{i=1}^{k}\left(Y-m_{i}\right)^{q-1}-k .
$$

For $m \in \operatorname{GF}(q)$ we have $g(m)=f(m)$. As both polynomials have degree at most $q-1$, it follows that $g(Y)=f(Y)$. The coefficient of Y^{q-1} is k in g and hence $p \mid k+1$. As $k+1=q+1-\left|\mathcal{B} \cap \ell_{\infty}\right|$, part 1 follows.

For $(m) \notin \mathcal{B}$ the line through any point of \mathcal{U} with slope m meets \mathcal{B} in 1 point. For $(m) \in \mathcal{B}$ the line through R with slope m meets \mathcal{B} in $k_{m}+2$ points if and only if m is a k_{m}-fold root of $f(Y)$. As $f(Y)=g(Y)$, and the coefficients of $g(Y)$ depend only on the points of $\mathcal{B} \cap \ell_{\infty}$, it follows that k_{m} does not depend on the initial choice of the point R, as long as the chosen point is not incident with any bisecant of \mathcal{B}. This proves part 2 .

Theorem 2.4. Let \mathcal{B} be a blocking set of Rédei type in $\mathrm{PG}(2, q)$, with Rédei line ℓ.

1. If there is a point in $\mathcal{B} \backslash \ell$ contained in a unique bisecant of \mathcal{B}, then $|\mathcal{B} \cap \ell| \not \equiv 1(\bmod p)$.
2. If $R_{1}, R_{2} \in \mathcal{B} \backslash \ell$, each of them is contained in a unique bisecant of \mathcal{B} and there is a point $T \in \ell$ such that $R_{1} T$ and $R_{2} T$ both meet \mathcal{B} in at least four points, then for each $M \in \ell$ we have $\left|M R_{1} \cap \mathcal{B}\right|=\left|M R_{2} \cap \mathcal{B}\right|$.

RÉDEI TYPE BLOCKING SETS AND APPL.

3. If $R_{1}, R_{2} \in \mathcal{B} \backslash \ell$, each of them is contained in a unique bisecant of \mathcal{B} and the common point of these bisecants is on the line ℓ, then for each $M \in \ell$ we have $\left|M R_{1} \cap \mathcal{B}\right|=\left|M R_{2} \cap \mathcal{B}\right|$.

Proof. Let R be a point of $\mathcal{B} \backslash \ell$ contained in a unique bisecant r of \mathcal{B}. First suppose $|\mathcal{B} \cap \ell|=q$. Then part 1 is trivial and there is no line through R meeting \mathcal{B} in at least 4 points, since otherwise we would get more than one bisecants through R. Suppose that R^{\prime} is another point of $\mathcal{B} \backslash \ell$ contained in a unique bisecant r^{\prime} of \mathcal{B} and $r \cap r^{\prime} \in \ell$. Let $\{Q\}=\ell \backslash \mathcal{B}$. Then $R Q$ and $R^{\prime} Q$ are tangents to \mathcal{B} and $|M R \cap \mathcal{B}|=\left|M R^{\prime} \cap \mathcal{B}\right|=3$ for each $M \in(\ell \cap \mathcal{B}) \backslash\left\{r \cap r^{\prime}\right\}$. From now on, we assume $k:=q-|\mathcal{B} \cap \ell| \geqslant 1$.

First we prove the theorem when \mathcal{B} is minimal. We may assume $\ell=\ell_{\infty}$ and $\ell_{\infty} \backslash \mathcal{B}=\left\{(\infty),\left(m_{1}\right), \ldots,\left(m_{k}\right)\right\}$.

As in the proof of Theorem 2.3, let $\mathcal{U}=\mathcal{B} \backslash \ell_{\infty}=\left\{\left(a_{i}, b_{i}\right)\right\}_{i=0}^{q-1}$ and define $f(Y)$ as in (1). Take $m \in \operatorname{GF}(q)$ and let t be the slope of the unique bisecant through R. From Lemma 2.1] we obtain the following.

$$
f(m)= \begin{cases}-1 & \text { if }(m) \notin \mathcal{B}, \\ 0 & \text { if }(m) \in \mathcal{B} \backslash\{(t)\}, \\ f(t) \neq 0 & \text { if } m=t .\end{cases}
$$

Consider the polynomial

$$
\begin{equation*}
g(Y):=f(t)+\left|\mathcal{B} \cap \ell_{\infty}\right|+\sum_{i=1}^{k}\left(Y-m_{i}\right)^{q-1}-f(t)(Y-t)^{q-1} . \tag{2}
\end{equation*}
$$

For $m \in \operatorname{GF}(q)$ we have $g(m)=f(m)$. As both polynomials have degree at most $q-1$, it follows that $g(Y)=f(Y)$. The coefficient of Y^{q-1} is $-\left|\mathcal{B} \cap \ell_{\infty}\right|-f(t)$ in g and -1 in f. It follows that $p\left|\left|\mathcal{B} \cap \ell_{\infty}\right|+f(t)-1\right.$ and hence $f(t) \equiv 1-\left|\mathcal{B} \cap \ell_{\infty}\right| \equiv k+1(\bmod p)$. If $\left|\mathcal{B} \cap \ell_{\infty}\right| \equiv 1(\bmod p)$, then $f(t)=0$, a contradiction. This proves part 1 .

Now consider

$$
\partial_{Y} g(Y)=-\sum_{i=1}^{k}\left(Y-m_{i}\right)^{q-2}+(k+1)(Y-t)^{q-2}
$$

and

$$
\begin{gathered}
w(Y):=(Y-t) \prod_{i=1}^{k}\left(Y-m_{i}\right) \partial_{Y} g(Y)= \\
-\sum_{i=1}^{k}\left(Y-m_{i}\right)^{q-1}(Y-t) \prod_{j \neq i}\left(Y-m_{j}\right)+(k+1)(Y-t)^{q-1} \prod_{j=1}^{k}\left(Y-m_{j}\right) .
\end{gathered}
$$

RÉDEI TYPE BLOCKING SETS AND APPL.

If $(m) \in \mathcal{B} \backslash\{(t)\}$, then

$$
w(m)=-\sum_{i=1}^{k}(m-t) \prod_{j \neq i}\left(m-m_{j}\right)+(k+1) \prod_{j=1}^{k}\left(m-m_{j}\right) .
$$

Suppose that the line through R with direction m meets \mathcal{B} in at least four points. Then m is a multiple root of $f(Y)$ and hence it is also a root of $w(Y)$. It follows that m is a root of

$$
\begin{equation*}
\tilde{w}(Y):=-(Y-t) \sum_{i=1}^{k} \prod_{j \neq i}\left(Y-m_{j}\right)+(k+1) \prod_{j=1}^{k}\left(Y-m_{j}\right) . \tag{3}
\end{equation*}
$$

Note that $\sum_{i=1}^{k} \prod_{j \neq i}\left(m-m_{j}\right)=0$ and $\tilde{w}(m)=0$ together would imply $(k+1) \prod_{j=1}^{k}\left(m-m_{j}\right)=0$, which cannot be since $(m) \notin\left\{\left(m_{1}\right), \ldots,\left(m_{k}\right)\right\}$ and $p \nmid k+1$. It follows that t can be expressed from m and m_{1}, \ldots, m_{k} in the following way:

$$
\begin{equation*}
t=m-\frac{(k+1) \prod_{j=1}^{k}\left(m-m_{j}\right)}{\sum_{i=1}^{k} \prod_{j \neq i}\left(m-m_{j}\right)} . \tag{4}
\end{equation*}
$$

Now let R_{1} and R_{2} be two points as in part 2 and let $T=(m)$. It follows from (4) that the bisecants through these points have the same slope. Then, according to (2), $f(Y)=g(Y)$ does not depend on the choice of R_{i}, for $i=1,2$. The assertion follows from Lemma [2.1] part 1.

If R_{1} and R_{2} are two points as in part 3, then the bisecants through these points have the same slope. It follows that $f(Y)=g(Y)$ does not depend on the choice of R_{i}, for $i=1,2$. As above, the assertion follows from Lemma 2.1 part 1.

Now suppose that \mathcal{B} is not minimal and $R_{1} \in \mathcal{B} \backslash \ell$ is contained in a unique bisecant of \mathcal{B}. As \mathcal{B} is a blocking set of Rédei type, the points of $\mathcal{B} \backslash \ell$ are essential in \mathcal{B}. Let $C \in \mathcal{B} \cap \ell$ such that $\mathcal{B}^{\prime}:=\mathcal{B} \backslash\{C\}$ is a blocking set. In this case for each $P \in \mathcal{B} \backslash \ell$ the line $P C$ is a bisecant of \mathcal{B} and $R_{1} C$ is the unique bisecant of \mathcal{B} through R_{1}. It follows that there is no bisecant of \mathcal{B}^{\prime} through R_{1}. Then Theorem 2.3 yields that $\left|\ell \cap \mathcal{B}^{\prime}\right| \equiv 1(\bmod p)$. As $|\ell \cap \mathcal{B}|=\left|\ell \cap \mathcal{B}^{\prime}\right|+1$, we proved part 1 .

If R_{2} is another point of $\mathcal{B} \backslash \ell$ such that R_{2} is contained in a unique bisecant of \mathcal{B}, then there is no bisecant of \mathcal{B}^{\prime} through R_{2} and hence parts 2 and 3 follow from Theorem 2.3 part 2.

RÉDEI TYPE BLOCKING SETS AND APPL.

