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Spectrum of stochastic evolution operators: local matrix representation approach
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A matrix representation of the evolution operator associ-
ated with a nonlinear stochastic flow with additive noise is
used to compute its spectrum. In the weak noise limit a per-
turbative expansion for the spectrum is formulated in terms
of local matrix representations of the evolution operator cen-
tered on classical periodic orbits. The evaluation of perturba-
tive corrections is easier to implement in this framework than
in the standard Feynman diagram perturbation theory. The
result are perturbative corrections to a stochastic analog of
the Gutzwiller semiclassical spectral determinant computed
to several orders beyond what has so far been attainable in
stochastic and quantum-mechanical applications.
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I. INTRODUCTION

Any dynamical evolution that occurs in nature is af-
fected by noise. In a neuronal system the noise might be
comparable in magnitude to purported underlying deter-
ministic dynamics; in celestial mechanics the degrees of
freedom omitted from a particular set of equations may
be accounted for by very weak noise. Our task here and
in two preceding papers [1,2] is to systematically account
for the effects of noise on measurable properties such as
dynamical averages [3] in classical chaotic dynamical sys-
tems.
The theory is also closely related to the semiclassical

expansions based on Gutzwiller’s formula for the trace
in terms of classical periodic orbits [4] in that both are
perturbative theories (in the noise strength or h̄) derived
from saddlepoint expansions of a path integral containing
a Cantor set of unstable stationary points (typically pe-
riodic orbits). The analogy with quantum mechanics and
field theory has been made explicit in [1] where Feynman
diagrams were used to find the lowest nontrivial noise
corrections. Unfortunately like its quantum counterpart,
the Feynman diagram method for stochastic dynamics
quickly becomes unwieldy at higher orders; rather than
applying it directly we turn the argument around and

suggest that the more efficient recent approaches of [2]
and the present paper be applied to difficult perturba-
tive problems of quantum mechanics and field theory.
An elegant method, inspired by the classical pertur-

bation theory of celestial mechanics, is that of smooth
conjugations [2]. In this approach the neighborhood
of each saddlepoint is flattened by an appropriate co-
ordinate transformation, so the focus shifts from the
original dynamics to the properties of the transforma-
tions involved. An elementary example is the Ulam map
f(x) = 4x(1 − x) which is solved exactly by the trans-
formation x = sin2(πθ/2) leading to the piecewise lin-
ear tent map f(θ) = 1 − |1 − 2θ|. In general there is
no such explicit solution, but the expressions obtained
for perturbative corrections are much simpler than those
found from the equivalent Feynman diagrams. Using
these techniques, we were able to extend the stochas-
tic perturbation theory to the fourth order in the noise
strength.
Fourth order should be sufficient for most realistic cal-

culations, but does not provide enough information to
determine the convergence properties of the expansion,
or determine eigenvalues beyond the first few. In this
paper we develop a third approach, based on construc-
tion of an explicit matrix representation of the stochastic
evolution operator. Numerical implementation requires
a truncation to finite dimensional matrices, and is less el-
egant than the smooth conjugation method, but for high
expansion orders (here eighth, but higher orders seem
quite feasible) and many eigenvalues it is currently un-
surpassed. As with the previous formulations, it retains
the periodic orbit structure, thus inheriting valuable in-
formation about the dynamics.
In the following sections we define the stochastic dy-

namics and show how to obtain matrix representations,
both globally and located on the periodic orbits, as an
expansion in terms of the noise strength σ. The matrix
elements are obtained from derivatives of the dynamics
computed around each periodic orbit. We give as a nu-
merical example the quartic map considered in both pre-
vious papers, although the approach is very general and
is by no means restricted to one dimension, to maps, or
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to Gaussian noise. We find that up to eighth order, the
cumulants converge super-exponentially with the length
of periodic orbit and the expansion is now shown to be
accurate to larger values of σ.

