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ABSTRACT
The rapid advance of gravitational-wave (GW) detector facilities makes it very important to estimate the

event rates of possible detection candidates. We consider an additional possibility of GW bursts produced
during unbound orbits of stellar mass compact objects. We estimate the rate of successful detections for spe-
cific detectors: the initial Laser Interferometric Gravitational-Wave Observatory (InLIGO), the French-Italian
gravitational-wave antenna VIRGO, the near-future Advanced-LIGO (AdLIGO), the space-basedLaser Inter-
ferometric Space Antenna (LISA), and theNext Generation LISA (NGLISA). The dominant contribution among
unbound orbits that have GW frequencies in the sensitive band of the detectors correspond to near-parabolic
encounters (PEs) within globular clusters (GCs). Simple GCmodels are constructed to account for the compact
object mass function, mass segregation, number density distribution, and velocity distribution. We calculate
encounters both classically and account for general relativistic corrections by extrapolating the results for infi-
nite mass ratios. We also include the cosmological redshiftof waveforms and event rates. We find that typical
PEs with massesm1 = m2 = 40M⊙ are detectable with matched filtering over a signal to noise ratio S/N = 5
within a distancedL ∼ 200Mpc for InLIGO and VIRGO,z = 1 for AdLIGO, 0.4Mpc for LISA, and 1Gpc
for NGLISA. We estimate single datastream detection rates of 5.5×10−5yr−1 for InLIGO, 7.2×10−5yr−1 for
VIRGO, 0.063yr−1 for AdLIGO, 2.9×10−6yr−1 for LISA, and 1.0yr−1 for NGLISA, for reasonably conserva-
tive assumptions. These estimates are subject to uncertainties in the GC parameters, most importantly the total
number and mass-distribution of black holes (BHs) in the cluster core. In reasonably optimistic cases, we get

∼> 1 detections for AdLIGO per year. We can expect that a coincident analysis using multiple detectors and
accounting for GW recoil capture significantly increases the detection rates. We give ready-to-use formulas to
recalculate the estimates when these input parameters become better-determined. In addition, we provide the
partial detection rates for various masses. The regular detection of GWs during PEs would provide a unique
observational probe for constraining the stellar BH mass function of dense clusters.
Subject headings: gravitational waves – black holes – globular clusters: general

1. INTRODUCTION

Interferometric gravitational-wave (GW) detectors LIGO,
GEO, TAMA, and VIRGO are searching for GW signals with
unprecedented sensitivity (Hughes et al. 2001; LIGO Scien-
tific Collaboration 2005a; Abbott et. al. 2005a,b; Grote et
al. 2005; Ando et al. 2005; Acernese et al. 2005). For LIGO,
the noise levels are already reaching the goal level necessary
for the detection of the strongest signals. It is very impor-
tant to analyze the detection capabilities of these detectors
and to estimate the rates of potentially detectable GW sig-
nals. There is already a considerable list of possible detection
candidates (for a review see Cutler & Thorne 2002): the inspi-
ral of neutron star (NS) or black hole (BH) binaries, the tidal
disruption of NS by BH in NS–BH binaries, BH–BH merger
and ringdown, low-mass X-ray binaries, pulsars, centrifugally
hung-up proto neutron stars in white dwarf accretion-induced
collapse, supernova core collapse, gamma ray bursts, and the
stochastic background. In this paper we consider an addi-
tional possibility, GWs produced by unbound orbits. As we
will show, among unbound orbits near-parabolic encounters
(PEs) produce gravitational radiation with typical frequencies

appropriate for detection with terrestrial facilities. For close
PEs the gravitational radiation is short and intensive, that is
observable to large distances. Here, we estimate the expected
event rate of detections for specific current and near-future
GW detectors.

Initial order-of-magnitude estimates on the detectability of
GWs emitted during scattering and near collisions of stellar
mass compact objects in active galactic nuclei and globular
clusters (GCs) were made by Dymnikova, Popov, & Zentsova
(1982). Although their study primarily focused on BH–star,
star–star encounters, and did not provide numbers for BH–
BH encounters, they identified these encounters to be “quite
rare”. However, Dymnikova, Popov, & Zentsova (1982) used
an overly simplified GC model in which the velocities and
masses of all objects were identical, and the spatial distribu-
tion was assumed to be homogeneous. We extend the detec-
tion rate estimates to account for the stellar BH mass func-
tion, mass segregation, and mass-dependent relative veloci-
ties. We show that this improvement significantly increases
the event rate, by approximately a factor of 102. In addition,
interferometric GW detector technology has improved greatly
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and detailed sensitivity curves are now available. Dymnikova,
Popov, & Zentsova (1982) estimated a maximum visible dis-
tance ofDmax = 20Mpc, which is a factor of∼ 100 less than
Advanced LIGO’s (AdLIGO) capabilities (see Fig. 4 below),
i.e. a factor of∼ 106 less in the accessible volume of sources.
Combining these factors, our detection rate estimates yield
∼ 108 times larger results for AdLIGO.

Gravity waves emitted during PEs are also important for
creating relativistic orbits by gravitational radiation reaction
around the supermassive black holes (SMBH) in the centers
of galaxies. The GWs emitted by the later inspiral of the star
or compact object around the SMBH are possibly detectable
by the future space detectorLISA (Sigurdsson & Rees 1997;
Freitag 2003; Gair et al. 2004) and also by ground-based
detectors for highly eccentric orbits (Hopman & Alexander
2005). In the present paper, we do not consider encounters
with SMBHs, but focus on the direct detection of GWs from
unbound orbits of two stellar mass compact objects (COs).

Stellar mass unbound orbit encounters are expected to be
most likely from dense star clusters with a large fraction of
COs. Among regular star systems, these features are car-
ried by galactic nuclei and GCs, where central densities reach
104 – 107pc−3 within a region of 0.5 – 3pc (Pryor & Mey-
lan 1993), the inner regions contain a CO fraction ofq ∼> 1/2
(Sigurdsson & Phinney 1995). In the present paper, we esti-
mate PE event rates for GCs.

As compared to other GW burst sources, the big advan-
tage in detecting PE events is that the possible signal wave-
forms are much more reliable as the physics behind them
is well understood. The waveforms are known analytically
for the case of arbitrary masses moving with arbitrary veloc-
ities but at small deflection angles (often referred to as grav-
itational bremsstrahlung, see Kovács & Thorne 1978), arbi-
trary unbound orbits but low velocities in the Newtonian ap-
proximation (Turner 1977), in the post-Newtonian approxi-
mation (PN, Blanchet & Schäfer 1989, including corrections
O(v2)), in the 2PN approximation (O(v4) Blanchet et al. 1995;
Mikóczi, Vasúth, & Gergely 2005), and most recently, in the
3PN approximation (Blanchet et al. 2005,O(v6)), and the
exact numerical solution is available for extreme mass ra-
tios using a Schwarzschild background approximation (Mar-
tel 2004), and finally, for head-on collisions with large veloc-
ities (D’Eath & Payne 1992). Thus, PE waveforms are avail-
able for a very large portion of the parameter space. Wave-
form templates can be constructed a priori, similar to inspi-
rals. The prior knowledge of the possible waveforms allows
the method of matched filtering detection, which helps to re-
duce the minimum signal-to-noise ratio necessary for a con-
firmed detection (Flanagan & Hughes 1998).

This paper is organized as follows. In § 2, we summarize
the relevant characteristics of interferometric GW detectors.
In § 3, we review the PE waveforms that we adopt. In § 4, we
describe the population models that are necessary to estimate
the scalings of parameters and the overall PE event rates. In
§ 5, we derive the expected number of PE event rates, cal-
culate their maximum distance of detection, and estimate the
implied rates of successful detections. Finally, in § 6 we sum-
marize our conclusions and in § 7 discuss the limitations and
the implications of this work.

2. OVERVIEW OF GRAVITATIONAL-WAVE DETECTORS

The new generation of GW detectors rely on interferometric
monitoring of the relative (differential) separation of mirrors,
which play the role of test masses, responding to space-time
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FIG. 1.— Goal sensitivity curves for interferometric GW detector facilities:
InLIGO, VIRGO, AdLIGO,LISA, andNGLISA.

distortions induced by the GWs as they traverse the detectors.
The effect of a GW is to produce a strain in space, which
displaces the mirrors at the ends of the arms by an amount
proportional to the effective arm length and GW strain. For
GWs incident normal to the plane of the detector, and polar-
ized along the arms of the detector, the mirrors at the ends of
the two arms experience differential motion. Waves incident
from other directions and/or polarizations also induce differ-
ential motion, albeit at a smaller level.

Presently, there is an operational international network
of first generation interferometric GW detectors: InLIGO,
VIRGO, TAMA, and GEO (see § 1 for references). The de-
sign of advanced terrestrial GW detector AdLIGO and space
detectorLISA is well on the way. There are also plans for a
new generation of low-frequency underground detectors espe-
cially sensitive for lower frequencies (DeSalvo 2004), which
might be especially sensitive to PEs, which we will discuss in
a separate paper in detail. Finally, there are plans for possi-
ble future improvements of space detectors:Decihertz Inter-
ferometric Gravitational-wave Observatory (DECIGO) (Seto,
Kawamura, & Nakamura 2001),Advanced Laser Interfer-
ometer Antenna (ALIA) and theBig Bang Observer (BBO)
(Crowder & Cornish 2005). Their sensitivities, detection fre-
quency bands and capabilities are quite different. For our pur-
poses, a good approximation is to use: (1.) the InLIGO and
VIRGO sensitivity goal (nearly reached) to assess present ca-
pabilities; (2.) the AdLIGO sensitivity goal to assess future
capabilities of ground based detectors; (3.) theLISA sensitiv-
ity goal to assess future capabilities of initial space based de-
tectors; and (4.) theNext Generation LISA sensitivity goal to
assess the capabilities of possible further extensions to space
detectors.

The goal RMS noise density per frequency interval for the
various detectors, including instrumental and confusion noise,
is plotted on Figure 1. For LIGO we adopt Abbott et. al.
(2004); Lazzarini & Weiss (1996), for VIRGO we adopt Ac-
ernese et al. (2005) but for simplicity discard the narrow fea-
tures1, for AdLIGO we adopt the noise estimates from its
website2, and forLISA, we utilize the online sensitivity curve

1 http ://www.virgo.infn.it/senscurve/
2 http ://www.ligo.caltech.edu/advLIGO/scripts/ref_des.shtml
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generator3 for the instrumental noise, and adopt the confu-
sion noise estimate from Barack & Cutler (2004a). The noise
levels of possible extensions toLISA named the “Next Gen-
erationLISA” (NGLISA) are also provided by the sensitivity
curve generator, which we also include in all of our calcula-
tions. This is very similar to the planned sensitivity curveof
DECIGO (Seto, Kawamura, & Nakamura 2001, see the more
conservative case therein) and is just halfway betweenALIA
andBBO (Crowder & Cornish 2005, a factor of 3 difference
in sensitivity from both).

3. PARABOLIC ENCOUNTER WAVEFORMS

The GW signal waveform for PE is available in a wide
range of approximations (see § 1). We adopt Turner (1977)
for the angular averaged waveforms, for which the interact-
ing masses travel on classical Newtonian trajectories and emit
quadrupole radiation. Other features such as spin-spin, spin-
orbit interactions, and gravitational recoil, etc., are higher or-
der perturbations which carry only a small total signal power
in typical cases. Therefore for the sake of calculating the
signal-to-noise ratio, it is a sufficient first-order approxima-
tion to use these waveforms.

Illustrative examples of PE waveforms can be found in
Turner (1977) (see Fig. 4 and 7 therein). The waveforms
are generally constituted of a large amplitude single peak or
a jump in the time domain with characteristic time scalet0,
related to the relative angular velocity at the minimum sepa-
rationω0 = v0/b0 = 1/t0. Herev0 is the relative velocity at the
closest point, andb0 is the corresponding minimum separa-
tion. Turner (1977) provides a closed analytical formula for
the total GW radiation energy spectrum dE/d f . The spectrum
is wide-band, for parabolic orbits it is zero atf = 0, it has a
maximum nearf0 = ω0/2π and a half-width∼ 1.5 f0.

The characteristic signal amplitude is obtained from the
GW energy spectrum as (Thorne 1987; Flanagan & Hughes
1998)

h( f ) =

√
3

2π
G1/2

c3/2

1+ z
dL(z)

1
f

√
dE
d f

[(1 + z) f ], (1)

wherez is the redshift,dL(z) is the luminosity distance (Eisen-
stein 1997), and dE/d f [(1 + z) f ] is the total GW emitted en-
ergy of the source at the emitted frequency. The orientation
averaged signal-to-noise ratio is

〈
S
N

〉
=

√
4
5

∫ ∞

0

|h( f )|2
Sn( f )2

d f (2)

whereh( f ) is the characteristic signal amplitude (1) andSn( f )
is the one-sided spectral noise density (see § 2 for references
for the particular detectors). Note that the relation (2) refers
to an angle-averaged SNR obtained from the cube-root of an
average of cubed signal amplitudes over different possibleori-
entations of the source and interferometer. Since event rates
roughly scale with volume, i.e. distance cubed or (S/N)−3,
this prescription is useful for estimating event rates (Thorne
1987). For signals with optimal orientations, the coefficient
4/5 in (2) is changed to 4. Note furthermore, that the 4/5 fac-
tor is applicable for the detection rate using a single interfero-
metric GW detector. There are already 4 interferometric GW
detectors on Earth (see § 2), and it is possible that there will be
a lot more in the future. A coincident analysis with multiple
detectors can be used to improve the efficiency by increasing

3 http ://www.srl.caltech.edu/ ∼ shane/sensitivity/

the total signal-to-noise ratio and also by insuring that atleast
one detector is close to the optimal orientation (Jaronowski et
al. 1996). For this reason, the coefficient 4/5 in (2) is most
likely pessimistic. For 1 detector in the optimal orientation
andK − 1 identical detectors in random orientations a quick
scaling of the coefficient is∼ 4+ (4/5)(K −1)1/2. On the other
hand, a relatively large SNR might be required to keep the
false alarm rate at a sufficiently low level. For a conservative
estimate on the PE rate we do not modify the 4/5 factor in the
definition of SNR (2) and evaluate results for SNR = 5.

