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József Cserti and Imre Hagymási
Department of Physics of Complex Systems, Eötvös University,
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We studied the energy levels of graphene based Andreev billiards consisting of a superconductor
region on top of a monolayer graphene sheet. For the case of Andreev retro-reflection we show
that the graphene based Andreev billiard can be mapped to the normal metal-superconducting
billiards with the same geometry. We also derived a semiclassical quantization rule in graphene
based Andreev billiards. The exact and the semiclassically obtained spectrum agree very well both
for the case of Andreev retro-reflection and specular Andreev reflection.
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In the well-known Andreev billiards consisting of a
normal metal surrounded by a superconductor (NS) the
dynamics of the quasiparticles is determined by the so-
called Andreev retro-reflection [1]. The spectrum of An-
dreev billiards is described by the Bogoliubov-de Gennes
(BdG) equation and has been long studied [2, 3] (for re-
view of the topic see, eg, [4]).

The electronic properties of graphene can be de-
scribed accurately by massless Dirac fermion type ex-
citations using two dimensional relativistic quantum me-
chanics [5, 6, 7] and also by semiclassical methods [8]
(for reviews on the physics of graphene see, e.g., [9]). In
the seminal paper by Beenakker [10] it has been shown
that when monolayer graphene is interfaced with a su-
perconductor then two types of Andreev reflection are

possible depending on the ratio of the Fermi energy E
(G)
F

and the electron energy E. For E
(G)
F > ∆(G) > E the

Andreev retro-reflection is dominant as in NS billiards
(here ∆(G) is the superconducting pair potential induced

in the graphene). In contrast, when E
(G)
F < E < ∆(G),

a different type of scattering process takes place at the
graphene-superconductor interface, which is named spec-

ular Andreev reflection . The specular Andreev reflection
does not exist in NS systems and it is a prominent con-
sequence of the peculiar band structure of the monolayer
graphene. Beenakker’s paper has been followed by nu-
merous works [11] (for a review on Andreev reflection in
graphene see article [12]). Note that although graphene
itself is not superconducting, due to the proximity effect
a superconductor can induce non-zero pair-potential in
the graphene as well. Indeed, supercurrent has been ob-
served experimentally [13] between two superconducting
electrodes on top of a graphene monolayer. Moreover, ex-
perimental results of Ref. [14] attest to the ballistic prop-
agation of quasiparticles in graphene-superconductor hy-
brid structures.

The most widely studied theoretical model of Andreev

billiards is that of a two dimensional electron gas (2DEG)
in a quantum dot contacted by a bulk superconductor
(see eg. [4]). One of the major obstacles that has
thwarted so far the direct comparison of the theoretical
predictions and experimental results is the inevitably ex-
isting tunnel barrier and mismatch of the Fermi-velocities
and effective masses between the 2DEG and the super-
conductor (often referred to as “non-ideal NS interface”
in the literature). This mismatch causes the probability
of normal reflection to increase at the NS interface while
the probability of the Andreev reflection diminishes sig-
nificantly. The situation when both normal and Andreev
reflection take place at the NS interface is theoretically
more difficult to address. In graphene however, when the
superconductivity is induced by external superconduct-
ing contacts, such mismatch may not exist so that the
graphene-superconductor systems may experimentally be
ideal to study most of the theoretical predictions made
assuming perfect (ie with no mismatch) NS-interfaces.

In this paper we consider graphene Andreev billiards

(GABs). In particular, we assume that in a closed region
D of the graphene sheet the superconducting pair poten-
tial is zero and outside this region it takes on a constant
value ∆(G). We demonstrate, in one hand, that when the
retro-reflection is the dominant scattering process at the
normal graphene-superconductor interface the electronic
properties of GABs can indeed be obtained in semiclassi-

cal approximation from the known results for NS billiards
with ideal NS interface. On the other hand, we also cal-
culate the exact spectrum of a GAB for the case when
the dominant scattering process is the specular Andreev
reflection and we show that it can also be understood
using semiclassical considerations.

