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ABSTRACT

We perform an objective classification of 170,000 galaxy spectra in the Sloan Digital Sky
Survey (SDSS) using the Karhunen-Loève (KL) transform. With about one-sixth of the total set
of galaxy spectra which will be obtained by the survey, we are able to carry out the most extensive
analysis of its kind to date. The formalism proposed by Connolly and Szalay (1999a) is adopted
to correct for gappy regions in the spectra, and to derive eigenspectra and eigencoefficients. From
this analysis, we show that this gap-correction formalism leads to a converging set of eigenspectra
and KL-repaired spectra. Furthermore, KL eigenspectra of galaxies are found to be convergent
not only as a function of iteration, but also as a function of the number of randomly selected
galaxy spectra used in the analysis. From these data a set of ten eigenspectra of galaxy spectra
are constructed, with rest-wavelength coverage 3450 − 8350 Å. The eigencoefficients describing
these galaxies naturally place the spectra into several classes defined by the plane formed by
the first three eigencoefficients of each spectrum. Spectral types, corresponding to different
Hubble-types and galaxies with extreme emission lines, are identified for the 170,000 spectra
and are shown to be complementary to existing spectral classifications. From a non-parametric
classification technique, we find that the population of galaxies can be divided into three classes
which correspond to early late- through to intermediate late-types galaxies. This finding is
believed to be related to the color separation of SDSS galaxies discussed in earlier works. Bias
in the spectral classifications due to the aperture spectroscopy in the SDSS is small and within
the signal-to-noise limit for majority of galaxies except for the reddest nearby galaxies and large
galaxies (> 30 kpc) with prominent emissions. The mean spectra and eigenspectra derived from
this work can be downloaded from http://www.sdss.org.
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1. Introduction

The most successful scheme used to date to
classify galaxies is the morphological classifica-
tion of Hubble (Hubble 1926). The utility of this
simple classification scheme (a compression of the
available morphological types to approximately
seven classes) has become apparent through its ap-
plication to numerous extragalactic studies. Spec-
tral classifications have a number of natural ad-
vantages over the morphological classifications of
Hubble in that they are more easily related to
the physical processes that are ongoing within a
galaxy (e.g., star formation) and that they do not
require us to obtain high resolution imaging of a
large number of galaxies. As such, they are well
suited to studying the cores of galaxies in the dis-
tant universe.

As was found for the classification of the spec-
tra of stars, classifying the spectra of more compli-
cated systems such as galaxies or quasars (QSOs)
can provide a better understanding of the phys-
ical processes that determine the formation and
evolution of these sources. Moreover, if there ex-
ist mechanisms by which galaxies can be classi-
fied using a handful of representative parameters,
this classification can be thought of as a com-
pression of the information contained within the
spectra. From such an approach, one might be
able to derive simple mechanisms for exploring
the physics of the spectral properties of galaxies
using large data sets. Recent massive spectro-
scopic surveys, e.g., the Anglo-Australian Obser-
vatory 2-degree-Field (2dF) Galaxy Survey (Col-
less et al. 2001) and Sloan Digital Sky Survey
(SDSS; York et al. 2000) provide us with the op-
portunity to address the classification of galaxy
spectra using hundreds of thousands of galaxy
spectral energy distributions (SEDs). One tech-
nique that has gained popularity for studying the
distribution of SEDs is the Karhunen-Loève (KL)
transform. The power of this approach is that
it enables a large amount of data to be decom-
posed and compressed into independent compo-
nents in an objective way. Applications of this
technique can be found in the classifications of
galaxies (Connolly et al. 1995; Folkes et al. 1996;
Sodre & Cuevas 1997; Bromley et al. 1998;
Galaz & de Lapparent 1998; Ronen et al. 1998;
Folkes et al. 1999), QSOs (Francis et al. 1992;

Boroson & Green 1992; Yip et al. 2004) and stars
(Singh et al. 1998; Bailer-Jones et al. 1998).

This paper is organized as follows. In Section 2,
we describe the spectral data used in our analy-
sis. In Section 3, we discuss the details of the
Karhunen-Loève transform and the gap-correction
formalism. In Section 4, we pose the problems to
be addressed with this paper, and show the results
of a convergence analysis on the KL gap-correction
formalism. In Section 5, we derive the eigenspec-
tra and eigencoefficients for the full SDSS data
set, and implement a classification scheme. In
Section 6, we discuss the reliability of this clas-
sification. A simple model is used to describe the
population of galaxies in Section 7. In Section 8,
we discuss the applications of the KL eigenspec-
tra obtained in this work. In Section 9, we discuss
the aperture bias effect on the current classifica-
tion scheme. Finally, in Section 10 we conclude
our results and discuss some possible future direc-
tions based on this work.

2. Data

As part of the Sloan Digital Sky Survey (York
et al. 2000) spectra are taken with fibers of 3 arc-
sec diameter (corresponding to 0.18mm at the fo-
cal plane for the 2.5m, f/5 telescope). All sources
are selected from an initial imaging survey us-
ing the SDSS camera described in Gunn et al.
(1998) with the filter response curves as described
in Fukugita et al. (1996), and using the imaging
processing pipeline of Lupton et al. (2000). The
astrometric calibration is described in Pier et al.
(2002). The photometric system and monitoring
are described in detail in Smith et al. (2002) and
Hogg et al. (2001) respectively. To date, there are
three complete samples of SDSS spectra: the Main
Galaxy sample (Strauss et al. 2002), the Lumi-
nous Red Galaxy sample (LRGs; Eisenstein et al.
2002), and the QSO sample (Richards et al. 2002).
From these data we select the Main Galaxy sam-
ple for our analysis and use only those galaxies
defined as being of survey quality: a signal-to-
noise lower-limit of approximately 16. The galax-
ies in this sample have r-band Petrosian magni-
tudes rp < 17.77 and Petrosian half-light surface
brightnesses µ50 < 24.5 mag arcsec−2, defined to
be the mean surface brightness within a circu-
lar aperture containing half of the Petrosian flux
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(called the Petrosian half-light radius). The spec-
tral reductions used are the standard SDSS 2D
analysis pipeline (idlspec2D v4.9.8, as of 18th of
April, 2002) and the 1D SpecBS pipeline (Schlegel
et al. 2003). The resultant spectra are flux- and
wavelength-calibrated, and sky-subtracted. From
these data approximately two hundred galaxies are
removed, as they have zero flux in all pixels. This
results in a final sample of 176,956 galaxy spec-
tra. The median redshift is about 0.1, and we
find that about 6.5% of the sample have redshifts
cz < 10, 000 kms−1, so that their Petrosian half-
light radii can be substantially larger than the 3
arcsec aperture of the fiber (Strauss et al. 2002).
1,854 spectra of the final sample are found to be
duplicated observations; identified as being within
a search radius of 2 arcsec and a redshift tolerance
of 0.01. All spectra are shifted to a common rest
frame, and rebinned to a vacuum wavelength cov-
erage of 3450− 8350 Å. The binning of the spec-
tra is logarithmic, with a velocity dispersion of
69 kms−1. This procedure emphasizes the blue
end of the optical spectrum, enabling our analy-
sis to focus on the Ca H and Ca K lines, and the
Balmer break. The resultant spectra cover rest-
wavelength range 3450− 8350 Å over 3839 pixels.

3. KL and Gap-Correction Formalism

The Karhunen-Loève transform (or Principal
Component Analysis, PCA) is a powerful tech-
nique used in classification and dimensional re-
duction of data. In astronomy, its applications in
studies of multivariate distributions have been dis-
cussed in detail (Efstathiou & Fall 1984; Murtagh
& Heck 1987). In this paper, we limit ourselves to
its applications to spectral energy distributions.
The basic idea is to derive a lower dimensional
set of eigenspectra (Connolly et al. 1995) from a
very large set of input SEDs. Each SED can be
thought of as an axis in a multidimensional hyper-
space, fλki, where λk denotes the k-th wavelength
in the i-th galaxy spectrum.