The PE waveforms can be obtained from eq. (1) by sub-
stituting theE( f ) relationship specific for PEs using Turner
(1977):

h( f , f0) =

√
85π2/3

25/3

G5/3

c4

Mz
5/3

dL

f 2/3
0z

f

√
F( f/ f0z) (3)

whereMz = (1+ z)(m1m2)3/5/(m1 + m2)1/5 is the redshifted
chirp mass ifm1 andm2 are the masses of the interacting ob-
jects, f0z = f0/(1+z) is the redshifted characteristic frequency,
f denotes the observed GW frequency, andF(x) is the Turner
(1977) normalized dimensionless energy spectrum for dimen-
sionless frequencyx = f/ f0z, for which

∫∞

0 F(x)dx = 1.
Equation (3) is the leading order (i.e. Newtonian) approx-

imation to the GW waveform,h( f , f0). A remarkably advan-
tageous feature of the waveform in this approximation is that
it depends on only a single combination of the orbital param-
eters, f0z. Although we need only utilize this form (3), we
briefly note that it is also possible to express the waveform
with the separation at closest pointb0 in the center of mass
frame (Turner 1977):

h( f ,b0) =

√
85
4

G2

c4

(1+ z)m1m2

dL b0

1
f

√
F [ f/ f0z(b0)]. (4)

Here f0z(b0) is the redshifted characteristic frequency for fixed
initial velocity as a function ofb0. The GW amplitude spec-
trum h( f ,b0) is roughly flat at low frequenciesf < f0z, and
decreases for higher frequencies. Equation (4) shows that
h( f ,b0) scales withb−1

0 for frequencies larger than the cutoff
at∼ f0z.

Modifications are necessary for relativistic encounters. The
relativistic gravitational radiation waveforms and energy out-
put has been calculated by Martel (2004) in the quadrupole
approximation for a test particle approaching a Schwarzschild
black hole from infinity on a quasi-parabolic geodesic4. In
case the periastron distanceb0 is close to the unstable circular
orbit, the GW energy is significantly increased (it has a log-
arithmic singularity atλ = 2, whereλ ≡ b0/RSH andRSH is
the total Schwarzschild radius, and a factor of∼ 10 increase
for λ = 2.01 or a factor of 2 forλ = 3). We adopt the fitting
formula of Gair, Kennefick, & Larson (2005), which is cor-
rect within 0.1% for orbits that avoid a collision, and scale the
amplitudes of the Turner (1977) waveforms (3) according to
the increase of the GW energy,Erel(λ)/Enr(λ).

h( f , f0) =

√
85π2/3

25/3

G5/3

c4

Mz
5/3

dL

f 2/3
0z

f

√
F

(
f

f0z

)√
Erel(λ)
Enr(λ)

(5)
Note once again, that the dimensionless periastron distance,
λ, is uniquely specified by the characteristic frequency,f0. We

4 We continue to denote as “quasi-parabolic” or simply “parabolic” en-
counters that have asymptotically zero velocity at infinity. Note that the tra-
jectories are generally quite different from parabolas in the highly relativistic
regime (for illustration, see Martel 2004).
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derive explicit formulae forf0(λ) in the non-relativistic New-
tonian and relativistic geodesic approximations, when consid-
ering the dynamics of PEs in § 5.1 and § 5.2 below. Quite
remarkably, the characteristic frequency of the waveform is
unchanged for relativistic orbits. Therefore, we do not ex-
plore the effects of relativistic modifications in the shapeof
the GW signal waveform, we restrict only to correcting the
amplitude.

4. POPULATION MODELS

The major contribution to the PE event rate is expected from
dense star clusters with a large CO fraction. The most impor-
tant systems carrying these properties are possibly GCs and
galactic nuclei. In this paper we focus on GCs, but simple
analytical scaling of the results allows a straightforwardex-
tension to galactic nuclei or any other population of spherical
star systems.

The spatial distribution of GCs exactly traces the distribu-
tion of galactic halos (Chandar, Whitmore, & Lee 2004) in
the local universe. In this section we summarize the galaxy
distribution and the GC abundance per galaxy, and describe
the GC models which we adopt for the paper.

4.1. Galaxy Distribution

We utilize the local distribution of galaxies (Tully 1988).
The accumulated number of galaxies to distanceD can be well
approximated by

Ngal(D) =






N1 (D/Mpc)0.9 for D ≤ 3Mpc
N2 (D/3Mpc)1.5 for 3Mpc< D < 16Mpc
N3 (D/16Mpc)2.4 for 16Mpc< D < 60Mpc
N4 (D/60Mpc)3 for D > 60Mpc

,

(6)
whereN1, N2, N3, andN4 are 23, 62, 1100, and 26000, respec-
tively. The average density of faraway galaxies is 0.03Mpc−3,
but the local galaxy abundance is much denser than average.
In Eq. (6) Ngal(D) has a 45% jump at the Virgo cluster at
D = 16Mpc.

4.2. Globular Cluster Abundance

Following Portegies Zwart & McMillan (2000), we adopt
n̄gc = 2.9Mpc−3 for the average GC abundance in the uni-
verse. We roughly account for the clustering of GCs in the
local universe by assuming that the distribution of GCs follow
the abundance of galaxies. This assumption is consistent with
observations (Goudfrooij et al. 2003; Chandar, Whitmore, &
Lee 2004) suggesting that the population of GCs represent a
universal, old halo population that is present around all galax-
ies. The number of GCs within a distanceD is then

Ngc(D) = ygcNgal(D), (7)

whereygc is a scaling constant relating the abundance of GCs
and galaxies. Using the large scale averagen̄gc = 2.9Mpc−3

(Portegies Zwart & McMillan 2000) and̄ngal = 0.029Mpc−3

eq. (6) forD > 60Mpc we getygc = 100. Alternatively,ygc

can be interpreted as the number of GCs per galaxy aver-
aged over all morphological types. Concerning PE detection
rates, we shall show in § 5.3 that typical observation dis-
tances for terrestrial detectors are larger than the clustering
scale (6). Therefore, the results are sensitive to mainly the av-
erage abundance and are only slightly increased by the local
clustering of GCs.

The valuen̄gc = 2.9Mpc−3 for the average abundance is a
conservative assumption. In their quick estimate Portegies

Zwart & McMillan (2000) derived this value by adding up the
contribution of galaxies of morphological types Sab, E-S0,
and blue ellipticals. Recently, 12 nearby edge on spiral galax-
ies were examined, resulting in much larger numbers, reach-
ing ∼ 1000− 1300 GCs for these particular galaxies (Goud-
frooij et al. 2003; Chandar, Whitmore, & Lee 2004). In addi-
tion to the morphological types considered in Portegies Zwart
& McMillan (2000), dwarf elliptical (dE) galaxies also con-
tribute to the overall GC numbers (van den Bergh 2005). The
GC content of 69 dwarf elliptical (dE) galaxies have been esti-
mated to host about a dozen GCs per dE galaxy (Lotz, Miller,
& Fergusson 2004). Therefore, our results on detection rates
correspond only to lower limits, which has to be scaled lin-
early with n̄gc when more detailed estimates become avail-
able.

The GC distribution given by (6–7) is only valid for sub-
cosmological scales. Assuming thatD denotes the luminosity
distance,dL, in eqs. (6–7) which is a direct observable using
the GW amplitude, the change in the cosmological volume
element decreases the average density.

Ngc(dL) = 4π
∫ z(dL )

0

∂V
∂z∂Ω

ygcn̄gal dz (8)

We adopt the cosmological volume element (Eisenstein 1997)
for aΛCDM cosmology with (Ωm,ΩΛ,h) = (0.3,0.7,0.7) con-
sistent with recent observations of theWilkinson Microwave
Anisotropy Probe and the Sloan Digital Sky Survey (Tegmark
et al. 2004). We find that the uncorrected volume element
d2

LdΩddL is reduced by a factor of 0.7 forz = 0.1 (dL =
0.5Gpc) and by a factor of 0.053 forz = 1 (dL = 7Gpc). Since
GCs are believed to represent an old halo population in galax-
ies, we do not account for additional possible cosmological
evolution of the comoving GC abundance.

4.3. Globular Cluster Models

Here we define the GC models that we use to obtain typical
PE parameters and event rates. First we define the common
features that are the same for both of our models. We as-
sume a total ofNtot stellar mass stars,mstar= M⊙, spherically
distributed within a typical radiusRgc. Also within the clus-
ter, is a CO population consisting ofNCO ≡ qNtot objects with
q ≪ 1 that move in the background gravitational potential of
the stars. We define the “typical CO mass” as〈mCO〉 = 10M⊙.
We adopt typical values ofNtot = 106, Rgc = 1pc,NCO = 103,
with q = 10−3, and〈m〉 ≃ M⊙ (Djorgovski & Meylan 1994;
Portegies Zwart & McMillan 2000; Miller 2002).

We construct two different models for the distribution of
mass, spatial coordinate, and velocities of stars. Model I is
a simple plausible model to get the scaling of PE event rates
on different cluster parameters. Here we assume a homoge-
neous spherical distribution, and the COs within the cluster
have the same mass and magnitudes of velocities. In Model
II, we refine the assumptions to account for the distributions of
masses, mass segregation, and relative velocity distributions.

By comparing Models I and II, we find that while Model I
gives the correctRgc, Ntot, NCO, and f0 scalings, it underesti-
mates the total event rate of a single GC by 2 orders of mag-
nitudes. The comparison of Models I and II is necessary (i) to
understand the origin of the large increase in PE event ratesas
compared to Dymnikova, Popov, & Zentsova (1982), and (ii)
to understand the impact on the BH mass function of GCs on
PE event rates. It is therefore emphasized that the GC model
assumptions have a crucial importance when determining the
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PE event rate. We believe that our Model II includes all of the
essential features of GCs for the assessment of PE rates, and
uncertainties are comprised of the uncertainties in the model
parameters rather than additional fundamental processes5.

4.3.1. Model I

For the most simple model, the spatial distribution is as-
sumed to be uniform within a characteristic radiusRgc, and
it is assumed that all COs have the same massmCO = 10M⊙

and magnitude of velocityvvir . The orientation of velocities is
isotropic, implying a velocity dispersion ofσ ≃ vvir . For this
simple model, we estimate the relative velocity distribution
of COs to be the same as the individual velocitiesvrel ≃ vvir.
The characteristic velocities can be obtained from the virial
theorem for a uniform distribution of mass6:

vvir =

√
3
5

GNtot〈m〉
Rgc

(9)

The PE event rate is calculated as the rate of scattering on a
fixed target lattice, with incident velocityvvir.

4.3.2. Model II

We improve Model I with the following factors. The va-
lidity and motivation of these assumptions is discussed below
the list.

1. We assume an equal number of NSs and BHsNNS =
NBH. We introducegBH(m) = 0.5[ln(mmax/mmin)]−1 m−1

for the fractional distribution of BH masses among
COs with massm per mass interval dm, in the range
mmin < m < mmax, with

∫
gBH(m)dm = 0.5. We de-

fine the NS mass distributiongNS(m) as a Gaussian
distribution with norm 0.5, mean 1.35M⊙, and vari-
ance 0.1M⊙. Finally we define the CO distribution
by gCO(m) = gBH(m) + gNS(m), which has a unit norm.
For definiteness, we takeNBH = 500, mmin = 5M⊙,
andmmax = 60M⊙, implying that〈mBH〉 ≃ 20M⊙ and
〈mCO〉 ≃ 10M⊙, but also calculate detection rates for
more general BH mass distributions. The PE detec-
tion rates are practically independent of the actual total
number and distribution of NSs.

2. We account for the mass segregation by assuming ther-
mal equipartition among COs, objects with massm
have a velocityvm = (m/〈m〉)−1/2vvir, and are confined
within a radius,Rm = (m/〈m〉)−1/2Rgc, while regular
stars are distributed uniformly within a sphere of radius
Rgc, as in Model I. SinceN ≫ NCO, the background
gravitational potential is determined by regular stars.
See Fig. 2 for an illustration. For core collapsed models
a modified scaling is necessary (see text below).

3. The relative velocity for COs with massesm1 andm2 is
assumed to bevrel ≡ v12 = [(m−1

1 + m−1
2 )〈m〉]1/2vvir .

The BH mass distribution is crucial for the analysis, since sig-
nal rates scale withm19/3 (see § 5 and the appendix below).

5 For example, details like bound binary populations and interactions are
not essential for PEs, and Spitzer instability and core collapse can be ac-
counted for by choosing our model parameters accordingly (see § 7.3.3 for a
discussion).

6 There is a similar result for a spherical star system of polytropic distribu-
tion with a root mean square radius R. The only difference is in the 3/5 factor
of Eq. 9, which becomes 1/2 in that case (e.g. Saslaw 1985).