To see the relation between the energy spectrum of NS
billiards and GABs note the following: the dispersion
relation of the quasiparticles in the normal (∆(N) = 0)
region of the NS billiards for energies E < ∆(N) can

be linearized around the Fermi energy E
(N)
F as E(p) =
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±v
(N)
F (p − p

(N)
F ), where the sign + (−) refers to the

electron-like (hole-like) quasiparticles. Here p is the mag-

nitude of the momentum, p
(N)
F =

√

2mE
(N)
F is the Fermi

momentum and v
(N)
F = p

(N)
F /m is the the Fermi veloc-

ity. This linearization is allowed if we are interested in
the properties of the bound states (E < ∆(N)) of NS
billiards because for typical NS billiards the dimension-

less parameter ∆(N)/E
(N)
F ≪ 1 is much less than unity.

The same linear dispersion can be found for electron-
like (hole-like) quasiparticles in the ∆(G) = 0 region
for GABs in the retro-reflection regime but with Fermi

velocity v
(G)
F and Fermi momentum p

(G)
F . This simple

observation is the core of the intimate relation between
the graphene based and normal metal Andreev billiards.
As long as the effect of the superconductor in semi-
classical approximation can be described by the same
way for GABs as for the NS billiards, i.e. by a sim-
ple phase shift − arccos(E/∆(N,G)), one can expect that
when the Andreev retro-reflection is the dominant scat-
tering process the gross features of the energy spectrum
of a GAB will closely resemble the spectrum of a NS bil-
liard having the same geometry. This happens because
the quasiparticles have linear dispersion in both cases.
Moreover, if the Fermi velocities and Fermi momentums

are the same i.e., vF = ~k
(N)
F /m = E

(G)
F /(~k

(G)
F ) and

pF =

√

2mE
(N)
F = E

(G)
F /vF the quasiparticles in the

∆(N,G) = 0 region will have the same dispersion rela-
tion for both NS billiards and GABs. Note that if pF
and vF are the same then E

(N)
F = E

(G)
F /2.

To demonstrate the idea discussed above we consider
a simple, circular shape GAB. It consists of normal
graphene region of radius R surrounded by supercon-
ducting graphene. Owing to the valley degeneracy of
the Hamiltonian the full BdG equation for graphene-
superconductor systems decouples to two four by four,
reduced Hamiltonians that are related to each other by a
unitary transformation (see, e.g., [10]). We now take the
one corresponding to the valley K. Due to the circular
symmetry of the setup the reduced Hamiltonian is sep-
arable in polar coordinates and therefore the eigenfunc-
tions can be labelled by an integer numberm correspond-
ing to the angular momentum quantum number. One can
show that the ansatz for the wave functions satisfying the
Schrödinger equation for the reduced Hamiltonian in the
region where ∆(G) = 0, ie, for r < R with energy E

are Ψ
(N)
m (r, ϕ) =

(

c
(N)
+ χ

(N)
+ (r, ϕ) + c

(N)
− χ

(N)
− (r, ϕ)

)

eimϕ,

where χ
(N)
+ (r, ϕ) =

[

−iJm(k+r), Jm+1(k+r)e
iϕ, 0, 0

]T

and χ
(N)
− (r, ϕ) =

[

0, 0,−iJm(k−r), Jm+1(k−r)e
iϕ
]T

are

the two eigenstates, and k± =
(

E
(G)
F ± E

)

/ (~vF).

In the superconducting region r > R where the
pair potential is ∆(G) the wave function has the

form Ψ
(S)
m (r, ϕ) =

(

c
(S)
+ χ

(S)
+ (r, ϕ) + c

(S)
− χ

(S)
− (r, ϕ)

)

eimϕ,

where χ
(S)
+ (r, ϕ) =

[

u
(S)
+ , v

(S)
+

]T

, u
(S)
+ = γ+v

(S)
+ ,

v
(S)
+ =

[

−iH
(1)
m (q+r), H

(1)
m+1(q+r)e

iϕ
]T

. The eigenstate

χ
(S)
− (r, ϕ) is obtained by the replacement + → − and

the first kind of Hankel functions to the second one
and q± =

(

E
(G)
F ± i

√

[∆(G)]2 − E2
)

