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The time evolution of the medium created in heavy ion collisions can be described by hydro-
dynamical models. After expansion and cooling, the hadrons are created in a freeze-out. Their
distribution describes the final state of this medium. In particular their azimuthal asymmetry,
characterized by the elliptic flow coefficient v2, is one of the most important observables in heavy
ion physics. In recent years it has been revealed that if measuring relative to higher order event
planes Ψn, higher order flow coefficients vn for n > 2 can be measured. This is due to initial state
fluctuations, previously not described by analytic solutions of relativistic hydrodynamics. In this
paper we show the first solutions that utilize higher order asymmetries and thus yield realistic vn
flow coefficients. It is a clear consequence of this that different flow patterns may lead to the same
observed flow coefficients. We also compare our results to PHENIX measurements and determine a
possible parameter set corresponding to these data.

PACS numbers: 24.10.Nz,25.75.Ld,25.75.-q,47.75.+f

I. INTRODUCTION

It is well known that the medium created in high en-
ergy heavy ion collisions can be described with perfect
fluid hydrodynamics; in particular the soft hadron pro-
duction can be successfully compared to hydrodynamic
models [1]. Exact solutions provide an analytic handle
on the connection between the initial state, the dynamic
parameters of the system and the observables. Usually
elliptical symmetry is assumed in the transverse plane [2],
as this is simple to handle and represents geometries that
yield realistic results for spectra, Bose-Einstein correla-
tion functions and elliptic flow. However, nuclei contain a
finite number of nucleons, are thus not exactly spherically
symmetric, and their overlap region also fluctuates on an
event-by-event basis. This results in an event-by-event
fluctuating initial condition, and gives rise to nonzero
high order flow coefficients, with respect to higher order
reaction planes [3–5]. This was successfully reproduced
in numerical hydrodynamical calculations in Refs. [6, 7]
abd more recently in Refs. [8, 9].

In this work we show the first exact analytic solutions
of relativistic hydrodynamics that assume higher order
asymmetries. An important point of our work is giv-
ing explicit examples of analytic flow patterns leading to
realistic higher order flow coefficients. Our paper is or-
ganized as follows. First we give a short introduction to
relativistic perfect fluid hydrodynamics. In the follow-
ing section we describe our new solution, its properties
and its relations to known solutions. Then we present
model results on observables, such as transverse momen-
tum spectra and angular anisotropy coefficients (or har-
monics) vn. Finally we show a comparison of our results
to PHENIX measurements of Ref. [3].

∗ csanad@elte.hu; http://csanad.web.elte.hu/

II. PERFECT FLUID HYDRODYNAMICS

In this manuscript we adopt the following notation:
ε is energy density, p is pressure, n (if present) is the
density of a conserved charge and σ is entropy density.
Moreover, gµν is the metric tensor, diag(−1, 1, 1, 1), while
xµ = (t, rx, ry, rz) is a given point in space-time (some-
times, for the sake of simplicity, denoted by x with-
out superscript), τ =

√
t2 − r2 is the coordinate proper

time, ∂µ = ∂
∂xµ is the derivative versus space-time, while

pµ = (E, px, py, pz) is the four-momentum (also some-
times denoted by p without superscript). The equations
of hydrodynamics then are

∂µ(nu
µ) = 0, (1)

∂νT
µν = 0. (2)

The fluid is perfect if the energy-momentum tensor T µν

is diagonal in the local rest frame, i.e., viscosity and heat
conduction are negligible. This can be assured if T µν is
chosen as

T µν = (ε+ p)uµuν − pgµν . (3)

If there are no conserved charges in this perfect fluid, an
other local conservation equation may be written: that
of entropy density σ.

An analytic hydrodynamical solution is a functional
form for uµ, ε, p and n or σ, which solves the above
equations. These quantities are also subject to the equa-
tion of state (EoS), which closes the set of equations.
Usually ε = κp is chosen, where κ may depend on tem-
perature T , and solutions with temperature dependent κ
were found in Ref. [10]. In this paper, however, we use
a solution with constant κ. It is important to see that
in this case κ = 1/c2s, with cs being the speed of sound.
Temperature can then be defined based on entropy den-
sity, energy density, and pressure. An important result
for hydrodynamic models is that, because hadrons are
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created at the quark-hadron transition, hadronic observ-
ables do not depend on the initial state or the dynamical
equations (equation of state) separately, just through the
final state [11].