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

R1

R2

Rgc

m2, N2, v2

m1, N1, v1

FIG. 2.— Encounters for Model II. More massive COsm1 > m2 are dis-
tributed uniformly within a sphere of smaller radiusR1 < R2 and have smaller
velocities. PEs between COs withm1 andm2 can take place withinR1. The
relative velocity before the interaction isv∞ = v12(m1,m2). Note that Model
II assumes a continuous mass function, for whichN1 andN2 are in fact in-
finitesimal.

Unfortunately, the analysis of BH mass functions have not
yet converged. Recent X-ray observations display evidence
for 20 galactic BHs with masses between 4∼< m/M⊙ ∼< 14
(Casares 2005), and∼ 45 ultra-luminous X-ray sources are
identified with intermediate-mass black holes (IMBHs) with
massesm = 102 – 104M⊙ (Ptak & Colbert 2004; Miller & Col-
bert 2004; Gebhardt, Rich, & Ho 2005; Blecha et al. 2005).
Theoretical predictions from two-dimensional simulations of
stellar core collapse (Fryer & Kalogera 2001) lead to masses
smaller than 20M⊙ with very different distributions depend-
ing on the assumptions (fraction of explosion energy used to
unbind the star, stellar winds, mass transfer after helium igni-
tion). Sophisticated simulations of the initial phase of rapid
star evolution assuming a lower metallicity for the progeni-
tor stars (weaker stellar winds) appropriate for GCs and in-
cluding a large fraction of binaries, collisions, and accretion
leading to the mass buildup of BHs imply an initial smooth
decreasing distribution of stellar-mass BHs with masses upto
∼ 60 – 100M⊙ (Belczynski et al. 2005) depending on model
assumptions and cluster environments. Results are valid for
timescales short compared to later dynamical evolution of
the cluster. However, the final fate of the cluster remains
highly uncertain. In small GCs, dynamical interactions of bi-
naries might eject a significant portion of the stellar-massBH
population (Sigurdsson & Hernquist 1993; Portegies Zwart
& McMillan 2000; O’Leary et al. 2006). Following Miller
(2002) and Will (2004) we adoptgBH(m) ∝ m−1 leaving the
minimum and maximum masses free parameters. However,
most recent population synthesis simulations (Belczynskiet
al. 2005) typically yield steeper BH mass functions. For this
reason we felt it important to compute results for other dis-
tributionsgBH(m) ∝ m−p with p = 0, 1, and 2, as well. Con-
cerning the other parameters, in our standard model we take
mmin = 5M⊙ andmmax= 60M⊙, for which〈mBH〉 ≃ 20M⊙ and
〈mCO〉 ≃ 10M⊙, and assumeNBH = 500, but also calculate re-
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sults for otherNBH, mmin, andmmax values.
The NS mass distribution that we utilize is supported by

observations of 26 radio pulsars and 4 X-ray binaries (Post-
nov & Prokhorov 2003, and references therein). The distri-
bution is sharply peaked around 1.35M⊙. Our assumption on
the total number of NSs (NNS = 500) is somewhat arbitrary,
values could be higher or lower depending on what fraction
of NSs are ejected by kicks during their formation. Our de-
tection rate estimates can be scaled to the appropriate value
usingνNS−NS ∝ N2

NS andνBH−NS ∝ NNSNBH (see § 5 below).
Note however, that in § 5 we show that NS interactions con-
tribute a negligible fraction of the PE event rate (see Figs.6
and 7 below).

Note that we do not consider encounters between white
dwarfs (WDs). The detection of PEs between WDs are even
worse than for NSs, since WD masses are even smaller (Bin-
ney & Tremaine 1987). Our final results show that the PE
detection rates roughly scale with∼ m8.33, implying that rates
are enormously suppressed for WDs: by a factor of∼ 1015

relative to 50M⊙ BHs, which are typical for detection (see
Fig. 6). Moreover, WDs are disrupted by tidal torques for
close encounters, at sub-Hz frequencies. Therefore, PEs of
WDs are completely invisible for terrestrial detectors.

The second improvement is to account for mass segrega-
tion. The differentiation of the stellar population with mass
within the cluster core is a consequence of thermal equilib-
rium (Binney & Tremaine 1987). Objects with masses larger
than 10M⊙ had enough time to relax to thermal equilibrium
within the lifetime of the GCs (Farouki & Salpeter 1982).
This means that the kinetic energies of each of the component
stars are drawn from the same distribution, implying that the
typical speed of an object of massm is vm = (m/〈m〉)−1/2vvir,
causing the object to sink to the core of the cluster. For
a nearly homogeneous distribution of background stars, this
implies that the maximum radius available to a given mass
is Rm = (m/〈m〉)−1/2Rgc (Binney & Tremaine 1987). For the
BH distribution given bygBH(m) we get that BHs with mass
∼ 50M⊙ (which make the dominant contribution to PE rates,
see Figs. 6 and 7 below) are confined to a radius∼ 0.14Rgc.
Note that our scalings based on thermal equipartition might
not hold in case Spitzer instability leads to core collapse,cre-
ating a dynamically decoupled core of high mass BHs (typi-
cally Rcore∼ 0.01–0.10Rgc depending on the fraction of pri-
mordial binaries, Heggie, Trenti, & Hut 2006). We can ac-
count for core collapse by simply scaling our final results on
detection rates appropriately withN2

BHR−3
corev

−1
core (see § 7.3.3

for a discussion).
Finally, we discuss the assumption on the relative veloc-

ity. The velocity distribution of stars in GCs is well described
by the King-Michie (KM) model (Meylan 1987), which is
roughly a Maxwell-Boltzmann (MB) distribution with a max-
imum velocity cutoff. It is well-known that the relative ve-
locity distribution for MB individual velocity distributions is
also MB for the reduced massµ = m1m2/(m1 + m2) (Binney
& Tremaine 1987). Thus〈v12〉RMS = (m1/µ)1/2〈vm1〉RMS =
[(m−1

1 + m−1
2 )〈m〉]1/2vvir .

Note that we do not utilize the exact velocity distribution,
but associate the same fixed velocity value for every object
with identical masses. Relaxing this approximation and ac-
counting for MB velocity distributions leads to a change of
only a few percent in the encounter rate results (the correction
is (3/π)1/2 for Model I in the range of GW detector frequen-
cies, see Kocsis & Gáspár 2004 for the derivation). Thus,

the velocity distribution can be safely approximated with the
mean value. A simple explanation is the fact that GW detec-
tor frequencies correspond to unbound encounters with nearly
parabolic trajectories, for which the exact value of the initial
velocity is negligible (see § 5.1 below).

The PE event rate for component massesm1 andm2 is cal-
culated as the rate of scattering with incident velocity equal to
the initial relative velocityvrel ≡ v12(m1,m2).

5. PARABOLIC ENCOUNTER EVENT RATE

We now derive the event rate for the successful detection
of PE signals using the two models of GCs. This section is
divided in five parts. In § 5.1 we derive the comoving event
rate per comoving characteristic frequency bins for individual
GCs for the two population models. In § 5.2 we derive the
modifications necessary for relativistic encounters. In § 5.3
we determine the signal-to-noise ratio using the specific de-
tector sensitivity curves and determine the maximum observ-
able distance of PEs. In § 5.4, we add up the contributions of
all possible GCs within the visible distance and estimate the
PE detection rates. Finally in § 5.5 we conclude the results of
the analysis.

5.1. Contributions of Individual Globular Clusters

5.1.1. Outline

When calculating the detectable event rates for specific GW
detectors, it is desirable to express the encounter cross section
for particular f0 frequency bins. To achieve this we first com-
pute the interaction cross-sections for given masses and initial
orbital parameters. Then, the Newtonian equations of motion
relate the initial orbital parameters tof0. Changing to thef0
variable leads to the partial event rate for the given masses
and characteristic encounter frequencies. Then, for ModelI,
it is very simple to add up the individual contributions of all
objects within the cluster. For Model II, we utilize the spe-
cific radial and relative velocity distributions,Rm andv12, and
average over the CO mass distribution.

5.1.2. Derivation of Event Rates

The typical minimum distance between COs in these sys-
tems isRgc/

3
√

N ≃ 1011km, a value several orders of magni-
tudes larger than the typical minimum separation of an en-
counter (10km< b0 ∼< 107km for detectable frequencies, see
Eq. [14] below). Therefore, a sufficient approximation is
to consider short-time two-body interactions during encoun-
ters7, and constant velocities in between events. The PE event
rate can then be simply estimated by a scattering of particles
with incident initial velocitiesv∞ = vrel on a still target lattice.

Since the velocities are assumed to be locally isotropic ev-
erywhere in the cluster, the cross section of a particle with
an impact parameter betweenb∞ and b∞ + db∞ is dσ =
2πb∞db∞. We proceed to express the infinitesimal cross sec-
tion for df0 bins.

We derive encounter parameters with a non-relativistic
Newtonian description. The separation,b0, and relative ve-
locity, v0, at periastron can be computed from the initial
conditions of the interacting bodies. The initial parameters
are the impact parameterb∞ and the velocity,v∞ ≡ vrel ≡

7 We shall discuss below that the PE event rate is not sensitiveon whether
the interacting participants are elements of regular boundbinaries or if they
are single objects.
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v12(m1,m2), of the scattered particle (see § 4.3.2 for the def-
inition). Using the conservation of mechanical energy and
angular momentum we get

b∞ =
b0√

1− 2γ
, and v∞ = v0

√
1− 2γ, (10)

whereγ = (GM)/(b0v0
2) is the ratio of potential energy and

double kinetic energy at the closest point8, with M = m1 + m2.
Although Eq. (10) is strictly only valid in the comoving ref-
erence frame of the center-of-mass, it is an adequate approxi-
mation for the realistic parameters as long asv∞ ≪ v0. Again,
we point out that the relevant encounters are nearly parabolic,
so that the initial velocity distributions have a negligible im-
pact on the result.

Let us express the cross section with variablesb0 andv∞
using Eq. (10) and make use of our simplifying assumption
thatv∞ is a constant for fixed masses (see § 4.3). The result
is

dσ =

(
GM

v2
∞b0

+ 1

)
2πb0db0. (11)

Here, the first term dominates the parenthesis for typicalv∞
andb0 values (see Eq. 14. below). This term is responsible
for the deflection of trajectories due to gravity.

The characteristic GW frequency is directly related to the
minimum separation,b0, and the relative velocityv0 atb0 by

ω0 = 2π f0 =
v0

b0
. (12)

Using Eq. (10),

ω0 = (2GM)1/2b−3/2
0

(
1+

v2
∞b0

2GM

)1/2

. (13)

For typical frequency bands of InLIGO (LISA) the correc-
tion on the RHS isv2

∞b0/(2GMCO) ∼< 10−8 (10−4) for InLIGO
(LISA). In order to get the event rate per frequency bin, we
need the inverse relationshipb0(ω0,v∞). This can be ob-
tained recursively, as a power series inω0. To the second
non-vanishing order, we get

b0 = (2GM)1/3ω
−2/3
0

(
1+

1
3

v2
∞

(2GM)2/3
ω

−2/3
0

)
. (14)

Substituting in Eq. (11) yields

dσ =
2π
3

(2GM)4/3

v2
∞

ω
−2/3
0

(
1+

8
3

v2
∞

(2GM)2/3
ω

−2/3
0

)
dω0

ω0
. (15)

For Model I, the scattering rate for a single particle is
nCOv∞dσ, wherenCO is the number density of COs. Since
there are a total ofNCO particles, the contribution of all COs
is 1/2×NCOnCOv∞dσ, where the 1/2 factor comes from the
fact that the same ensemble of particles constitute both the
targets and the injection. Thus Eq. (15) becomes

dν I = ν I
1

(
f0

f100

)−2/3
(

1+
(

f0
f I
1

)−2/3
)

d f0
f0

. (16)

where f100 = 100Hz and

ν I
1 = (2π)−2/3 N2

CO

4
(4GMCO)4/3

R3
gcv∞

f −2/3
100 = 6.7×10−15yr−1(17)

f I
1 =

1
2π

(
8
3

)3/2 v3
vir

4GMCO
= 1.7×10−8Hz. (18)

8 γ < 1/2 for hyperbolic Newtonian trajectories.

For Model II, the interacting objects with massesm1 and
m2 are distributed uniformly within radiiR1 andR2 and have
mass-dependent relative velocitiesv∞ = v12 (see Fig. 2). Let
N1 andN2 denote the number of particles with massm1 and
m2, respectively. Let us assumem1 > m2, for whichR1 < R2.
In this case the interactions between massesm1 andm2 take
place only within a radiusR1, where the density of particles
with massm2 is n2 = N2/(R3

24π/3). For a smooth distribution,
N1 is the infinitesimal number of particles with masses be-
tweenm1 andm1 +dm1, i.e. N1 = NCOgCO(m1)dm1 (andN2 de-
fined similarly). The scattering rate for an injection ofN1 par-
ticles withv∞ velocities on a target densityn2 is isN1n2v∞dσ.
To get the total event rate for the cluster forω0 bins we need
to integrate over the mass distributions

dν II =
∫ ∞

0
dm1gCO(m1)

∫ ∞

0
dm2gCO(m2) ×

[
ν II

1 (m1,m2)

(
f0

f100

)−2/3

+ ν II
2 (m1,m2)

(
f0

f100

)−4/3
]

d f0
f0

,

(19)

whereν II
1 (m1,m2) andν II

2 (m1,m2) are given by

ν II
1 (m1,m2) = (2π)−2/3 N2

CO

4
(2GM)4/3

R3
>v∞

f −2/3
100 (20)

ν II
2 (m1,m2) = (2π)−4/32N2

CO

3
(2GM)2/3v∞

R3
>

f −4/3
100 (21)

whereR> = max(R1,R2) and the mass dependence is implicit
in the total massM, v∞ = v12, R1, andR2 (see the Appendix
for explicit formulae).