/(~vF), while γ± =

e±i arccos(E/∆(G)). Here Jm(x) and H
(1,2)
m (x) are the

Bessel and the Hankel functions [15]. To ensure that
the wave function of the bound states is normalizable,
the wave function in the superconducting region must go
to zero as r → ∞. This condition can be satisfied by
choosing the appropriate Hankel function in the eigen-

states χ
(S)
± (r, ϕ) [15]. Finally, the unknown coefficients

c
(N)
± and c

(S)
± can be determined from the boundary con-

ditions Ψ
(N)
m (r = R,ϕ) = Ψ

(S)
m (r = R,ϕ) valid for any

ϕ. Thus, the condition for non-trivial solutions of the

coefficients c
(N)
± and c

(S)
± can be found from the zeros of a

four by four determinant. After some algebra we obtain
a quite simple secular equation for the energy levels with
fixed angular momentum index m:

Im
{

γ+D
(+)
GS (m,E)D

(−)
GS (m,E)

}

= 0, (1a)

D
(+)
GS (m,E) =

∣

∣

∣

∣

∣

Jm(k+R) H
(1)
m (q+R)

Jm+1(k+R) H
(1)
m+1(q+R)

∣

∣

∣

∣

∣

, (1b)

and D
(−)
GS (m,E) =

[

D
(+)
GS (m,−E)

]∗

, and Im{.} and

∗ stand for the imaginary part and the complex

conjugation, respectively. Note that H
(2)
m (q−R) =

[

H
(1)
m (q+R)

]∗

. The solutions of Eq. (1) for m =

0,±1,±2, · · · , are the exact energy levels of a circular
shape GAB. Note that Eq. (1) is valid both in the case

of Andreev retro-reflection (E
(G)
F > ∆(G) > E) and for

specular Andreev reflection (E
(G)
F < E < ∆(G)). One

can also notice that the eigenenergies depend only on

two dimensionless parameters: E
(G)
F /∆(G) and ξ

(G)
c /R,

where ξ
(G)
c = ~v

(G)
F /∆(G) is the coherence length in the

superconducting graphene.
We now compare the density of states (DOS) ̺(E) =

∑

nm δ(E − Enm) of a circular shape GAB and of the
corresponding NS billiard. For details of the calculation
see a similar calculation for NS billiards in Ref. [16]. It is
more convenient to plot the integrated DOS, namely the
so-called step function N(E) =

∑

nm Θ(E−Enm), where
Θ(x) is the Heaviside function. Our numerical results for

E
(N)
F /∆(N) = E

(G)
F /(2∆(G)) are shown in Fig. 1. One can

see that the step functions for the considered NS billiard
and GAB are indeed very similar. It is also clear from
Fig. 1 that the DOS ̺(E) = dN(E)/dE shows singulari-

ties at certain energies E
(sing)
n . Singularities of this kind

arise in the case of NS billiards as well (see e.g. Ref. [16])
and we shall discuss their origin below.
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FIG. 1: (color online) The exact step function N(E) for cir-
cular shape GAB (red line) and NS (blue line) billiards in the
case of Andreev retro-reflection. The parameters for GAB

and NS billiard are E
(G)
F /∆(G) = 10 and E

(N)
F /∆(N) = 5,

respectively, and ξ
(G)
c /R = 0.12 for both cases. The insets

show the enlarged parts of the main frame. The trivial factor
2 owing to the valley degeneracy in graphene is not included.

We now demonstrate on the example of circular GABs
that at semiclassical level the results for NS billiards and
GABs can be mapped into each other by choosing the pa-
rameters appropriately. In numerous works [3, 17, 18, 19,
20, 21] it was shown that for NS billiards in semiclassical
approximation the step function reads

NBS(E) = M

∞
∑

n=0

{1− F [sn(E)]} , (2a)

sn(E) =
nπ + arccos

(

E/∆(N)
)

E/∆(N)
ξ(N)
c . (2b)

Here M is the number of open channels in the nor-

mal region, ξ
(N)
c = ~v

(N)
F /∆(N) is the coherence length

in the NS system, F (s) =
∫ s

0
P (s′) ds′ is the inte-

grated path length distribution and P (s) is the clas-
sical probability that an electron entering the billiard
at the NS interface returns to the interface after a
path of length s. The path length distribution P (s)
is normalized to one, i.e.,