3 Connections with the direction problem

Let \mathcal{B} be a blocking set in $\operatorname{PG}(2, q)$. We recall $q=p^{h}, p$ prime. The exponent of \mathcal{B} is the maximal integer $0 \leqslant e \leqslant h$ such that each line meets \mathcal{B} in 1 $\left(\bmod p^{e}\right)$ points. We recall the following two results about the exponent.

Theorem 3.1 (Szőnyi [25). Let \mathcal{B} be a small minimal blocking set in $\mathrm{PG}(2, q)$. Then \mathcal{B} has positive exponent.

Theorem 3.2 (Sziklai [24]). Let \mathcal{B} be a small minimal blocking set in $\mathrm{PG}(2, q)$. Then the exponent of \mathcal{B} divides h.

Proposition 3.3. Let \mathcal{B} be a blocking set of Rédei type in $\mathrm{PG}(2, q)$, with Rédei line ℓ. Suppose that \mathcal{B} does not have bisecants. Then \mathcal{B} has positive exponent and for each point $M \in \ell \cap \mathcal{B}$ the lines through M different from ℓ meet \mathcal{B} in 1 or in $p^{t}+1$ points, where t is a positive integer depending only on the choice of M.

Proof. Theorem 2.3 part 1 yields that ℓ meets \mathcal{B} in $1(\bmod p)$ points. Lines meeting ℓ not in \mathcal{B} are tangents to \mathcal{B}. For any $M \in \ell \cap \mathcal{B}$ Theorem 2.3 part 2 yields that $M R$ meets $\mathcal{B} \backslash \ell$ in the same number of points for each $R \in \mathcal{B} \backslash \ell$. Denote this number by k. Then k divides $|\mathcal{B} \backslash \ell|=q$. As \mathcal{B} does not have bisecants, it follows that $k>1$ and hence $k=p^{t}$ for some positive integer t.

The following result is a consequence of the lower bound on the size of an affine blocking set due to Brouwer and Schrijver [11] and Jamison [18].

Theorem 3.4 (Blokhuis and Brouwer [7, pg. 133]). If \mathcal{B} is a minimal blocking set of size $q+N$, then there are at least $q+1-N$ tangents to \mathcal{B} at each point of \mathcal{B}.

Theorem 3.5. Let f be a function from $\operatorname{GF}(q)$ to $\operatorname{GF}(q)$ and let N be the number of directions determined by f. If any line with a direction determined by f that is incident with a point of the graph of f is incident with at least two points of the graph of f, then each line meets the graph of f in p^{t} points for some integer t and

$$
q / s+1 \leqslant N \leqslant(q-1) /(s-1)
$$

where $s=\min \left\{p^{t}\right.$: there is line meeting the graph of f in $p^{t}>1$ points $\}$.
Proof. If \mathcal{U} denotes the graph of f, then $\mathcal{B}:=\mathcal{U} \cup \mathcal{D}_{\mathcal{U}}$ is a blocking set of Rédei type without bisecants. Proposition 3.3 yields that each line meets

RÉDEI TYPE BLOCKING SETS AND APPL.

\mathcal{U} in p^{t} points for some integer t, with $t=0$ only for lines with direction not in $\mathcal{D}_{\mathcal{U}}$. Take a point $R \in \mathcal{U}$ and let $\mathcal{D}_{\mathcal{U}}=\left\{D_{1}, D_{2}, \ldots, D_{N}\right\}$. Then $\left|D_{i} R \cap \mathcal{B}\right| \geqslant s+1$ yields $|\mathcal{B}|=q+N \geqslant N s+1$ and hence $(q-1) /(s-1) \geqslant N$. Take a line m meeting \mathcal{U} in s points and let $M=m \cap \ell_{\infty}$. According to Proposition 3.3 the lines through M meet \mathcal{U} in 0 or in s points. Theorem 3.4 yields that the number of lines through M that meet \mathcal{U} is at most $N-1$. It follows that $(N-1) s \geqslant q$ and hence $N \geqslant q / s+1$.

Applying Theorems 3.5 and 3.1 we can give a new proof to the following result.

Theorem 3.6 (part of Ball et al. [3] and Ball [2]). Let f be a function from $\mathrm{GF}(q)$ to $\mathrm{GF}(q)$ and let N be the number of directions determined by f. Let $s=p^{e}$ be maximal such that any line with a direction determined by f that is incident with a point of the graph of f is incident with a multiple of s points of the graph of f. Then one of the following holds.

1. $s=1$ and $(q+3) / 2 \leqslant N \leqslant q+1$,
2. $q / s+1 \leqslant N \leqslant(q-1) /(s-1)$,
3. $s=q$ and $N=1$.

Proof. The point set $\mathcal{B}:=\mathcal{U} \cup \mathcal{D}_{\mathcal{U}}$ is a minimal blocking set of Rédei type. If $s=1$, then \mathcal{B} cannot be small because of Szőnyi's Theorem 3.1 and hence $N \geqslant(q+3) / 2$. If $s>1$, then the bounds on N follow from Theorem 3.5.

In [3] and [2] it was also proved that for $s>2$ the graph of f is $\mathrm{GF}(s)$ linear and that $\operatorname{GF}(s)$ is a subfield of $\operatorname{GF}(q)$. Note that Theorem 3.2 by Sziklai generalizes the latter result.

4 Small semiovals

An oval of a projective plane of order q is a set of $q+1$ points such that no three of them are collinear. It is easy to see that ovals are semiovals. The smallest known non-oval semioval, i.e. semioval which is not an oval, is due to Blokhuis.

Example 4.1 (Blokhuis [6). Let \mathcal{S} be the following point set in $\mathrm{PG}(2, q)$, $3<q$ odd, $\mathcal{S}=\{(0: 1: s),(s: 0: 1),(1: s: 0):-s$ is not a square $\}$. Then \mathcal{S} is a semioval of size $3(q-1) / 2$.

RÉDEI TYPE BLOCKING SETS AND APPL.

Conjecture 4.2 (Kiss et al. [20, Conjecture 11]). If a semioval in $\mathrm{PG}(2, q)$, $q>7$, has less than $3(q-1) / 2$ points, then it has exactly $q+1$ points and it is an oval.

Let \mathcal{S} be a semioval and ℓ a line meeting \mathcal{S} in at least two points. Take a point $P \in \mathcal{S} \cap \ell$. As there is a unique tangent to \mathcal{S} at P, it follows that $|\mathcal{S} \backslash \ell| \geqslant q-1$, and hence $|\mathcal{S}| \geqslant|\mathcal{S} \cap \ell|+q-1 \geqslant q+1$. It is convenient to denote the size of \mathcal{S} by $q-1+a$, where $a \geqslant 2$ holds automatically. Then each line meets \mathcal{S} in at most a points.

Theorem 4.3 (Blokhuis [6]). Let \mathcal{S} be a semioval of size $q-1+a, a>2$, in $\mathrm{PG}(2, q)$ and suppose that each line meets \mathcal{S} in $0,1,2$, or in a points. Then \mathcal{S} is the symmetric difference of two lines with one further point removed from both lines, or \mathcal{S} is projectively equivalent to Example 4.1.

If \mathcal{S} is a semioval of size $q+2$, then each line meets \mathcal{S} in at most three points, thus Theorem 4.3 yields the following.

Theorem 4.4 (Blokhuis [6]). Let \mathcal{S} be a semioval of size $q+2$ in $\mathrm{PG}(2, q)$. Then \mathcal{S} is the symmetric difference of two lines with one further point removed from both lines in $\mathrm{PG}(2,4)$, or \mathcal{S} is projectively equivalent to Example 4.1 in $\mathrm{PG}(2,7)$.

We also recall the following well-known result by Blokhuis which will be applied several times. For another proof and possible generalizations see [26, Remark 7] by Szőnyi, or [12, Corollary 3.6] by Csajbók, Héger and Kiss.

Proposition 4.5 (Blokhuis [6, Proposition 2]). Let \mathcal{S} be a point set of $\mathrm{PG}(2, q), q>2$, of size $q-1+a, a \geqslant 2$, with an a-secant ℓ. If there is a unique tangent to \mathcal{S} at each point of $\ell \cap \mathcal{S}$, then these tangents are contained in a pencil. The carrier of this pencil is called the nucleus of ℓ and it is denoted by N_{ℓ}. For the sake of simplicity, the nucleus of a line ℓ_{i} will be denoted by N_{i}.

If \mathcal{A} and \mathcal{B} are two point sets, then $\mathcal{A} \Delta \mathcal{B}$ denotes their symmetric difference, that is $(\mathcal{A} \backslash \mathcal{B}) \cup(\mathcal{B} \backslash \mathcal{A})$.

Example 4.6 (Csajbók, Héger and Kiss [12, Example 2.12]). Let \mathcal{B}^{\prime} be a blocking set of Rédei type in $\mathrm{PG}(2, q)$, with Rédei line ℓ. Suppose that there is a point $P \in \mathcal{B}^{\prime} \backslash \ell$ such that the bisecants of \mathcal{B}^{\prime} pass through P and there is no trisecant of \mathcal{B}^{\prime} through P. For example, if \mathcal{B}^{\prime} has exponent e and $p^{e} \geqslant 3$ (cf. Section (3), then \mathcal{B}^{\prime} has no bisecants or trisecants and hence one can choose any point $P \in \mathcal{B}^{\prime} \backslash \ell$. Take a point $W \in \ell \backslash \mathcal{B}^{\prime}$ and let $\mathcal{S}=\left(\ell \Delta \mathcal{B}^{\prime}\right) \backslash\{W, P\}$. Then \mathcal{S} is a semioval of size $q-1+a$, where $a=|\ell \cap \mathcal{S}|$.

RÉDEI TYPE BLOCKING SETS AND APPL.

