Improvements on the density of maximal 1-planar graphs

János Barát
MTA-ELTE Geometric and Algebraic Combinatorics Research Group
barat@cs.elte.hu
and
Géza Tóth*
Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences
toth.geza@renyi.mta.hu

July 11, 2018

Abstract

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. A graph, together with a 1-planar drawing is called 1-plane. Brandenburg et al. showed that there are maximal 1 -planar graphs with only $\frac{45}{17} n+O(1) \approx 2.647 n$ edges and maximal 1 plane graphs with only $\frac{7}{3} n+O(1) \approx 2.33 n$ edges. On the other hand, they showed that a maximal 1-planar graph has at least $\frac{28}{13} n-O(1) \approx$ $2.15 n-O(1)$ edges, and a maximal 1-plane graph has at least $2.1 n-O(1)$ edges.

We improve both lower bounds to $\frac{20 n}{9} \approx 2.22 n$.

1 Introduction

In a drawing of a simple undirected graph G, vertices are represented by distinct points in the plane and edges are represented by simple continuous curves connecting the corresponding points. For simplicity, the points and curves are also called vertices and edges, and if it does not lead to confusion, we do denote them the same way as the original vertices and edges of G, respectively. We assume that edges do not contain vertices in their interior. It follows from Euler's formula that a planar graph of n vertices has at most $3 n-6$ edges. Also if a planar graph G has less edges, then we can add edges to it so that the resulting graph has exactly $3 n-6$ edges and still planar. This holds even if we start with a fixed planar drawing of G.

A drawing of a graph is 1-planar, if each edge is crossed at most once. A graph is 1-planar, if it has a 1-planar drawing. It is maximal 1-planar, if we cannot add any edge to it so that the resulting graph is still 1-planar. A graph together with a 1-planar drawing is a 1-plane graph. It is maximal 1-plane, if we cannot add any edge to it so that the resulting drawing is still 1-plane. The

[^0]maximum number of edges of a 1-planar or 1-plane graph is $4 n-8$ 4. Recently, Brandenburg et al. [1, 2] observed a very interesting phenomenon: there are maximal 1-planar and 1-plane graphs with much fewer edges.

Theorem 1 (Brandenburg et al. [2]) (i) Let e(n) be the minimum number of edges of a maximal 1-planar graph with n vertices. The following holds

$$
\frac{28}{13} n-O(1) \approx 2.15 n-O(1) \leq e(n) \leq \frac{45}{17} n+O(1) \approx 2.647 n
$$

(ii) Let $e^{\prime}(n)$ be the minimum number of edges of a maximal 1-plane graph with n vertices. The following holds

$$
2.1 n-O(1) \leq e(n) \leq \frac{7}{3} n+O(1) \approx 2.33 n
$$

In this note, we improve both lower bounds.
Theorem 2 A maximal 1-planar or 1-plane graph has at least $\frac{20}{9} n-O(1) \approx$ $2.22 n$ edges.

That is, $e(n), e^{\prime}(n) \geq \frac{20}{9} n-O(1)$.

2 Preliminaries

Our method is based on the ideas of Brandenburg et al. [2]. We also point out an error in [2], but with our approach their proof goes through as well. The following observations are essentially from their paper. We include the proofs for completeness. Throughout this section, G is a maximal 1-plane graph. The edges of G divide the plane into faces. A face is bounded by edges and edge segments. These edges and edge segments end in vertices or crossings.

Lemma 1 (i) There are at least two vertices on the boundary of each face.
(ii) If u and v are two vertices on the boundary of a face, then they are adjacent.

Proof. (i) Each face is bounded by at least three edges or edge segments, and has at least three vertices or crossings on its boundary. Since there is at most one crossing on each edge, each edge segment contains a vertex as an endpoint. Therefore, there must be at least two vertices on the boundary of the face.
(ii) Suppose that there are two vertices, u and v on the boundary of a face. Now u and v could be connected by a curve in the face without creating any crossing. Therefore, by the maximality of G, u and v are already connected.

