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Asymptotics of high order noise corrections
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We consider an evolution operator for a discrete Langevin
equation with a strongly hyperbolic classical dynamics and
noise with finite moments. Using a perturbative expansion
of the evolution operator we calculate high order corrections
to its trace in the case of a quartic map and Gaussian noise.
The leading contributions come from the period one orbits
of the map. The asymptotic behaviour is investigated and is
found to be independent up to a multiplicative constant of
the distribution of noise.

I. INTRODUCTION

In natural phenomena stochastic processes of various
strength always have an influence. In the three preceding
papers [1–3] the effects of noise on measurable properties
such as dynamical averages [4] in classical chaotic dy-
namical systems were systematically accounted. In order
to construct a statistical theory of dynamical systems
one introduces densities of particles governed by a corre-
sponding evolution operator. For a repeller the leading
eigenvalue of this operator L yields a physically measur-
able property of the dynamical system, the escape rate
from the repeller. In the case of deterministic flows, the
periodic orbit theory yields explicit and numerically effi-
cient formulas for the spectrum of L as zeros of its spec-
tral determinant [6].
The theory developed is closely related to the semi-

classical expansions based on Gutzwiller’s formula for
the trace in terms of classical periodic orbits [5] in that
both are perturbative theories (in the noise strength or
h̄) derived from saddle point expansions of a path inte-
gral containing a dense set of unstable stationary points
(typically periodic orbits). The analogy with quantum
mechanics and field theory is made explicit in [1] where
Feynman diagrams are used to find the lowest nontrivial
noise corrections to the escape rate.
An elegant method, inspired by the classical pertur-

bation theory of celestial mechanics, is that of smooth
conjugations [2]. In this approach the neighbourhood of
each saddle point is flattened by an appropriate coordi-

nate transformation, so the focus shifts from the orig-
inal dynamics to the properties of the transformations
involved. The expressions obtained for perturbative cor-
rections in this approach are much simpler than those
found from the equivalent Feynman diagrams. Using
these techniques, we were able to extend the stochas-
tic perturbation theory to the fourth order in the noise
strength.
In [3] we develop a third approach, based on construc-

tion of an explicit matrix representation of the stochas-
tic evolution operator. The numerical implementation
requires a truncation to finite dimensional matrices, and
is less elegant than the smooth conjugation method, but
makes it possible to reach up to order eight in expansion
orders. As with the previous formulations, it retains the
periodic orbit structure, thus inheriting valuable infor-
mation about the dynamics.
The corrections to the escape rate were found to be a

divergent series in the noise expansion parameter. This
reflects that the corrections are calculated using the so-
called cumulant expansion from other divergent quanti-
ties, the traces of the evolution operator Ln [3]. In this
article the focus is on the high order corrections for the
special case of the first trace, tr(L). For the asymptotic
study we have to calculate a sufficient number of correc-
tions and here we are led naturally to a contour integral
method. Next the asymptotic behaviour is extracted by
the method of steepest descent.

II. THE STOCHASTIC EVOLUTION OPERATOR

In this section we introduce the noisy repeller and its
evolution operator.
An individual trajectory in presence of additive noise

is generated by iterating

xn+1 = f(xn) + σξn , (1)

where f(x) is a map, ξn a random variable with the nor-
malized distribution p(ξ), and σ parametrizes the noise
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strength. In what follows we shall assume that the map-
ping f(x) is one-dimensional and expanding, and that
the ξn are uncorrelated. A density of trajectories φ(x)
evolves with time on the average as

φn+1(y) = (L ◦ φn) (y) =

∫

dxL(y, x)φn(x) (2)

where the L evolution operator has the general form of

L(y, x) = δσ(y − f(x)),

δσ(x) =

∫

δ(x− σξ)p(ξ)dξ =
1

σ
p
(x

σ

)

. (3)

For the calculations in this paper Gaussian weak noise is
assumed. In the perturbative limit,σ → 0, the evolution
operator becomes

L(x, y) = 1√
2πσ

e−
(y−f(x))2

2σ2 (4)

∼
∞
∑

n=0

a2nσ
2nδ(2n)(y − f(x)), (5)

where δ(2n) denotes the 2n-th derivative of the delta dis-
tribution and a2n = (2nn!)−1 or a2n = m2n