The mass integrals in (19) can be evaluated independent of
the frequency, resulting in the same functional form as for
Model I (16). The constants for Model II are

ν II
1 = 1.9×10−12yr−1 (22)

f II
1 = 1.0×10−10Hz. (23)

(see the Appendix for parametric formulae).
For Model II, it is also interesting to get the relative en-

counter rates for BH−BH, BH−NS, and NS−NS interactions.
Integrating Eq. (19) over the corresponding mass intervals, we
get

ν II
1,BH−BH = 0.996ν II

1 = 286ν I
1, (24)

ν II
1,BH−NS = 4.14×10−3ν II

1 = 1.19ν I
1, (25)

ν II
1,NS−NS = 7.04×10−5ν II

1 = 0.02ν I
1. (26)

The corresponding analytical formulas are given in the Ap-
pendix. It is clear that BH−BH encounters dominate the event
rates. The event rates of NS− NS encounters are more than
four orders of magnitude lower!

5.1.3. Discussion

Therefore we conclude that Model II has a much larger
event rate than Model I. By inspection of Eq. (19) and (20)
the main factors responsible for this increase can be iden-
tified. First, the CO density is increased by the CO con-
finement in the core:n ∝ Rm

−3 ∝ m3/2. Second, the typ-
ical CO relative velocity inverse is increased:v−1

∞ ∝ m1/2.
Third, the gravitational focusing is proportional tom4/3. Thus,

ν1 ∝
(
R3

gc/R3
CO

)
×
(
〈m10/3〉/m10/3

CO

)
. The PE event rate is thus



8 Kocsis, Gáspár, & Márka

highly inclined towards the high-mass end of the BH distribu-
tion in the cluster. For a more precise treatment, the exact
contributions of the component mass parameters are given in
the Appendix, Eqs. (A4-A6). Note, that Dymnikova, Popov,
& Zentsova (1982) obtained results equivalent to our Eq. (17)
of Model I, but they focus on star – star encounters and use
m = 4M⊙ instead ofmCO = 10M⊙. (Another difference is that
they do not discussf0-dependent differential rates, but derive
the total PE rate based on a typical minimum separation. Us-
ing m = 4M⊙ in Model I, the results are a factor of 103 lower
than the rates for Model II.)

Equations (16-18) and (22-23) give the resulting PE event
rate per GC of all Newtonian trajectories between point
masses for the two GC models considered. A significant
shortcoming is that COs have finite radii and collide for suf-
ficiently small minimum separations. Moreover the Newto-
nian approximation breaks down for large velocities or strong
gravitational fields. These effects are considered in § 5.2 be-
low.

Notice how small is the correction proportional tof −4/3
0 in

Eq. (16) for GW detector frequenciesf ≫ f I,II
1 . Recall that in

Eqs. (13) and (14) the expansion coefficient is proportionalto
v∞. Hence the leading order term is exact forv∞ = 0, thus
it corresponds to parabolic trajectories. This proves our con-
jecture that the unbound orbit encounter rate is dominated by
near-PEs.

In Eq. (16) the leading-order terms are proportional to
1/vvir. The result is slightly counterintuitive if one identifies
the star system with an ideal gas, since for ideal gases, the rate
of collisions is directly proportional tov∞. In this perspective
it seems reasonable to expect the encounter rate to be a grow-
ing function ofv∞ for fixed frequency bins. The confusion
arises from the fact that our GC models are using the oppo-
site limit. For star systems the typical velocities are so small
that the gravitational interaction dominates the motion ofthe
stars.9 Increasing the velocities decreases the gravitational fo-
cusing, thereby decreasing the encounter likelihood.

The expected rate of PE events for a single GC is plotted
in Figure 3 for logarithmic frequency bins for the two GC
models. The non-relativistic results presented in this section
are plotted with dotted lines, which overlap with the rela-
tivistic calculation below∼ 10Hz. For higher frequency the
minimum separation drops below∼ 6 Schwarzschild radii
for the largest BHs and relativistic corrections become im-
portant. Figure 3 displays that event rates are higher for
lower characteristic frequencies, e.g. for model II forf0 =
0.1mHz (the minimum frequency for space detectors), we get
1.9× 10−8yr−1GC−1 events, whereas for terrestrial detectors
f0 = 100Hz it is only 1.9×10−12yr−1GC−1.

5.2. Relativistic Orbits

Up to this point the PE event rates have been estimated
for fixed characteristic frequencies but independent of the
minimum separationb0 and relative velocityv0. In addition
to non-relativistic parabolic encounters, these events also in-
clude head-on collisions, relativistic captures, relativistic fly-
bys, and zoom-whirl orbits. Since we have used a Newto-
nian analysis in the derivation, our results presented in § 5.1

9 The ideal gas model is sufficient only for extremely small characteristic
frequenciesf0 ≪ f1 (eqs. [18] and [23]), which is below the lower frequency
limit of GW detectors. In this regime the stars’ trajectories are only slightly
deflected, implying that gravity, in terms of encounter likelihood, is negligi-
ble.

FIG. 3.— The expected total rate of PEs produced in a single GC perlog-
arithmic frequency bin. GC Model I (solid) and Model II (dashed) results
are shown including relativistic corrections for geodesics avoiding head-on
collisions (see § 5.2). The dotted lines represent PE event rates in the non-
relativistic approximation. The non-relativistic treatment is adequate for low
frequencies for which the trajectories avoid collisions with minimum separa-
tions of several Schwarzschild radii. Only a fraction of these events can be
detected, depending on the distance of the GC.

are valid for the non-relativistic parabolic encounters only.
Here, we improve the classical calculation to account for
general relativistic encounters of test particles moving along
geodesics in the Schwarzschild space-time. This treatmentis
exact for extreme mass ratios, but as an approximation we ex-
trapolate these formulas for general mass-ratios as well.

To classify the orbits, we introduce a parameterλ ≡
b0/RSH, whereb0 is the distance at periastron, andRSH =
2GM/c2 is the Schwarzschild radius of the total mass10. For
Newtonian parabolic encounters, we getλ = c2/v2

0. We distin-
guish (i) non-relativistic parabolic encounters forλ ≥ 6, (ii)
general relativistic flybys for 2.1 < λ < 6, (iii) zoom-whirl
orbits for 2≤ λ ≤ 2.1, and (iv) head-on collisions for 2< λ.
We restrict our calculations toλ ≥ 2, since this is the regime
in which matched filtering can be carried out using the wave-
forms of § 3.

In this section, we improve § 5.1.2 to account for the rel-
ativistic deviations in the trajectories. In practice, we repeat
the derivation of § 5.1.2 to get the cross-section using the or-
bital parameters of the geodesics of a test particle moving in a
Schwarzschild space-time (Gair, Kennefick, & Larson 2005).

For parabolic encounters the specific orbital angular mo-
mentum is

L̃ =
√

2GMb0
(
1−λ−1

)−1/2
, (27)

whereλ = λ(b0) defined above. The non-relativistic result is
retained forλ→∞. Equating (27) to the angular momentum
before the encounter̃L = b∞v∞, solving forb∞, and substi-
tuting in dσ = 2πb∞db∞ we get

dσ =
GM

v2
∞b2

0

1− 2λ−1

(1−λ−1)2
2πb0db0. (28)

This is to be compared to the non-relativistic analogue (11).
The first term is the non-relativistic term for near-parabolic
orbits and theλ-dependent fraction describes the relativistic

10 Here we restrict to BH-BH encounters which dominate event rates, see
Eqs. (24-26).
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correction. The latter decreases the cross section per unitb0.
For λ → 2 the cross section becomes 0. For smaller impact
parameters a head-on collision takes place, for which the pe-
riastron distance andλ is undefined.

Repeating § 5.1.2, the next step is to change to thef0 char-
acteristic frequency variable. SinceL̃ = b2

0 dφ/dτ , where dτ =
(1−λ−1)1/2dt is the infinitesimal proper time element along
the geodesic at the closest approach (e.g. Misner, Thorne, &
Wheeler 1973), from (27) we get

dφ
dt

≡ ω0 ≡ 2π f0 = (2GM)1/2b−3/2
0 . (29)

Quite remarkably, this is identical to the result of the non-
relativistic calculation for parabolic orbits (13). The GW
waveforms have a peak at an angular frequencyω0 for the
non-relativistic encounters (Turner 1977, and see § 3 above).
For relativistic zoom-whirl orbits with several revolutions
around the central BH, the most intensive GWs are radiated
at twice the orbital frequency. It is also useful to get the in-
verse relationship from eq. (29):

λ(M, f0) =

(
c3

4πG
1

M f0

)2/3

. (30)

According to Eq. (29), the non-relativistic result forω0 is
adequate even in this regime. Using (13) we get

dσ =
2π
3

(2GM)4/3

v2
∞

ω
−2/3
0

1− (ω0/ωM,max)2/3

[
1− 1

2 (ω0/ωM,max)2/3
]2

dω0

ω0
, (31)

analogous to (15) for parabolic orbits, where

ωM,max≡ 2π fM,max≡
2πc3

√
32GM

(32)

is the maximum angular frequency, corresponding toλ = 2.
It is desirable to calculate the partial event rates of PEs with

minimum separationsb0 exceedingλRSH, we substitute in
Eq. (13), and impose the resulting constraint on the charac-
teristic frequency:

f0 ≤ fM,λ = 2π
c3

2GM
λ−3/2. (33)

For marginally plunging orbits,λ = 2, we getfM,λ = fM,max.
When adding up the total event rates for a particularf0

(Eqs. 16 and 19) only the masses satisfying the constraint (33)
have to be included in the mass integrals. Repeating § 5.1.2
with these modification, we get for Model I

dνI = νI
1

(
f0

f100

)−2/3 1− 2( f0/ fM,max)2/3

[
1− ( f0/ fM,max)2/3

]2
d f0
f0

. (34)

for f0 ≤ fMCO,λ, and dνI = 0 otherwise. For Model II, we get

dν II =
∫∫

f0≤ fM,λ

dm1dm2gCO(m1)gCO(m2) ×

ν II
1 (m1,m2)

1− 2( f0/ fM,max)2/3

[
1− ( f0/ fM,max)2/3

]2
(

f0
f100

)−2/3 d f0
f0

,

(35)

In Eqs. (34) and (35)ν I
1 andν II

1 (m1,m2) are the non-relativistic
terms given by (17) and (20).

Fig. 3 shows the resulting total event rates for d lnf0 in-
tervals. The solid and dashed lines represent the total event
rates of PEs for Models I and II, respectively, including the
relativistic correction for encounters that avoid collisions.
As a comparison, dotted lines display non-relativistic re-
sults. Compared to the non-relativistic results, event rates
decrease for two reasons: first the gravitational focusing de-
creases the cross sections of relativistic orbits, for 2100Hz =
f0,max[2mNS, (λ = 2)] ∼> f0 ∼> f0,max[2mmax, (λ = 6)] = 10Hz,
and second, the plunging orbits withλ < 2 are excluded from
our estimate. The latter effect kicks in atf0,max(2mmax,2) >
47Hz where the highest mass BHs suffer head-on collisions.
At f0,max(2mmin,2) = 570Hz even the smallest BHs are cap-
tured, and only the NS–NS PE event rate contributions re-
main. The NS–NS partial event rates can be visualized for
lower frequencies by extrapolating the total event rates shown
in Fig. 3 between 570Hz< f0 < 2100Hz. The NS–NS event
rates are clearly negligible compared to the total rates includ-
ing BHs. Note, that our calculations use point masses valid
for BHs only. For f0 ∼> 1500Hz the minimum separation of
1.35M⊙ NSs decreases under∼ 20km, for which our approx-
imation breaks down.

Figure 3 is useful to visualize the total PE event rate per GC.
However, only a fraction of these events can be detected, and
this fraction depends on both the differential encounter event
rates∂3ν/∂m1∂m2∂ ln f0 and also the observable distance of
the encounter. For the detection rates we shall make use of
the infinitesimal encounter event rate for infinitesimal mass
and f0 bins. From eq. (35) we get11

∂3ν

∂m1∂m2∂ ln f0
= ν II

1 (m1,m2)
1− 2( f0/ fM,max)2/3

[
1− ( f0/ fM,max)2/3

]2
(

f0
f100

)−2/3

.

(36)
The total event rate for one GC depends only on
∂3ν/∂m1∂m2∂ ln f0, thus in eq. (35) eq. (36) was directly inte-
grated overf0, and them1, andm2 distributions. However for
the detection rate, the observation distance of the encounter
depends onf0, m1, andm2 differently. Therefore the differ-
ential detection rate has a modified parameter dependence,
implying that the integration can be carried out only after the
observation distance had been included in the differentialrate.