For the moment, we assume that there are no
gaps in each spectrum; we will discuss the ways
we deal with gappy regions later. From the set of
spectra we construct the correlation matrix

Cλkλl
= f̂λkif̂iλl

, (1)

where the summation is from i = 1 to the total

number of spectra, and f̂λki is the normalized i-th
spectrum, defined for a given i as,

f̂λk
=

fλk
√

fλk
· fλk

. (2)

The eigenspectra are obtained by finding a ma-
trix, U , such that

UTCU = Λ , (3)

where Λ is the diagonal matrix containing the
eigenvalues of the correlation matrix. U is thus
a matrix whose i-th column consists of the i-th
eigenspectrum eiλk

. We solve this eigenvalue prob-
lem by using Singular Value Decomposition.

The observed spectra are projected on to the
eigenspectra to obtain the eigencoefficients. In
these projections, every pixel in each spectrum is
weighted by the error associated with that partic-
ular pixel, σλ, such that the weights are given by
wλ = 1/σλ

2. The observed spectra can be decom-
posed, with no error, as follows

fλk
=

M
∑

i=1

aieiλk
, (4)

where M is the total number of eigenspectra. It
is straightforward to see that M equals the total
number of wavelength bins in the spectrum.

Previously, we assumed that the spectra are
without any gaps. In reality, however, there are
several reasons for gaps to exist: for example,
different rest-wavelength coverages, the removal
of sky lines, bad pixels on the CCD chips etc.
leave gaps at different rest frame wavelengths for
each spectrum. All can contribute to incomplete
spectra. The principle behind the gap-correction
process is to reconstruct the gappy spectrum us-
ing its principal components. The first applica-
tion of the method to analyze galaxy spectra is
due to Connolly and Szalay (1999a), which ex-
pands on a formalism developed by Everson and
Sirovich for dealing with two-dimensional images
(Everson & Sirovich 1994). Initially, we fix the
gap regions by some means, for example, linear-
interpolation. A set of eigenspectra are then con-
structed from the gap-repaired galaxy spectra.
Afterward, the gaps in the original spectra are
corrected with the linear combination of the KL
eigenspectra. The whole process is iterated until
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the eigenspectra converge, which we define in the
next section. According to Everson and Sirovich’s
work on artificially masked two-dimensional im-
ages, they claimed that the iteration process gives
convergent images. However, the question about
whether the principal components resulting from
the correction procedure on realistic gappy galaxy
spectra would converge is unknown and is to be
addressed with this work.

4. A Convergence Analysis of KL

There are some questions to be solved in our
analysis before the KL eigenspectra and hence the
classification itself become robust and meaningful.
These questions are: do the resultant eigenspectra
converge and, if so, how many iteration steps are
required, what is the dependency of the quality
of the KL-repaired spectra on how the gaps are
initially corrected, how much information is con-
tained in the eigenspectra and most importantly,
how many galaxy spectra are needed in order to
derive a convergent set of eigenspectra?

Several authors have tried to assess the per-
formance of a KL analysis in a number of differ-
ent quantitative ways. An example of this is the
χ2 assessment (Francis et al. 1992) in which the
authors calculated the difference between the ob-
served spectrum and the spectrum reconstructed
with the principal components in order to deter-
mine the number of components needed for recon-
structing a quasar spectrum. With the implemen-
tation of gap-corrections in our analysis, this com-
parison of only one spectrum to another may not
suffice. We are more interested in how well the set
of eigenspectra describes the distribution of spec-
tra rather than a one-to-one comparison. For ex-
ample, how does the set of eigenspectra differ as
the gap-correction procedure progresses? Given
two subspaces, each formed by a set of eigen-
spectra obtained with different conditions (e.g.,
at different points in the iterative gap correction
or computed with different numbers of observed
spectra), we require a method that will quanti-
tatively compare one set of eigenspectra with an-
other. In other words, instead of just comparing
two spectra, a mechanism is desired to compare
two subspaces, which are spanned by a finite num-
ber of spectra respectively. Mathematically it can
be stated, as in (Everson & Sirovich 1994), that

two spaces, E and F , are in common if

Tr(EFE) = D , (5)

where E and F are the sum of projection operators
of space E and F respectively, and D is equal to
the dimensionality of each space. We assume that
these eigenbases have the same dimensions for a
meaningful comparison. The sum of the projection
operators, E, of a space is given by the sum of the
outer products

E =
∑

ǫ

|ǫ >< ǫ| , (6)

where |ǫ > are the basis vectors which span the
space E (e.g., Merzbacher 1970). A basis vec-
tor is an eigenspectrum if E is considered to be
a set of eigenspectra. The two spaces are disjoint
if the trace quantity is zero and are identical if the
quantity is equal to the dimension of the subspace.
This provides a quantitative way of measuring the
commonality of two subspaces (i.e., how similar
the two subspaces are).

Fig. 1.— Convergence of eigenspectra (a)
Tr(eie0ei) and (b) Tr(ei+1eiei+1) as a function
of iteration step in the KL gap-correction for-
malism. Curves with open symbols are linearly-
interpolated across the gaps while filled symbols
represent mean-interpolated data. The circles and
squares denote De = 5 and 10 respectively, where
De is the dimension of the subspace formed by the
eigenspectra.

In investigating the convergence behavior of
eigenspectra as a function of the number of itera-
tions, we define one of the spaces to be that formed
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by a finite number of eigenspectra obtained af-
ter initially interpolating over the gap regions, but
without gap correction. The other spaces are de-
fined to be those formed by the same finite number
of eigenspectra but at different iterations in the
gap correction. The sum of projection operators
in the first case is named e0 and in the latter, ei.
The subspaces are named E0 and Ei respectively,
where i denotes the i-th iteration. The dimension
of the space is De, which is the number of eigen-
spectra forming the subspace.

The trace quantity Tr(eie0ei) as a function of
iteration is plotted in Figure 1a, in which the
KL transform is applied to N = 4003 randomly-
chosen SDSS galaxy spectra, where De is set to be
5 and 10, meaning that the subspaces are spanned
by the the first five and the first ten eigenspectra
respectively. Repairing of the galaxy spectra in
the iteration procedure is performed with m = 10
eigenspectra. It should be noted that m is inde-
pendent from De and that De is always smaller or
equal to m. The traces are normalized by the cor-
responding De in each curve to simplify compari-
son. Initially, let us concentrate on the curves with
open symbols in Figure 1. These curves denote
that the initial gappy regions are approximated by
linear-interpolation. In this linear-interpolation
method the flux of a pixel, fg

λk
, in the gap is sim-

ply approximated by the average of its neighbors,
so that

fg
λk

= (fλk−1
+ fλk+1

)/2 . (7)

The trace quantity decreases gradually as the
iteration step increases, indicating that the space
Ei is less and less in common with E0. This im-
plies that the KL gap-correction and eigenspec-
tra construction are changing the spectrum of a
galaxy within the gappy regions. As such the
eigenspectra from the KL-repaired spectra differ
progressively more from those formed from the
original spectra. The above is true for bothDe = 5
and 10. The above is generally valid for De from
1 − 10. As the iteration increases, the slope of
the curve decreases, which implies that a we have
converging set of eigenspectra.

The choice of linear-interpolation in the initial
correction for the gappy regions is arbitrary. In
fact, if the gap formalism is robust, the quality
of the KL-repaired spectrum and the eigenspectra
should be independent of the way the observed

spectra are initially repaired. We test an alterna-
tive method of correcting for gaps, where the flux
at each wavelength bin in the gap region is approx-
imated by the mean of all other spectra within that
region, i.e., the flux of a pixel in a gap is approxi-
mated by,

f̂g
λk

=

〈

∑

all spec

f̂λk

〉

all spec

, (8)

where f̂λk
is the normalized flux at λk. We

call this method mean-interpolation. With this
alternate method the trace quantity also con-
verges as we can see from Figure 1a, but at a
higher value than those in the case of linear-
interpolation. This behavior shows that, in the
case of mean-interpolation, the eigenspectra con-
structed after the gap correction deviate less from
the initial interpolated spectra than in the case
of linear-interpolation. The rate of convergence is
faster when using the mean-interpolation method.
This suggests that the mean-interpolation pro-
vides a better initial estimate of the true spec-
tra within the gap regions. We do not, therefore,
require as many iterations as in the case of linear-
interpolation. This is important as each step in
repairing the spectra and constructing the eigen-
spectra is computationally expensive when large
amounts of data are under consideration.