There was a long search for exact solutions of relativis-
tic hydrodynamics, and only a few applicable ones were
found. The first exact solutions of relativistic hydro-
dynamics were described by Landau and collaborators,
calculating momentum distributions of produced parti-
cles in high energy collisions from the theory of locally
thermalized and relativistically expanding fluids [12, 13].
These solutions were given in an implicit form. The
first exact and explicit solutions were found by Hwa [14]
and later, independently by Bjorken [15]. A unified de-
scription of these models was found in Ref. [16] and ex-
tended to general 1+1 dimensional relativistic flows in
Refs. [17, 18]. Another one-dimensional (1D), longitu-
dinally expanding explicit relativistic solution has been
found in Ref. [19], generalized later to axial symmetry in
3D [20] and ellipsoidal symmetry as well [2]. Other multi-
dimensional solutions of relativistic hydrodynamics were
given in Refs. [21–24]. However, a realistic elliptic flow
could not have been calculated from most of these models
(except the one mentioned in Ref. [25]), let alone higher
order azimuthal asymmetries. In the next section we
report the first exact analytic solution of relativistic hy-
drodynamics that yields higher order asymmetries with
measurements.

III. MULTIPOLE SOLUTIONS

Let us start from the solution given in Ref. [2], a
(1+3)D relativistic solution with realistic (not spheri-
cally symmetric) geometry. Here the thermodynamical
quantities are (at a given proper time) constant on the
surfaces of an expanding ellipsoid, defined by the s scale
variable,

s =
r2x
X2

+
r2y
Y 2

+
r2z
Z2

, (4)

where rx,ry,rz are the spatial coordinates, while X , Y , Z
are the time dependent axes of the ellipsoid. The velocity
profile is given as

uµ = γ

(

1,
Ẋ

X
rx,

Ẏ

Y
ry,

Ż

Z
rz

)

, (5)

where Ẋ = dX/dt and similarly for Y and Z.
If the comoving derivative of s vanishes, i.e., uµ∂µs =

0, then we can construct a hydrodynamical solution with
s being its scaling parameter. For the above equation
to be fulfilled, we need Ẋ,Ẏ ,Ż = constant. If we choose
X = Ẋt, Y = Ẏ t, Z = Żt, then with τ =

√
xµxµ we get

uµ =
xµ

τ
, (6)

with xµ being the space-time coordinates and τ the co-
ordinate proper time.

The thermodynamic quantities are then given with an
arbitrary ν(s) scale function as:

n(x) = nf

(τf
τ

)3

ν(s), (7)

T (x) = Tf

(τf
τ

)3/κ 1

ν(s)
, (8)

p(x) = pf

(τf
τ

)3+3/κ

, (9)

where n(x) is the number-density of a conserved charge
(if any), T (x) is temperature, p(x) is pressure, and con-
stants are normalized via pf = nfTf . Parameters with
the index f are values of the given quantity at the freeze-
out (and if the quantity has also spatial dependence,
then in the center of the fireball), in particular τf is
the freeze-out proper time, when hadronization occurs.
Note that this solution (and any other of κ = const.
type) can be written up for the entropy density σ(x)
instead of n(x) identically [10]. This means that here

σ(x) = σf (τf/τ)
3
ν(s) can be taken, and n(x) shall not

be used, if there are no conserved charges in the system.

Let us now show how the above known solution can be
extended to multipole symmetries. First, let us consider
a 1+2 dimensional case. If we rewrite the scale variable s
[given in Eq. (4)] to polar coordinates (with x = r sinφ,
y = r cosφ) we get

s =
r2

R2
(1 + ǫ cos(2φ)) , where (10)

1

R2
=

1

X2
+

1

Y 2
and ǫ(t) =

X2 + Y 2

X2 − Y 2
, (11)

(12)

i.e., R is the average system size and ǫ the eccentricity. As
X and Y are time dependent, ǫ may also depend on time.
However, if X and Y are both proportional to time, this
dependence cancels and ǫ(t) = ǫ remains constant. The
above formula for s can be generalized to higher order
symmetries:

s =
rN

RN
(1 + ǫ(t) cos(Nφ)) (13)

where N is the order of the symmetry. To visualize this,
we show a heat map of s values for several different N
values in Fig. 1.