5.3. Maximum Distance of Detection

We now derive the maximum detectable distance of an
encounter for fixed massesm1, m2, and characteristic fre-
quencyf0, for a given signal-to-noise ratioS/N. The luminos-
ity distance can be expressed with the redshifted parameters,
miz = (1+ z)mi for i = {1,2} and f0z = f0/(1+ z), using the an-
gular averaged signal-to-noise ratio (2) and signal waveform
(5):

dL(m1z,m2z, f0z) =

√
85π2/3

25/3

G5/3

c4

Mz
5/3

S/N

√
Erel(λ)
Enr(λ)

W ( f , f0z),

(37)
whereErel(λ)/Enr(λ) is the enhancement of the GW energy
for general relativistic orbits (Gair, Kennefick, & Larson
2005, and see § 3 above), whereλ = λ(M, f0) = λ(Mz, f0z) is
given by eq. (30), andW ( f , f0z) is a factor depending on only

11 We follow to notation of Miller (2002) and Will (2004) for thedefinition
of partial event rates by not including the mass distribution gCO(m). The mass
distributions enter only when integrating for the total event rates eq. (42).
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the frequencies

W ( f , f0z) =

√√√√4
5

∫ fmax

fmin

f 4/3
0z

f 2

F( f/ f0z)
Sn( f )

d f (38)

F(x) is the dimensionless, normed GW energy spectrum de-
fined in § 3, fmin and fmax are the minimum and maximum
frequencies specific for GW detectors (see § 2). Henceforth
we shall fixS/N = 5, but other values can be roughly obtained
by scaling the final result on detection rates with (S/N)−3 (as-
suming that the number of sources increases withdL

3
max).

Note that eq. (37) formally depends on redshifted param-
eters. However, since both the differential encounter event
rate (36) and the GC model mass distribution depend on
the comoving parameters, it is useful to revert to the co-
moving parameters in eq. (37) and getdL(m1,m2, f0). This
can be achieved by writingmiz = (1+ z)mi for i = {1,2} and
f0z = f0/(1+ z) in (37) and making this equal to the standard
formuladLcos(z) connecting the luminosity distance and red-
shift in a specific cosmology (e.g Eisenstein 1997, the index
“cos” refers to the cosmological luminosity distance–redshift
formula in order to distinguish this from the maximum dis-
tance (37) specific for PE encounters). Now both sides depend
on z. Numerically solving forz givesz(m1,m2, f0). Finally
substituting the result back indLcos(z) givesdL(m1,m2, f0).

This procedure is however cumbersome in practice. It be-
comes numerically very time-consuming when computing the
total detection rates, which includes the evaluation of integrals
over the parameters. Therefore we make the following essen-
tial approximations when solving for the luminosity distance
in (37):

dL(m1,m2, f0) ≡





usingz = 0 if z1 ≤ 0.01
usingz = H0dL/c if z1 ≤ 0.1
no approximations if 0.1< z1 < 6
usingz = 6 if S/N > 5 for z = 6

(39)
On the RHS of eq. (39),z1 is the first approximation of the
redshift, which is obtained by calculatingdL from the RHS of
eq. (37) with no redshift, and making this equal todLcos(z1),
and solving forz1. We neglect cosmology forz1 < 0.01 and
take a Hubble constant H0 = 70km/s/Mpc for 0.01< z1 <
0.1. Next, wheneverz1 > 0.1, we substitutez = 6 for the RHS
of eq. (37) and in case this is already larger thandLcos(6), then
we conclude that the source is observable atz = 6 forS/N > 5
and takedL = dLcos(6) as the maximum distance of observa-
tion. We do not explore detection rates at larger redshifts,
since then the BH mass and radial distribution might not have
relaxed to the final state. IfS/N < 5 for z = 6 then we execute
the exact procedure without approximations forz1 > 0.1

Changing to the non-redshifted variables in Eq. (37) is even
ambiguous in some cases. ForNGLISA the signal-to-noise ra-
tio is occasionally not a decreasing but an increasing function
of the redshift. This happens when the signal is redshifted
to the more sensitive range of frequencies of the detector,
and the enhancement in sensitivity is more substantial than
the attenuation from increasing the distance. In these cases a
certain encounter can be observed within a certain distance,
then increasing the distance, the encounter first becomes in-
visible (i.e.S/N < 5), then again visible (i.e.S/N ≥ 5) within
a second maximum distance. This phenomenon occurs for
NGLISA for large BH masses and near-maximum characteris-
tic frequencies.

Fig. 4 shows the maximum distance of sources withS/N = 5
for m1 = m2 = 40M⊙ BH masses. The thick curves account for
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FIG. 4.— Maximum luminosity distance,dL max, of two BHs with m1 =
m2 = 40M⊙ masses undergoing a PE, and emitting GWs that are detected
on average withS/N = 5. Thex-axis shows the emittedf0 characteristic
frequency of the flyby comoving with the host GC. The curves correspond
to InLIGO, VIRGO, AdLIGO,LISA, andNGLISA, respectively. Thin dotted
lines show the result for Newtonian waveforms (Turner 1977), thick lines
account for general relativistic corrections to the GW amplitudes for close
encounters. For frequencies larger thanfM,max = 71Hz the minimum distance
is underλ = 2 Schwarzschild radii, for which a head-on collision takesplace.
We did not impose any restrictions onλ for the non-relativistic curves. All
curves account for the redshiftingz, which is shown on the right border. We
restrict toz ≤ 6. For different masses,dL scales with roughlyM5/3 and the
cutoff frequency scales withM−1. Since signals are broadband, the detectors
have a chance to observe a broad range off0.

the relativistic corrections with minimum separations larger
thanλ = 2, the thin dotted lines represent the non-relativistic
results with no bound onλ. The maximum frequency (32)
corresponding to marginally colliding orbits (λ = 2) is 71Hz
and scales withM−1 for other masses. For other massesdLmax

scales withM3/5. All curves account for the cosmological
redshifting. The plot shows, that the non-relativistic approx-
imation is adequate for small frequencies, but it implies a lu-
minosity distance a factor of 2 – 3 lower than the relativistic
calculation near the maximumf0 frequency. Therefore, the
dotted lines are useful to approximately visualizedLmax for
lowerM, when the cutoff frequency shifts to higher values.

The enclosed volume and the observable sources are given
by eq. (8). If neglecting relativistic and cosmological effects,
we getV ∝ D3 ∝M5.

5.4. Detection Rates

In the previous sections we calculated the differential event
rates of PEs for single GCs per infinitesimal mass and fre-
quency bins, and computed the maximum distance of their
detection. Here we combine these results to calculate the total
detection rate of PEs.

For fixedm1, m2, and f0, the rate of GW detections of the
corresponding encounters is the observed rate for a single GC
times the number of observable GCs. Since there is a cosmo-
logical redshift between the source GC and the observation,
the single-GC rate is reduced by 1+ z:

∂2ν total

∂m1∂m2∂ ln f0
=

1
1+ z

∂2νsingle

∂m1∂m2∂ ln f0
Ngc(m1,m2, f0). (40)

The first term is the redshifted event rate expressed with the
comoving event rate (36) and the second is simply

Ngc(m1,m2, f0) = Ngc[dLmax( f0,m1,m2)], (41)
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FIG. 5.— The expected PE detection rate per logarithmic emittedchar-
acteristic frequency bin. Results are shown for the specificdetectors. All
curves account for general relativistic encounters and cosmology. The units
on they-axis is simply yr−1, since it is a rate per d lnf0 = df0/ f0 bins for
which the units off0 drops out. For largef0, there is an abrupt cutoff in the
detection rate as the larger mass BHs suffer head-on collisions, leaving only
the contribution of low-mass BHs in the PE rate.

whereNgc(dL) is the number of GCs within a given maximum
luminosity distance. In practicedLmax is given by eq. (39)
which we substitute in eq. (8).

The total detection rate is then simply the integral of the
differential detection rate (40) using the CO mass distribution.
After substituting, we get

ν tot( f0) =
∫ f0 max

0

d f0
f0

∫∫

f0≤ fM,max

dm1dm2

gCO(m1)gCO(m2)
∂2ν total

∂m1∂m2∂ ln f0
(42)

wheregCO(m) is the CO mass distribution for Model II, de-
fined in § 4.3.2. The mass integrals are evaluated over the
(m1,m2) domain for which the encounter avoids a collision
(i.e. f0 ≤ fM,max, see eq. [32]) and thef0 integral extends
to a maximum possible frequency independent of masses
(∼ f2mNS,max). The result of eq. (42) is one number, the ex-
pected rate of detection for the specific detector.

5.5. Results

The estimated total number of successful detections from
eq. (42) isν tot = 5.5× 10−5yr−1 for InLIGO, 7.2× 10−5yr−1

for VIRGO, 6.3× 10−2yr−1 for AdLIGO, 2.9× 10−6yr−1 for
LISA and 1.0yr−1 for NGLISA.

It is interesting to see the differential event rate per logarith-
mic f0 bin independent of masses, which is obtained by carry-
ing out only the mass integrals in eq. (42). The result is shown
in Fig. 5. The figure shows that both AdLIGO andNGLISA
could have some chance to detect PE events, if observing
for one year; AdLIGO mainly sensitive tof0 frequencies be-
tween 30 and 80Hz, andNGLISA sensitive between 0.2Hz
and 10Hz. There is a sharp cutoff in the PE detection rate
for high frequencies. In this regime, the encounters among
the relatively higher mass BHs are not parabolic, but result
in direct captures, and only the lower mass BHs contribute
to the PE detection rate. show the differential event rate for
logarithmic total mass bins, d lnM, and for logarithmic mass
ratio bins, d lnq. Here we define the mass ratio asq = m</m>

for which q ≤ 1. (Recall the definitionsm< = min(m1,m2)
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FIG. 6.— The expected PE detection rate per logarithmic total mass bins,
d lnM, for the various detectors. Note that the mass function of our GC
model is constant for d lnm intervals for BHs 120M⊙ > 2m > 10M⊙, and
is Gaussian type for NSs 2m ∼ 2.7M⊙. BH–NS encounters dominate for
6.35M⊙ < M < 10M⊙. The dominant PE contribution is expected from
m1,2 = 40− 60M⊙ component masses.

andm> = max(m1,m2).) TheM dependent partial PE detec-
tion rate can be obtained from eq. (42) by changing them1,m2
integrals toM andm2 variables, rearranging the order of inte-
grals, and evaluating thef0 andm2 integrals only. The partial
PE rates for fixedq can be obtained similarly, by changing
to m> and q variables, and evaluating thef0 and m> inte-
grals only. In § 5.1.2 we demonstrated that the event rates
of GCs are sensitive to〈m10/3〉, and are inclined towards the
high-mass end of the CO distribution, in particular PEs of NSs
have a relatively negligible event rate. The detectable volume
entails an even stronger mass dependencem5. Therefore, for a
mass distribution ofm−1, we expect a scaling with∼m22/3 for
logarithmic total mass bins, implying that the highest mass
BHs will dominate the PE event rates. However, increasing
the BH masses decreases the maximumf0 frequency of an
encounter avoiding a collision. Figure 6 verifies that all of
the detectors are indeed much more sensitive to large total
masses, even though our model GC (i.e. Model II) contains a
small relative number of these objects. Note, that the BH mass
distributiongBH(m) is constant for d lnm bins. With Figure 6
the partial detection rates of BH–BH and NS–NS encounters
can be visualized. ForM > 2mmin = 10M⊙ the BH–BH en-
counters dominate, whileM ≈ 2mNS correspond exclusively
to NS–NS encounters. PE detections of NS–NS encounters
are practically impossible, they are suppressed by at least9
orders of magnitudes. Similarly, Figure 7 shows that BH–NS
encounters are also suppressed by 6 orders of magnitudes!

Figure 8 shows the detection rate as a function of mini-
mum distance,λmin of the encounters. Recall that for a given
total massM, λ determines the characteristic frequencyf0
by eq. (33), and marginally plunging orbits correspond to
λmin = 2. Figure 8 was obtained by changing the domain of
integration off0 to f0 ∼< fM,λ in eq. (42). The curves show that
terrestrial detectors are more sensitive to close approaches
than space detectors. Theλmin = 2 case corresponds to all of
the PE detections. It is interesting to note, that terrestrial de-
tectors display a differentλ dependence: AdLIGO rates show
a weaker increase for marginally colliding orbitsλ∼ 2. This
is a consequence of cosmology: the observation distance is so
large (Fig. 4) that the cosmological comoving volume element
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correspond to BH–NS events.
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FIG. 8.— The total cumulative expected detection rate of PEs subject
to the constraint that the minimum separation exceedsλ times the total
Schwarzschild radius. Forλ < 2 a head-on collision occurs, which we are
not considering in the present paper (see § 7.1 for a discussion).

is significantly smaller, and the GW frequency is redshifted
outside the sensitive domain of the detector for these events.

