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Functional renormalization group (FRG) is an exact method for taking into account the effect of
quantum fluctuations in the effective action of the system. The FRG method applied to effective
theories of nuclear matter yields equation of state which incorporates quantum fluctuations of
the fields. Using the local potential approximation (LPA) the equation of state for Walecka-
type models of nuclear matter under extreme conditions could be determined. These models
can be tested by solving the corresponding Tolman — Oppenheimer — Volkov (TOV) equations and
investigating the properties (mass and radius) of the corresponding compact star models. Here,
we present the first steps on this way, we obtained a Maxwell construction within the FRG-based
framework using a Walecka-type Lagrangian.

arXiv:1510.04906v1 [hep-ph] 16 Oct 2015

The European Physical Society Conference on High Energy Physics
22-29 July 2015
Vienna, Austria

*Speaker.

(© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/


https://core.ac.uk/display/333612358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:posfay.peter@wigner.mta.hu
mailto:barnafoldi.gergely@wigner.mta.hu
mailto:jakovac@caesar.elte.hu

FRG Approach to Nuclear Matter at Extreme Conditions Péter Posfay

1. Introduction

Effective field theory can be used to describe the strongly interacting baryonic media well.
Even more, the simplest Walecka-type model provides a good description for the ordinary nuclear
matter. However, at low temperature and at high density limit one has to take into account quantum
fluctuations too — which corrections are usually neglected. Especially, this is the case for the
extreme dense matter of the cold compact celestial objects, the endpoints of the stellar evolution,
such as like neutron, hybrid, or quark stars as well as white dwarfs.

Our recent progress aims to explore the possibility of this improved description using the
functional renormalization group (FRG) method to carry out the corresponding effective potential,
including the above mentioned quantum fluctuations.

2. An introduction to the FRG method

The functional renormalization group method is a general way to find the effective action of
a system. In the framework of FRG it is possible to calculate low energy effective (observable)
quantities by gradual momentum integration of a theory defined at some high energy scale, k.
These low-scale effective quantities incorporate quantum fluctuations too. Using this method at
finite temperature, it is possible to calculate the equation of state of the system, which contain
quantum fluctuations.

Technically using the FRG method led us to calculate the a quantum #n-point correlation func-
tion by gradual path integration. The basic idea is to achieve this via introducing a regulator term,
Ry q» in the generator functional, Z;[J], which acts as a mass term and suppress modes below scale,
k as explained in Refs. [1, 2]

Zk[']] = / <Hd]l/a> e_S[W]_%RkﬂbWaWbJFWaJa (21)

The scale-dependent effective action is the generator of the Feynman diagrams. This can be ob-
tained by the Legendre-transformation of the Schwinger-functional, using the usual definition,
WJ| = —ilnZ[J],

1
rk[J] = SI;P (Wu‘la - W[‘]]) - ERk,ablValI/bv (22)

where y, = 6Iy/d8J,. By introducing the regulator term, the effective action becomes scale-
dependent and its scale dependence is governed by the Wetterich-equation [3]

ATy = %STr {(&ch) (rff) +Rk) 1] , 2.3)
where I’ ,({2) is the second derivative matrix of the effective action. This equation here, is given in the
multi-index formalism where the indices run through momentum, position, flavour etc. The term
"STr’ is stand for the normal trace operation but includes a negative sign for fermionic fields. The
low-scale (observable) effective action is computed by integrating the Wetterich-equation (2.3),
from the classical limit, at some UV-scale k = A to the IR-scale k = 0, where quantum effects are

taken into account. The initial condition in this integration is the UV-scale action I';—,, which has
to be chosen in a way, that the low-scale effective action reproduces physical quantities correctly.
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3. The local potential approximation

The Wetterich-equation (2.3) is exact but the integration is not feasible in most of the cases,
because one has to include all possible operators in the effective action, even the most exotic ones,
because they might become relevant at lower-scale values. Since this task is a challenging one, for
practical purposes, a kind of truncation use to be introduced as an ansatz for the effective action.
The local potential approximation (LPA) is based on the assumption that propagators vary in space-
time much slower than vertices. This means that, the fields have different coordinate variables, but
it is a good approximation to take their value at a common coordinate, which characterizes the
vertex — see Figure 1. This implies that the UV-scale effective action has the following form,

1
ily] = /d4x |:21ViKk,ijll/j+Uk(‘//):| ; (3.1)

where Kj ;; is the kinetic kernel and Uy () is the scale-dependent effective potential, which is some
function (and not functional) of the fields.

6 LPA
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Figure 1: The effect of the local potential approximation: at a certain scale the vertex appears as a
point (/eft), below this scale we can think of it as a patch of very close points (right).