With the s given in Eq. (13), we can derive a new
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Figure 1. (Color online) Heat map of s values in the trans-
verse plane for the N = 2, 3, 4 solutions, respectively. If the
temperature is a monotonic continuous function of s, then this
is homomorphic with the actual temperature distribution of
the solution.

solution:

uµ(x) = γ

(

1,
Ṙ

R(t)
r cosφ,

Ṙ

R(t)
r sinφ

)

, (14)

n(x) = nf

(

γRf

R(t)

)2

ν(s), (15)

T (x) = Tf

(

γRf

R(t)

)2/κ
1

ν(s)
, (16)

p(x) = pf

(

γRf

R(t)

)2+2/κ

, (17)

where τf is again freeze-out proper time, R(t) = utt (i.e.,

Ṙ = ut = const. being the expansion velocity), Rf =
utτf , γ = 1√

1−r2Ṙ2/R2

, and ut is a transverse expansion

velocity, while ǫ = constant. In this case we obtain a
Hubble-flow profile, as

γRf

R(t)
=
τf
τ
, (18)

and uµ = xµ/τ . Note again, that instead of n(x), σ(x)
can be written up the same way, if there are no conserved
charges.ó

This solution can be generalized to 1+3 dimensions
multiple ways. We may choose cylindrical coordinates
(r, φ, z), and add a zN/RN term to s:

s =
rN

RN
(1 + ǫ cos(Nφ)) +

zN

RN
, (19)

uµ(x) =
xµ

τ
, (20)

n(x) = nf

(τf
τ

)3

ν(s), (21)

T (x) = Tf

(τf
τ

)3/κ 1

ν(s)
, (22)

p(x) = pf

(τf
τ

)3+3/κ

. (23)

We get another solution in spherical coordinates if we

Table I. Typical values and meaning of model parameters.
Values were partly taken from Ref. [25].

variable typical value meaning

Tf 200 MeV central freeze-out temperature

ut 0.6 transverse expansion

b 0.08 ∼ temperature gradient

τf 7.7 fm/c freeze-out proper time

ǫ2 0.50 elliptic eccentricity

ǫ3 0.25 triangular eccentricity

ǫ4 0.08 quadrupole eccentricity

write s as

s =
rN

RN
{1 + ǫa cos(Nφ)[1 − cos(Nθ)] + ǫb cos(Nθ)}

(24)

where ǫa and ǫb are eccentricities in different planes.
There are many other type of scale variables possible,
and it turns out that there is a relatively high level of
freedom in the choice of scale variables, as it was al-
ready mentioned in Ref. [2]. They indicate that any
F (r2x/t

2, r2y/t
2, r2z/t

2) function provides a valid scaling
variable. Our solution falls in a somewhat more gen-
eral class, where the scaling variable is given as s =
F (rx/t, ry/t, rz/t), with an arbitrary F function works
[the square has to be dropped, as in case of odd N ’s,
cos(Nφ) is not a function of r2i /t

2 but of ri/t].
We may also combine several symmetries with different

N ’s via

s =
∑

N

rN

RN
{1 + ǫN cos[N(φ− ψN )]} (25)

with ψN being the Nth order reaction planes (which can-
cel from the observables). This way we get new solu-
tions with almost arbitrary shaped initial distributions,
see Fig. 2. It is important to note here that although
the initial state fluctuation in the observed collision is
present through the orientation of the Nth order reaction
planes and the strength of higher order asymmetries, the
event plane orientation itself does not affect the measured
quantities. Thus if every vN is measured relative to the
Nth order reaction plane, then the (event-through-event)
averaged value of vN will correspond to an average n-pole
anisotropy ǫN . Note also that our solution, presented
above, contains flow patterns belonging to a special class
of initial conditions, defined by the energy density profile
and Hubble flow. In a realistic scenario, initial condi-
tions contain more sophisticated inhomogeneities in the
density distributions, and velocity distributions are also
more complicated. Our paper’s goal is, however, to ex-
plicitly show flow patterns (exact hydro solutions) that
describe multipole expansions and lead to realistic ob-
servable flow asymmetries. To arrive at this goal, let us
calculate observables from our solutions.
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Figure 2. (Color online) Heat map of s values in the transverse
plane, with multiple superimposed symmetries. The more
ǫN components are included, the more asymmetric the shape
gets.