Figure 1b shows the convergence behavior of
the sets of eigenspectra given in Figure 1a ex-
cept that the trace quantity now compares the
subspace from one iteration to the subspace from
the next iteration, i.e., Tr(ei+1eiei+1). As ex-
pected, the convergence with the number of it-
eration steps can be seen in both methods, but
with this more sensitive measurement the conver-
gence is now no longer found to be monotonic.
This implies that we may need more iterations,
than it first appeared from our previous example
in order to obtain a convergent set of eigenspectra.
Again, the mean-interpolation method is shown to
converge to a consistent set of eigenspectra faster
than for linear-interpolation. Consequently, in the
following all gaps in the spectra will be fixed using
the mean-interpolation method, unless otherwise
specified.

An example of the actual performance in the
mean-interpolated and repaired spectra is shown
in Figure 2. The data set is the same 4003 galax-
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Fig. 2.— (a) The mean-interpolated and KL-
repaired (20 iterations) of an artificially masked
spectra, overlaid on the original unmasked spec-
trum. (b) KL-repaired spectra converge as a func-
tion of iteration.

ies as before, except that one randomly chosen
spectrum is artificially masked in the region [4500,
5000]Å. The upper panel of Figure 2a shows that
the mean-interpolated region is already close to
that of the original spectrum before masking. The
lower panel shows the KL-repaired spectrum at
i = 20 overlaid on the original spectrum, using
all 10 eigenspectra. The spectra are offset by
an arbitrary amount for illustration. There is a
substantial improvement in retrieving the original
spectrum as the iterations proceed. To compare
the KL-repaired and unmasked spectrum quanti-
tatively, we apply a similar convergence measure
as described previously. The convergence measure
in this case is defined to be

Tr(fR(m)f0fR(m)) , (9)

where fR(m) is the projector of the KL-repaired
spectrum with m eigenspectra in the gaps, and f0

is that of the unmasked spectrum. In Figure 2b,
the trace quantity versus the number of iterations
is plotted for the case corresponding to Figure 2a.
Tr(fR(m)f0fR(m)) = 1 means that the repaired
spectrum is identical with the original unmasked
one. We see that after the initial few iterations,
the two become more similar. After 30 iterations,
the KL-repaired spectrum converges to that of the
original spectrum with a high degree of accuracy,
the difference in the trace quantities of 8×10−4 %.

Combining the results of the convergence mea-

Fig. 3.— The KL-repaired spectra, linear-
interpolated (solid line) and mean-interpolated
(broken line), in the gap regions of the unmasked
spectrum as in Figure 2 (after 20 iterations). The
insert is Tr(fR(m)f0fR(m)) as a function of iter-
ation step for both cases.

sures in both KL-repaired spectra and the previ-
ously discussed eigenspectra, it can be concluded
that the convergence of the eigenspectra implies
the convergence of the repaired spectrum, and
vise versa. Furthermore, the quality of a re-
paired spectrum should not depend on the ini-
tial gap-interpolation technique. Figure 3 shows
the KL-repaired spectra, using linear- and mean-
interpolations for the initial gap approximation,
m = 10 and at i = 20. The two are shown to
be very similar to each other. The insert shows
the corresponding Tr(fR(m)f0fR(m)) as a func-
tion of iteration. The convergence behavior seems
different in both cases, nevertheless they are ap-
proaching each other with a difference in the ac-
tual value about 0.3% which is small as can be
seen in the plots of the spectra in the main graph.
This is a desired result, because if the whole for-
malism is robust, the repaired spectrum should
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not be different due to different procedures used
in the initial gap-fixing.

4.1. The Effect of Sample Size

Another important aspect of the KL-eigenspectra
construction is the number of observed spectra
necessary as the input. In principal, as we in-
crease the number of galaxy spectra, a more rep-
resentative and general set of eigenspectra should
result. The question remains, however, how much
more generality would be gained by including
more observed spectra in the analysis? Funda-
mentally, does there exist a minimum number of
input galaxy spectra such that the eigenspectra
set start to converge? This is important because
we can thus use a minimum number of randomly-
chosen observed spectra in the survey to derive a
set of eigenspectra which nevertheless contain all
the necessary information within the full data set.
Figure 4 shows an attempt to answer this question.
In these figures, the commonality percentages of
two subspaces spanned by (a) 2 (b) 3 and (c)
10 eigenspectra are plotted versus the number of
galaxy spectra N(h) used in the sample. The com-
monality is similar to that previously discussed
for the trace quantities except here we compare
the set of eigenspectra derived from N(h) input
galaxy spectra with that from a smaller number
of spectra N(h−1). This is defined as follows

commonality(%) ≡
Tr(e(N(h−1))e(N(h))e(N(h−1)))

De
×100% ,

(10)

where e(N(h)) is the sum of projectors of the sub-
space spanned by De eigenspectra, derived from
N(h) galaxy spectra, using m = De eigenspectra
for gap-repairing. The number of iterations for
the gap-correction is 20. The smallest number of
spectra we consider is 139 (=N(0)) and the largest
number 40044. The galaxies in each case are ran-
domly selected from the full SDSS sample.

For all cases, convergent trends are present
as more spectra are included. For the case of
two eigenspectra (Figure 4a) we can see that
only about 500 galaxy spectra are needed in or-
der to construct the first two eigenspectra to an
0.5% accuracy when compared to the final con-
verged set. The inclusion of the third mode (Fig-
ure 4b) requires more spectra to obtain a simi-
lar accuracy though the convergence behavior is

Fig. 4.— The commonality measurement of the
subspaces formed by the set of eigenspectra de-
rived using different numbers of observed galaxy
spectra where the subspaces are spanned by the
first (a) 2 (b) 3 and (c) 10 eigenspectra respec-
tively. The results show that the eigenspectra set
converge as a function of learning-set size in the
KL gap-correction formalism.

very similar to (a) (with slightly larger fluctua-
tions). Nevertheless, only about 1000 galaxy spec-
tra are needed for 90% commonality. These re-
sults are consistent with the fact that most types
of galaxy spectra can be described with 2 to 3 col-
ors (Connolly et al. 1995) and therefore a random
sampling of a few thousand galaxies can be ex-
pected to cover the full color distribution for these
galaxies.

In Figure (c), it is interesting that the conver-
gent behavior is different from that in (a) and (b).
With a sample size smaller than about 3000 to
4000, the improvement in the set of 10 eigenspec-
tra is small. However, once the number of spectra
used exceeds that threshold, the convergent rate
dramatically increases. This finding suggests that
there exists a minimum number of galaxy spec-
tra that we need to include in our KL analysis
in order to fully sample the true distribution of
galaxy spectra. Combining this with the fact that
the higher-order modes in the eigenspectra tend
to correspond to spectral features in galaxies with
prominent emission lines (this will be discussed in
detail in Section 5) and the fact that those galaxies
only comprise about 0.1% of the whole sample, the
behavior in (c) can be understood as the effect of

7



including galaxies with relatively extreme spectral
properties. When we randomly pick about 1000
galaxies from the sample there are a few emission
line galaxies. As more spectra are included we
eventually reach a threshold where we begin to
sample the extreme emission line galaxies. Once
we have included a small number of these emission
line galaxies (with a sample size of 3000 − 4000
galaxies we would expect three to four emission
line galaxies) the information they contain is now
incorporated within the KL eigenbases. The dra-
matic increase in the convergence rate come from
the fact that, while rare, these extreme emission
line galaxies can still be described by a handful
of spectral components (i.e., once we have a small
number of them in the sample we can map out
their full distribution).

To conclude, there exist a minimum number
of galaxy spectra we need to observe in order
to derive a convergent set of eigenspectra. Ap-
proximately 104 spectra are sufficient for a 90%
convergence level with ten eigen-components (Fig-
ure 4c). This is sufficient to characterize the spec-
tral types of 99.9% of galaxies within the local uni-
verse. These results are, however, purely empiri-
cal, based on randomly selecting spectra from the
current data set. Thus, there is no concrete evi-
dence to support the present result that 104 galaxy
spectra are all we need in deriving the most com-
plete set of eigenspectra. There may exist popula-
tions of galaxies that comprise much less that 0.1%
of the full galaxy sample that our current analysis
is not sensitive to. In general, for a larger data
set (e.g., at the completion of the survey), new
galaxy types, if any, may call for more spectra to
be included when constructing the eigenspectra.