Remark 4.7. The blocking set \mathcal{B}^{\prime} in Example 4.6 is necessarily minimal. To see this consider any point $R \in \mathcal{B}^{\prime} \backslash(\ell \cup\{P\})$. As the bisecants of \mathcal{B}^{\prime} pass through P, it follows that there is no bisecant of \mathcal{B}^{\prime} through R and hence Theorem 2.3 part 1 yields that \mathcal{B}^{\prime} is minimal.

Lemma 4.8. Let \mathcal{S} be a semioval of size $q-1+a$ in $\operatorname{PG}(2, q)$ and suppose that there is a line ℓ which is an a-secant of \mathcal{S}. Denote the set of tangents through the points of $\mathcal{S} \backslash \ell$ by \mathcal{L} and let $\mathcal{B}=\left\{N_{\ell}\right\} \cup(\mathcal{S} \Delta \ell)$. Then one of the following holds.

1. \mathcal{S} is an oval.
2. \mathcal{L} is contained in a pencil with carrier C. Then $C \in \ell$ and $\mathcal{B}^{\prime}:=\mathcal{B} \backslash\{C\}$ is a blocking set of Rédei type with Rédei line ℓ. In this case \mathcal{S} can be obtained from \mathcal{B}^{\prime} as in Example 4.6 with $P=N_{\ell}$ and $W=C$.
3. \mathcal{L} is not contained in a pencil. Then \mathcal{B} is a minimal blocking set of Rédei type with Rédei line ℓ and
(a) $p \nmid a$,
(b) for any $R \in \mathcal{S} \backslash \ell$ the line $R N_{\ell}$ is not a tangent to \mathcal{S},
(c) if $R_{1}, R_{2} \in \mathcal{S} \backslash \ell$ and there is a point $T \in \ell$ such that $R_{i} T$ meets $\mathcal{S} \cup\left\{N_{\ell}\right\}$ in at least three points for $i=1,2$, then for each $M \in \ell$ we have $\left|R_{1} M \cap\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\right|=\left|R_{2} M \cap\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\right|$,
(d) if $R_{1}, R_{2} \in \mathcal{S} \backslash \ell$ and the tangents to \mathcal{S} at these two points meet each other on the line ℓ, then for each $M \in \ell$ we have $\mid R_{1} M \cap$ $\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\left|=\left|R_{2} M \cap\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\right|\right.$.

Proof. First we show that \mathcal{B} is a blocking set of Rédei type. Take a point $R \in \mathcal{S} \backslash \ell$. As there is a tangent to \mathcal{S} at R it follows that ℓ meets \mathcal{S} in at most q points and hence ℓ is blocked by \mathcal{B}. Lines meeting ℓ not in \mathcal{S} are blocked by \mathcal{B} since $\ell \backslash \mathcal{S} \subset \mathcal{B}$. If a line m meets ℓ in \mathcal{S}, then either m is a tangent to \mathcal{S} and hence $N_{\ell} \in m$, or m is not a tangent to \mathcal{S} and hence there is a point of $\mathcal{S} \backslash \ell$ contained in m. As $\left\{N_{\ell}\right\} \cup(\mathcal{S} \backslash \ell) \subset \mathcal{B}$, it follows that m is blocked by \mathcal{B} and hence \mathcal{B} is a blocking set. The line ℓ meets \mathcal{B} in $|\mathcal{B}|-q$ points, thus \mathcal{B} is of Rédei type and ℓ is a Rédei line of \mathcal{B}.

If $a=2$, then \mathcal{S} is an oval. From now on we assume $a \geqslant 3$. First suppose that \mathcal{L} is contained in a pencil with carrier C. If $C \notin \ell$, then $|\mathcal{L}| \leqslant q+1-a$, but $|\mathcal{L}|=|\mathcal{S} \backslash \ell|=q-1$. It follows that $C \in \ell$.

Let $\mathcal{B}^{\prime}=\mathcal{B} \backslash\{C\}$. In this paragraph we prove that \mathcal{B}^{\prime} is a blocking set. It is enough to show that the lines through C are blocked by \mathcal{B}^{\prime}. This trivially

RÉDEI TYPE BLOCKING SETS AND APPL.

holds for the $q-1$ lines in \mathcal{L}. First we show that \mathcal{B}^{\prime} blocks ℓ too. Suppose to the contrary that $\ell \backslash(\mathcal{S} \cup\{C\})=\varnothing$ and hence $a=q$. As $a \geqslant 3$, we have $q \geqslant 3$ and hence there are at least two points in $\mathcal{S} \backslash \ell$. Take $R, Q \in \mathcal{S} \backslash \ell$ and let $M=R Q \cap \ell$. Since $M \neq C$, we have $M \in \mathcal{S}$. Then there are at least two tangents to \mathcal{S} incident with M and this contradiction shows that ℓ is blocked by \mathcal{B}^{\prime}. Now we show $C N_{\ell} \notin \mathcal{L}$. Suppose to the contrary that $C N_{\ell}$ is a tangent to \mathcal{S} at some $V \in \mathcal{S} \backslash \ell$. Then $V C$ is a trisecant of \mathcal{B}. If there were a bisecant v of \mathcal{B} through V, then, by the construction of \mathcal{B}, v would be a tangent to \mathcal{S} at V. This cannot be since the unique tangent to \mathcal{S} at V is $V C$, which is a trisecant of \mathcal{B} and hence $v \neq V C$. For any $V^{\prime} \in \mathcal{S} \backslash(\ell \cup\{V\})$, there is a unique bisecant of \mathcal{B} through V^{\prime}, namely $V^{\prime} C$. We have shown that there is a point in $\mathcal{B} \backslash \ell$ not incident with any bisecant of \mathcal{B} and there are points in $\mathcal{B} \backslash \ell$ incident with a unique bisecant of \mathcal{B}. This cannot be because of Theorem 2.3 part 1 and Theorem [2.4 part 1. It follows that $C N_{\ell}$ is not a tangent to \mathcal{S}. As $C N_{\ell}$ is blocked by \mathcal{B}^{\prime} and the other q lines through C, ℓ and the lines of \mathcal{L}, are also blocked, it follows that \mathcal{B}^{\prime} is a blocking set. It is easy to see that ℓ is a Rédei line of \mathcal{B}^{\prime}.

We show that there is no bisecant of \mathcal{B}^{\prime} through the points of $\mathcal{S} \backslash \ell$. Take a point $R \in \mathcal{S} \backslash \ell$ and suppose to the contrary that there is a bisecant b of \mathcal{B}^{\prime} through R. Then, by the construction of \mathcal{B}^{\prime}, the line b is a tangent to \mathcal{S} at R. This is a contradiction since $b \neq R C$. It follows that if \mathcal{B}^{\prime} has bisecants, then they pass through N_{ℓ}. If there were a trisecant t of \mathcal{B}^{\prime} through N_{ℓ}, then let $V=t \cap \mathcal{S}$. It follows that t is a tangent to \mathcal{S} at V. But we have already seen that there is no line of \mathcal{L} incident with N_{ℓ}. This finishes the proof of part 2 .

Now suppose that \mathcal{S} is as in part 3. If \mathcal{B} were not minimal, then the line set \mathcal{L} would be contained in a pencil with carrier on ℓ, a contradiction. Take a point $R \in \mathcal{S} \backslash \ell$. If $R N_{\ell}$ is the tangent to \mathcal{S} at R, then there is no bisecant of \mathcal{B} through R, thus $p \mid a$ (cf. Theorem 2.3 part 1). If $R N_{\ell}$ is not the tangent to \mathcal{S} at R, then there is a unique bisecant of \mathcal{B} through R (the tangent to \mathcal{S} at R), thus $p \nmid a$ (cf. Theorem 2.4 part 1). It follows that if any of the lines of \mathcal{L} is incident with N_{ℓ}, or if $p \mid a$, then the whole line set \mathcal{L} is contained in the pencil with carrier N_{ℓ}, a contradiction. This proves parts (a) and (b). Parts (c) and (d) follow from Theorem 2.4 parts 2 and 3, respectively.

Remark 4.9. The properties (a)-(d) in part 3 of Lemma 4.8 also hold when \mathcal{S} is as in Example 4.6. From the properties of the point P in Example 4.6 it follows that for $R \in \mathcal{S} \backslash \ell$ the line $R P$ is not a tangent to \mathcal{S} and this proves (b). As for any two points $R_{1}, R_{2} \in \mathcal{S} \backslash \ell$ there is no bisecant of \mathcal{B}^{\prime} incident

RÉDEI TYPE BLOCKING SETS AND APPL.

with R_{1} or R_{2}, properties (a), (c) and (d) follow from Theorem [2.3.
Theorem 4.10. Let \mathcal{S} be a semioval of size $q-1+a, a>2$, which admits an a-secant ℓ, and let $m \neq \ell$ be a k-secant of \mathcal{S}.

1. For each $R \in \mathcal{S} \backslash \ell$, the line $R N_{\ell}$ is not a tangent to \mathcal{S}.
2. If $k \geqslant 3$, then the tangents to \mathcal{S} at the points of m are contained in a pencil with carrier on ℓ.
3. If $k>(a-1) / 2$, then $k=a$ and $N_{\ell} \in m$, or $k=\lceil a / 2\rceil$ and $N_{\ell} \notin m$.

Proof. Part 1 follows from Lemma 4.8 part 3 (b), and part 2 follows from Lemma 4.8 part (c) with $T=m \cap \ell$.