Lemma 2 There are neither isolated vertices nor vertices of degree 1 in G.
Proof. Suppose that v is an isolated vertex or a vertex of degree 1 in face F of G. Now $G \backslash\{v\}$ is also maximal 1-planar, since if we can add an edge to $G \backslash\{v\}$, then we could have added it to G. Therefore, by Lemma 1, F has at least two vertices on its boundary, different from v, and v is adjacent to both of them, a contradiction.

Lemma 3 If $a b$ and $c d$ are crossing edges in G, then a, b, c, d span a K_{4} in G.

Proof. Let x be the crossing of $a b$ and $c d$. Since there are no other crossings on $a b$ and $c d$, there is a face bounded by $a x$ and $x c$. Now a and c are adjacent by Lemma 1. Similarly a and d, b and c, b and d are also adjacent.

The smallest degree in G is at least two by Lemma 2. Following [2], we call vertices of degree two hermits.

Lemma 4 If a vertex h has only two neighbors in G, say u and v, then
(i) hu and hv are not crossed by any edge,
(ii) u and v are adjacent in G.

Proof. (i) Suppose to the contrary that $h u$ is crossed by an edge. By Lemma 3, vertex h has degree at least 3, a contradiction.
(ii) Since the only neighbors of h are u and v, and edges $h u$ and $h v$ are not crossed, there is a face that has u, x and v on its boundary. Therefore, u and v are adjacent by Lemma 1

Lemma 5 Suppose that h is a hermit, and its neighbors are u and v. Delete h, $h u$, $h v$, uv from G, and let G^{\prime} be the resulting graph with the original embedding. Let F be the face of G^{\prime} that contains the point corresponding to vertex h. Then F has only two vertices on its boundary, u and v.

Proof. If there is another vertex on the boundary of F, then we could connect it to h. Either without any crossing or with exactly one crossing with edge $u v$ contradicting the maximality of G.

We conclude that a hermit is surrounded by two pairs of crossing edges, see Figure 1

Figure 1: Hermit h, surrounded by two pairs of crossing edges.
Remove all hermits from G. The resulting graph \hat{G} with the inherited drawing is the skeleton of G. Notice that \hat{G} is also maximal 1-planar and each vertex of \hat{G} has degree at least 3 .

2.1 A Correction

In [2] the lower bound proofs rely on the following statement:
Claim. [2] Every edge of \hat{G} is covered by a K_{4} in \hat{G}.
However, this claim does not hold! See Figure 3 for a counterexample. Call an edge of \hat{G} exceptional if it is not part of a K_{4} in \hat{G}. We have to deal with exceptional edges as well.

Lemma 6 Suppose that edge ab of \hat{G} is exceptional. That is, ab is not part of a K_{4} in \hat{G}. Let F_{1} and F_{2} be the faces bounded by ab. Then
(i) $F_{1} \neq F_{2}$,
(ii) F_{i} has exactly three vertices on its boundary a, b and f_{i} for $i=1,2$, and $f_{1}=f_{2}$,
(iii) both af f_{i} and $b f_{i}$ are non-exceptional edges of \hat{G}.

Figure 2: The four possible types of exceptional edges $a b$
Proof. (i) Suppose that $a b$ is an exceptional edge of \hat{G}. If edge $a b$ is crossed by another edge, then it is part of a K_{4} by Lemma 3. Therefore, $a b$ does not participate in a crossing. Let F_{1} and F_{2} be the faces bounded by $a b$. If $F_{1}=F_{2}$, then $a b$ is a cut edge. In this case, by Lemma 1, both components have at least one other vertex on the boundary of $F_{1}=F_{2}$, and they can be connected. This contradicts the maximality of \hat{G}. Consequently, $F_{1} \neq F_{2}$.
(ii) If there is an edge from a and an edge from b which cross, then $a b$ is part of a K_{4} by Lemma 3. If there are at least four different vertices on the boundary of F_{i}, say a, b, x and y, then they form a K_{4} by Lemma 1. We conclude that if $a b$ is exceptional, then F_{i} has exactly three vertices on its boundary, a, b and f_{i}. If $f_{1} \neq f_{2}$, then we can connect them through F_{1} and F_{2}, a contradiction again. Therefore, $f_{1}=f_{2}$ and we denote it by f for the rest of the proof.
(iii) Vertices a, b and f divide the boundary of F_{1} into three parts. Between a and b, we have edge $a b$ by assumption. Between a and f, we either have edge $a f$, or two segments of edges. In the latter case, $a f$ is an edge of \hat{G} and part of a K_{4} by Lemma 3. We can argue similarly for face F_{2}. We conclude that af is an edge of \hat{G} and part of a K_{4}, unless $a f$ is on the boundary of both F_{1} and F_{2}. Now the degree of a would be 2 in \hat{G}, which is impossible. We can argue the same way for edge $b f$.
Remark. Each of the drawings on Figure 2 can be extended to a maximal 1-plane graph so that $a b$ is not part of a K_{4}. See Figure 3 for an example.