II. THE STOCHASTIC EVOLUTION OPERATOR

AND ITS SPECTRUM

An individual trajectory in presence of additive noise
is generated by iteration

xn+1 = f(xn) + σξn , (1)

where f(x) is a map, ξn a random variable with the nor-
malized distribution p(ξ), and σ parametrizes the noise
strength. In what follows we shall assume that the map-
ping f(x) is one-dimensional and expanding, and that
the ξn are uncorrelated. A density of trajectories φ(x)
evolves with time as

φn+1(y) = (L ◦ φn) (y) =

∫

dxL(y, x)φn(x) (2)

where L is the evolution operator

L(y, x) = δσ(y − f(x))

δσ(x) =

∫

δ(x− σξ)p(ξ)dξ =
1

σ
p
(x

σ

)

. (3)

For a repeller the leading eigenvalue of the evolution
operator yields a physically measurable property of the
dynamical system, the escape rate from the repeller. In
the case of deterministic flows, the periodic orbit theory
yields explicit formulas for the spectrum of L as zeros
of its spectral determinant [6]. Our goal here is to ex-
plore the extent to which such methods are applicable to
systems with noise and to quantum systems. In particu-
lar, we are interested in exploring the dependence of the
eigenvalues ν(σ) of L on the noise strength parameter σ.
The eigenvalues are determined by the eigenvalue con-

dition

F (σ, ν(σ)) = det(1− L/ν(σ)) = 0 (4)

where F (σ, 1/z) = det(1 − zL) is the spectral determin-
ant of the evolution operator L. Computation of such
determinants commences with evaluation of the traces of
powers of the evolution operator

tr
zL

1− zL =
∞
∑

n=1

Cnz
n , Cn = trLn , (5)

which are then used to compute the cumulants Qn =
Qn(L) in the cumulant expansion

det(1 − zL) = 1−
∞
∑

n=1

Qnz
n , (6)

by means of the recursion formula

Qn =
1

n
(Cn − Cn−1Q1 − · · ·C1Qn−1) (7)

which follows from the relation

det(1− zL) = exp

(

−
∞
∑

n

zn

n
trLn

)

. (8)

Our task is to compute the cumulants Qn. We start by
introducing a matrix representation for L.

III. MATRIX REPRESENTATION OF

EVOLUTION OPERATOR

As the mapping f(x) is expanding by assumption, the
evolution operator (2) smoothes the initial distribution
φ(x). Hence it is natural to assume that the distribution
φn(x) is analytic, and represent it as a Taylor series, in-
tuition being that the action of L will smooth out fine
detail in initial distributions and the expansion of φn(x)
will be dominated by the leading terms in the series.
An analytic function g(x) has a Taylor series expansion

g(x) =
∞
∑

m=0

xm

m!

∂m

∂ym
g(y)

∣

∣

∣

∣

y=0

.

Expanding L(y, x) in Taylor series in y enables us to
rewrite traces of Ln as

trL2 =

∫

dxdy L(y, x)L(x, y)

=
∑

m,m′

∫

dxdy

(

ym
′

m′!

∂m′

∂vm′
L(v, x)

∣

∣

∣

∣

∣

v=0

)

(

xm

m!

∂m

∂um
L(u, y)

∣

∣

∣

∣

u=0

)

Following H.H. Rugh [7] we now define the matrix
(m,m′ = 0, 1, 2, ...)

(L)m′m =
∂m′

∂ym′

∫

dxL(y, x)x
m

m!

∣

∣

∣

∣

∣

y=0

. (9)

L is a matrix representation of L which maps the xm

component of the density of trajectories φn(x) in (2) to

the ym
′

component of the density φn+1(y), with y = f(x).
The desired traces can now be evaluated as traces of the
matrix representation L, trLn = trLn . As L is infinite
dimensional, in actual computations we have to truncate
it to a given finite order. The Feynman diagrammatic
and the smooth conjugation methods developed in the
preceding papers [1,2] require no such approximations.
However, as we shall see below, for expanding flows the
structure of L is such that its finite truncations give very
accurate spectra.
Our next task is to evaluate the matrix elements of L.
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IV. WEAK NOISE EXPANSION OF THE

EVOLUTION OPERATOR

We have written the operator L in (3) in terms of the
Dirac delta function, L(x′, x) =

∫

δ(x′−f(x)−σξ)p(ξ)dξ,
in order to emphasize that in the weak noise limit the
stochastic trajectories are concentrated along the deter-
ministic trajectory x′ = f(x). Hence it is natural to
expand the delta function in a Taylor series in σ

L(x′, x) = δ(x′ − f(x))