To prove part 3 first suppose $k>(a+1) / 2$ and $N_{\ell} \notin m$. Let $m \cap \mathcal{S}=$ $\left\{R_{1}, R_{2}, \ldots, R_{k}\right\}$. The lines $R_{i} N_{\ell}$ for $i=1,2, \ldots, k$ cannot be bisecants of $\mathcal{S} \cup\left\{N_{\ell}\right\}$ since they are not tangents to \mathcal{S}. Thus each of these lines meets $\mathcal{S} \cup\left\{N_{\ell}\right\}$ in at least three points. Let $B_{i}=\ell \cap R_{i} N_{\ell}$, then we have $\left|R_{i} B_{i} \cap\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\right| \geqslant 3$ for $i \in\{1,2, \ldots, k\}$. We apply Lemma 4.8 part 3 (c) with $T=\ell \cap m$ (note that $k>(a+1) / 2 \geqslant 2$). For $j \in\{2, \ldots, k\}$ we obtain $\left|R_{1} B_{j} \cap\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\right|=\left|R_{j} B_{j} \cap\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\right|$, thus also $\left|R_{1} B_{j} \cap\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right)\right| \geqslant$ 3 for $j \in\{2,3, \ldots, k\}$. We have $N_{\ell} \in R_{1} B_{1}$ and hence $N_{\ell} \notin R_{1} B_{j}$ for $j \in\{2,3, \ldots, k\}$. It follows that $R_{1} B_{2} \cup R_{1} B_{3} \cup \ldots R_{1} B_{k} \cup m$ contains at least $2(k-1)+k=3 k-2$ points of \mathcal{S}. As there is a unique tangent to \mathcal{S} at R_{1}, we must have $a+(q-1)-(3 k-2) \geqslant q-k$. This is a contradiction when $k>(a+1) / 2$. It follows that lines meeting \mathcal{S} in more than $(a+1) / 2$ points have to pass through N_{ℓ}.

Now suppose that m is a k-secant of \mathcal{S} with $(a-1) / 2<k<a$ and $N_{\ell} \in m$. Take a point $R \in m \cap \mathcal{S}$. As $k<a$, there is at least one other line m^{\prime} through R meeting \mathcal{S} in at least three points. Let $R^{\prime} \in\left(m^{\prime} \cap \mathcal{S}\right) \backslash\{R\}$. Lemma 4.8 part 3 (c) with $T=m^{\prime} \cap \ell$ and $M=m \cap \ell$ yields that the line joining R^{\prime} and $m \cap \ell$ meets \mathcal{S} in $\left|\left(\mathcal{S} \cup\left\{N_{\ell}\right\}\right) \cap m\right|=k+1>(a+1) / 2$ points. Then, according to the previous paragraph, this line also passes through N_{ℓ}, a contradiction. It follows that either $k=a$ and hence $N_{l} \in m$, or $N_{l} \notin m$ and hence $(a-1) / 2<k \leqslant(a+1) / 2$.

Lemma 4.11. Let \mathcal{S} be a semioval of size $q-1+a$ in $\mathrm{PG}(2, q)$. For each point $R \in \mathcal{S}$ the number of lines through R meeting \mathcal{S} in at least three points is at most $a-2$.

Theorem 4.12. Let \mathcal{S} be a semioval of size $q-1+a$, $a>2$, in $\operatorname{PG}(2, q)$. If \mathcal{S} has two a-secants, then one of the following holds.

RÉDEI TYPE BLOCKING SETS AND APPL.

1. \mathcal{S} is the symmetric difference of two lines with one further point removed from both lines.
2. \mathcal{S} is projectively equivalent to Example 4.1.

Proof. Let ℓ_{1} and ℓ_{2} be two a-secants of \mathcal{S} and let $\mathcal{S}^{\prime}=\mathcal{S} \backslash\left(\ell_{1} \cup \ell_{2}\right)$. Theorem 4.10 yields $N_{1} \in \ell_{2}$ and $N_{2} \in \ell_{1}$. If $\mathcal{S}^{\prime}=\varnothing$, then $\mathcal{S} \subseteq \ell_{1} \cup \ell_{2}$ and it is easy to see that \mathcal{S} is as in part 1 . If $\mathcal{S}^{\prime} \neq \varnothing$, then take any point $R \in \mathcal{S}^{\prime}$. We show that the tangent to \mathcal{S} at R passes through $P:=\ell_{1} \cap \ell_{2}$. As $a>2$, there is a line r through R meeting \mathcal{S} in at least 3 points. According to Theorem4.10 part 2, the tangents to \mathcal{S} at the points of $r \cap \mathcal{S}$ pass through a unique point of ℓ_{1}, and also through a unique point of ℓ_{2}. It follows that these tangents pass through the point P.

We show that \mathcal{S}^{\prime} is contained in the line $\ell_{3}:=N_{1} N_{2}$. Suppose, contrary to our claim, that there is a point $R \in \mathcal{S}^{\prime} \backslash \ell_{3}$. There is a line r through R meeting \mathcal{S} in at least three points. Since $R \notin \ell_{3}, r$ cannot be incident with both N_{1} and N_{2}. We may assume $N_{2} \notin r$. Let $M=r \cap \ell_{1}$. Note that $M \notin \mathcal{S} \cup\left\{N_{2}, P\right\}$. Take a point $Q \in \ell_{2} \cap \mathcal{S}$. Since the unique tangent to \mathcal{S} at Q is $Q N_{2}$, it follows that $Q M$ is a bisecant of \mathcal{S} and it contains a unique point of \mathcal{S}^{\prime}. Denote this point by R^{\prime}. The tangents to \mathcal{S} at R and R^{\prime} pass through the same point of ℓ_{1}, namely P, and hence we can apply Lemma4.8 part 3 (d). It follows that $2=\left|M R^{\prime} \cap\left(\mathcal{S} \cup\left\{N_{1}\right\}\right)\right|=\left|M R \cap\left(\mathcal{S} \cup\left\{N_{1}\right\}\right)\right| \geqslant 3$. This contradiction shows $\mathcal{S}^{\prime} \subset \ell_{3}$. Lines meeting each of ℓ_{1}, ℓ_{2} and ℓ_{3} meet \mathcal{S} in at most two points. Take any point $H \in \mathcal{S} \cap \ell_{3}$. Since the tangent to \mathcal{S} at H is $P H$, and the other lines through H are not tangents, we obtain $2 a=\left|\ell_{1} \cap \mathcal{S}\right|+\left|\ell_{2} \cap \mathcal{S}\right|=q-1$ and hence $a=(q-1) / 2$. The size of \mathcal{S} is $q-1+a=2 a+\left|\mathcal{S}^{\prime}\right|$, so $\left|\mathcal{S}^{\prime}\right|=a=(q-1) / 2$. It is easy to show that \mathcal{S} is projectively equivalent to Example 4.1. For the complete description of semiovals contained in the sides of a vertexless triangle see the paper of Kiss and Ruff [21].

A (k, n)-arc of $\mathrm{PG}(2, q)$ is a set of k points such that each line meets the k-set in at most n points.

Theorem 4.13. Let \mathcal{S} be a semioval of size $q+3$ in $\mathrm{PG}(2, q), q$ is a power of the prime p. Then $q=5$ and \mathcal{S} is the symmetric difference of two lines with one further point removed from both lines, or $q=9$ and \mathcal{S} is as in Example 4.1, or $p=3$ and \mathcal{S} is a $(q+3,3)$-arc.

Proof. It is easy to see that the points of \mathcal{S} fall into the following two types:

- points contained in a unique 4 -secant and in $q-1$ bisecants,

RÉDEI TYPE BLOCKING SETS AND APPL.

- points contained in two trisecants and in $q-2$ bisecants.

If \mathcal{S} does not have 4 -secants, then the number of trisecants of \mathcal{S} is $(q+3) 2 / 3$, thus $3 \mid q$. Now suppose that \mathcal{S} has a 4 -secant, ℓ. Theorem4.10 with $a=4$ yields that \mathcal{S} does not have trisecants. The assertion follows from Theorem 4.12.

5 Small semiovals when q is even

We will use the following theorem by Szőnyi and Weiner. This result was proved by the so called resultant method. We say that a line ℓ is an oddsecant (resp. even-secant) of \mathcal{S} if $|\ell \cap \mathcal{S}|$ is odd (resp. even). A set of even type is a point set \mathcal{H} such that each line is an even-secant of \mathcal{H}.

Theorem 5.1 (Szőnyi and Weiner, [27]). Assume that the point set \mathcal{H} in $\operatorname{PG}(2, q), 16<q$ even, has δ odd-secants, where $\delta<(\lfloor\sqrt{q}\rfloor+1)(q+1-\lfloor\sqrt{q}\rfloor)$. Then there exists a unique set \mathcal{H}^{\prime} of even type, such that $\left|\mathcal{H} \Delta \mathcal{H}^{\prime}\right|=\left\lceil\frac{\delta}{q+1}\right\rceil$.

As a corollary of the above result, Szőnyi and Weiner gave a lower bound on the size of those point sets of $\operatorname{PG}(2, q), 16<q$ even, which do not have tangents but have at least one odd-secant, see [27]. In this section we prove a similar lower bound on the size of non-oval semiovals.

Lemma 5.2. Let \mathcal{S} be a semioval in Π_{q}, that is, a projective plane of order q. If $|\mathcal{S}|=q+1+\epsilon$, then \mathcal{S} has at most $|\mathcal{S}|(1+\epsilon / 3)$ odd-secants.

Proof. Take $P \in \mathcal{S}$, then there passes exactly one tangent and there pass at most ϵ other odd-secants of \mathcal{S} through P. In this way the non-tangent odd-secants have been counted at least three times.