Figure 3: A maximal 1-plane graph, $a b$ is not part of a K_{4}.

3 Improvement of the lower bounds - Proof of Theorem 2

Let \hat{G} be the skeleton of a maximal 1-plane graph. Recall that the skeleton \hat{G} arises by removing each hermit from G together with its two incident edges. The skeleton inherits its drawing from G, it is maximal 1-plane and each vertex has degree at least three. We distinguish three types of edges in \hat{G} : crossing, plain and exceptional. Edges that participate in a crossing are crossing edges. A crossing-free edge that is part of a K_{4}, is a plain edge. Any other edge is exceptional. Those edges are crossing-free and do not belong to a K_{4}. Let $n(H)$, $c(H), p(H), e(H)$ denote the number of vertices, crossing edges, plain edges, and exceptional edges of a graph H. In particular, let $n=n(\hat{G}), c=c(\hat{G})$, $p=p(\hat{G}), e=e(\hat{G})$. We prove the following crucial inequality involving these quantities.

Lemma 7 If \hat{G} is the skeleton of any drawing of a maximal 1-planar graph G and $n \geq 4$, then

$$
\begin{equation*}
9 p+10 e+7 c \geq 20 n-30 \tag{1}
\end{equation*}
$$

Proof. We use induction on the pair (e, n), ordered lexicographically. If there is an exceptional edge, then we use the induction hypothesis on graphs with smaller e. If $e=0$, then we use induction on n.

Suppose that there is an exceptional edge $a b$ in \hat{G}. Let F_{1} and F_{2} be the two faces bounded by $a b$. By Lemma 6. $F_{1} \neq F_{2}$, and both F_{1} and F_{2} have exactly three vertices on their boundaries, a, b, and f, see Figure 2. The closure of $F_{1} \cup F_{2}$ divides the plane into two parts, say S_{1}, S_{2}. Now $\overline{S_{i}}$, the closure of S_{i}, intersects \hat{G} in G_{i} for $i=1,2$. Remove the edge $a b$ and the interior of F_{1}, F_{2} from \hat{G}. Now two almost disjoint subgraphs G_{1} and G_{2} arise such that they have exactly one vertex f in common, $a \in G_{1}$ and $b \in G_{2}$. Both G_{1} and G_{2} are maximal 1-plane and both have at least four vertices. Therefore, we can use the induction hypothesis on G_{1} and G_{2}. For $i=1,2$, let $n_{i}, c_{i}, p_{i}, e_{i}$ denote the number of vertices, crossing edges, plain edges, and exceptional edges of G_{i}.

Now $9 p_{1}+10 e_{1}+7 c_{1} \geq 20 n_{1}-30$ and $9 p_{2}+10 e_{2}+7 c_{2} \geq 20 n_{2}-30$, where $e_{1}+e_{2}+1=e, n_{1}+n_{2}-1=n$ and $p_{1}+p_{2}=p, c_{1}+c_{2}=c$. Therefore, $9 p+10 e-10+7 c \geq 20 n+20-60$, and the statement follows.

We may now assume $e=0$, and we should prove $9 p+7 c \geq 20 n-30$, where $n \geq 4$. In what follows, we define an increasing sequence of subgraphs $G_{0} \subset G_{1} \subset \cdots \subset \hat{G}$ recursively and keep track of the number of vertices and edges of G_{i}. In every step, we maintain the inequality $9 p+7 c \geq 20 n-30$.