5. KL Eigenspectra and (φKL, θKL)-Classification

The first 10 KL eigenspectra of the 170,000
SDSS galaxies are shown in Figure 5, derived from
20 iterations and using 10 eigenspectra for gap re-
pairing. The eigenspectra are publicly available
(from the website http://www.sdss.org). The first
eigenspectrum is the mean of all galaxy spectra
in our sample. The continuum is similar to a
Sb-type 1. As we would expect from the mean

1In our work, the red- and blue-types are determined from

the spectral information in the galaxies. Thus, the conven-

tional morphological-type nomenclatures “early”, “late”,

of all spectra, nebular lines and other emission
lines, as well as absorption lines such as Ca H
and Ca K, are present within this spectrum. The
second eigenspectrum has one zero crossing, posi-
tive toward longer wavelengths, at around 5200Å,
which marks the wavelength at which the modu-
lation in the continuum level relative to the 1st
eigenspectrum occurs. In the third component,
there is a zero crossing in the continuum, negative
toward longer wavelengths, at around 6000Å. The
higher the order of the eigenspectrum, the larger
the number of zero crossings which in turn adds
high-frequency features to the final spectrum as
these higher order modes are added or subtracted.
In the higher-order modes, the eigenspectra are
dominated by emission and absorption lines be-
cause each of these eigenspectra comprises emis-
sion and absorption lines plus a small fluctuation
of the continuum level around zero. We illustrate
this point later in the paper.

Statistically, the amount of information con-
tained in each eigenspectrum is given by the eigen-
value of the correlation matrix of that particu-
lar mode. Table 2 lists the weights of the first
m-modes of eigenspectra, where the weights are
normalized to unity. We find that the first three
eigenspectra contain more than 98% of the total
variance of the data set.

It is known that there is a one-parameter de-
scription of galaxy spectra which correlates with
the spectral type of a galaxy (Connolly et al. 1995).
This parameter, φKL, is the mixing angle of the
first and second eigencoefficients. Explicitly,

φKL = tan−1(a2/a1) (11)

where a1 and a2 are the eigencoefficients of the
first and second modes of a galaxy respectively.
Furthermore, the inclusion of the third com-
ponent discriminates the post-starburst activity
(Connolly et al. 1995; Castander et al. 2001). To
follow this classification scheme, we define here

θKL = cos−1(a3) (12)

where a3 is the third eigencoefficient. Here we

and E, S0, types etc. used in this paper are referring to

spectral features which usually would have be seen in the

corresponding morphological types, as suggested in Kenni-

cutt’s Atlas and other studies.
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Fig. 5.— The first 10 KL eigenspectra of ≈170,000
galaxy spectra in the SDSS. Gap correction is im-
plemented for 20 iterations.

adopt the normalization

10
∑

k=1

a2k = 1 . (13)

The first three eigencoefficients of the whole
sample are plotted in Figures 6 and 7 in the forms
of a2 versus a1 and a3 versus a2. More than 99% of
the total galaxy population is located on the locus
in Figures 6, in which the second eigencoefficients
have values from ≈ 0.25 to -0.75. The appear-
ance of this locus is very similar to previous works
(Connolly et al. 1995). Red galaxies have posi-
tive, and relatively large second eigencoefficients,
while blue galaxies have smaller, or in some cases
negative values. From Figure 7 we clearly see that
by introducing the third eigen-component, there is
a group of galaxies being separated out from the
main group. These galaxies, with negative a3 and
negative a2 values, exhibit post-starburst activity
in their spectra. A much smaller group (about
0.1%) with positive a3 and negative a2 values is

Fig. 6.— Eigencoefficients a2 versus a1 of our sam-
ple (≈170,000 galaxy spectra). More than 90% of
the whole galaxy population are located on this
main locus. The trend is similar to that in previ-
ous works (Connolly et al. 1995), with red galax-
ies having larger, positive a2 values and blue galax-
ies having smaller, or negative values.

also seen. These are outliers and will be discussed
later. The resulting φKL versus θKL is plotted in
Figure 8 for all galaxies in the sample excluding
those galaxies with a1 < 0 (118 objects). These
a1 < 0 sources tend to be either artifacts within
the data (M. SubbaRao, private communication)
or spectra that are not visually confirmed as a
galaxy spectrum. In Figure 8a, the sequence from
red to blue to extreme emission line galaxies is il-
lustrated. The boxes drawn show the regions from
which a set of spectral types are identified. They
range from the early-type at the top of the plot to
emission line galaxies at the bottom. The spectra
for these subsamples are shown in Figure 9(a-f),
ranging from red to emission line galaxies. The
spectral energy distributions shown are the mean
of all the observed spectra classified to be in the
range (φs

KL, φe
KL, θsKL, θeKL), where the super-
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Fig. 7.— Eigencoefficients a3 versus a2 of our sam-
ple (≈170,000 galaxy spectra). The introduction
of the third eigencoefficient further discriminates
galaxies with post-starburst activity (they are the
group of galaxies with negative a3 and a2 values in
this plot). Also, a group of outliers are apparent
(a small group of objects with positive a3 and neg-
ative a2 values) which are explained in the text.

scripts s and e denote the starting and ending val-
ues bounding the range. The actual values are
chosen such that the resultant mean spectra agree
with the galaxy spectra of each type in Kennicutt’s
atlas of nearby galaxy spectra (Kennicutt 1992).
The flux levels are in good agreement with those
in the atlas, which leads us to believe that the
classification is physically sound as well as having
statistical rigor. Spectra with similar spectral fea-
tures are therefore seen to be clustered by the KL
procedure. Due to the smoothing of spectral inho-
mogeneities with a large number of galaxies, the
resultant mean spectra have very high signal-to-
noise levels. This result demonstrates the power
of the KL transform for calculating mean (or com-
posite) spectra (e.g., Eisenstein et al. 2003 for the

Fig. 8.— (φKL, θKL)-classification of ≈170,000
SDSS galaxy spectra. (a) illustrates the sequence
along which the galaxy spectral types are identi-
fied. (b) Outliers, mostly spectra without signifi-
cant spectral features. The angles are in degrees.
Most outliers have large errors in their redshift es-
timations, while 90% have low signal-to-noise ra-
tios. The boxes are areas in which the mean of
all of the observed spectra correspond to red, blue
and emission line galaxies. See Figure 9 for the
mean spectra.

mean spectrum of the SDSS massive galaxies).

Table 1 shows the number of observed galaxy
spectra in each of the regions described previ-
ously. We stress that the sum of all galaxies listed
in the table is not equal to the total number of
galaxies in the data set because the ranges cho-
sen comprise a subset of the full (φKL, θKL)-plane.
The early late- to intermediate late-types galaxies
(with −12o < φKL < 5o, 80o < θKL < 100o)
dominate within the whole data set which agrees
with the well-known fact that late-type galaxies
dominate the field populations in terms of num-
ber counts.

Apart from the main locus in Figure 8 the re-
gion marked “(b)” identifies a group of outliers,
forming approximately 0.1% of the full sample
(190 sources). These are unusual sources that arise
due to artifacts within the reduction pipelines, er-
rors within the spectra themselves or possibly due
to new classes of astrophysical sources. In later
processing runs (idlspec2D v4.9.8, as of 13th of
August, 2002) only 68 of these sources remain in
the main galaxy sample. Approximately half of
them have the ZWARNING flag set to 4, which
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Fig. 9.— Mean of all the observed spectra in dif-
ferent ranges of (φs

KL, φ
e
KL, θ

s
KL, θ

e
KL), with the

classification angles being (a) (7.5, 20, 86, 92), (b)
(5, 6, 80, 100), (c) (0, 2, 80, 100), (d) (-12, -8, 80,
100), (e) (-40, -30, 80, 100) and (f) (-60, -40, 120,
135) are shown.

indicates that there are large errors in the redshift
estimations. This results in less than 0.02% of
the spectroscopic sample having spectra that can
be considered unphysical (a testament to the re-
markable accuracy and performance of the current
spectroscopic reduction pipelines). Considering all
of these sources as a whole 90% have signal-to-
noise ratios (S/N) higher than the mean survey
quality (the < S/N > is 15.9 in the data set).