IV. OBSERVABLES

Similarly to Ref. [25], we use a freeze-out (FO) sce-
nario in which the pre FO medium is described by hy-
drodynamics, and the post FO medium is that of ob-
served hadrons. In our framework we assume that the
freeze-out happens at a given proper time, e.g., due to
a self-quenching effect or if the phase space evolution is
that of a collisionless gas. Thus there is no jump in the
equation of state post- and pre-FO, i.e., κ goes to κfree
smoothly, to the EoS of free hadrons. In this case the
hadronic observables can be extracted from the solution
via the phase-space distribution at the FO. This will cor-
respond to the hadronic final state or source distribution
S(x, p). We also do not need to fix a special equation
of state, because the same final state can be achieved
with different equations of state or initial conditions [11].
Thus in this paper κ is arbitrary – the hadronic observ-
ables do not restrict its value. Based on the above, the
source distribution takes the following form:

S(x, p)d4x =
g

(2π)3
n(x)e−pµu

µ(x)/T (x)H(τ)pµd
3Σµ(x)dt

(26)

where g is the degeneracy factor of the given particle
species, H(τ) is the proper-time probability distribution
of the FO (assumed to be a delta distribution), the expo-
nential with the temperature stems from the Boltzmann–
J́’uttner-distribution, and d3Σµ(x) is the vector measure
of the freeze-out hypersurface (which gives the Cooper-
Frye flux factor, if multiplied by pµ). If the freeze-out is
a delta distribution at a given τ , this vector measure can

be given as uµd3x
u0 . Finally, our distribution is

S(x, p)d4x =
g

(2π)3
n(x)e−pµu

µ(x)/T (x)δ(τ − τf )
pµu

µ

u0
d4x,

(27)

where T (x), uµ(x), and n(x) are defined by the hydrody-
namic solution. From this, observables can be calculated

via integrals:

N1(p) = E
d3n

d3p
=

∫

S(x,p)d4x, (28)

N1(pt) =
dn

2πptdpt

∣

∣

∣

∣

y=0

=
1

2π

2π
∫

0

N(p)|pz=0 dα, (29)

where p = (pt sinα, pt cosα, pz) is the three-dimensional
momentum, pz its longitudinal and pt its transverse com-
ponent, while α is its angle in the transverse plane. We
restrict ourselves to midrapidity observables, so we use
pz = 0 (or rapidity y = 0), and define transverse momen-
tum flow coefficients as follows:

vn(pt) =

1
2π

2π
∫

0

N(p)|pz=0 cos(nα)dα

N1(pt)
= 〈cos(nα)〉. (30)

Let us now calculate the integral of Eq. (28). If we
choose a scale function of exponential form, exp(−bs)
(i.e., the fireball is the hottest in the center and has a
spatially Gaussian profile) we get

N1(pt) ∝
∫

ν(s) exp

[

pt cos(α− φ)− Et

τTf
ν(s)

(τf
τ

)

−
3

κ

]

×δ(τ − τf )
τ

t

Et− rpt cos(α− φ)

τ
d4xdα (31)

Now let us make an integral transformation from t to τ ;
then the result is

N1(pt) ∝
∫

ebs exp





rpt cos(α− φ) − E
√

τ2f + r2 + z2

τfTfe−bs





×
E
√

τ2f + r2 + z2 − rpt cos(α − φ)

τ2f + r2 + z2
rτfdrdφdzdα (32)

Values for vn(pt) can be calculated similarly, as defined
in Eq. (30).

Let us analyze the results from this model. Parameters
other than higher order anisotropies (ǫn) can be taken
from Ref. [25], as summarized in Table I. Note that az-
imuthally integrated observables are not sensitive to the
anisotropies of this model, so spectra and HBT with pa-
rameters from Table I are compatible with PHENIX 200
GeV Au+Au data, as results from this model are the
same as from those in Ref. [25]. We calculated vn for
n = 2, 3, 4 with only one ǫn 6= 0. Clearly the odd and
even harmonics don not “mix”; i.e., if only ǫ3 6= 0 then
only v3 6= 0, however, ǫ2 gives rise to a nonzero v2 and
v4. See results in Fig. 3.