Since there are no exceptional edges now, we can use the idea of Brandenburg et al. [2]. They defined the K_{4}-network of G, which is an auxiliary graph \mathcal{K}. Its vertex set corresponds to the K_{4} subgraphs of \hat{G}. Two vertices in \mathcal{K} are adjacent if the corresponding subgraphs in \hat{G} share a vertex. Since \hat{G} is connected and every edge is contained in a K_{4}, the graph \mathcal{K} is connected. Brandenburg et al. proved a lower bound on the number of edges of \hat{G} by finding a certain spanning tree of \mathcal{K} by an algorithm and investigating the number of edges of \hat{G} involved in each step of the algorithm.

We go in their footsteps, but take a closer look. We use a slightly more complex algorithm that sweeps through \hat{G} rather than \mathcal{K}.

Let G_{0} be a K_{4} subgraph of \hat{G}. Suppose that we have already defined G_{i-1}, a connected subgraph of \hat{G}, and now we construct G_{i}. Therefore, the vertices, edges, subgraphs of G_{i-1} are old and the ones of G_{i} are new. We assume $9 p\left(G_{i-1}\right)+7 c\left(G_{i-1}\right) \geq 20 n\left(G_{i-1}\right)-30$. This clearly holds for $i=1$. To construct G_{i} from G_{i-1}, we use one of the following operations in this order of preference.

1. Adding an edge between two old vertices.
2. Adding a new vertex x and all K_{4} 's spanned by x and three old vertices.
3. Adding two new vertices, x and y and all K_{4} 's spanned by x, y and two old vertices.
4. Adding two new K_{4} 's such that they share a new vertex and each of them has a vertex in common with the old subgraph.

If none of these operations can be executed, then let $G_{\text {final }}=G_{i-1}$ and the algorithm terminates.

Observe that K_{4} has two different 1-planar drawings. Either all edges are crossing-free, or there is exactly one crossing.

We show that the output of the algorithm $G_{\text {final }}$ satisfies $G_{\text {final }}=\hat{G}$. We also show by induction, that $9 p\left(G_{i}\right)+7 c\left(G_{i}\right) \geq 20 n\left(G_{i}\right)-30$ for every i. This is certainly true for $i=0$. Suppose $9 p\left(G_{i-1}\right)+7 c\left(G_{i-1}\right) \geq 20 n\left(G_{i-1}\right)-30$ for some i, and now we construct G_{i}. If we apply operation 1 , then the left side of inequality (11) increases by at least 5 (it is the case when we add an edge that crosses a previously plain edge), while the right side does not change, so (1) holds for G_{i} as well.

Suppose that we executed the second operation and we added exactly one K_{4} with new vertex x and old vertices a, b, c, see Figure 4 Now either $x a, x b$ and $x c$ are plain edges in G_{i}, or one of them, say $x c$, crosses $a b$. The other two edges, $x a$ and $x b$ do not cross an old edge since in this case there would be more K_{4} 's involving x. The left side of the inequality (1) increased by 27 or 23 while the right side increased by 20 . If we added more than one K_{4}, then we had to

Figure 4: Operation 2.
add at least four edges adjacent to x. The addition of an edge increases the left side of the inequality by at least 5 , so it increased by at least 20 .

Figure 5: Operation 3.
Suppose that we executed the third operation, see Figure 5. Let x and y be the new vertices, a and b the old vertices of a new K_{4}. Edges $x a, x b, y a$, $y b$ cannot cross an old edge, since in that case we find a K_{4} with exactly three old vertices contradicting the preference order of the operations. If $x y$ is not crossed by an old edge, then the left side of the inequality (1) increases by 41 or 45 , while the right side increases by 40 . Suppose that the edge $x y$ crosses an old edge $c d$. Now x, y, c, d form another K_{4}, and again none of the other new edges crosses an old edge. We added at least eight new edges, so the left-hand side increased by at least 40 again.