Of the remaining 30 galaxies within this out-
lier class, most have relatively high redshifts (z ∼
0.2 − 0.5) as assigned by the pipelines. Some of
these sources classed as galaxies by the pipelines
do not appear to be galaxy spectra when inspected
visually. On the other hand, for those that are

galaxies as inspected by us, we found that the
pipelines have assigned incorrect redshifts to some

Fig. 10.— One of the outliers in the (φKL, θKL)-
plane. The redshift of this galaxy is incorrectly
assigned by the spectroscopic pipeline.

of these spectra. As expected, the gap-repairing
procedure fails in those objects and the resulting
expansion coefficients have unphysical values. An
example is shown in Figure 10, according to the
assigned redshift, this object has a redshift 0.5394,
which is obviously incorrect from the locations of
N II+Hα+N II lines, as shown in the insert (this
galaxy should have a redshift of 0.0236). The out-
come is that the magnitudes of the 2nd and the
3rd eigencoefficients obtained by a KL of all the
objects in this group are roughly the same but
with different signs, meaning that no lines that are
representative of typical spectral types are found.
This result suggests that KL technique is a power-
ful tool for identifying artifacts within any spectral
reduction procedure.

The above results show that the classification is
successful in allowing the galaxy types to be identi-
fied using the first three eigencoefficients and that
it may serve as a way for error checking. How do
the eigenspectra actually perform in reconstruct-
ing the spectra? Figure 11(a-f) shows, for the
same range of (φs

KL, φ
e
KL, θ

s
KL, θ

e
KL) as above, the

means of all KL-reconstructed spectra. A KL-
reconstructed spectrum, using m-eigenspectra, is
given by

fR(m;λ) =
m
∑

k=1

akek(λ) . (14)

It should be noted that the KL-reconstructed
spectrum is different from the KL-repaired spec-
trum we mentioned previously (in that case the
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Fig. 11.— The means of all KL-
reconstructed spectra (a-f) in different ranges
of (φs

KL, φ
e
KL, θ

s
KL, θ

e
KL) (the bounding boxes

are the same as those in Figure 9). The first
three eigenspectra are used in the reconstruction.
The continua and most of the line features are
in excellent agreement with those of the mean
spectra shown in Figure 9.

repairing is in the gap regions only). For conve-
nience, the mean of all KL-reconstructed spec-
tra in a given range is abbreviated as “KL-
reconstructed spectrum” in the following sections
unless otherwise specified. Comparing the mean
spectra in Figure 9(a-f) with the reconstructed
ones in Figure 11(a-f) (3 modes are used), the
continuum levels and most emission lines are in
excellent agreement with the mean spectra (except
for the galaxies with extreme emissions, which we
will discuss later). These results are consistent
with previous claims that two eigenspectra are
enough to describe most of the spectral types in
galaxies (Connolly et al. 1995). Our present clas-
sification scheme of using two mixing angles of the

first three eigencoefficients is also justified.

Fig. 12.— Number of modes needed to reconstruct
some of the lines in early-type to early late-type
galaxy, with the classification angles in the ranges
(7.5, 20, 86, 92) (top panel), (5, 6, 80, 100) (middle
panel) and (0, 2, 80, 100) (bottom panel). The fig-
ures on the leftmost panels show the mean spectra
in each type, and the consecutive figures show the
KL-reconstructed spectra with different numbers
of modes. All spectra are normalized at 5500Å.

The 3-mode KL-reconstructed spectra shown
in Figure 11(a-f) also suggest that to reconstruct
some of the lines and line ratios, more eigenspec-
tra are necessary. Figure 12 shows in detail the
emission lines that require more than 3 modes for
reconstruction. These figures show early-type to
late-type galaxies (from top to bottom). With the
first eight eigenspectra, the amplitude of the N II

line for galaxies with classification angles in the
range (7.5, 20, 86, 92) can be correctly recovered.
Similarly, the first four modes are sufficient for the
N II and Hα reconstruction for galaxies with clas-
sification angles in the range (5, 6, 80, 100). Pro-
gressing to bluer galaxies with classification angles
in the range (0, 2, 80, 100), the first eight modes
are enough for the O III reconstruction. Similarly,
Figure 13 shows the cases for galaxies with promi-
nent emission features. We find that the first four
modes are enough to reconstruct the amplitudes
and line-ratios O III[5008.240]/O III[4960.295] and
Hβ[4862.68]/O III[4960.295] for those with classi-
fication angles in the range (-12, -8, 80, 100). For
galaxies in the range (-60, -40, 120, 135), the line-
ratio N II[6585.27]/N II[6549.86] is correct with
three eigenspectra, while the first eight modes are
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enough to further retrieve the amplitudes of the
two N II lines. The maximum differences be-
tween the amplitudes of the mean and the recon-
structed lines (which we define as the error of the
reconstruction of a particular line) in the above-
mentioned cases are about 10%.

Fig. 13.— Same as Figure 12, but for galaxies with
the classification angles in the ranges (-12, -8, 80,
100) (top panel) and (-40, -30, 80, 100) (bottom
panel).

Therefore, for all but the most extreme emis-
sion line galaxies, eight spectral components, or
modes, are sufficient to reconstruct the spectral
line ratios to an accuracy of about 10% (a factor
of 500 in compression of information within the
galaxy spectra). For the reconstruction of galax-
ies with extreme emissions, however, the perfor-
mance is not satisfactory when using a small num-
ber of eigenspectra. Nevertheless, ten eigenspectra
are sufficient to recover the continuum level (see
the mean and KL-reconstructed spectra in the en-
larged continuum region). The residuals of the
mean spectra and the KL-reconstructed spectra
are shown in Figure 14, where (a-d) correspond to
the reconstructions with 3, 4, 5 and 10 eigenspec-
tra respectively. There are substantial improve-
ments in using ten eigenspectra, especially in neb-
ular lines and S II lines, and various line ratios.
The typical errors in the fluxes of lines remains
around 15− 25%.

This is not a surprising result. On one hand, the
result follows because of the increasingly dominant
role of lines in the higher-order modes compared
with the continuum. On the other hand, statistics
also play a factor. The early and intermediate-
type galaxies dominate the population of galaxies
while emission and extreme emission line galaxies
comprise just a few percent of the total popula-
tion. Thus, galaxies with significant emission call

for more eigenspectra and higher-order modes in
their reconstructions. Besides the statistical rea-
sons, the inevitable variations in line-widths of
emission lines make it comparatively difficult to
reconstruct them accurately using linear combi-
nations of eigenspectra.

Fig. 14.— The residuals of the mean spectrum
of extreme-emission galaxies (classification angles
in the range (-60, -40, 120, 135)) with the KL-
reconstructed spectrum using (a) 3, (b) 4, (c) 5,
and (d) 10 eigenspectra. The inserts are the en-
larged regions of the continuum levels, in each case
the solid line is the mean spectrum and the dotted
line is the mean of the KL-reconstructed spectra.
The spectra are normalized at 5500Å.

Due to the fact that the spectral features in ex-
treme emission line galaxies are distinct from other
types of galaxies, they still reveal themselves in the
plane (φKL, θKL). Thus, for the main purpose of
this work, which is obtaining a robust and objec-
tive classification of galaxies, the less satisfactory
performance of reconstructing some emission lines
in galaxies with extreme emission lines does not
have a significant effect. However, if detailed di-
agnosis of lines (for example, the flux-ratio of two
lines) in those galaxies are of interest, then more
modes are needed. Better yet, a separate analy-
sis using KL with those emission line galaxies is
suggested.

5.1. KL-reconstruction as Low-pass Filter-
ing

The inclusion of all the modes in the KL-
reconstruction of a given spectrum should, in prin-
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ciple, reproduce all spectral features (including the
noise). As higher-order modes contain higher fre-
quency signals and smaller variances of the sam-
ple, the inclusion of only a few lower-order modes
would thus suppress the noise present in the spec-
trum. Examples of the comparison between the
observed spectra and the KL-reconstructed ones
are shown in Figure 15(a-c). In each case, the
spectrum is reconstructed with the first 10 eigen-
spectra, and normalized at 5500Å. From these
noise-free reconstructed spectra, it becomes a sim-
ple task to identify and classify the spectral lines.

Fig. 15.— Low-pass filtering of the observed spec-
tra (a-c) by the KL-reconstruction. The figures on
the lower panel show the KL-reconstructed spectra
respectively for each observed spectrum (normal-
ized at 5500Å).