+

∞
∑

n=2

(−σ)n

n!
δ(n)(x′ − f(x))

∫

ξnp(ξ)dξ ,

where δ(n)(y) = ∂n

∂yn δ(y) . This yields a representa-

tion of the evolution operator centered along the deter-
ministic trajectory, with the Perron-Frobenius operator
δ(x′−f(x)), and corrections given by derivatives of delta
functions weighted by moments of the noise distribution
an =

∫

p(ξ)ξndξ,

L(x′, x) = δ(x′ − f(x)) +

∞
∑

n=2

(−σ)n

n!
anδ

(n)(x′ − f(x)).

(10)

In our numerical tests we find it convenient to assume
that the noise is Gaussian, p(ξ) = e−ξ2/2/

√
2π . For the

Gaussian noise all an moments are known, and the weak
noise expansion of L is

L(x′, x) =
1√
2πσ2

e−(x′−f(x))2/2σ2

=

∞
∑

n=0

σ2n

n!2n
δ(2n)(x′ − f(x))

= δ(x′ − f(x)) +
σ2

2
δ(2)(x′ − f(x))

+
σ4

8
δ(4)(x′ − f(x)) + · · · . (11)

The choice of Gaussian noise is not essential, as the meth-
ods that we develop here apply equally well to any other
peaked smooth noise distribution, as well as space de-
pendent noise distributions p(x, ξ). In any case, as the
neighborhood of any trajectory is nonlinearly distorted
by the flow, the integrated noise is never Gaussian, but
colored.

V. LOCAL MATRIX REPRESENTATION OF

EVOLUTION OPERATOR

Traces of powers of the evolution operator Ln are now
also a power series in σ, with contributions composed of
δ(m)(f(xa) − xa+1) segments. The contribution is non-
vanishing only if the sequence x1, x2, ..., xn, xn+1 = x1

is a periodic orbit of the deterministic map f(x). Thus
the series expansion of trLn has support on all periodic
points xa = xa+n of period n, fn(xa) = xa; the skeleton
of periodic points of the deterministic problem also serves
to describe the weakly stochastic flows. The contribution
of the xa neighborhood is best presented by introducing
a coordinate system φa centered on the cycle points, to-
gether with a notation for the map (1) and the operator
(3) centered on the a-th cycle point

xa → xa + φa , a = 1, ..., np

fa(φ) = f(xa + φ)

La(φa+1, φa) = L(xa+1 + φa+1, xa + φa) . (12)

The weak noise expansion (10) for the a-th segment op-
erator is given by

La(φ
′, φ) =

∞
∑

n=0

(−σ)n

n!
anδ

(n)(φ′ + xa+1 − fa(φ)) .

Repeating the steps that led to (9) we construct the
local matrix representation of La centered on the xa →
xa+1 segment of the deterministic trajectory

(La)m′m =
∂m′

∂φ′m′

∫

dφLa(φ
′, φ)

φm

m!

∣

∣

∣

∣

∣

φ′=0

.

=

∞
∑

n=max(m−m′,0)

(−σ)n

n!
an(Ba)m′+n,m . (13)

Due to its simple dependence on the Dirac delta function,
B can expressed in terms of derivatives of the inverse of
fa(φ):

(Ba)nm =
∂n

∂φ′n

∫

dφ δ(φ′ + xa+1 − fa(φ))
φm

m!

∣

∣

∣

∣

φ′=0

=
∂n

∂φ′n

(f−1
a (xa+1 + φ′)− xa)

m

m!|f ′
a(f

−1
a (xa+1 + φ′))|

∣

∣

∣

∣

φ′=0

=
sign(f ′

a)

(m+ 1)!

∂n+1(Fa(φ
′)m+1)

∂φ′n+1

∣

∣

∣

∣

φ′=0

, (14)

where we introduced the shorthand notation Fa(φ
′) =

f−1
a (xa+1 + φ′)− xa.
If we expand Fa(φ

′) in a Taylor series, the constant
term is zero, since f−1

a (xa+1) = xa. So we can write:

Fa(φ
′) =

∞
∑

l=1

F (l)
a

l!
φ′l, (15)

where 1/F (1)
a = f ′

a.
The matrix elements can be calculated explicitly as a

multinomial expansion [5]
(

∞
∑

l=1

xl

l!
tl

)m

= m!