(2n)! for general

noise with finite n’th moment mn. Strictly speaking we
here only consider distributions with vanishing odd mo-
ments, but the formulas below can easily be generalized.
The perturbative form of the evolution operator is ob-
tained formally from (3) by Taylor expansion or by doing
a saddle point integral discarding subdominant terms. In
particular there may exist stationary points which do not
correspond to periodic orbits. However, these will give
exponentially small contributions and are therefore omit-
ted in the weak noise limit σ → 0. The map considered
here is the same as in our previous papers, a quartic map
on the (0, 1) interval given by

f(x) = 20

[

1

16
−
(

1

2
− x

)4
]

. (6)

III. RESIDUE METHOD FOR THE TRACE

The trace of the evolution operator in the weak-noise
limit is obtained from

TrL =

∫

dx
∞
∑

n=0

a2nσ
2nδ(2n)(x− f(x)). (7)

By expressing the delta function as

δ(x) = lim
ǫ→0

1

π
Im

1

x− iǫ
=

lim
ǫ→0

1

2πi

(

1

x− iǫ
− 1

x+ iǫ

)

, (8)

we reformulate expression (7) as

TrL = lim
ǫ→0

∞
∑

n=0

(2n)!anσ
2n

2πi

[
∫

dx
1

(x − f(x)− iǫ)2n+1

−
∫

dx
1

(x− f(x) + iǫ)2n+1

]

, (9)

obtaining just the result as in [7] section 5.3 equation
(19) p.119.
The integrals in (9) have poles close to the fixpoints of

the map, which are defined by

x∗ − f(x∗) = 0. (10)

For the map in question, a quartic, there are four points
in the complex plane which satisfy this equation: two
of them are on the real axis: one at x0 = 0, the other
x1 close to unity, as it can be seen on figure (1). The
two real fix points correspond to orbits 0 and 1 in the
language of symbolic dynamics [6] .

f(x)

xxx 10

FIG. 1. The map on the [0,1] interval

The integral in (7) containing −iǫ in the denominator
has a pole at x0 shifted down from the real axis into the
negative imaginary half plane and a pole at x1 shifted
up into the positive imaginary half plane. At the other
integral in (9) the poles are moved in the opposite di-
rection. We shall now evaluate the integrals by contour
integration. The chosen contour is shown on figure (2).
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FIG. 2. The chosen contour and the motion of poles.

The integral containing the −iǫ will pick up contribu-
tion from the fixpoint at x = 0, the other integral from
the fixpoint at x1. Both will pick up a contribution from
the complex fixpoint, but they cancel out in the ǫ → 0
limit. The result of the integration is

TrL = −
∞
∑

n=0

(2n)!σ2n

2nn!
[ResFn(x0)− ResFn(x1)] , (11)

where

Fn(x) =
1

(x− f(x))2n+1
. (12)

We used this method to calculate further corrections
(around σ70) to the trace for the orbit 0 and orbit 1. This
exact method justified the previous approximate calcu-
lations to all known digits. It turns out that the cor-
rections for orbit 0 all were positive whereas those for
orbit 1 involved sign changes with an apparent period.
Furthermore both were asymptotic series.

IV. HIGHER ORDER NOISE CORRECTIONS

Practical reasons restricted the calculations with the
residue method to around order seventy in the expansion
parameter. Nevertheless it is possible to give approxi-
mate statements for even higher order.
First we transform the residue integrals in (9) as

In =
(2n)!a2nσ

2n

2πi

∮

dx
1

(x− f(x) ∓ iǫ)2n+1
=

(2n)!a2nσ
2n

2πi

∮

dxe(−(2n+1) log(x−f(x)∓iǫ)). (13)

Using n as a large parameter the integral is next cal-
culated by the method of steepest descent. The initial
loops, C0 and C1, for each fixpoint are expanded until the
paths of steepest descents are reached. We refer to fig. 3.
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FIG. 3. Contourlines of |x − f(x)|. Filled circles indicate
fixpoints of the map, crosses correspond to saddles and thick
lines show paths of steepest descent.