Corollary 5.3. If \mathcal{S} is a semioval in $\operatorname{PG}(2, q), 16<q$ even, and $|\mathcal{S}| \leqslant$ $q+3\lfloor\sqrt{q}\rfloor-11$, then \mathcal{S} is an oval.
Proof. If δ denotes the number of odd-secants of \mathcal{S}, then Lemma 5.2 yields:

$$
\delta \leqslant(q+3\lfloor\sqrt{q}\rfloor-11)(\lfloor\sqrt{q}\rfloor-3)<(\lfloor\sqrt{q}\rfloor+1)(q-\lfloor\sqrt{q}\rfloor+1) .
$$

By Theorem 5.1 we can construct a set of even type \mathcal{H} from \mathcal{S} by modifying (add to \mathcal{S} or delete from \mathcal{S}) $\left\lceil\frac{\delta}{q+1}\right\rceil \leqslant\lfloor\sqrt{q}\rfloor+1$ points of $\mathrm{PG}(2, q)$.

If $P \in \mathcal{S}$ is a modified (and hence deleted) point, then the number of lines through P which are not tangents to \mathcal{S} and do not contain modified points is at least $q-\left(\left\lceil\frac{\delta}{q+1}\right\rceil-1\right)$. These lines are even-secants of \mathcal{H} and

RÉDEI TYPE BLOCKING SETS AND APPL.

hence they are non-tangent odd-secants of \mathcal{S}. It follows that the size of \mathcal{S} is at least $1+2(q-\lfloor\sqrt{q}\rfloor)$, a contradiction.

Thus each of the modified points has been added. Suppose $|\mathcal{S}|>q+1$. As there is a tangent to \mathcal{S} at each point of \mathcal{S}, we have $2 \leqslant\left[\frac{\delta}{q+1}\right]$. Let A and B be two modified (and hence added) points. If the line $A B$ contains another added point C, then through one of the points A, B, C there pass at most $(|\mathcal{S}|-1) / 3+1$ tangents to \mathcal{S}. If $A B$ does not contain further added points, then $A B$ cannot be a tangent to \mathcal{S} and hence through one of the points A, B there pass at most $|\mathcal{S}| / 2$ tangents to \mathcal{S}. Let A be an added point through which there pass at most $|\mathcal{S}| / 2$ tangents to \mathcal{S} and denote the number of these tangents by τ. Through A there pass at least $q+1-\tau-\left(\left[\frac{\delta}{q+1}\right\rceil-1\right)$ lines meeting \mathcal{S} in at least two points. Thus from $\tau \leqslant|\mathcal{S}| / 2$ and from the assumption on the size of \mathcal{S} we get
$q+3\lfloor\sqrt{q}\rfloor-11 \geqslant \tau+2(q+1-\tau-\lfloor\sqrt{q}\rfloor) \geqslant 2(q-\lfloor\sqrt{q}\rfloor+1)-(q+3\lfloor\sqrt{q}\rfloor-12) / 2$.
After rearranging we obtain $0 \geqslant q-13\lfloor\sqrt{q}\rfloor+38$, which is a contradiction. It follows that $|\mathcal{S}| \leqslant q+1$, but also $|\mathcal{S}| \geqslant q+1$ and \mathcal{S} is an oval in the case of equality.

6 Point sets with few odd-secants in $\mathrm{PG}(2, q), q$ odd

Some combinatorial results of this section hold in every finite projective plane. As before, by Π_{q} we denote an arbitrary projective plane of order q.
Definition 6.1. Fix a point set $\mathcal{S} \subseteq \Pi_{q}$. For a positive integer i and a point $P \in \mathcal{S}$ we denote by $t_{i}(P)$ the number of i-secants of \mathcal{S} through P. The weight of P, in notation $w(P)$, is defined as follows.

$$
w(P):=\sum_{i \text { odd }} t_{i}(P) / i .
$$

For a subset $\mathcal{P} \subseteq \mathcal{S}$, let $w(\mathcal{P})=\sum_{P \in \mathcal{P}} w(P)$. Suppose that $w(P)$ is known for $P \in\left\{P_{1}, P_{2}, \ldots, P_{m}\right\} \subseteq \mathcal{S} \cap \ell$, where ℓ is a line meeting \mathcal{S} in at least m points. Then the type of ℓ is

$$
\left[w\left(P_{1}\right), w\left(P_{2}\right), \ldots, w\left(P_{m}\right)\right] .
$$

Suppose that the value of $t_{i}(P)$ is known for a point $P \in \mathcal{S}$ and for $1 \leqslant i \leqslant$ $q+1$. Let $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}=\left\{i: t_{i}(P) \neq 0\right\}$, then the type of P is

$$
\left[a_{1 t_{a_{1}}(P)}, a_{2 t_{a_{2}}(P)}, \ldots, a_{k t_{a_{k}}(P)}\right] .
$$

RÉDEI TYPE BLOCKING SETS AND APPL.

Example 6.2 (Balister et al. [1). Let $\mathcal{S}=\mathcal{C} \cup\{P\}$, where \mathcal{C} is a conic of $\mathrm{PG}(2, q), q$ odd, and $P \notin \mathcal{C}$ is an external point of \mathcal{C}, that is, a point contained in two tangents to \mathcal{C}. Then the type of P is $\left[1_{(q-1) / 2}, 2_{2}, 3_{(q-1) / 2}\right]$ and $w(P)=(q-1) / 2+(q-1) / 6$. If T_{1} and T_{2} are the points of \mathcal{C} contained in the tangents to \mathcal{C} at P, then the type of T_{i} is $\left[2_{q+1}\right]$ and $w\left(T_{i}\right)=0$ for $i=1,2$. Each point of $\mathcal{C} \backslash\left\{T_{1}, T_{2}\right\}$ has type $\left[1_{1}, 2_{q-1}, 3_{1}\right]$ and weight $4 / 3$. The number of odd-secants of \mathcal{S} is $2 q-2$.

Theorem 6.3 (Balister et al. 1, Theorem 6]). The minimal number of odd-secants of $a(q+2)$-set in $\mathrm{PG}(2, q), q$ odd, is $2 q-2$ when $q \leqslant 13$. For $q \geqslant 7$, it is at least $3(q+1) / 2$.

Conjecture 6.4 (Balister et al. [1, Conjecture 11]). The minimal number of odd-secants of a $(q+2)$-set in $\mathrm{PG}(2, q), q$ odd, is $2 q-2$.

The following propositions are straightforward.
Proposition 6.5. The number of odd-secants of \mathcal{S} is $w(\mathcal{S})=\sum_{P \in \mathcal{S}} w(P)$.

Proposition 6.6. Let \mathcal{S} be a $(q+2)$-set in Π_{q} and let P be a point of \mathcal{S}. The smallest possible weights of P are as follows:

- $w(P)=0$ if and only if the type of P is $\left[2_{q+1}\right]$,
- $w(P)=4 / 3$ if and only if the type of P is $\left[1_{1}, 2_{q-1}, 3_{1}\right]$,
- $w(P)=2$ if and only if the type of P is $\left[1_{2}, 2_{q-2}, 4_{1}\right]$,
- $w(P)=8 / 3$ if and only if the type of P is $\left[1_{2}, 2_{q-3}, 3_{2}\right]$,
- $w(P)=16 / 5$ if and only if the type of P is $\left[1_{3}, 2_{q-2}, 5_{1}\right]$,
- $w(P)=10 / 3$ if and only if the type of P is $\left[1_{3}, 2_{q-3}, 3_{1}, 4_{1}\right]$.

Proposition 6.7. Let \mathcal{S} be a point set of size $q+2$ in Π_{q} and let P be a point of \mathcal{S}.

1. If P is contained in a k-secant, then $w(P) \geqslant k-2$,
2. if P is contained in at least k trisecants, then $w(P) \geqslant \frac{4}{3} k$.

Proof. In part 1, the number of tangents to \mathcal{S} at P is at least $q-(q+2-k)=$ $k-2$. In part $2, P$ is incident with at least $q+1-k-(q+2-(2 k+1))=k$ tangents to \mathcal{S}, thus $w(P) \geqslant k / 3+k$.

RÉDEI TYPE BLOCKING SETS AND APPL.

Theorem 6.8 (Bichara and Korchmáros [5, Theorem 1]). Let \mathcal{S} be a point set of size $q+2$ in $\mathrm{PG}(2, q)$. If q is odd, then \mathcal{S} contains at most two points with weight 0 , that is, points of type $\left[2_{q+1}\right]$.

Lemma 6.9. Let \mathcal{S} be a point set of size $q+k$ in $\mathrm{PG}(2, q)$ for some $k \geqslant 3$. Suppose that ℓ_{1} is a k-secant of \mathcal{S} meeting \mathcal{S} only in points of type $\left[2_{q}, k_{1}\right]$. Then the k-secants of \mathcal{S} containing a point of type $\left[2_{q}, k_{1}\right]$ are concurrent.

Proof. Let ℓ_{2}, ℓ_{3} be two k-secants of \mathcal{S} with the given property and let $R_{i} \in \ell_{i} \cap \mathcal{S}$ be a point of type $\left[2_{q}, k_{1}\right]$ for $i=2,3$. It is easy to see that $\mathcal{B}:=\ell \Delta \mathcal{S}$ is a blocking set of Rédei type and R_{2}, R_{3} are not incident with any bisecant of \mathcal{B}. It follows from Theorem [2.3 part 2 that $\ell_{2} \cap \ell_{3} \in \ell_{1}$.