6. Reliability of the Galaxy Classification

Any classification scheme has to be repeatable
in order to be useful. If we measure the spectrum
of a galaxy on different nights in different condi-
tions, would the classification still be the same?
To answer this question, we are fortunate in that
many galaxy spectra in the SDSS data set are
taken on multiple nights (Blanton et al. 2002). A
total of 1,854 galaxies were found in our sample
to be not unique (i.e., they have been observed
and reduced independently). A further thirty
thousand galaxies were found in the SDSS spec-
troscopic data to have been observed on multi-
ple nights with different observing conditions (of-
ten these individual observations do not meet the
signal-to-noise requirements of the SDSS spectral

observations). The quantitative interpretation of
the repeatability of classifications based on these
plates may be difficult due to the variation in
signal-to-noise ratios. Nevertheless all repeat ob-
servations are selected for this part of our work.

Fig. 16.— Reliability of the KL classification of
galaxies. The classification parameter of each ob-
ject is plotted against that of the repeated mea-
surement, for the cases (a) φKL and (a) θKL.

Of the thirty-thousand sources, only those with
flags PRIMTARGET, OBJTYPE and CLASS
equal GALAXY are selected (together with the
requirement that all sources are present in the
most up to date reductions). This selection results
in thirteen-thousand objects in the final sample.
Figure 16a and Figure 16b show a comparison be-
tween the φKL and θKL values assigned by our
classification scheme to those galaxies with the
highest signal-to-noise and the classification de-
rived from the repeat observations. The solid
line corresponds to the location of the one-to-one
correspondence between the two measures. The
dispersions in φKL and θKL are 2.35o and 1.61o

respectively. This agreement is excellent, as these
angle dispersions correspond to small changes in
the resulting repaired spectra. The agreement
also spans a large range in both classification an-
gles. The implication of this finding is that a
truly reliable and repeatable classification scheme
is obtained which validates the repeatability of the
spectrophotometry of the SDSS.

In order to determine a representative signal-to-
noise ratio for each spectrum the median signal-
to-noise ratio is adopted (the flag SN MEDIAN
in spZbest-plate-mjd.fits). The dependence of the
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rms error in the measured angles on the signal-to-
noise of the observations (where the signal-to-noise
is selected to be the lower one of any pair of obser-
vations) is shown in Figure 17. From the current
data set we observe a weak trend with larger dis-
crepancies in the classification for those observa-
tions with lower signal-to-noise ratios. The mean
(absolute) discrepancies in the classification an-
gles (< |δ(φKL)| > and < |δ(θKL)| >) and mean
signal-to-noise ratios are calculated in the ranges
of signal-to-noise ratio (0.0 − 10.0), (10.0− 15.0),
(15.0 − 20.0), (20.0 − 30.0) and larger than 30.0.
The dependence is very similar in both the φKL

and θKL angles. The error bars are set by the root-
mean-square fluctuations in both quantities. The
vertical line marks the calculated mean signal-to-
noise ratio of all the galaxies defined as meeting
the survey quality (a signal-to-noise of 15.9).

Fig. 17.— The mean discrepancy in the classifica-
tion angles derived from the KL analysis (circles
are < |δφKL| > and squares, < |δθKL| >) versus
the mean signal-to-noise ratio of all spectra. All
spectra in this plot have been observed more than
once.

For those sources meeting the survey quality
signal-to-noise criteria, the maximum errors in the
two mixing angles are, approximately, three de-
grees in φKL and two degrees in θKL. This re-
sult shows that the classifications based on the
SDSS spectra are repeatable and robust to the
variable signal-to-noise within the spectroscopic
data. The fact that the signal-to-noise dependence
is weak suggests that the noise within the spec-
tra are essentially Poisson such that the projec-
tion of a noisy spectrum does not add substan-

tial artifacts into the expansion coefficients. De-
spite this weak dependence in the distribution of
expansion coefficients with signal-to-noise we do
find instances where the spectral properties of the
galaxies change between pairs of observations. For
example, in one case we find that the strength of
the O II lines change by about 20% between two
separate observations. It is not clear whether this
difference is due to a calibration error or due to
variability in the source.

7. A Simple Model of the Distribution of
Galaxy Populations

From studies of the luminosity function of
galaxies it has been shown that the distribution
of galaxies comprise a number of populations or
classes. It is, therefore, natural to ask how many
classes are present within the SDSS spectroscopic
data and how many galaxies occupy each class.
We plot in Figure 18 the frequency distribution of
φKL, (for the moment we neglect θKL because the
extreme emission line galaxies contribute less than
a percent to the full galaxy distribution). The bin
width is φKL = 0.5o and the histogram is nor-
malized to unity. Visually, there appear to be two
to three dominant “classes” or subtypes within
the φKL-distribution. To further investigate the
number of subpopulations, we adopt the Akaike
Information Criterion (AIC). AIC is widely used
in model selection in a number of different disci-
plines. The details of AIC and its application in
astronomy can be found in Connolly et al. (2000).
Basically, in AIC, a score is assigned to the model
distribution, allowing a quantitative comparison
with the true distribution of the data. Naturally,
more parameters within a model yield a better fit
to the data. To counter this the AIC penalizes the
score based on the number of parameters within a
model. The AIC score is given by the following,

Score(AIC) ≡ lnL −R (15)

for a given model. In this definition, lnL is the
log-likelihood function, and R is the number of
parameters in the model. As a result, the higher
is the score the better the model.

The first step in the analysis is to choose a
functional form for the model; a Gaussian model
is adopted here. We fit models with increasing
numbers of Gaussian components to the φKL-
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Fig. 18.— Frequency distribution of φKL. The
three modeled Gaussian populations are shown
(dotted lines), with the peaks correspond to early
late- through to intermediate late-types. The solid
line is the sum of the three modeled populations.

distribution and show the resultant AIC score in
Figure 19 as a function of the number of Gaus-
sians (nG) in the linear mixture model. The in-
sert shows an enlargement of the region around
nG = 2 − 6. We find that for nG = 5 − 6, the
scores start to flatten off (0.01% difference in the
AIC score), whereas the major improvement oc-
curs at nG = 2. In a statistical sense, nG = 5− 6
give the best score and therefore it would appear
that at most six subgroups might contribute to
the distribution of the φKL values. We do note,
however, that there is no underlying physical mo-
tivation for assuming a Gaussian mixture model
and that as the number of Gaussians in the model
exceeds four the individual Gaussian contain no
direct physical meaning. That is to say, the in-
dividual populations for nG > 4 actually overlap,
forming redundant descriptions. Thus, we esti-
mate that a linear model of a mixture of three
Gaussians is sufficient for modeling the popula-
tions of galaxies in our data set. The form of the
model is as follows

n(φKL) = G(0.087, 5.43, 2.39)+G(0.025, 2.34, 4.55)

+G(0.021,−5.86, 11.58) , (16)

where n(φKL) is the number density (normalized,
∫

n(φKL)dφKL = 1) as a function of φKL, and
G(C,M, S) is a Gaussian function of φKL

G(C,M, S) = Ce−[(φKL−M)/S]2 . (17)

Fig. 19.— AIC score (×105) as a function of the
number of Gaussians in the population model.

The three Gaussians are illustrated by the dot-
ted lines in Figure 18. Comparing the mean val-
ues (in φKL) of the Gaussian distributions with
the ranges of φKL over which the mean spec-
tra of different galaxy types are derived (see Fig-
ure 9, also see Table 1), these distributions cor-
respond approximately to early through to inter-
mediate types. Because the first two eigenspectra,
i.e., φKL, roughly describe the color of a galaxy,
the different sub-populations we obtain should re-
late to the color separation found in the SDSS
EDR galaxies (Strateva et al. 2001) in which the
bimodal u∗ − r∗ color distribution corresponds to
early- (E, S0 and Sa) and late- (Sb, Sc and Irr)
types (Shimasaku et al. 2001). Besides, optical
colors of all galaxies in the SDSS were found to
be correlated very strongly with 0.1(g − r) color
(i.e., the g − r color for galaxies at redshift z =
0.1), which was also found to be double-peaked
(Blanton et al. 2003a).
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8. Applications of KL eigenspectra

As we have shown, the eigencoefficients that de-
scribe a galaxy spectrum correlate strongly with
its intrinsic spectral type. We will leave for a
later paper a detailed investigation of the corre-
lations inherent within the eigenbases and their
relations to physical spectral energy distribution
models such as Bruzual and Charlot (1993). In
the following section we will just note a number
of the interesting correlations present within the
galaxy spectra and eigenspectra.