In Fig. 4 we investigate the parameter dependence of
the results of this model for vn(pt). We vary one parame-
ter, and fix the rest to values from Table I. In this model,
ut, and b have a strong effect on the vn coefficients. In
the Ref. [25], model results only depend on u2t/b, but
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Figure 3. (Color online) Curves for v2,v3,v4 with only ǫ2 6= 0

are shown in the top panel (a), while for ǫ3 6= 0 only are shown
in the bottom panel (b). Clearly there is no “interference”
between odd and even harmonics.

Table II. Model parameters (with statistical errors) from data
fit to PHENIX 200 GeV Au+Au data [3]. Parameter b (gov-
erning the temperature gradient) is strongly correlated to the
other parameters, so only a confidence interval could have
been given for it. However, it affects the value of the other
parameters, and this results in a systematic uncertainty of
them. This is around 17% for ut, 27% for ǫ2, 8% for ǫ3 and
9% for ǫ4 (independently of centrality). The magnitude of
this systematic error is visualized in Fig. 6.

0-10% 10-20% 20-30% 30-40% 40-50%

ut [h] 740±3 765±2 781±2 787±2 774±3

ǫ2 [h] 175±2 330±2 473±3 571±4 621±6

ǫ3 [h] 99±2 136±2 165±2 180±3 182±4

ǫ4 [h] 44±2 69±2 96±3 111±5 125±12

b 0.05−0.2

with the scale variable s used here, terms in s depend on
uNt /b factors for various N values. Thus the vn parame-
ters depend here on both b and ut. This dependence is,
however, strongly coupled, as we will see later on.

V. DATA COMPARISON

In this section we compare our results to PHENIX data
on higher order harmonics measured in 200 GeV Au+Au

collisions [3]. Fit parameters of the model are ǫN (for
N = 2, 3, 4), ut and b (Tf and τf were fixed to values
given from spectra and HBT comparisons of a similar
model, described in Ref. [25]). However, there was a
strong correlation between b and the other parameters.
We scanned the parameter space for lowest χ2 values, but
found only a weak dependence on b itself: this parameter
yielded approximately the same curve for b ∈ [0.05, 0.2],
and this resulted in a systematic error for the other pa-
rameters coming from uncertainty of the b value. This
explicitly shows that different flow patterns (different pa-
rameters of our solution) may lead to the same observ-
ables. Model fits are shown in Fig. 5. Around pt = 2
GeV, non-hydro effects start to play an important role,
thus we did not fit data points above this value. Model
parameters from the fit are summarized in Table II. It is
important to note that even though higher order flow co-
efficients arise from event-by-event fluctuations, an aver-
age triangular or quadrupole anisotropy can be extracted
from the data this way. This extraction is somewhat
ambiguous however, due to the correlation of b and ut
parameters. Also note that we did not vary parameters
that were fixed based on Ref. [25] – these would intro-
duce even more ambiguity, and more data are needed to
fix them (as done in [25]).

VI. SUMMARY

The goal of this paper was to expand the scope of
analytic relativistic hydrodynamics to higher order az-
imuthal symmetries, compatible with realistic (event-by-
event fluctuating) geometries. This was achieved through
finding a scale variable of suitable symmetries, through
which thermodynamic quantities depend on spatial co-
ordinates. A new exact analytic solution of relativistic
hydrodynamics was found this way, for a special class
of initial conditions. Higher order flow observables (vn’s)
were then calculated from this model, and their model pa-
rameter dependence was investigated. It was also found
that different flow patterns may lead to the same ob-
served vn values. Finally, we gave a set of parameters
with which our solution is found to be compatible with
PHENIX data.
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Figure 5. (Color online) Fits to PHENIX 200 GeV Au+Au data [3] in five centrality bins. Fit parameters are summarized in
Table II. It is important to note that many set of parameters (and thus many different flow patterns) lead to the same observed
vn values, and a large set of observables (or constraints on the initial conditions, as done for numerical calculations) are needed
to determine model parameters.
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Figure 6. (Color online) Model parameters from data fit to PHENIX 200 GeV Au+Au data [3], as a function of centrality.
Systematic error band comes from the correlation with b, see caption of Table II. Note that if b depends on centrality (which
is a realistic scenario) then of course ut would also show a more pronounced centrality dependence. However, based on the
available data, this ambiguity cannot be resolved.