4. FRG at finite temperature

At finite temperature the path-integral (2.1) extends to the imaginary time axes. Since the
regulator-term is time-independent, the Kubo —Martin — Schwinger (KMS) relation [4] can be used
to relate the propagator term appearing in equation (2.3) to the spectral function, p(®) of the
system,

iG(0) = [1+anq(0)]p(®), (4.1)
where ny /(@) is the Fermi — Dirac or Bose — Einstein distributions respectively with oo = +1,

o

m . (4.2)

ng(®) =

Using (4.1) and the LPA ansatz given by (3.1), the Wetterich-equation gives an equation for the
effective potential in the finite temperature limit

1 d* 1
U = —2/(2;%3/(130([)) {2 +na,-(Po)} pij(P)‘ (4.3)
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5. The semi-finite temperature approximation

Our goal is to find effective theories of nuclear matter under extreme conditions in the limit of
zero temperature and finite chemical potential. To explore the behaviour of FRG equations in these
conditions, first we use the following simplistic model,

1
sztil(ﬂ—m—gcc)t//—i—i(aucz?“c)—Uk(c). (5.1

Inserting (5.1) into (4.3) the differential equation for the effective potential becomes

U = 5.2)

k* 2np(0s) + 1 _Sl—nf(a)—u)—nf(w—i—u)
1272 Do 0} ’

where we introduced the following variables as usual,

/ 22U,
0= 1/k*+(g50)> and s = \/ k% + T.-zk' (5.3)

We note, eqs. (5.1)-(5.2) are a two variable second order non-linear partial differential equation.
Since at small temperatures the Fermi— Dirac distribution behaves like a step function this for-
bids the use of implicit discretization with iterative solution of the resulting non-linear equation.
However, using explicit methods one can solve the differential equation starting from a discretized
potential at the UV-scale. We can solve the equations at various temperatures, in particular at
T = 0. Then we can make the following approximation: assuming that the running of the potential
does not depend strongly on the temperature. This should be true at low 7', so it is possible to
approximate the finite-temperature running of the potential with the zero-temperature running of
the potential on the right hand side of eq. (5.2). In this case eq. (5.2) become a simple integral with
parameters (1 and 3.

The error of the above approximation can be estimated by solving eq. (5.2) explicitly at finite
temperature and compare the solution to the integration based on the zero temperature running.
The comparison of the two methods is shown on Figure 2. The two solutions for the pressure are
very close for large 3 values down to 8 ~ 0.1. This means that, in the low-temperature limit, it is
a good approximation to use the integral of the zero temperature running. This is especially true
for compact star equation of state, where the typical temperature is usually orders of magnitude
smaller than the binding energy per nucleon. Note, on Figure 2 all the variables are measured in
units of the scalar mass.

6. A Walecka-type model within the FRG method

In order to test the validity of the functional renormalization group method, a more realistic
model was checked as well. Here, the evolution of the potential was studied in the context of an
advanced model, characterized by the following Lagrangian

Iy =y [ﬂ_gc(c"‘i%fjnj) _gw¢] v
! I ! u ! L u ©.1)
+§8ﬂ68 G+§8ﬂn8 = g FuvF?Y + Smy 0,0 -U(o,r) .
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Figure 2: Comparison of the pressure, p as a function of f3, for the case of the direct integration
of the simplistic model and in the semi-finite temperature approximation. (All are in scalar-mass
units.)

This is very similar to the well-known Walecka-model [5, 6], but it contains an additional 7 meson
and a generalized potential for the ¢ meson. We treat @ meson in mean field approximation as
explained in Ref. [7]. Following the receipt, the Wetterich-equation for the effective potential is
given in the following form using the same notations and symbols as in eq. (5.2):

o2 ) 1 l—np(w—f)—nro+
U (@) +1  2mp(0n) +1 _ (1—np(@—[1) —ny(0+[) 7 62)
1272 0o Or O
where
U,
W7 = kz—i—a—ck and A= U—guty. (6.3)

The integration of eq. (6.2) yields the potential, which is shown in Figure 3. Here, the classical
UV-scale potential (U (kyay), With blue line) and at the quantum limit, with (U (k = 0), with red
line) was given in the following form:
o2

U(g)=-m*¢+ 19>,  where ¢ = - (6.4)
The parameters for the Walecka-type model are m> = 1.2 GeV?, A = 7.4 and the cutoff scale is
A = 1.3 GeV. These parameters were chosen to reproduce the correct nucleon mass. During the
evolution of the potential the expectation value of the o field is decreasing. The smaller the value
of the k, the potential flattens out as well in the regions where the curvature mass would be negative
in the so called coarse grained potential. This can be understood that the potential realizes the
Maxwell-construction.

7. Conclusions

We have investigated a Walecka-type model by the functional renormalization group (FRG)
method. We have calculated the running of the effective potential in local potential approxima-
tion (LPA) at zero and at finite temperature values assuming finite chemical potential. In the zero
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Figure 3: Color online: The evolution of the potential, U(¢) in the Walecka-type model. The
low-scale potential realizes the Maxwell-construction.

temperature limit we were able to reproduce the nuclear masses. This result supports the idea that
the semi-finite temperature approximation works well in the low-temperature case. Finally, we ob-
tained a Maxwell construction within the FRG-based framework using a Walecka-type Lagrangian.
This achievement led us to our next step: to study the equation of state of the extreme dense nuclear
matter exists e.g. in compact stars.
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