8.1. Line Correlations within the Eigen-
spectra

Each galaxy spectrum can be constructed
through a linear combination of the eigenspec-
tra. While the relative weights of these com-
binations (i.e., the expansion coefficients) have
been shown to provide a basis for the classifi-
cation of the galaxy spectra, the details of the
individual eigenspectra provide insight into the
relative correlations between the emission and ab-
sorption lines within a spectrum together with its
continuum shape. Spectral lines that are typically
anti-correlated will appear anti-correlated in the
the second eigenspectrum (e.g., one with positive
emission and the other as an absorption feature).
Figure 20 plots the first three eigenspectra (with
the first eigenspectrum the lower spectrum on
the plot) with the typical emission and absorp-
tion lines identified by the SDSS spectroscopic
pipelines (Stoughton et al. 2002) overlaid. The
2nd and 3rd eigenspectra are flipped and offset by
an arbitrary amount to improve the clarity of this
figure.

What is immediately apparent from this figure
is that the majority of the nebula lines are highly
correlated. An increase in the star formation rate
within a galaxy will result in a general increase
in the luminosity of all emission lines. While we
expect this correlation in the hydrogen lines, it
does not necessarily have to be the case for other
lines such as [O III]: the physical processes that
give rise to these lines are different (i.e., radia-
tive vs collisional excitation). The most obvious
anti-correlation arises for the Na D line at 5800 Å.
The first eigen-component shows the sodium ab-
sorption (commonly associated with neutral gas
at a temperature of a few thousand degrees) to be

Fig. 20.— The 1st, 2nd and 3rd eigenspectra over-
laid on the emission and absorption lines identified
by the SDSS spectroscopic pipeline.

present in the mean spectrum of galaxies. From
the second eigenspectrum, we see that as the star
formation rate of the galaxy increases (i.e., we add
the second component to the mean spectrum in-
creasing the emission line strengths) the intensity
of the Na D absorption line decreases. If the ma-
jority of the Na line comes from stellar lines (aver-
aged over the 157,000 galaxies in this sample) then
this relation is to be expected due to the increase
in the population of O stars with increasing star
formation rate. A similar relation is seen for the
Mg triplet.

Considering the eigen-components individually
we see that the mean galaxy spectrum for the main
galaxy sample has a significant component in the
Hα and [N II] emission lines with weaker emission
from [O III] and no real evidence for Balmer emis-
sion below Hβ. Adding in the second eigenspec-
trum has the result of increasing the overall star
formation within a galaxy (i.e., both the blue con-
tinuum increases together with the nebular emis-
sion lines). The second eigenspectrum has very
strong Balmer absorption indicative of post star-
burst activity within a galaxy. The third compo-
nent is dominated by line emission. There is very
little of the stellar absorption of the Balmer emis-
sion lines as it is seen in the second eigenspectrum.
A combination, therefore, of the first and third
component will enable the reconstruction of pure
absorption or emission line spectra. Within the
third component the Ca K and Ca H absorption
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lines are strongly anti-correlated with the emis-
sion lines. Increasing the contribution of the third
eigenspectrum has the net effect of increasing the
line emission together with decreasing the strong
absorption line features. This result is understood
by the fact that absorption features in a galaxy
are mainly due to older stellar populations, and
many emission lines, especially nebular lines, are
due to the ionization of the interstellar medium
within the galaxy by hot stars.

It is, therefore, clear that the correlations
present within the eigenspectra provide a reason-
able description of the physical processes that
occur within typical galaxy spectra. A more de-
tailed description of these correlations will be the
subject of a followup paper.

8.2. Stellar-absorption of the Hydrogen
Emission Lines

Perhaps the most striking feature within these
spectra is that the second eigenspectrum shows
the hydrogen emission lines in Hǫ, Hδ, Hγ, and
Hβ exhibiting stellar absorption. The clarity of
this effect comes from the high resolution of the
SDSS spectroscopic data (relative to other large
spectroscopic samples such as the 2dF) together
with the accurate control we have on the spec-
trophotometric calibration of the individual spec-
tra. Figure 21 shows an enlarged region of inter-
est for the first four eigenspectra. Comparatively,
Hβ is the weakest in terms of this effect, while
Hα shows no apparent effect. The absorption fea-
tures are also observed in higher-order modes, but
they are not shown here since the first few modes
dominate. We find that the majority of the signal
for the stellar absorption comes from the second
eigen-component. There is a smaller contribution
from the fourth component but the contribution
from this component describes the variation in the
widths of the hydrogen lines rather than their am-
plitudes.

As we have shown in Figure 11 using just three
modes we can recover galaxy spectra with and
without strong stellar absorption. The conse-
quences of this are two-fold. The fourth eigen-
component appears not to contribute significantly
to the stellar absorption signal, as noted above.
Secondly, the fact that just two modes can re-
cover the shape of the stellar absorption suggests
that the mechanism that describes the magnitude

Fig. 21.— Stellar absorptions of hydrogen emis-
sion lines present in the eigenspectra. The eigen-
spectra are arbitrary shifted for clarity.

of this process is, on average, relatively simple (as
would be expected given the correlation between
the spectral properties and stellar composition of
the galaxies). This would imply that modeling the
stellar absorption and correcting for its effect on
the emission line properties of galaxies should be a
straightforward process in a statistical sense, even
in the presence of low signal-to-noise data.

9. The Effect of a Fixed Aperture

The SDSS uses a fixed aperture of 3′′ diame-
ter for its spectroscopic observations. This can,
in principal, lead to biases in the current spec-
tral classification scheme if, for example, a fiber
samples only the central bulge of a nearby inter-
mediate or late-type galaxy (resulting in the as-
signment of an early-type spectral class). As this
effect depends on the apparent size of a galaxy
when compared to the fiber diameter it has the
potential to induce redshift and luminosity depen-
dent biases in any analysis using the KL classifica-
tions (Kochanek et al. 2000). Studies of the effect
of aperture bias on observed parameters (e.g., star-
formation rate) can be found in, e.g., Baldry et al.
(2002), Pérez-González et al. (2003) and Brinch-
mann et al. (2003). The questions we address here
are: (i) is there an aperture bias using the KL ap-
proach (ii) how can we quantify this bias and (iii)
can we correct for the aperture effects to obtain
bias-free galaxy types?

We estimate the effect of aperture bias by cal-
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culating, for a given galaxy, the difference in the
classification (in this case the φKL angle) derived
from the total galaxy flux compared to that de-
rived from the central 3 arcseconds. The depen-
dence of this classification error on the redshift and
the physical size of the galaxy serves to quantify
the bias in our sample. We assume that the appar-
ent diameter of each galaxy can be approximated
as twice the Petrosian half-light radius (petro50)
in the r-band. The physical sizes of the galax-
ies are then calculated by assuming Ωm = 0.3,
ΩΛ = 0.7 and H0 = 71. The aperture magni-
tudes of all galaxies are initially k-corrected to
redshift z = 0.1 using the code by Blanton et al.
(2003b) version 1.16 prior to estimating the spec-
tral types. Type assignment for the total flux
and fiber flux is performed using the photomet-
ric redshift code of Connolly et al. (1999b). The
input spectral templates are constructed as linear-
combinations of the first 3 eigenspectra from this
work, with the resolution in both φKL and θKL set
to 2o. In the following discussion we will express
the distance dependence of the relation as func-
tion of z/zmax, where zmax is the highest redshift
at which a galaxy of a given absolute magnitude
would pass the sample selection criteria. This pro-
vides a pseudo volume independent analysis.

Figure 22 shows the difference in the classifica-
tions of galaxies, φKL(total)−φKL(3

′′) (≡ DφKL),
as a function of z/zmax and galaxy type. The bin
sizes of smoothing are 0.02 in z/zmax and 2o in
DφKL. Galaxies of sizes from 0 − 100 kpc are
included, whereas galaxies of φKL(total)< −40o

are excluded for there are less then 1% of them.
Lighter components in the greyscale image corre-
spond to the fraction of galaxies that would be
classified as an earlier type (i.e., redder) if the to-
tal flux was used rather than the 3 arcsec flux.
Darker components correspond to galaxies that
are of later type (bluer) when using the total flux.
The percentages of galaxies residing within these
contours are listed in Table 3. From our repeata-
bility test, the mean signal-to-noise limited classi-
fication is < |δ(φKL)| >= 2.35. With the assump-
tion that the typical signal-to-noise limit in the
φKL angle estimation for the whole galaxy is the
same as that for the inner 3′′, the derived signal-
to-noise limit in DφKL is 2× < |δ(φKL)| >≈ 5.
There are about half of the galaxies (≈ 40%) in
our sample in which the type-differences are within

the estimated signal-to-noise limit.