Definition 6.10. $A(q+t, t)$-arc of type $(0,2, t)$ is a point set \mathcal{T} of size $(q+t)$ in $\operatorname{PG}(2, q)$ such that each line meets \mathcal{T} in 0,2 or t points. In honor of Korchmáros and Mazzocca such point sets are also called KM-arcs in the literature.

Let \mathcal{T} be a $(q+t, t)$-arc of type $(0,2, t)$. It is easy to see that for $t>2$ there is a unique t-secant through each point of \mathcal{T}. It can be proved that $2 \leqslant t<q$ implies q even, see [22] by Korchmáros and Mazzocca. As the points of \mathcal{T} are of type $\left[2_{q}, t_{1}\right]$, the following theorem by Gács and Weiner also follows from Lemma 6.9, For recent results on KM-arcs we refer the reader to [13].

Theorem 6.11 (Gács and Weiner [16, Theorem 2.5]). Let \mathcal{T} be a $(q+t, t)-$ arc of type $(0,2, t)$ in $\mathrm{PG}(2, q)$. If $t>2$, then the t-secants of \mathcal{T} pass through a unique point.

The proof of our next result is based on the counting technique of Segre. A dual arc is a set of lines such that no three of them are concurrent.

Theorem 6.12. Let \mathcal{S} be a point set of size $q+k$ in $\mathrm{PG}(2, q), q$ odd.

1. If $k=1$, then the tangents to \mathcal{S} at points of type $\left[1_{1}, 2_{q}\right]$ form a dual arc.
2. If $k=2$, then there are at most two points of type $\left[2_{q+1}\right]$.
3. If $k \geqslant 3$, then the k-secants of \mathcal{S} containing a point of type $\left[2_{q}, k_{1}\right]$ form a dual arc.

RÉDEI TYPE BLOCKING SETS AND APPL.

Proof. Suppose the contrary. If $k=1$, then let A, B and C be points of type $\left[1_{1}, 2_{q}\right]$ such that the tangents through these points pass through a common point D. If $k=2$, then let A, B and C be three points of type $\left[2_{q+1}\right]$ and take a point $D \notin(\mathcal{S} \cup A B \cup B C \cup C A)$. If $k \geqslant 3$, then let A, B and C be points of type $\left[2_{q}, k_{1}\right]$ such that the k-secants through these points pass through a common point $D \notin(A B \cup B C \cup C A)$. In all cases, A, B, C and D are in general position, thus we may assume $A=(\infty), B=(0,0)$, $C=(0)$ and $D=(1,1)$. Let $\mathcal{S}^{\prime}=\mathcal{S} \backslash\{A, B, C\}$. Note that $A B, B C$ and $C A$ are bisecants of \mathcal{S} and $C A$ is the line at infinity, thus \mathcal{S}^{\prime} is a set of $q+k-3$ affine points, say $\mathcal{S}^{\prime}=\left\{\left(a_{i}, b_{i}\right)\right\}_{i=1}^{q+k-3}$. For $i \in\{1,2, \ldots, q+k-3\}$ we have the following.

- The line joining $\left(a_{i}, b_{i}\right)$ and A meets $B C$ in $\left(a_{i}, 0\right)$,
- the line joining $\left(a_{i}, b_{i}\right)$ and B meets $A C$ in $\left(b_{i} / a_{i}\right)$,
- the line joining $\left(a_{i}, b_{i}\right)$ and C meets $A B$ in $\left(0, b_{i}\right)$.

The lines $A D, B D$ and $C D$ meet \mathcal{S}^{\prime} in $k-1$ points. The lines $A P$ for $P \in \mathcal{S}^{\prime} \backslash A D$ meet \mathcal{S}^{\prime} in a unique point. Since the first coordinate of the points of $A D \cap \mathcal{S}^{\prime}$ is 1 , it follows that $\left\{a_{i}\right\}_{i=1}^{q+k-3}$ is a multiset containing each element of $\operatorname{GF}(q) \backslash\{0,1\}$ once, and containing $1 k-1$ times. Thus $\prod_{i=1}^{q+k-3} a_{i}=-1$. Similarly, the lines through B yield $\prod_{i=1}^{q+k-3} b_{i} / a_{i}=-1$, and the lines through C yield $\prod_{i=1}^{q+k-3} b_{i}=-1$. It follows that

$$
1=(-1)(-1)=\left(\prod_{i=1}^{q+k-3} a_{i}\right)\left(\prod_{i=1}^{q+k-3} \frac{b_{i}}{a_{i}}\right)=\prod_{i=1}^{q+k-3} b_{i}=-1,
$$

a contradiction for odd q.
The following immediate consequence of Theorem 6.12 and Lemma 6.9 will be used frequently.

Corollary 6.13. Let \mathcal{S} be a point set of size $q+k, k \geqslant 3$, in $\mathrm{PG}(2, q)$. If there exist three k-secants of $\mathcal{S}, \ell_{1}, \ell_{2}$ and ℓ_{3}, such that the points of $\ell_{1} \cap \mathcal{S}$ are of type $\left[2_{q}, k_{1}\right]$ and both $\ell_{2} \cap \mathcal{S}$ and $\ell_{3} \cap \mathcal{S}$ contain at least one point of type $\left[2_{q}, k_{1}\right]$, then q is even.

Proof. Lemma 6.9 yields $\ell_{2} \cap \ell_{3} \in \ell_{1}$, but then Theorem 6.12 implies q even.
For the definition of a nucleus N_{i} of a line ℓ_{i} see Proposition 4.5.

RÉDEI TYPE BLOCKING SETS AND APPL.

Lemma 6.14. Let \mathcal{S} be a set of $q-1+a$ points, $a \geqslant 3$, in $\operatorname{PG}(2, q)$, where q is a power of the prime p. Suppose that ℓ_{1} and ℓ_{2} are a-secants of \mathcal{S} such that there is a unique tangent to \mathcal{S} at each point of $\mathcal{S} \cap \ell_{i}$, for $i=1,2$.

1. Either $N_{1} \in \ell_{2}$ and $N_{2} \in \ell_{1}$, or
2. $N_{1}=N_{2}, p \mid a$ and for each $R \in \mathcal{S}$ if there is a unique tangent r to \mathcal{S} at R, then r passes through the common nucleus.
3. Let ℓ_{3} be another a-secant of \mathcal{S} such that there is a unique tangent to \mathcal{S} at each point of $\mathcal{S} \cap \ell_{3}$. If q or a is odd, then $\ell_{3}=N_{1} N_{2}$, thus in this case ℓ_{3} is uniquely determined.

Proof. If $\ell_{1} \cap \ell_{2} \in \mathcal{S}$, then $|\mathcal{S}| \geqslant 2 a+q-3$, which cannot be since $a \geqslant 3$. First assume $N_{1} \neq N_{2}$ and suppose to the contrary $N_{2} \notin \ell_{1}$. Then $\mathcal{B}:=$ $\left\{N_{1}\right\} \cup\left(\ell_{1} \Delta \mathcal{S}\right)$ is a blocking set of Rédei type. There is a unique bisecant of \mathcal{B} at each point of $\mathcal{S} \cap \ell_{2}$ (the tangent to \mathcal{S}). This is a contradiction since these bisecants should pass through the same point of ℓ_{1} (apply Theorem 2.4 part 2 with $T=\ell_{1} \cap \ell_{2}$).

If $N_{1}=N_{2}=: N$, then we define \mathcal{B} in the same way. Then there is no bisecant of \mathcal{B} through the points of $\mathcal{B} \cap \ell_{2}$. Theorem 2.3 yields $p \mid a$. Take a point $R \in \mathcal{S} \backslash\left(\ell_{1} \cup \ell_{2}\right)$ incident with a unique tangent r to \mathcal{S}. If $N \notin r$, then r is the unique bisecant of \mathcal{B} through R, a contradiction because of Theorem 2.4 part 1.

Suppose that ℓ_{3} is an a-secant with properties as in part 3. Then either $\ell_{3}=N_{1} N_{2}$ and $N_{3}=\ell_{1} \cap \ell_{2}$, or $N_{3}=N_{1}=N_{2}=: N$ and $p \mid a$. In the latter case Corollary 6.13 applied to $\mathcal{S} \cup\{N\}$ and to the lines ℓ_{1}, ℓ_{2} and ℓ_{3} yields $p=2$.

Lemma 6.15. Let \mathcal{S} be a set of $q+2$ points in $\mathrm{PG}(2, q), q$ is a power of the odd prime p, and suppose that ℓ is a trisecant of \mathcal{S} of type [4/3, 4/3, 4/3].

1. If $p=3$, then the tangents at the points of \mathcal{S} with weight $4 / 3$ pass through N_{ℓ}. There is at most one other trisecant of \mathcal{S} of type [4/3].
2. If $p \neq 3$, then the trisecants of type $[4 / 3,4 / 3]$ pass through N_{ℓ}. Suppose that there is another trisecant ℓ_{1} of type $[4 / 3,4 / 3,4 / 3]$. Then there is at most one other trisecant of type $[4 / 3,4 / 3]$, which is $N_{\ell} N_{1}$. If $N_{\ell} N_{1}$ is a trisecant of type [4/3,4/3], then the tangents at the points of $N_{\ell} N_{1}$ with weight $4 / 3$ pass through $\ell \cap \ell_{1}$.

Proof. Let \mathcal{B} denote the Rédei type blocking set $(\ell \Delta \mathcal{S}) \cup\left\{N_{\ell}\right\}$.

RÉDEI TYPE BLOCKING SETS AND APPL.