Figure 6: Operation 4.
Suppose now that we arrive to a stage, where we cannot use any of the first three operations. Therefore, there is no K_{4} in \hat{G} that has exactly two or three
old vertices. Let u be an old vertex that has at least one neighbor not in G_{i-1}. Since \hat{G} is connected, there is such a vertex. The graph G_{i-1} is also connected, so u has a neighbor in G_{i-1} as well. Order all neighbors of u in the circular order the corresponding edges emanate from u.

Recall that edges with a common endpoint do not cross. Let v and w be consecutive neighbors of u such that $v \in G_{i-1}$ and $w \notin G_{i-1}$. We distinguish four cases.

Case 1: Both $u v$ and $u w$ are plain edges in \hat{G}. We consider a K_{4} that contains the edge $u w$. By the assumptions, this K_{4} has exactly one vertex (u) in G_{i-1} and three vertices, say w, x_{1}, and x_{2} not in G_{i-1}. The vertices v and w can be connected along $u v$ and $u w$, so by the maximality of \hat{G}, they are adjacent in \hat{G}. We consider a K_{4} that contains the edge $v w$. By the assumptions, this K_{4} has exactly one vertex (v) in G_{i-1} and three vertices not in $G_{i-1}: w, y_{1}$, and y_{2}. By the assumptions, none of the new edges crosses an old edge. If x_{1}, x_{2}, y_{1}, y_{2} are all different, then we added five new vertices so the right-hand side of (1) increased by 100, see Figure 6. The left-hand side increased by at least 100 since adding two crossing K_{4} 's means 4 crossing and 8 plain edges and $4 \cdot 7+8 \cdot 9=100$. If $x_{i}=y_{j}$ for some i, j, then the situation is even better, the calculation is very similar.

Case 2: The edge $u v$ is plain in \hat{G} and $u w$ is crossing. In this case, $u w$ is crossed by an edge $a b$ of \hat{G}. Now a, b, u, w form a K_{4}, so a and b are not in G_{i-1}. Vertex v can be connected to a or b along $u v, u w$, and $a b$. Suppose that it is a, so by the maximality of \hat{G}, v and a are adjacent. Consider a K_{4} that contains edge $v a$ and the one with vertices a, b, u, w. The calculation is very similar to the previous case.

Case 3: The edge $u w$ is plain in \hat{G} and $u v$ is crossing. Let $a b$ be the edge that crosses $u v$. Now a, b, u, v form a K_{4}, and u, v are old vertices, so a and b are also old vertices. Vertex w can be connected to a or b, say, a, along $u w, u v$, and $a b$. So again by the maximality of \hat{G}, w and a are adjacent. Consider a K_{4} that contains $w a$ and a K_{4} that contains $u w$. The calculation is similar to the previous cases.

Case 4: Both $u v$ and $u w$ are crossing edges in \hat{G}. This case is the combination of the previous two cases. Edge $u w$ is crossed by $a b, u v$ is crossed by $c d$. Now one of a and b, say, a, and one of c and d, say, c, can be connected along $a b, u v$, $u w, c d$, so they are connected. Take the K_{4} formed by u, w, c, d, and a K_{4} the contains $a c$. The calculation is the same again.

In summary, we proved that we can always apply one of the four operations in our algorithm, so the algorithm terminates when $G_{\text {final }}=\hat{G}$. On the other hand, we also proved $9 p\left(G_{i}\right)+7 c\left(G_{i}\right) \geq 20 n\left(G_{i}\right)-30$ for every i. Therefore $9 p(\hat{G})+7 c(\hat{G}) \geq 20 n(\hat{G})-30$. This concludes the proof of Lemma $7 \square$

3.1 Proof of Theorem 2

Recall that $e(n)\left(e^{\prime}(n)\right)$ is the minimum number of edges of a maximal 1-planar (1-plane) graph with n vertices. Since every maximal 1-planar graph with any 1planar drawing is a maximal 1-plane graph, $e(n) \geq e^{\prime}(n)$. Therefore, Theorem 2 follows immediately from the next result.

Theorem 3 Every maximal N-vertex 1-plane graph has at least $\frac{20}{9} N-\frac{10}{3}$ edges, where $N \geq 4$.