∞
∑

n=l

tn

n!

·
∑

(n|a1, ..., an)′xa1

1 ...xan

n , (16)
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where the second sum (
∑

) goes over all non-negative
integers such that:

a1 + 2a2 + ...+ nan = n, a1 + a2 + ...+ an = m, (17)

and the multinomial coefficient is:

(n|a1, a2, ..., an)′ =
n!

(1!)a1a1!(2!)a2a2!...(n!)anan!
. (18)

We apply the formula (16) to Fa(φ
′) with power m+ 1:

(Fa(φ
′))m+1 = (m+ 1)!

∞
∑

l=m+1

φ′n

n!

∑

(l|a1, a2, ..., al)′

· (Fa
(1))a1(Fa

(2))a2 ...(Fa
(l))al . (19)

For the (n+1) -th derivative of this expression evaluated
at φ′ = 0 only the l = n + 1 term is non-vanishing.
The matrix elements vanish for n < m, so B is a lower
triangular matrix:

(Ba)nm =
∑

(n+ 1|a1, a2, ..., an+1)
′

· (Fa
(1))a1(F (2)

a )a2 ...(F (n+1)
a )an+1 . (20)

The diagonal and the nearest off-diagonal matrix ele-
ments can easily be worked out. Here we show the first
four expressed in terms of the derivatives of the original
map:

(Ba)mm =
1

|f ′
a|f ′m

a

(Ba)m+1,m = −1

2

(m+ 2)!

m!

f ′′
a

|f ′
a|f ′m+2

a

(21)

(Ba)m+2,m = − (m+ 3)!

24m!|f ′
a|f ′m

a

(

f ′′′
a

f ′3
a

− 3(m+ 4)
(f ′′

a )
2

f ′4
a

)

(Ba)m+3,m = − (m+ 4)!

48m!
|f ′

a|f ′m
a

(

2
f ′′′′
a

f ′4
a

− 4(m+ 5)
f ′′
a f

′′′
a

f ′5
a

+(m+ 5)(m+ 6)
f ′′3
a

f ′6
a

)

· · · ,

where f ′
a, f

′′
a , · · · refer to the derivatives of f(x) evaluated

at the periodic point xa.
By assumption the map is expanding, |f ′

a| > 1. Hence
the diagonal terms drop off exponentially, as 1/|f ′

a|m+1,
the terms below the diagonal fall off even faster, and we
are justified in truncating Ba, as truncating the matrix
to a finite one introduces only exponentially small errors.
In the local matrix approximation the traces of evolu-

tion operators are approximated by

trLn|
saddles

=
∑

p

np

∞
∑

r=1

δn,nprtrLp
r =

∞
∑

j=0

Cnjσ
j , (22)

where trLp = trLnp
L2 · · ·L1 is the contribution of the

p cycle, and the power series in σj follows from the ex-
pansion (13) of La in terms of Ba. The subscript saddles is
a reminder that this is a saddle-point approximation to
trLn (see ref. [1] for a discussion), valid as an asymptotic
series in the limit of weak noise.
As a simple check of the above formulas, consider the

noiseless case, for which the (La)m′m = (Ba)m′m ma-
trices are a representation of the deterministic Perron-
Frobenius operator L|σ=0. The La are triangular with
diagonal elements (La)mm = 1

|f ′

a|f
′m
a

. The trace of the L
on a periodic orbit p is therefore

trLp = trLnp
L2 · · ·L1 =

∞
∑

m=0

1

|Λp|Λm
p

=
1

|1− Λp|
,

and we recover the standard deterministic trace for-
mula [6] for the Perron-Frobenius operator

trLn =
∑

p

np

∞
∑

r=1

δn,npr
1

|1− Λr
p|

. (23)

VI. PERTURBATIVE CORRECTIONS TO

EIGENVALUES

The eigenvalue condition (4) is an implicit equation
for the eigenvalue ν = ν(σ) of form F (σ, ν(σ)) = 0. As
the eigenvalue condition is satisfied for any σ, all total
derivatives of the eigenvalue condition with respect to σ
vanish, leading to