6. CONCLUSIONS

PEs of solar BHs are possible sources of gravitational ra-
diation. Our results suggest that current and near future GW
detectors are potentially capable of detecting these signals in
the local universe and up to cosmological distances for the
higher masses. We anticipateS/N ∼> 5 matched-filtering de-
tection rates for quasi-parabolic trajectories avoiding colli-
sions,ν tot = 5.5× 10−5yr−1 for InLIGO, 7.2× 10−5yr−1 for
VIRGO, 0.063yr−1 for AdLIGO, 2.9×10−6yr−1 for LISA, and
1.0yr−1 for NGLISA. For different signal-to-noise ratios, de-
tection rates scale by approximately (S/N)−3. These results
correspond to a BH mass functiongBH(m) ∝ m−1 with mini-
mum and maximum masses of 5 and 60M⊙. For comparison
we ran calculations for more general distributionsgBH(m) ∝
m−p, and differentmmin andmmax values. Table 1 lists the re-

TABLE 1
DETECTION RATES FOR ALTERNATIVE MODELS

p mmax mmin νInLIGO νVIRGO νAdLIGO νLISA νNGLISA
[M⊙] [M ⊙] [ yr−1] [ yr−1] [ yr−1] [ yr −1] [ yr−1]

0 20 5 1.0(−6) 5.2(−7) 2.2(−3) 8.7(−8) 6.3(−4)
0 60 5 2.2(−4) 3.1(−4) 2.4(−1) 1.2(−5) 5.2
0 60 40 1.3(−4) 2.1(−4) 1.3(−1) 7.2(−6) 4.3
0 100 5 1.0(−3) 3.6(−3) 1.3 1.3(−4)
0 100 40 9.5(−4) 3.4(−3) 1.2 1.2(−4)
0 100 80 2.4(−4) 1.2(−3) 3.4(−1) 4.3(−5)
1 20 5 4.8(−7) 2.4(−7) 1.0(−3) 4.5(−8) 2.7(−4)
1 60 5 5.5 (−5) 7.2 (−5) 6.3 (−2) 2.9 (−6) 1.0
1 60 40 2.5(−5) 3.9(−5) 2.6(−2) 1.3(−6) 7.6(−1)
1 100 5 2.2(−4) 6.4(−4) 2.8(−1) 2.4(−5)
1 100 40 1.8(−4) 5.7(−4) 2.2(−1) 2.0(−5)
1 100 80 2.9(−5) 1.4(−4) 4.2(−2) 5.2(−6)
2 20 5 1.8(−7) 9.1(−8) 4.1(−4) 2.1(−8) 9.5(−5)
2 60 5 6.6(−6) 7.2(−6) 8.3(−3) 3.7(−7) 8.4(−2)
2 60 40 1.8(−6) 2.8(−6) 1.9(−3) 1.0(−7) 5.0(−2)
2 100 5 1.7(−5) 3.6(−5) 2.1(−2) 1.5(−6)
2 100 40 9.7(−6) 2.7(−5) 1.1(−2) 9.6(−7)
2 100 80 8.9(−7) 4.3(−6) 1.3(−3) 1.6(−7)

NOTE. — The number of BHs per GC is normalized toNBH = 500 for
mmin = 5M⊙ for all choices ofmmax. For largermmin, all BHs with 5M⊙ ≤
m < mmin are assumed to have escaped from the cluster. Detection rates are
given in normal form, where the exponent is shown in parenthesis. Some
fields left blank correspond to cases where theS/N is not a monotonically
decreasing function of distance (see § 5.3).

sults for these models. Here, we have fixedNBH = 500 for
models withmmin = 5M⊙. For largermmin, we reduceNBH
by assuming that BHs with masses 5M⊙ ≤ m < mmin have
escaped the cluster. Results are very different for various
choices of parameters (see § 7.3.2 for a detailed discussion
below).

We constructed two different GC models. We conclude that
a uniform mass and density distribution (Model I) is inade-
quate since the contribution of the GC core consisting of the
more massive BHs are significantly underestimated. After ac-
counting for mass distribution and mass segregation, as well
as the relative velocity distribution of the sources (ModelII)
we obtained event rates two orders of magnitudes higher than
Model I per GC. Moreover, more massive BHs in GCs are
visible to significantly larger distances, and supply the most
prominent sources of PEs for detection (Fig. 6).

In § 7, we include a critical review of our assumptions and
their influence on the results. To point out just one thing, note
that compared to our previous estimates above, the PE detec-
tion rates might have been underestimated by four orders of
magnitudes for core-collapsed GCs (depending on the final
core radius and population, see § 7.3.3 below)!

7. DISCUSSION

7.1. Comparison with Other Orbits

How do PE event rates compare to the event rates of binary
inspirals, mergers, and head-on collisions? What are the main
factors for the difference? We briefly discuss these questions
in this section.

7.1.1. Basic Features of Parabolic Encounters

Let us quickly summarize the main properties of PE
sources.

• The event rates for d lnf0 intervals scale withf −2/3
0 for

trajectories avoiding collisions. Collisions decrease PE
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event rates quickly for large frequencies,f ∼> 50Hz,
rates drop four orders of magnitudes between 50 and
500Hz.

• The f0-scaling of the amplitude of the signal isf −1/3
0

for GW frequenciesf ∼ f0. The integrated RSS signal
amplitude scales withf 1/6

0 .

• The signal energy-spectrum is broadband, has a max-
imum at f ∼ f0, and a relatively shallow cutoff for
larger frequencies. The half-maximum of the signal is
∆ f ∼ 1.5 f0, and the spectral energy density drops to
1% at f ∼ 5 f0 (Turner 1977).

• In terms of detections for d lnf0 intervals, the maxi-
mum distance of PE detections for a band-pass detector
is roughly independent of frequencies betweenfmin ∼<
f0 ≤ f0max, where fmin is the minimum detectable fre-
quency of the detector andf0max is the maximum char-
acteristic frequency of a PE avoiding collisions.

• The detection rates of equal-mass PEs scale with
〈m22/3〉 for d lnm intervals, the higher mass BHs domi-
nate PE detections.

• Space detectors will possibly detect more PE events in
the local universe, but terrestrial detectors see further.

• Typical event rates are 1.6×10−12yr−1GC−1 or equiva-
lently R = 1.4× 10−11h3yr−1Mpc−3(∆ ln f0)−1 for f0 =
50Hz.

• Typical maximum distance of detection for PEswith
appropriate f0 is ∼ 300Mpc for InLIGO and VIRGO,
z ∼ 1 for AdLIGO,∼ 0.4Mpc forLISA, andz ∼ 0.2 for
NGLISA.

• Typical overall rate of PE detections per year is∼ 10−4

for InLIGO and VIRGO,∼ 0.1 for AdLIGO, ∼ 10−6

for LISA, and∼ 1 for NGLISA.

Table 2 contrasts the event rates of PEs and other possibly
detectable sources in the literature. The event rates,R, listed
in the table are normalized to an average space density of
galaxiesngal = 0.029Mpc−3 andngc = 2.9Mpc−3 for GCs (see
§ 4.2). For PEs theR values shown correspond to the sensi-
tive range of characteristic frequencies: 10Hz≤ f0 ≤ 200Hz
for InLIGO, VIRGO, AdLIGO, 10−4Hz≤ f0 ≤ 1Hz forLISA,
and 10−1Hz≤ f0 ≤ 60Hz forNGLISA (see Fig. 5). The max-
imum distance of detection,dL, shown are typical values for
detectable encounters. The elements marked with “-” are not
given by the corresponding references. Values are left blank
that are the same as in the previous row. Note that the num-
bers are very uncertain depending on model assumptions. PE
event rates correspond to our standard GC model, most signif-
icant uncertainties are the numbers of higher mass BHs in the
cluster. Note, that stellar BH–BH inspiral event rate estimates
in GCs vary 3 orders of magnitudes!

7.1.2. Parabolic Encounters vs. Inspirals

The event rates of PEs depend on the characteristic fre-
quency. Without any specifications PEs are more regular than
e.g. BH–BH inspirals. However,within the sensitive range
of GW terrestrial detectors PEs are rather rare by a factor of
∼ 10−4. Event rates are higher for space detector frequencies,

TABLE 2
COMPARISON OF EVENT AND DETECTION RATES WITH OTHER SOURCES

Event Loc R Detector dL ν

[Gpc] [yr−1]

BH/BH PE1 GC 7.1(−11) InLIGO 3.0(−1) 5.5(−5)
GC 7.1(−11) VIRGO 3.0(−1) 7.2(−5)
GC 7.1(−11) AdLIGO 5.6 6.3(−2)
GC 2.4(−7) LISA 5.1(−4) 2.9(−6)
GC 2.4(−9) NGLISA 1.9 1.0

NS/NS insp2 Field 1.9(−7) AdLIGO 2.0(−1) 3.0
(3LPP) Field 1.1(−6) AdLIGO 2.0(−1) 3.4(+1)
(4Kalogera) Field 2.0(−6) InLIGO 2.0(−2) 3.5(−2)

2.0(−6) AdLIGO 3.5(−1) 1.9(+2)
(5NGF) Field 2.9(−4) InLIGO 2.0(−2) 3.4(−1)

2.9(−4) AdLIGO 3.0(−1) 1.1(+4)
BH/NS insp5 Field 2.9(−4) InLIGO 4.3(−2) 3.3(+1)

2.9(−4) AdLIGO 6.5(−1) 1.2(+5)
BH/BH insp6 Field 2.0(−9) AdLIGO 1.1 1.0

(7PZM) Nucleus 1.8(−8) AdLIGO 1.1 1.0(+2)
Zero-age GC 3.2(−7) AdLIGO 1.1 1.8(+3)
Evolved GC 5.4(−8) AdLIGO 1.1 3.0(+2)

(8Miller) GC 3.5(−9) AdLIGO 1.6 1.0(+1)
(9O’Leary) Zero-age GC 8.7(−7) AdLIGO − 2.7(+3)

Evolved GC 8.7(−10) AdLIGO − 2.7
IMBH/BH8 GC 3.5(−9) AdLIGO 1.6 4.0(+1)

3.5(−9) LISA 2.0(−1) 7.0(−3)
(10Will) GC 8.5(−9) LISA 4.0(−2) 1.0(−6)
(11GMH) GC 5.1(−5) LISA 4.0(−2) 6.0(−3)
(12HPZ) Field 1.4(−7) LISA 3.5(−1) 8.6

SMBH/WD13 Nucleus 1.7(−8) LISA 1.6 9.4(+1)
(14HA) Nucleus 9.0(−8) LISA 1.0 1.3(+2)

SMBH/BH13 Nucleus 3.2(−9) LISA 6.6 1.1(+3)
SMBH/IMBH13 Nucleus 2.9(−12) LISA 6.6 1.0

(15PZ) Nucleus 8.3(−10) LISA 4.4 1.0(+2)

NOTE. — Event ratesR are is in unitsh3yr−1Mpc−3.
1 Parabolic encounters for our standard GC model. The maximumdistance of
detection corresponds tom1 = m2 = 50M⊙, f0 = 50Hz for InLIGO, VIRGO,
AdLIGO andNGLISA, and f0 = 10mHz forLISA.
2 NS/NS inspirals, Portegies Zwart & Spreeuw (1996) theoretical models of bi-
nary evolution calibrated to the observed supernova rate.
3 Lipunov, Postnov, & Prokhorov (1997)
4 Kalogera et al. (2004), based on 3 highly relativistic radiopulsars.
5 Nakar, Gal-Yam, & Fox (2005), based on recent observations of 4 short/hard
gamma-ray bursts, identified with NS/NS or BH/NS inspirals.
6 BH/BH inspirals, Portegies Zwart & Yungelson (1998).
7 Portegies Zwart & McMillan (2000). Distance corresponds tothe inspiral of
massesm1 = m2 = 10M⊙ and detection rates correspond to a 100% detection effi-
ciency within this distance.
8 Miller (2002)
9 O’Leary et al. (2006). They compute the number of mergers as afunction of
time, as BHs are being slowly depleted from the cluster. The detection rates cor-
respond to cases, where all GCs are zero-age (1Myr) or evolved (10Gyr), with a
number density 1Mpc−3.
10 Stellar BH inspirals into intermediate mass BHs, adopted from Will (2004).
Distance corresponds to the inspiral of massesm1 = 100M⊙ andm2 = 10M⊙, R
corresponds to the inspirals with a maximum time 40–400yr before merger which
can be detected withS/N = 10 after a 1yr integration withLISA.
11 Gültekin, Miller, & Hamilton (2006) assuming more optimistic probability of
IMBHs in GCs and IMBH maximum mass than Will (2004)
12 Hopman & Portegies Zwart (2005), assuming observed ultraluminous X-ray
sources are associated to tidal captures of 10M⊙ BHs by 103M⊙ IMBHs.
13 Inspirals into supermassive BHs,M = 106M⊙. Gair et al. (2004) assuming their
optimistic set of results.
14 Hopman & Alexander (2005)
15 Portegies Zwart et al. (2006) N-body simulations of the formation and inward
migration of IMBHs in the Galactic center.
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however space detectors have a smaller distance of maximum
observation.

Table 2 suggests that the detectable distance of PEs is com-
parable to inspirals. However, this is somewhat deceptive
since PE results correspond to larger BH masses, 50M⊙ rather
than 10M⊙ which is regular for BH–BH inspirals in the liter-
ature. For 10M⊙ component masses, the maximum distance
of observation is less for PEs than for inspirals (Fig. 4), the
PE event rates are suppressed by a factor of∼ 103 (Fig. 6).
However for larger masses the comparison changes with the
following factors. First, although the GW signal amplitudeis
proportional toM5/3 for inspirals, increasing the masses re-
duces the signal frequency (which in turn reduces the detector
sensitivity) and also reduces the observation time (which also
decreases the effective signal amplitude). Another important
difference is in the binary separationλ which determines the
signal frequency. It is restricted toλ > 3 for inspirals, the in-
nermost stable circular orbit, a more stringent constraintthan
the conditionλ > 2 for PEs (see § 5.2). Finally opposed to
the PE signal waveforms, the inspiral signals are narrow band,
implying that the high mass, i.e. low frequency, inspiral wave-
forms are much harder to detect as much smaller signal power
accumulates at the more sensitive range of frequencies. When
combining all of these effects we expect that low mass BH in-
spirals are detectable further with terrestrial detectors, while
for large masses where the observation is limited to at most
a few orbits, marginally collisional PEs are better detected.
Therefore, detectors can observe the higher mass encounters
for PEs. This is exactly analogous to the comparison of the
inspiral and plunge phases of binary coalescence, for which
the detection of plunge dominates for large masses (Flanagan
& Hughes 1998).