The paths of steepest descent pass through the saddle
points satisfying

d

dx
log(xs − f(xs)∓ iǫ) =

1− f ′(xs)

xs − f(xs)∓ iǫ
= 0,

f ′(xs) = 1. (14)

Around each saddle we calculate the leading contri-
bution and its corrections as usual. In the following we
will divide the discussion into orbit 0 and orbit 1. For
our map there are three saddle points: one real and two
complex conjugate.
In case of orbit 0, the integral is carried out on the

infinite path P0 shown on figure fig. 3. Here only the
saddle point on the real axis contributes.
The result of the integration to leading order is

I0n =
(2n)!σ2n

2n+1n!π
e−(2n+1) log(xs−f(xs))

√

π(xs − f(xs))

(2n+ 1)f ′′(xs)
=

2nΓ(n+ 1/2)

2π(xs − f(xs))2n
√

2(n+ 1/2)(xs − f(xs))f ′′(xs)
.

(15)

For a convenient representation we introduce the factors

C0 :=
1

2π
√

2(xs − f(xs))f ′′(xs))
, (16)

b0 :=
2

(x− f(x))2
(17)

and the result takes the form

I0n = C0
σ2nbn0Γ(n+ 1/2)

√

n+ 1/2
. (18)

We show the ratio of consecutive terms In+1/In on
fig. 4 with the ratios from the exact residue calculation
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and conclude that the real saddle indeed controls the
leading behaviour.
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FIG. 4. Ratio of noise corrections
I2n+2

I2n
for orbit 0.

For the orbit 1 all three saddles are relevant, since the
initial loop C1 decomposes into P0,P1 and P2. However,
the real saddle now becomes subdominant as can be seen
from e.g. the contour plot fig. 3. By analyticity of the
map the two complex saddles give results that are com-
plex conjugate to each other.
At the complex saddle points (z1, z2) we introduce sim-

ilar factors C1, b1 as in (16, 17) now complex.
The contribution from these two complex saddles to I1n

can now be written as

Γ(n+ 1/2)
√

n+ 1/2

[

C1b
n
1 + C+

1 (b+1 )
n
]

=

Γ(n+ 1/2)
√

n+ 1/2
[rqn cos(nφ− α)] . (19)

Here r, q, φ and α are easily found from C1, b1 above.
The final result for orbit 1 also includes the real saddle

and to leading order is given by

I1n =
Γ(n+ 1/2)
√

n+ 1/2
[C0b

n
0 + rqn cos(nφ− α)] . (20)

We remark that the same calculation could be done for
another distribution than Gaussian. One would find an
identical functional form up to a multiplicative constant,
the corresponding moment.
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FIG. 5. Ratio of noise corrections
I2n+2

I2n
for orbit 1

Here the plot of the ratios of the consecutive terms
fig. 5 show a more complex behaviour than for orbit 0.
This we attribute to the presence of dominant complex
saddles, which will introduce phases and hence the sign
changes already mentioned. The apparent periodicity of
seven is nicely captured by the two complex saddles. Nev-
ertheless, high order calculations actually find deviations
from this pattern in agreement with that the phase cal-
culated does not evaluate exactly to an integer multiple
of 2π/7. The saddle point expansion in general improves
for high orders as can be seen on fig. 6. For our calcu-
lations two corrections to the complex saddles give the
best results in the regime of n we are considering. This
is because as an asymptotic series truncation is required
at an optimal point when n is finite. So adding more
corrections will only improve the results for higher n but
actually make the lower less accurate.
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FIG. 6. The logarithm of relative error for the noise cor-
rections for orbit 1

4



V. SUMMARY AND CONCLUSION

We have studied the evolution operator for a discrete
Langevin equation with a strongly hyperbolic classical
dynamics and noise with finite moments. Using a per-
turbative expansion of the evolution operator we have
calculated high order corrections to its trace in the case
of a quartic map and Gaussian noise. The leading contri-
butions come from the period one orbits of the map. We
have found the asymptotic behaviour of the corrections
using the method of steepest descent. The functional
form of the high order corrections have the same form
independent of the actual noise distribution up to a con-
stant given by the corresponding moment. The asymp-
totics of the trace of the evolution operator are governed
by subdominant terms corresponding to terms previously
neglected in the perturbative expansion.
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