Proof. Let G be a maximal 1-plane graph, N and E denote the number of vertices and edges, and h denotes the number of hermits. Let \hat{G} be the skeleton of G and let $n=n(\hat{G}), c=c(\hat{G}), p=p(\hat{G}), e=e(\hat{G})$ denote the number of vertices, crossing edges, plain edges, and exceptional edges of \hat{G}.

Every hermit is surrounded by two pairs of crossing edges. A crossing pair of edges can participate in four such surroundings, on the four sides of the crossing. This gives us $c \geq h$. On the other hand, for each exceptional edge, each of the two neighboring cells has a pair of crossing edges on its boundary, these two crossings cannot participate in a surrounding of a hermit in that direction. This shows $c \geq e$ and $c-e \geq h$. Now $N=n+h, E=p+e+c+2 h$.

Let us minimize

$$
F(p, e, c, h, n)=E-\frac{20}{9} N
$$

under the conditions

$$
\begin{gather*}
c-e \geq h \tag{2}\\
9 p+10 e+7 c \geq 20 n-30 \tag{3}
\end{gather*}
$$

and

$$
\begin{equation*}
p, e, c, h, n \geq 0 \tag{4}
\end{equation*}
$$

$F(p, e, c, h, n)=E-\frac{20}{9} N=p+e+c+2 h-\frac{20}{9} n-\frac{20}{9} h=p+e+c-\frac{20}{9} n-\frac{2}{9} h$.
First we apply the following transformation:
$e^{\prime}=e-\frac{9}{10} \varepsilon, p^{\prime}=p+\varepsilon, h^{\prime}=h+\frac{9}{10} \varepsilon, c^{\prime}=c, n^{\prime}=n$.
Notice that if conditions (2) and (3) hold for (p, e, c, h, n), then they also hold for $\left(p^{\prime}, e^{\prime}, c^{\prime}, h^{\prime}, n^{\prime}\right)$. On the other hand, $F\left(p^{\prime}, e^{\prime}, c^{\prime}, h^{\prime}, n^{\prime}\right)=F(p, e, c, h, n)-$ $\frac{1}{10} \varepsilon$. Therefore, the five-tuple (p, e, c, h, n) that minimizes $F(p, e, c, h, n)$ under conditions (2) and (3) has $e=0$.

For parameter h, the only condition is that $c \geq h$. If $c>h$ and we increase h, then $F(p, 0, c, h, n)$ decreases, and the conditions still hold. Therefore, we may assume $c=h$. Now we have to minimize $F(p, 0, c, c, n)=p+\frac{7}{9} c-\frac{20}{9} n$ under the condition $9 p+7 c \geq 20 n-30$. We get immediately that the minimum of $F(p, 0, c, c, n)$ under the conditions is $-\frac{10}{3}$. Consequently $E-\frac{20}{9} N \geq-\frac{10}{3}$.

Therefore, $E \geq \frac{20}{9} N-\frac{10}{3}$ for any maximal 1-planar drawing with $N \geq 4$ vertices and E edges.

Remark. We believe that our bound is far from optimal. If our bound was close to optimal, then for some maximal 1-plane graph we would have to use operation 4. in almost every step of the algorithm described in the proof of Lemma 7. However, this seems impossible.

References

[1] C. Auer, F. J. Brandenburg, A. Gleissner, K. Hanauer: On Sparse Maximal 2-Planar Graphs, Graph Drawing 2012, Lecture Notes in Computer Science 7704 (2013), 555-556.
[2] F. J. Brandenburg, D. Eppstein, A. Gleissner, M. T. Goodrich, K. Hanauer, J. Reislhuber: On the Density of Maximal 1-Planar Graphs, Graph Drawing 2012, Lecture Notes in Computer Science 7704 (2013), 327-338.
[3] P. Eades, S.-H. Hong, N. Katoh, G. Liotta, P. Schweitzer, Y. Suzuki: Testing Maximal 1-Planarity of Graphs with a Rotation System in Linear Time, Graph Drawing 2012, Lecture Notes in Computer Science 7704 (2013), 339-345.
[4] J. Pach, G. Tóth: Graphs drawn with few crossings per edge, Combinatorica 17 (1997), 427-439.

[^0]: *Supported by OTKA K-111827.