0 =
d

dσ
F (σ, ν(σ)) =

dν

dσ

∂F

∂ν
+

∂F

∂σ

0 =
d2ν

dσ2

∂F

∂ν
+

(

dν

dσ

)2
∂2F

∂ν2
+ 2

dν

dσ

∂2F

∂σ∂ν
+

∂2F

∂σ2
(24)

0 =
d3ν

dσ3

∂F

∂ν
+ 3

d2ν

dσ2

dν

dσ

∂2F

∂ν2
+

(

dν

dσ

)3
∂3F

∂ν3

+3
d2ν

dσ2

∂2F

∂σ∂ν
+ 3

(

dν

dσ

)2
∂3F

∂σ∂ν2

+3
dν

dσ

∂3F

∂σ2∂ν
+

∂3F

∂σ3
,

and so on. ν(0) can be computed by cycle expansions for
a deterministic, noiseless flow. σ 6= 0 then parametrizes a
weak perturbation to the deterministic Perron-Frobenius
operator L|σ=0. The above formulas enable us to com-
pute recursively, order by order in σn, the perturbative
corrections to the eigenvalues of L

ν(σ) =

∞
∑

m=0

νmσm , νm =
1

m!

dm

dσm
ν(σ)

∣

∣

∣

∣

σ=0

, (25)

in terms of partial derivatives of the eigenvalue condition
F (σ, ν(σ))
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Fkl =
∂k+l

∂νk∂σl
F (σ, ν)

∣

∣

∣

∣

σ=0,ν=ν(0)

. (26)

In this notation the formulas (24) for νm take the form

ν1 = −F01

F10

ν2 = − 1

2F10

(

F02 + 2F11 ν1 + 2F20 ν
2
1

)

(27)

ν3 = − 1

3!F10
(F01 + 3F12 ν1 + 6F11 ν2

+3F21 ν
2
1 + 6F20 ν1 ν2 + F30 ν

3
1

)

.

As shown in ref. [6], Fkl can be computed from explicit
cycle expansions. However, in numerical calculations we
find it more expedient to proceede by first expressing the
spectral determinant F in terms of the cumulants. The
traces of Ln evaluated by (13) yield a series in σj , and
the σj coefficients Qnj in the cumulant expansion

F = det(1− zL) = 1−
∞
∑

n=1

∞
∑

j=0

Qnjz
nσj (28)

are then obtained recursively from the traces, as in (7):

Qnj =
1

n

(

Cnj −
n−1
∑

k=1

j
∑

l=0

Qk,j−lCn−k,l

)

. (29)

This gives F = F (z = 1/ν , σ) and the partial derivatives
Fkl can be found. Substituted in (27) they yield the per-
turbative corrections to the eigenvalues. The above cal-
culations can be efficiently done by manipulating formal
Taylor series.

VII. NUMERICAL TESTS

Here we continue the calculations of the eigenvalue cor-
rections described in refs. [1,2], where more details and
discussion may be found. We test our perturbative ex-
pansion on the repeller of the 1-dimensional map

f(x) = 20

(

1

16
−
(

1

2
− x

)4
)

. (30)

This repeller is a clean example of an “Axiom A” expand-
ing system of bounded nonlinearity and complete binary
symbolic dynamics, for which the deterministic evolution
operator eigenvalues converge super-exponentially with
the cycle length [7].
We start the numerical calculations by determining all

prime cycles up to a given length. For each prime cycle
p we compute the truncated evolution matrix Lp and its
repetitions Lp

r to the given order in σ, and evaluate the
traces (22). For the map at hand we find that truncations
of size [16 × 16] suffice to achive double precision accu-
racy for most cycles. However, as the short orbits are less

unstable, they require larger matrix truncations in order
to attain the same precision, and we employ a [28 × 28]
truncation for the 2-cycles, and a [34 × 34] truncation
for the fixed points. With the coefficients in the traces
expansion (22) evaluated numerically, the cumulants and
the perturbative eigenvalue corrections follow from (29)
and (27). In case at hand, a good first approximation
is obtained already at n = 2 level, using only 3 prime
cycles, and n = 6 (23 prime cycles in all) is in this ex-
ample sufficient to exhaust the limits of double precision
arithmetic.