First we prove part 1. Take $A \in \mathcal{S} \backslash \ell$ such that $w(A)=4 / 3$ and denote the tangent to \mathcal{S} at A by a. If $N_{\ell} \notin a$, then there is a unique bisecant of \mathcal{B} through A, thus Theorem 2.4 yields $p \neq 3$, a contradiction. Denote the trisecant through A by ℓ_{1}. If there were a trisecant ℓ_{2} of type [4/3] different from ℓ and ℓ_{1}, then Corollary 6.13 applied to $\mathcal{S} \cup\left\{N_{\ell}\right\}$ and to the lines ℓ, ℓ_{1} and ℓ_{2} would yield q even, a contradiction.

Now we prove part 2. First suppose to the contrary that there is a trisecant ℓ_{2} of type $[4 / 3,4 / 3]$ with $N_{\ell} \notin \ell_{2}$. Let $A, B \in \ell_{2} \cap \mathcal{S}$ such that $w(A)=w(B)=4 / 3$. Denote the tangents to \mathcal{S} at these two points by a and b, respectively. We have $N_{\ell} \notin a$ and $N_{\ell} \notin b$, since otherwise we would get points not incident with any bisecant of \mathcal{B}, a contradiction as $p \neq 3$ (cf. Theorem 2.3). It follows that $N_{\ell} A$ and $N_{\ell} B$ are 4 -secants of \mathcal{B}. Let $M=N_{\ell} A \cap \ell$. Then Theorem [2.4 part 2 (with $T=\ell \cap \ell_{2}$) yields that $M B$ is also a 4 -secant of \mathcal{B} and hence a trisecant of \mathcal{S} (we have $N_{\ell} \notin M B$). A contradiction, since $M B \neq \ell_{2}$. It follows that $N_{\ell} \in \ell_{2}$.

Let ℓ_{1} be trisecant of \mathcal{S} of type $[4 / 3,4 / 3,4 / 3]$ and let ℓ_{2}, A, B, a and b be defined as in the previous paragraph. It follows from Lemma 6.14 that $N_{\ell} \in \ell_{1}$ and $N_{1} \in \ell$. It also follows from the previous paragraph that $N_{1} \in \ell_{2}$ and $N_{\ell} \in \ell_{2}$, thus $\ell_{2}=N_{1} N_{\ell}$. Theorem 2.4 applied to \mathcal{B} and to $\left(\ell_{1} \Delta \mathcal{S}\right) \cup\left\{N_{1}\right\}$ yields that a and b pass through a unique point of ℓ and through a unique point of ℓ_{1}, thus they pass through $\ell \cap \ell_{1}$.

Let \mathcal{S} be a set of $q+2$ points of $\mathrm{PG}(2, q), q$ odd. Since $q+2$ is odd, each point $P \notin \mathcal{S}$ is incident with an odd-secant of \mathcal{S}. It follows that the odd-secants of \mathcal{S} cover the points of $\operatorname{PG}(2, q)$ except for the points of \mathcal{S} with weight zero. For partial covers of $\mathrm{PG}(2, q)$ we refer the reader to [8, Proposition 1.5]. The lower bound on the size of an affine blocking set [11, 18] yields the following result. Its proof can be found in [10] at the top of page 211, as part of a more complex argument. For a proof in the dual setting see [1, Lemma 10].

Lemma 6.16 (Blokhuis and Mazzocca [10]). Let \mathcal{S} be a set of $q+2$ points of $\mathrm{PG}(2, q), q$ odd. If \mathcal{S} has $d \in\{1,2\}$ points with weight zero, then the number of odd-secants of \mathcal{S} is at least $2 q-d$.

Theorem 6.17. Let \mathcal{S} be a point set of size $q+2$ in $\mathrm{PG}(2, q), 13<q$ odd. Then the number of odd-secants of \mathcal{S} is at least $\left\lceil\frac{8}{5} q+\frac{12}{5}\right\rceil$.

Proof. Let d denote the number of points of \mathcal{S} with weight zero. Theorem 6.8 of Bichara and Korchmáros yields $d \leqslant 2$. If $d \in\{1,2\}$, then Lemma 6.16 yields $w(\mathcal{S}) \geqslant 2 q-2$, which is at least $\left\lceil\frac{8}{5} q+\frac{12}{5}\right\rceil$ when $q \geqslant 11$. From now

RÉDEI TYPE BLOCKING SETS AND APPL.

on we assume $d=0$. Consider the following subsets of \mathcal{S} :

$$
\mathcal{B}:=\{P \in \mathcal{S}: P \text { is contained in a trisecant of type }[4 / 3,4 / 3,4 / 3]\},
$$

$\mathcal{C}:=\{P \in \mathcal{S}: w(P) \neq 4 / 3, P$ is contained in a trisecant of type [4/3] $\}$.
Denote the size of \mathcal{C} by m and let $\mathcal{C}=\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$. For $i=1,2, \ldots, m$, let

$$
V_{i}=\left\{Q \in \mathcal{S}: w(Q)=4 / 3 \text { and } Q P_{i} \text { is a trisecant }\right\} \cup\left\{P_{i}\right\} .
$$

Also, let $D_{1}:=V_{1}$ and $D_{i}:=V_{i} \backslash\left(\cup_{j=1}^{i-1} V_{j}\right)$ for $i \in\{2,3, \ldots, m\}$. Of course the sets $D_{1}, D_{2}, \ldots, D_{m}$ are disjoint and $P_{i} \in D_{i} \subseteq V_{i}$. The point set $\mathcal{D}:=\cup_{i=1}^{m} D_{i}$ contains each point of $\mathcal{S} \backslash \mathcal{B}$ with weight $4 / 3$. Note that each point of D_{i} has weight $4 / 3$, except P_{i}. We introduce the following notion. For a point set $\mathcal{U} \subseteq \mathcal{S}$ let $\alpha(\mathcal{U})$ denote the average weight of the points in \mathcal{U}, that is, $\alpha(\mathcal{U})=w(\mathcal{U}) /|\mathcal{U}|$. First we prove $\alpha\left(D_{i}\right) \geqslant 8 / 5$ for $i=1,2, \ldots, m$. If $t_{3}\left(P_{i}\right)=k$ (cf. Definition 6.1), then

$$
\begin{equation*}
\left|D_{i}\right| \leqslant\left|V_{i}\right| \leqslant 2 k+1 . \tag{5}
\end{equation*}
$$

If $k=1$, then Proposition 6.6 yields $w\left(P_{i}\right) \geqslant 10 / 3$ (since $w\left(P_{i}\right) \neq 4 / 3$), hence in this case we have

$$
\begin{equation*}
\alpha\left(D_{i}\right) \geqslant \frac{10 / 3+\left(\left|D_{i}\right|-1\right) 4 / 3}{\left|D_{i}\right|}=4 / 3+\frac{2}{\left|D_{i}\right|} \geqslant 2 . \tag{6}
\end{equation*}
$$

If $k \geqslant 2$, then Proposition 6.7 yields $w\left(P_{i}\right) \geqslant 4 k / 3$, thus

$$
\begin{equation*}
\alpha\left(D_{i}\right) \geqslant \frac{4 k / 3+\left(\left|D_{i}\right|-1\right) 4 / 3}{\left|D_{i}\right|}=4 / 3+\frac{(k-1) 4 / 3}{\left|D_{i}\right|} \geqslant 2-\frac{2}{2 k+1} \geqslant 8 / 5 . \tag{7}
\end{equation*}
$$

We define a further subset of $\mathcal{S}, \mathcal{E}:=\mathcal{S} \backslash(\mathcal{B} \cup \mathcal{D})$. Note that $w(\mathcal{D}) \geqslant$ $|\mathcal{D}| \frac{8}{5}$ and $w(\mathcal{E}) \geqslant|\mathcal{E}| 2$, since each point of \mathcal{E} has weight at least 2 (see Porposition (6.6). The point sets \mathcal{B}, \mathcal{D} and \mathcal{E} form a partition of \mathcal{S}, thus $w(\mathcal{S})=w(\mathcal{B})+w(\mathcal{D})+w(\mathcal{E})$. We distinguish three main cases.

1. There is no trisecant of \mathcal{S} of type [4/3,4/3,4/3]. Then we obtain $w(\mathcal{S}) \geqslant(q+2) \frac{8}{5}$.
2. There is at least one trisecant of \mathcal{S} of type $[4 / 3,4 / 3,4 / 3]$ and $p \neq$ 3. Denote the number of trisecants of \mathcal{S} of type $[4 / 3,4 / 3,4 / 3]$ by s. Lemma 6.15 yields $s \leqslant 3$. If $s=1$, then $w(s) \geqslant 3 \frac{4}{3}+(q-1) \frac{8}{5}=q \frac{8}{5}+\frac{12}{5}$. If $s=2$, then according to Lemma 6.15 there is at most one other trisecant of type [4/3,4/3]. Thus in (5) we have $\left|D_{i}\right| \leqslant\left|V_{i}\right| \leqslant k+2$,

RÉDEI TYPE BLOCKING SETS AND APPL.