Among the GW detection candidate sources in GCs, PEs
are very infrequent compared to stellar BH–BH inspiral rate
estimates of Portegies Zwart & McMillan (2000) or Miller
(2002) within GCs, but are comparable to the recent results
of O’Leary et al. (2006). Observations of radio pulsars and
gamma ray bursts suggest several orders of magnitude larger
numbers for NS–NS or BH–NS inspiral detections (Kalogera
et al. 2004; Nakar, Gal-Yam, & Fox 2005).

7.1.3. Parabolic Encounters vs. Head-on Collisions

As a second example, let us consider the event rates of
head-on collisions for unbound encounters. Head-on colli-
sions are related to PEs, by extending the parameterλ to val-
ues less than 2, the unstable circular orbit. Thus it would
be relatively straightforward to extend the analysis to these
events, by examining the event rates for small initial impact
parameters, and computing the detectability as a function of
this parameter. However, the exact shapes of gravity wave-
forms are presently not available for collisions (see Bakeret
al. 2006 for current progress), therefore maximum likelihood
detections are not possible, and the detection of these bursts
requires much higher signal-to-noise levels. We shall argue
that direct head-on collision detections are potentially less fre-
quent than PEs.

The rate of head-on collisions between BHs is well known
(e.g Hills & Day 1976; Cutler, Kennefick, & Poisson 1994;
Sigurdsson & Rees 1997) however the detection rates of the
resultant GW signals is subject to the uncertainty of the GW
signals (Flanagan & Hughes 1998). Direct collisions produce
potentially less intensive GW signals than close PEs even if
neglecting the relativistic amplitude enhancement for PEs. To
see this, let us compare GW signal strengths that we adopt

for PEs (see § 3, and Turner 1977; Martel 2004; Gair, Ken-
nefick, & Larson 2005), with general relativistic calculations
for head-on collisions. To our best knowledge, off-axis col-
lisions of BHs have not been calculated as a function of im-
pact parameter. For radial head-on collision of Schwarzschild
BHs∆E ≃ 0.01(µ2/M)c2 (Davis et al. 1971; Anninos et al.
1993; Moreschi 1999; Sperhake et al. 2005). Sasaki & Naka-
mura (1982) derived GW energies for the radial infall of a test
particle into a Kerr BH, and Mine, Shibata, & Tanaka (1996)
accounted for the spin of the infalling particle in addition. Re-
sults are in the range of∆E = 0.03 – 0.01(µ2/M)c2 accord-
ing to the magnitude and alignment of spins and the relative
direction of the approach. For high-velocity head-on colli-
sions, there are significantly larger results:∆E = 0.328µc2

for non-rotating BHs (D’Eath & Payne 1992), and up to
∆E = 0.70µc2 for extreme Kerr-BHs (Cardoso & Lemos
2003). However, in GCs the initial velocities are typically
non-relativistic, therefore we do not expect a significant rel-
ative contribution of relativistic head-on collisions. Once the
BHs are so near that a common surrounding horizon envelope
forms the space-time relaxes to a Kerr-BH. The energy out-
put of this process is between∆E = 6× 10−6M c2 (Price &
Pullin 1994) for axisymmetric encounters and∼< 0.01M c2 for
quasi-circular initial conditions (Khanna et al. 1999). Incom-
parison, the energy output in GWs for non-relativistic PEs is
∆EPE = 0.01(λ/4.1)−7/2(µ2/M)c2 (Turner 1977). Using the
low-velocity case, the GW amplitudes of BH collisions are
overestimated by the Newtonian results by a factor between
(λ/3)−7/2 and (λ/4)−7/2, depending on spins. Therefore, the
extapolation of the Newtonian treatment to the regime where
the minimum separation isλ≪ 3 leads to significant overes-
timates of the true head-on collision GW energies. In con-
clusion, the extrapolation of event rates as a function ofλ (for
λ< 2 in Fig. 8) or as a function of the logarithmic characteris-
tic frequency (forf0 > fλ=2 in Fig. 4, dotted lines) is possibly
overly optimistic and therefore inadequate for the estimation
of the detection rates of head-on collisions with the particular
GW detectors.

7.2. Approximations in the Analysis

Our event rate estimates rely on several approximations.
The most important caveat in our analysis is possibly neglect-
ing GW recoil capture in bound eccentric orbits. The GW
radiation reaction is substantial for strong gravitational fields,
for low λ. For initially nearly parabolic orbits, the perias-
tron distance and the eccentricity is decreased12 (Cutler, Ken-
nefick, & Poisson 1994). The first consequence is a minor
decrease in the PE event rate, because of the increase of the
cross-section of direct capture. On the other hand, GW re-
coil produces bound orbits from initially unbound trajectories
(Lee 1993). The periastron distance is then further decreased
during each subsequent close approach inducing successively
stronger GW radiation. Therefore PE events are potential pre-
cursors of multiple subsequent more intense highly eccentric
bound encounters, analogous to the captures of stellar com-
pact objects by supermassive black holes (Hopman & Alexan-
der 2005). The GW detection rate of the resultant orbits is
likely to be significantly higher than PE detections. As a re-
sult, we anticipate several successful detections for AdLIGO
per year for a wide range of BH mass-distribution models (see

12 unlessλ
∼
> 2.05, in which case the eccentricity is increased by GW

recoil
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Tab. 1 for PEs without GW recoil capture). We leave a de-
tailed quantitative study for a future paper.

There is a second independent reason suggesting that higher
detection rates will be more likely. Throughout the paper, we
estimated matched filtering detection signal-to-noise ampli-
tudes with the angular averaged formula which is valid for an
analysis using only a single GW detector. However, a coin-
cident analysis incorporating several detectors allows much
more optimistic detection limits (see Jaronowski et al. 1996,
and § 3 above). If lowering the angular averaged minimum
detection limit toS/N = 3/

√
5 (equivalent to an optimal-

orientation single-detector observation atS/N = 3) yields
ν tot = 1.7×10−3yr−1 for InLIGO, 2.7×10−3yr−1 for VIRGO,
0.46yr−1 for AdLIGO, and 9.5× 10−6yr−1 for LISA for our
standard GC Model II withNBH = 500, p = 1, mmin = 5M⊙,
and mmax = 60M⊙. For models with largermmax detection
rates are even higher (see Tab. 1), implying several successful
detections per year for advanced terrestrial detectors.

We have also neglected the bound binary interactions in
the scattering dynamics and restricted only to single-single
encounters. Depending on the angle of injection this could
increase or decrease event rates. However our analysis of
single–single interaction shows (§ 5.1.2), that the typical nu-
merical values for PE cross-sections are extremely small, so
that the injection has to have an initial velocity very accu-
rately pointed towards the target CO in order to produce a de-
tectable signal. For typical encounters withm1 = m2 = 50M⊙

and f0 = 50Hz, the minimum separation isb0 ∼ 10−6AU,
and the impact parameter isb∞ ∼ 10−2AU. As a result, for
single–binary interactions we speculate that the separation of
scales is possible to distinguish three independent phasesof
the interaction: (i) the faraway zoner ≫ abin, (ii) the inter-
mediate zoner ∼ abin, and (iii) the PE zoner ∼ b0 ≪ abin.
In (iii) the binary companion can be discarded. Moreover,
note that the velocity during (ii) is still negligible compared
to (iii). Therefore in practice, the beginning of phase (iii) is
exactly analogous to the initial conditions of a single–single
encounter. The only difference is the distribution of velocities
is not isotropic, but after phase (i) it is beamed toward the cen-
ter of mass, and phase (ii) adds a random deflection due to the
companion. Plugging in the numbers for binary separations of
abin ≫ 10−2AU we conclude, binary focusing is not likely to
significantly modify our PE rate estimates. Numerical simu-
lations would be needed to determine the exact modifications
in the estimates.

Binary interactions also alter the total number and mass dis-
tribution of BHs in the cluster. However in our calculations
the total number and mass function of BHs are input parame-
ters, which can be chosen consistently with the most sophisti-
cated simulations.

Throughout our analysis we assumed simplified GC mod-
els. While our most sophisticated model accounts for the
mass distribution, mass segregation, and relative velocities
(see § 4.3) it does not consider the nonuniform radial distri-
bution of density of regular stars in the cluster core, nor does
it consider variations around the characteristic GC model pa-
rameters (e.g. virial radius, total mass, etc). However, the
final results are simple powers of the characteristic parame-
ters (ν ∝ q2N1.5

tot R−2.5). Our treatment allows upper and lower
bounds to be made on the exact GC model detection rates.
These bounds are still much tighter than other sources of un-
certainties, which justifies the simplifying model assumptions
in this analysis.

Another major approximation was to adopt the angular av-
eraged signal waveforms in the Newtonian approximation
(Turner 1977), and corrected for the relativistic enhance-
ment of the amplitude, substantial for close-encounters. We
adopted the relativistic correction for the quadrupole radia-
tion of a test particle geodesics (Martel 2004; Gair, Kennefick,
& Larson 2005) and extrapolated results for other masses.
These estimates do not account for GW recoil. However,
Fig. 8 shows that the contribution of extreme zoom-whirl or-
bitsλ≈ 2 does not ruin our estimates, since the detection rate
does not increase substantially for marginally plunging orbits.
GW recoil reduces PE signal-power by driving the interacting
masses to collisions, thereby terminating extreme zoom-whirl
orbits much sooner than the no-recoil encounter time (Gair,
Kennefick, & Larson 2006). We conclude that neglecting GW
recoil did not lead to a large overestimate, implying that our
results are acceptable approximations in this respect.

An exact treatment would have to utilize the more exact
post-newtonian waveforms of the general problem using ar-
bitrary masses and spins, and should take into account the
forward peaking of GWs for high velocities, Doppler shift of
GW frequencies, spin-orbit, and spin-spin interactions, etc.
Although it is clear that a real data analysis matched filter-
ing would have to be carried out with exact signal templates,
the leading-order (i.e. Newtonian) term dominates the angu-
lar averaged signal power, which is therefore an adequate first
estimate for the detection rates.

7.3. Uncertainties in the Result

7.3.1. Model Parameters

There are several uncertainties in our estimate. Among
the most important uncertainties are the values of the GC
model parameters, like the number of BHs in the clusterNBH.
Portegies Zwart & McMillan (2000) derivesqBH = NBH/Ntot =
6× 10−4 by using Scalo (1986) initial mass function (IMF)
and assumed that every object more massive than 20M⊙ up
to 100M⊙ had evolved to a BH. When using a Salpeter IMF,
the result isqBH = 10−3 (Miller 2002), and Kroupa & Weid-
ner (2003) IMF givesqBH = 1.5×10−3 (O’Leary et al. 2006).
We adopt the most conservative result of Portegies Zwart &
McMillan (2000). However there is a chance that a non-
negligible fraction of the stars have been ejected from the
cluster or have undergone subsequent mergers. Both pro-
cesses increase the estimate on the final BH fraction (Miller
2002). On the other hand dynamical binary interactions, bi-
nary recoil kicks, or GW recoil of BH mergers can eject
BHs, thereby reducing their overall numbers and possibly also
modify the mass-distribution. In fact, a significant portion of
the stellar-mass BH population might be ejected, especially in
small clusters (Sigurdsson & Hernquist 1993; Portegies Zwart
& McMillan 2000; O’Leary et al. 2006). Belczynski et al.
(2005) find that for an initial binary fraction of 50%, the re-
tained fraction of BHs varies between 0.4 and 0.7. In our fidu-
cial calculations we adoptedqBH = 5×10−4 andNtot = 106. To
see the effects of BH ejection, Tab. 1 shows results for other
models. For the general case, we provide analytical scalings
which can be readily used in case these parameters are bet-
ter determined in the future. For example sinceν tot ∝ N2

BH,
for NBH = 5000 (50) detection rates increase (decrease) by a
factor of 100.

7.3.2. Black Hole Mass Distribution
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An even more significant source of uncertainty is the mass
distribution of BHs in the clusters. We have calculated detec-
tion rates for several distributions (Tab. 1). Increasing the p
exponent of the distribution,gBH ∝ m−p, decreases the detec-
tion rate by a factor of∼ 5 for a unit change inp. Chang-
ing the maximum mass of the distribution varies the results
even more significantly. Compared to the detection rate corre-
sponding tommax = 60M⊙, for mmax = 100M⊙ (20M⊙) we get
a ∼ 1 – 3 order of magnitude increase (decrease) depending
on the detectors. We have also tried changing the minimum
massmmin, by assuming that the BHs with massesm < mmin
have escaped from the cluster. Compared tommin = 5M⊙, a
value ofmmin = 40M⊙ reduces detection rates by a factor of
∼ 2. In the appendix, we provide ready-to-use formulas for
calculating detection rates for other parameter values.