Fig. 22.— The greyscale contour of the difference
in the classification (DφKL) for the total flux and
for the inner 3′′ region as a function of z/zmax.
The ordinate is the type assigned from the total
flux.

Aperture effects on the spectral classification
clearly exist. For blue galaxies (i.e., φKL ≈
0o − −40o), DφKL increases for nearby galaxies.
This is to be expected as the flux from the inner 3
arcsec is more likely to be dominated by the pres-
ence of a bulge component. Similarly, for galax-
ies classified as red based on their total flux (i.e.,
φKL ≈ 0o−20o), errors in the classification angles
DφKL increase rapidly with decreasing distance
(i.e., z/zmax < 0.25). This implies that the cores
of red galaxies are redder than the color estimated
from the total flux.

The dependence of the aperture bias on the
physical size of a galaxy is illustrated in Figure 23.
We divide the above sample into 6 ranges of galaxy
type, from the reddest in Figure (a) to the bluest
in Figure (f). The differences in the classifica-
tion angles DφKL are plotted in each figure as a
function of z/zmax for physical sizes ranging from
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0− 100 kpc (black line), 10− 15 kpc (dotted line)
and 30− 35 kpc (dashed line). The two horizontal
lines mark the uncertainty on the classification due
to the survey signal-to-noise limits. For the red
galaxies in Figure (a) to (c) the bias is constant or
decreases with effective distance and is, essentially,
negligible when compared to the uncertainties on
the classification. For distances z/zmax < 0.25,
the bias is above the signal-to-noise limit so that
the type deduced from the total flux is redder than
that from the central 3′′.

Fig. 23.— The difference in the classification for
the whole galaxy and the inner 3′′ region as a func-
tion of z/zmax from the reddest (a) to the bluest
(f) galaxies. In each sub-figure the galaxies are of
sizes 0− 100 kpc (solid line), 10− 15 kpc (dotted
line) and 30− 35 kpc (dashed line).

As we would expect Figures (b) and (c) show
a dependence on galaxy size for the classifications
with larger galaxies exhibiting a redder classifica-
tion when only considering the 3 arcsec flux. This
size and redshift dependence extends to the blue
galaxies (Figure (d) through (f)). For these galax-
ies, however, a more pronounced dependency is
shown on the classification bias with galaxy size.
Overall there is a general aperture bias for all
physical sizes of galaxy (0 − 100 kpc) that ap-
proaches the intrinsic error on the classification
as the effective redshift z/zmax approaches unity.
The exception to this arises when we consider
galaxies with prominent emission lines (Figure (f))
which, counter-intuitively, exhibit larger bias the
more distant they are. One of the possible rea-
sons for this is our use of three eigenspectra in
constructing the spectral templates, whereas 10

modes and more are typically required to accu-
rately reconstruct these observed spectra.

Fig. 24.— Same as Figure 22 except that the or-
dinate is the type for the inner 3′′ of each galaxy.
This serves as the look-up table with which the
aperture bias can be corrected.

While we observe an aperture bias in the SDSS
sample it is relatively small when compared to the
intrinsic classification errors and is essentially neg-
ligible for most galaxies. Moreover its dependence
on size and redshift is relatively mild and straight-
forward to correct. For those galaxies with non-
negligible bias a simple correction can be made
using the lookup table shown in Figure 24, which
is identical to Figure 22 with the exception that
the ordinate axes is the spectral type inside 3′′,
φKL(3

′′). Given the φKL(3
′′) and z/zmax the cor-

rection to our spectral classification can be de-
termined directly from Figure 24 with the size-
averaged bias.

10. Conclusions and Outlook

From the application of Karhunen-Loève trans-
form, an objective classification of ≈170,000
galaxy spectra in the SDSS is performed. With
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a quantitative convergence criteria defined, gappy
galaxy spectra can be repaired and KL eigenspec-
tra and eigencoefficients derived. For most of the
galaxy types, three eigenspectra are sufficient for
describing the continua and emission lines to a
high degree of accuracy with a maximum error in
line-reconstructions of approximately 10%. Typi-
cally ten modes are needed in the reconstruction
of galaxies with extreme emission lines with er-
rors of 15 − 25% in the line fluxes. We find that
a two-parameter (φKL, θKL)-classification scheme
can discriminate between spectra corresponding
to all spectral types used in the current classi-
fication scheme (including galaxies with extreme
emission lines). This classification is robust to re-
peat observations (at a level of a few degrees in
the classification angles) due to the accurate spec-
trophotometric calibration of the SDSS data set.
We find a weak dependence in the classification
on the signal-to-noise of the spectra. This effect
is, however, smaller than the typical dispersion
between repeat observations and is negligible at
signal-to-noise levels at which the SDSS spectra
are defined as being of survey quality.

We find that there exists a minimum number
of randomly selected spectra that are necessary
to statistically represent the information within
the full sample (i.e., to be representative of the
true distribution of galaxies). For a set of ten
eigenspectra (i.e., ten eigenspectra enable the re-
production of both quiescent and active galaxies)
the number of spectra required is around 3000 to
4000. This is due to the need to sample a minimum
number of randomly selected galaxies in order to
include galaxies with extreme emission line prop-
erties in our data set (as they comprise only 0.1%
of the full galaxy sample).

We find that the bias on the spectral classifi-
cation due to the fixed aperture spectroscopy is,
on average, small and is negligible for all galaxies
except for the reddest galaxies that are very close
by (z/zmax < 0.3) and for those galaxies that are
large physically (> 30 kpc) with prominent emis-
sion lines. A look-up table is constructed for the
correction of this bias.

There are several future directions related to
this work. With the present continuous classifi-
cation scheme, which simplifies the distribution of
galaxies into a handful of parameters, studies of
the statistics of the physical properties of galaxies

become more tractable. The clustering and spec-
tral properties of these classifications will be ad-
dressed in a future paper. The generality of these
techniques are applicable to any set of spectra and
has been recently applied to the SDSS QSO cata-
log (Yip et al. 2003, 2004).
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(φs
KL, φ

e
KL, θ

s
KL, θ

e
KL) Galaxy Type Number [Number ratio relative to Sa]

(7.5, 20, 86, 92) E/S0 6599 [0.34]
(5, 6, 80, 100) Sa 19543 [1.00]
(0, 2, 80, 100) Sb 13872 [0.71]

(-12, -8, 80, 100) Sbc/Sc 11979 [0.61]
(-40, -30, 80, 100) Sm/Im 140 [0.0072]
(-60, -40, 120, 135) SBm 135 [0.0069]

Table 1: The number of galaxies in the range
(φs

KL, φ
e
KL, θ

s
KL, θ

e
KL). These data are a subset

of the full sample. The galaxy types listed are the
possible morphological types, estimated by com-
paring the spectral features of the mean spec-
trum constructed in each range with spectra in
(Kennicutt 1992) and therefore they are for refer-
ence only.
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m (number of modes) weight (normalized by total weight)

1 0.9594
2 0.9784
3 0.9815
5 0.9837
8 0.9849
10 0.9852
20 0.9855
50 0.9860

100 0.9867
500 0.9908
1000 0.9940

Table 2: The relative weights of the eigenspectra.
The first 3 eigenspectra comprise about 98% of the
total sample variance.

DφKL-range fraction of galaxies
(degree) (0.1% accuracy)

−20 < DφKL <= −10 18.5 %
−10 < DφKL <= −5 16.4 %
−5 < DφKL <= −2.5 9.2 %
−2.5 < DφKL <= 0 17.7 %
0 < DφKL <= 2.5 7.3 %
2.5 < DφKL <= 5 6.1 %
5 < DφKL <= 10 12.1 %
10 < DφKL <= 20 7.2 %

Table 3: The number of galaxy spectra in our
sample with the specified values of aperture bias
DφKL.
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