where $k=t_{3}\left(P_{i}\right)$. If $k=1$, then similarly to (6) we obtain $\alpha\left(D_{i}\right) \geqslant 2$. If $k \geqslant 2$, then similarly to (7) we obtain $\alpha\left(D_{i}\right) \geqslant \frac{5}{3}$. It follows that $w(\mathcal{S}) \geqslant 6 \frac{4}{3}+(q-4) \frac{5}{3}=q \frac{5}{3}+\frac{4}{3}$. If $s=3$, then according to Lemma 6.15 there is no other trisecant of type [4/3,4/3]. Thus in (5) we have $\left|D_{i}\right| \leqslant\left|V_{i}\right| \leqslant k+1$. If $k=1$, then similarly to (6) we obtain $\alpha\left(D_{i}\right) \geqslant \frac{7}{3}$, if $k \geqslant 2$, then similarly to (7) we obtain $\alpha\left(D_{i}\right) \geqslant \frac{16}{9}$. It follows that $w(\mathcal{S}) \geqslant 9 \frac{4}{3}+(q-7) \frac{16}{9}=q \frac{16}{9}-\frac{4}{9}$.
3. There is at least one trisecant ℓ of \mathcal{S} of type $[4 / 3,4 / 3,4 / 3]$ and $p=3$. It follows from Lemma 6.15 that the number g of further trisecants of type [4/3] is at most one. First suppose $g=0$. As \mathcal{D} is empty, we obtain $w(\mathcal{S}) \geqslant 3 \frac{4}{3}+(q-1) 2 \geqslant 2 q+2$. If $g=1$, then let $r \neq \ell$ be the other trisecant of \mathcal{S} of type [4/3]. Let $t \in\{1,2,3\}$ be the number of points with weight $4 / 3$ in $r \cap \mathcal{S}$. It follows that $w(\mathcal{S}) \geqslant$ $(3+t) \frac{4}{3}+(3-t) \frac{8}{3}+(q-4) 2 \geqslant 6 \frac{4}{3}+(q-4) 2=2 q$.
For a line set \mathcal{L} of $\mathrm{AG}(2, q), q$ odd, denote by $\tilde{w}(\mathcal{L})$ the set of affine points contained in an odd number of lines of \mathcal{L}. [28, Theorem 3.2] by Vandendriessche classifies those line sets \mathcal{L} of $\operatorname{AG}(2, q)$ for which $|\mathcal{L}|+\tilde{w}(\mathcal{L}) \leqslant$ $2 q$, except for one open case ([28, Open Problem 3.3]), which we recall here. For applications in coding theory we refer the reader to the Introduction of the paper of Vandendriessche and the references there.
Example 6.18 (Vandendriessche [28, Example 3.1 (i)]). \mathcal{L} is a set of $q+k$ lines in $\mathrm{AG}(2, q), q$ odd, with the following properties. There is an m-set $\mathcal{S} \subset \ell_{\infty}$ with $4 \leqslant m \leqslant q-1$ and an odd positive integer k such that exactly k lines of \mathcal{L} pass through each point of \mathcal{S} and $\tilde{w}(\mathcal{L})=q-k$.

Proposition 6.19. Example 6.18 cannot exist.
Proof. The dual of the line set \mathcal{L} in Example 6.18 is a point set \mathcal{B} of size $q+k$ in $\operatorname{PG}(2, q)$, such that there is a point $O \notin \mathcal{B}$ (corresponding to ℓ_{∞}), with the properties that through O there pass $m k$-secants of $\mathcal{B}, \ell_{1}, \ell_{2}, \ldots, \ell_{m}$, and the number of odd-secants of \mathcal{B} not containing O is $q-k(q, m$ and k are as in Example 6.18).

As $q+k$ is even and k is odd, it follows for $i \in\{1,2, \ldots, m\}$ and for any $R \in \ell_{i} \backslash(\mathcal{B} \cup\{O\})$ that through R there passes at least one odd-secant of \mathcal{B}, which is different from ℓ_{i}. As the number of odd-secants of \mathcal{B} not containing O is $q-k$, and $\left|\ell_{i} \backslash(\mathcal{B} \cup\{O\})\right|=q-k$, it follows that there is a unique odd-secant of \mathcal{B} through each point of $\mathcal{B} \cap \ell_{i}$, namely ℓ_{i}. But $\left|\mathcal{B} \backslash \ell_{i}\right|=q$, thus lines not containing O and meeting ℓ_{i} in \mathcal{B} are bisecants of \mathcal{B} (otherwise we would get tangents to \mathcal{B} not containing O at some point of $\ell_{i} \cap \mathcal{B}$). Then

RÉDEI TYPE BLOCKING SETS AND APPL.

for $i \in\{1,2, \ldots, m\}$ the points of $\mathcal{B} \cap \ell_{i}$ are of type $\left[2_{q}, k_{1}\right]$. As $m \geqslant 3$ and the lines $\ell_{1}, \ldots, \ell_{m}$ are concurrent, Theorem 6.12 yields a contradiction for odd q.

Remark 6.20. Together with other ideas, our method yields lower bounds on number of odd-secants of $(q+3)$-sets and $(q+4)$-sets as well. We will present these results elsewhere.

Acknowledgement. The author is grateful to the referees for their useful comments, in particular for the insight that a previous version of Theorem 4.12 can be improved.

References

[1] P. Balister, B. Bollobás, Z. Füredi and J. Thompson, Minimal Symmetric Differences of Lines in Projective Planes, J. Combin. Des. 22(10) (2014), 435-451.
[2] S. Ball, The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341-350.
[3] S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szőnyi, On the number of slopes of the graph of a function definied over a finite field, J. Combin. Theory Ser. A 86 (1999), 187-196.
[4] D. Bartoli, On the Structure of Semiovals of Small Size, J. Combin. Des. 22(12) (2014), 525-536.
[5] A. Bichara and G. Korchmáros, Note on $(q+2)$-sets in a Galois plane of order q, Ann. Discrete Math. 14 (1980), 117-121.
[6] A. Blokhuis, Characterization of seminuclear sets in a finite projective plane, J. Geom. 40 (1991), 15-19.
[7] A. Blokhuis and A.E. Brouwer, Blocking sets in Desarguesian projective planes, Bull. London Math. Soc. 18 (1986), 132-134.
[8] A. Blokhuis, A.E. Brouwer and T. Szőnyi, Covering all points except one, J. Algebraic Combin. 32 (2010), 59-66.
[9] A. Blokhuis and A.A. Bruen, The minimal number of lines intersected by a set of $q+2$ points, blocking sets and intersecting circles, J. Combin. Theory Ser. A 50 (1989), 308-315.

RÉDEI TYPE BLOCKING SETS AND APPL.

[10] A. Blokhuis and F. Mazzocca, The finite field Kakeya problem, Building Bridges 205-218, Bolyai Soc. Math. Stud. 19, Springer, Berlin, 2008.
[11] A.E. Brouwer and A. Schrijver, The blocking number of an affine space, J. Combin. Theory Ser. A 24 (1978), 251-253.
[12] B. Csajbók, T. Héger and Gy. Kiss, Semiarcs with a long secant in PG(2, $q)$, Innov. Incidence Geom. 14 (2015), 1-26.
[13] M. De Boeck and G. Van de Voorde, A linear set view on $K M$-arcs, to appear in J. Algebraic Combin., DOI 10.1007/s10801-015-0661-7
[14] R.J. Evans, J. Greene, H. Niederreiter, Linearized polynomials and permutation polynomials of finite fields, Michigan Math. J. 39 (1992), 405413.
[15] A. Gács, On regular semiovals in $\mathrm{PG}(2, q)$, J. Algebraic Combin. 23 (2006), 71-77.
[16] A. Gács and Zs. Weiner, On $(q+t, t)$-arcs of type $(0,2, t)$, Des. Codes Cryptogr. 29 (2003), 131-139.
[17] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, $2^{\text {nd }}$ ed., Clarendon Press, Oxford, 1998.
[18] R. Jamison, Covering finite fields with cosets of subspaces, J. Combin. Theory Ser. A 22 (1977), 253-266.
[19] Gy. Kiss, A survey on semiovals, Contrib. Discrete Math. 3 (2008), 81-95.
[20] Gy. Kiss, S. Marcugini and F. Pambianco, On the spectrum of the sizes of semiovals in $\mathrm{PG}(2, q)$, q odd, Discrete Math. 310 (2010), 3188-3193.
[21] Gy. Kiss and J. Ruff, Notes on Small Semiovals, Annales Univ. Sci. Budapest 47 (2004), 143-151.
[22] G. Korchmáros and F. Mazzocca, On $(q+t)$-arcs of type $(0,2, t)$ in a desarguesian plane of order q, Math. Proc. Cambridge Philos. Soc. 108 (1990), 445-459.
[23] P. Lisonek, Computer-assisted Studies in Algebraic Combinatorics, Ph.D. Thesis, RISC, J. Kepler University Linz, 1994.

RÉDEI TYPE BLOCKING SETS AND APPL.

[24] P. Sziklai, On small blocking sets and their linearity, J. Combin. Theory Ser. A 115 (2008), 1167-1182.
[25] T. Szőnyi, Blocking Sets in Desarguesian Affine and Projective Planes, Finite Fields Appl. 3 (1997), 187-202.
[26] T. Szőnyi, On the Number of Directions Determined by a Set of Points in an Affine Galois Plane, J. Combin. Theory Ser. A 74 (1996), 141146.
[27] T. Szőnyi and Zs. Weiner, On the stability of the sets of even type, Adv. Math. 267 (2014), 381-394.
[28] P. Vandendriessche, On small line sets with few odd-points, Des. Codes Cryptogr. 75 (2015), 453-463.

Bence Csajbók
Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova, Stradella S. Nicola, 3, I-36100 Vicenza, Italy
and
MTA-ELTE Geometric and Algebraic Combinatorics Research Group, Eötvös Loránd University,
1117 Budapest, Pázmány Péter Sétány 1/C, Hungary, e-mail: csajbok.bence@gmail.com

[^0]: *Research supported by the Hungarian National Foundation for Scientific Research, Grant No. K 81310 and by the Italian Ministry of Education, University and Research (PRIN 2012 project "Strutture geometriche, combinatoria e loro applicazioni")