1 2 3 4 5 6 7 8 9 10
n

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

|Q|

Qn,0

Qn,2

Qn,4

Qn,6

Qn,8

FIG. 1. The perturbative corrections (29) to the cumulants
Qnj plotted as a function of cycle length n (for perturbation
orders j = 0, 2, 4, 6, 8) all exhibit super-exponential conver-
gence.

The size of the cumulants is indicated in fig. 1, and
the perturbative corrections to the leading eigenvalue of
the weak-noise evolution operator are given in table I.
Encouragingly, the value of ν6 = 2076.47 . . . computed
here is not wildly different to our previous numerical es-
timate [2] of 2700. Both the cumulants and the eigenvalue
corrections exhibit a super-exponential convergence with
the truncation cycle length n. The super-exponential
convergence has been proven for the deterministic, ν0
part of the eigenvalue [7], but the proof has not been
extended to the stochastic evolution operators.
We have chosen to test the formalism on this simple

example, as here we are in a fortunate situation that
the escape rate for arbitrary noise strength σ can be cal-
culated numerically by other methods to a rather high
accuracy. For example, one can discretize the stochastic
kernel on a spatial lattice [1] and determine numerically
the leading eigenvalue.
The perturbative result in terms of periodic orbits and

the weak noise corrections is compared to the eigenvalue
computed by the numerical lattice discretizationin fig. 2,
with the absolute difference between the numerical and
the mth order perturbative results plotted. We see that

the perturbative result ν(m,σ) =
∑m/2

k=0 ν2kσ
2k indeed
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improves as more perturbative terms are added.

0.01 0.03 0.05 0.07 0.09
σ

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ν−ν(m)

ν−ν(8)
ν−ν(6)
ν−ν(4)
ν−ν(2)
ν−ν(0)

FIG. 2. The difference between the numerical and pertur-
bative eigenvalue |ν(σ) − ν(m,σ)|. The plateau at 10−7 is a
numerical artifact due to the limited accuracy of the lattice
discretization calculation.

VIII. SUMMARY AND OUTLOOK

In this paper we study evolution of a classical dynami-
cal system with additive noise. In the limit of weak noise
the traces of the corresponding evolution operator are ap-
proximated by sums of local traces computed on periodic
orbits. Here we present a new, computationally efficient
technique for evaluation of these local traces based on
a matrix representation of the evolution operator, and
show that method is powerful enough to enable us to
compute 2 more orders of perturbation theory.
The local matrix representation can be interpreted as

follows. Substituting (22) into (8) we obtain

det(1− zL)|
saddles

=
∏

p

det(1− znpLp) . (31)

In other words, in the saddle-point approximation the
spectrum of the global evolution operator L is in this ap-
proach pieced together from the local spectra computed
cycle-by-cycle on neighborhoods of individual prime cy-
cles with periodic boundary conditions. Vattay [8] was
first to formulate the h̄ corrections to the semi-classical
Gutzwiller theory in terms of local spectra. Here we have
shown that also the stochastic flows can be suspended on
the skeleton of classical periodic orbits in this way.
With so many orders of perturbation theory, we are

now poised to address the issues raised by the asymp-
totic series nature of perturbative expansions. We can
now hope to resum the series to all orders, making use

of techniques such as the Borel resummation, the asymp-
totic expansions of general integrals of saddlepoint type,
and asymptotics beyond all orders [9]. All of this is be-
yond the scope of the present paper, and we defer a full
discussion of asymptotics to a forthcoming paper [10].
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n ν0 ν2 ν4 ν6 ν8

1 0.308 0.42 2.2 17.4 168.0
2 0.37140 1.422 32.97 1573.3 112699.9
3 0.3711096 1.43555 36.326 2072.9 189029.0
4 0.371110995255 1.435811262 36.3583777 2076.479 189298.8
5 0.371110995234863 1.43581124819737 36.35837123374 2076.4770492 189298.12802
6 0.371110995234863 1.43581124819749 36.358371233836 2076.47704933320 189298.128042526

TABLE I. Significant digits of the leading deterministic eigenvalue ν0, and the σ2, · · · , σ8 perturbative coefficients (25),
calculated from the cumulant exapansion of the spectral determinant, as a function of the cycle truncation length n. Note the
super-exponential convergence of all coefficients.
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