From the theoretical point of view, simulations of the initial
stellar BH mass function (Fryer & Kalogera 2001) result in a
maximum mass limit of∼ 20M⊙, but the particular form of
the mass function is very different for various assumptions
(fraction of explosion energy used to unbind the star, stel-
lar winds, mass transfer after helium ignition, etc). Recent
simulations of rapid star evolution assuming a lower metal-
licity for the progenitor stars (weaker stellar winds) appropri-
ate for GCs and including a large fraction of binaries, colli-
sions, and accretion leading to the mass buildup of BHs im-
ply a stellar-mass BH distribution with maximum BH masses
aroundMmax = 60 – 100M⊙ (Belczynski et al. 2005). Simu-
lations of the subsequent long-term dynamical evolution has
been shown to be sensitive to BH binary and triple interac-
tions (O’Leary et al. 2006). Binary-single body interactions,
BH-star collisions, and GW recoil kick can possibly signif-
icantly reduce the low mass BH population but enhance the
mass of the most massive BHs in the cluster. From the obser-
vational point of view, there is yet lacking evidence for stellar
mass BHs withm > 20M⊙, but this might be accounted for
the low number statistics (a total of 20 X-ray stellar-mass BH
candidates have been identified to date, Casares 2005).

7.3.3. Core Collapse

Finally, a considerable uncertainty in the PE detection rates
results from the actual scaling of the mass segregation rela-
tionships. Even in our complicated model we have assumed
a simple mass segregation, based on thermal equipartition
among the specific CO components. This assumption is in
fact valid only among the decoupled high mass components
within the core. Spitzer (1969) has shown that in simple
two-component systems consisting of massesm1 andm2, with
m1 ≪ m2, global equipartition cannot be attained if the low-
mass component determines the potential everywhere in the
cluster. In this case, the high mass components become dy-
namically decoupled from the rest of the cluster, and the clus-
ter core collapses to a much smaller radius,Rcore. This pic-
ture has been confirmed by numerical simulations for more
general mass functions (Watters, Joshi, & Rasio 2000, and
references therein). Gürkan, Freitag, & Rasio (2004) showed
that approximate local thermal equipartition is attained within
the core, and velocities followvm = (Km/mBH)−1/2vcore, where
vcore is the velocity dispersion,mBH is the mass of compo-
nents in the core,K describes the departure from equiparti-
tion, it is a number of order 1. The total time of the col-
lapse and the final magnitude of core velocities or core radius,
depends sensitively on the initial fraction of binaries. For a
single mass cluster Heggie, Trenti, & Hut (2006) found that
0.01 ∼< Rcore/Rgc ∼< 0.1, larger values valid for a large frac-

tion of binaries (hereRgc is the half-mass radius). In contrast
our simple mass segregation led toR50M⊙

= 0.14Rgc, which is
a factor 1.4–14 higher. Note, that the virial theorem implies
vm ∝Rm for a homogeneous mass distribution. Detection rates
scale withR−3

m v−1
m , and the contribution ofm ∼ 50M⊙ domi-

nated the final results (see Figs 6 and 7). Therefore post-core
collapse mass segregation implies detection rates increased
by (1.4)4–(14)4. Thus, in the most optimistic case, we get
a substantial increase in the detection rates, i.e. 2.1yr−1 for
InLIGO, 2.8yr−1 for VIRGO, 6.6day−1 for AdLIGO, 0.1yr−1

for LISA, and 4.4hr−1 for NGLISA!
On the other hand, if core collapse leads to runaway col-

lisions and the buildup of a single intermediate mass black
hole, while stellar mass BHs are ejected from the cluster (Fre-
itag, Gürkan, & Rasio 2006), PE detection rates might be
considerably suppressed after collapse (i.e.ν ∝ N2

BH). More
information on the typical properties and long-term evolution
of core collapsed clusters is needed to make PE detection rates
less uncertain.

7.4. Implications

Opening the gravitational-wave window to observe
parabolic encounters of black holes in globular clusters of-
fers a new possibility to constrain BH mass functions and GC
models. Since PEs are very sensitive to the number of higher
mass stellar BHs (Figs. 6 and 7), our results indicate that a reg-
ular detection of PE events would provide accurate limits on
the stellar BH mass distribution in GCs. Our analysis shows
that this might be possible with AdLIGO if average GCs carry
at least 500 BHs.

7.4.1. Galactic Nuclei

The analysis can be extended for other spherically symmet-
ric systems using the scalingν ∝ N2

BHnsystemv−1
vir . Consider

first galactic nuclei, hosting 2500 BHs and approximately all
of these BHs have undergone mergers (Portegies Zwart &
McMillan 2000). Galactic nuclei abundance in the universe is
100 times less than for GCs (§ 4.2). Assuming that the virial
velocity is a factor of

√
10 higher in galactic nuclei and that

the CO mass function has the same distribution as in GCs, we
get detection ratesνgal = 52×1/100×1/

√
10×νgc. However,

the large number of BH mergers likely increases BH masses
in galactic nuclei. For a uniform distribution (i.e.p = 0)
of NBH = 2500 betweenmmin = 80 andmmax = 100M⊙ we
get 25002/[500× (100− 80)/(100− 5)]2×1/(100

√
10) = 1.8

times the rates shown in the corresponding row of Tab. 1
for GCs: 4.×10−4yr−1 for InLIGO, 2.1× 10−3 for VIRGO,
0.61yr−1 for AdLIGO, and 5.2× 10−6yr−1 for LISA. These
numbers should only be regarded as rough estimates, since
they result from the direct application of simplified GC model
assumptions to galactic nuclei. The calculation assumed un-
correlated two-body interactions which does not hold for mo-
tion in the potential of galactic centers (Rauch & Tremaine
1996).

7.4.2. Primordial Black Holes in Galaxies

For a second example consider the GW detections from
galactic haloes comprised of low-mass primordial BHs
(PBHs) (see e.g. LIGO Scientific Collaboration 2005b and
references therein). For a quick upper-limit estimate on the
PE detection rate we repeat our analysis for GCs by changing
the model parameters to describe galactic haloes. We assume
NPBH = 1011 PBHs within a maximum radiusR = 5kpc, a virial
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velocityvvir = 220km/s, and a uniform distribution of masses
betweenmmin = 0.25M⊙ andmmax = 0.95M⊙. The maximum
distance of a matched filtering detection at a characteristic fre-
quency of 0.9 fM max = 4260Hz with angular-averaged signal-
to-noise ratioS/N = 5 is 0.33, 0.62, 4.5, 0, and 0.06Mpc for
InLIGO, VIRGO, AdLIGO,LISA, andNGLISA, respectively.
The final result for the detection rate after the compilationof
the full analysis described in the paper givesν = 1.5×10−11,
1.6×10−11, 2.9×10−10, 2.6×10−11, and 1.4×10−9, respec-
tively. These numbers are comparable to the total NS–NS PE
rate in GCs. It is 9 orders of magnitudes smaller than the event
rates estimates for PBH binary coalescence in one Milky Way
sized galaxy (Ioka et al. 1998; LIGO Scientific Collaboration
2005b).

7.4.3. Unresolved Parabolic Encounter Background

Another extension of the present analysis is to estimate the
number of lowS/N PE events, adding an unresolved astro-
physical background to the GW detector noise budget similar
to the unresolved WD background (e.g. Hils, Bender, & Web-
bink 1990; Nelemans, Yungelson, & Portegies Zwart 2001;
Benacquista, DeGoes, & Lunder 2004; Cornish & Crow-
der 2005) and unresolved capture sources (Barack & Cutler
2004b). Since PE rates are progressively larger for progres-
sively smaller characteristic frequencies,f0, and since all PE
waveforms extend to GW frequenciesf ∼< f0, PE background
will be most substantial for space detectors, especially around
the minimum frequency noise wall (fmin = 10−5–10−4Hz). The
total number of PE events within a distanceD, can be obtained
from (19) neglecting cosmology as

R =
4π
3

D3ngc
∫ fmax

fmin

dν II ≈ 2πD3ngcν II
1

(
fmin

f100

)−2/3

(43)

wherefmax is the maximum frequency for PEs avoiding a col-
lision (32), which drops out to leading order iffmin ≪ fmax.
ForD = 10Gpc andfmin = 10−5Hz (10−4Hz) we get one event
every 1/R = 19sec (88sec), which corresponds tok = 5300
(110) events for a 10−5Hz (10−4Hz) frequency bin. If core
contraction enhances PE rates by a factor of 144 (see § 7.3.3),
we getk = 2×108 (4×106) events per frequency bin.

These events will typically have a very low signal-to-noise
ratio, e.g. for a single PE encounter withf0 = 10−5Hz for
m1 = m2 = 50M⊙ at dL = 10Gpc we get (S/N)1 ∼ 8× 10−9,
and f0 = 10−4Hz yields (S/N)1∼ 2×10−7 for LISA. Assuming
that average unresolved PE noise accumulates proportionalto√

k, we get a net amplitude of only (S/N)net = 10−4 or 5×
10−4 for LISA even in the core contracted case for frequencies
10−5Hz or 10−4Hz, respectively. Thus, we anticipate that the
unresolved PE background adds a negligible amount to the
LISA noise, and the unresolved PE background from stellar
BH encounters will not be an issue for near-future extensions
either.
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APPENDIX

APPROXIMATE ANALYTICAL FORMULAE

The integrals given in Eq. (19) can be carried out analytically as a Taylor-expansion with respect to the small quantities
κBH = mmin/mmax andκNS = mNS/mmax. The PE event rate is calculated in three parts

ν II
1 = νII

1,BH−BH + νII
1,BH−NS+ ν II

1,NS−NS, (A1)

whereνII
1,BH−BH, νII

1,BH−NS, andνII
1,NS−NS are the event rates of BH-BH, BH-NS, and NS-NS encounters. Substituting the mass

dependence in Eq. (19) we get,

ν II
1 (m1,m2) =

G4/3

(4π)2/3

N2
CO

R3
gcvvir

(m1 + m2)4/3m3/2
>

(m−1
1 + m−1

2 )1/2
f −2/3
100 , (A2)

ν II
2 (m1,m2) =

21/3G2/3

3π4/3

N2
COvvir

R3
gc

(m1 + m2)4/3(m−1
1 + m−1

2 )1/2m3/2
> f −4/3

100 . (A3)

We approximate thegNS(m) distribution with a Dirac-δ function. Expanding the integrals in Taylor-series inκBH andκNS, we get

ν II
1,BH−BH = 2−4/3 9

187

(
25/6 +

3
5

)(
1+ 2κBH + 1.364κ2

BH

)( 〈mBH〉
M⊙

)2(mmax

mCO

)4/3

ν I
1, (A4)

ν II
1,NS−BH = 2−1/3 3

16

(
1+κBH −κ

4/3
BH +

10
3
κNS +

10
3
κ

1/3
BHκNS

)( 〈mBH〉
mCO

)4/3( mmax

〈mBH〉

)1/3(mNS

M⊙

)2

ν I
1,

(A5)

ν II
1,NS−NS = 2−5/2

(
mCO

M⊙

)−4/3(mNS

M⊙

)3

ν I
1, (A6)

whereν I
1 is the Model-I event rate given by Eq. (17).

Next we present ready-to-use formulas for calculating the detection rates of PEs. Assuming a constant density of GCs, no
cosmological and no general relativistic corrections, thedetection rate per logarithmic frequency bin becomes

dν tot

dln( f0)
= k

(2GM⊙)19/3

c12
ngcN2

COR−3
gcv−1

vir f 4/3
0

(
W ( f0)
S/N

)3

K( f0,λ) (A7)
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whereS/N is the minimum signal-to-noise ratio (which is set equal to 5in our numerical results above),k ≡ 853/221/3π7/3/6144 =
2.323 is a constant coefficient,vvir is the virial velocity (9),ngc is the average GC density in the universe,Rgc is the typical radius
of the GC,NCO is the number of COs in the GC,K( f0,λ) andW ( f0) are dimensionless terms,K( f0,λ) depending on the CO mass
distribution,gCO, andW ( f0) on the normalized GW energy spectrumF( f/ f0) Eq. (5), and the detector spectral noise density,
Sn( f ):

K( f0,λ) =
∫ ∫

f0≤ f0,max[M⊙(x1+x2),λ]
dx1dx2 gCO(x1)gCO(x2)

(x1x2)7/2x3/2
>

(x1 + x2)1/6
, (A8)

W ( f0) =

√
4
5

∫ fmax

fmin

1
f 2

F( f/ f0)
Sn( f )2

d f . (A9)

In terms of f0, K( f0,λ) is constant forf0 ≤ f0,max(2mmin,λ), decreases monotonically for largerf0 and attains 0 forf0 ≥
f0,max(2mmax,λ) (see Eq. [33] for the definition off0,max(M,λ), andmmin and mmax are the minimum and maximum masses
of the COs, respectively). In Eq. (A8), the integration variablesx1 andx2 are the dimensionless masses of the COs, for which
mmin/M⊙ ≤ x1,2 ≤ mmax/M⊙. For core collapsed clusters M⊙ has to be changed tomcore, the typical mass of individual compo-
nents in the core,Rgc has to be changed toRcore, andvvir to vcore. These values should be set consistently with the core velocity
dispersion and core radius which are input parameters for a globular cluster model. For givenm components, the velocity disper-
sion is thenvm = (m/mcore)−1/2vcore and maximum radius from the cluster center isRm = (m/mcore)−1/2Rcore.

The total detection rate of parabolic encounters (again assuming a constant density of GCs and no cosmological and general
relativistic corrections) is

ν tot = k
(2Gmcore)19/3

c12
(S/N)−3ngcN2

COR−3
corev

−1
core

∫ f0,max(2Mmax,λ)

fmin/10
d f0 f 1/3

0 W ( f0)3K( f0,λ). (A10)
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