∫∞

0
P (s) ds = 1 and one

can see that it is a purely geometry-dependent func-
tion. In particular, for circular billiards it was found
that P (s) = 1

(2R)2
s√

1−(s/2R)2
Θ(2R − s) and M =

2π k
(N)
F R [16]. Finally, the quantity sn(E) in Eq. (2b)

depends on the quantization condition for the periodic
motion of the electron-hole quasiparicles [17, 20]. As
it has been pointed out in the introduction, in good
approximation the quasiparticles have linear dispersion
in the non-superconducting region for both GABs and
NS billiards. If the effect of the superconductor in
GABs can be taken into account by a simple phase shift
− arccos(E/∆(G)) [12], expressions of the type of Eq. (2)
can be used to calculate the semiclassical approximation
of N(E) for GABs as well.

Moreover, employing the same steps as in Ref. [16],
from Eq. (1) one can derive the following semiclassical
quantization rule for circular shape GABs:

S+(E)−µr S−(E)−2 arccos
E

∆(G)
= 2π

(

n+
1− µr

4

)

,(3a)

S±(E) = 2

√

(|k±|R)2 −m2 − 2 |m| arccos |m|
|k±|R

, (3b)

where µr = 1,−1 for Andreev retro-reflection and spec-
ular Andreev reflection, respectively, and n is a non-
negative integer. Functions S±(E) are the radial action
(in units of ~) of electrons and holes [22] and the term
−2 arccosE/∆(G) in Eq. (3a) accounts for the two An-
dreev reflections in one period of the orbit, while the
second term in the left hand side of Eq. (3a) results from
the sum and the difference of the Maslov indices π/4 of
the electron-like and hole-like particles for µr = 1 and
µr = −1, respectively.
Formally, in the case of Andreev retro-reflection the

quantization condition shown in Eq. (3) is the same as
for a circular NS billiard [16], but the meaning of k±
is different for the two systems (for NS billiards see eg.
Ref. [16]). However, from Eq. (3) it is easy to find that if

R(N)/ξ
(N)
c = R(G)/ξ

(G)
c and E

(N)
F /∆(N) = E

(G)
F /(2∆(G))

then to first order in E/∆(N,G) the quantization condi-
tion for circular GABs and NS billiards is the same and
the step function N(E) is given by Eq. (2) with coher-

ence length ξ
(G)
c . The exact and semiclassically calcu-

lated N(E) are plotted in Fig. 2. The agreement between
the two results is excellent. Moreover, from Eq. (2), we
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FIG. 2: (color online) The exact (red line) and the semiclassi-
cally (blue line) calculated step function N(E) obtained from
Eqs. (1) and (2), respectively for the case of Andreev retro-
reflection. The parameters are the same as in Fig. (1). The
insets show the enlarged parts of the main frame.

find that the positions of the singularities in the DOS

are given by E
(sing)
n /∆(G) = (n+ 1/2)π/(1 + 2R/ξ

(G)
c )

valid for such integers n that E
(sing)
n < ∆(G) holds. Note

that the position E
(sing)
n /∆(G) of the singularities de-

pends only on R/ξ
(G)
c but not on E

(G)
F /∆(G). Therefore
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even if E
(N)
F /∆(N) 6= E

(G)
F /(2∆(G)) but R(N)/ξ

(N)
c =

R(G)/ξ
(G)
c , the singularities in the DOS for a circular

GAB and NS billiard would appear at the same energies.
Next we consider the case of specular Andreev reflec-

tion in graphene Andreev billiards. Again, the solutions
of Eqs. (1) and (3) give the exact and the semiclassi-
cally calculated energy levels of circular shape GABs. In
Fig. 3 the calculated step function N(E) is plotted and as
one can see it is completely different from that obtained
for the case of Andreev retro-reflection shown in Fig. 1.
Moreover, the quantum results in Fig. 3 again show very
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FIG. 3: (color online) The exact (red line) and the semiclassi-
cally (blue line) calculated step function N(E) obtained from
(1) and (3), respectively for specular Andreev reflection. The

parameters are E
(G)
F = 0 and ξ

(G)
c /R = 0.03. The insets show

the enlarged parts of the main frame.

good agreement with the semiclassical ones that can be
obtained from Eq. (3). This implies that in the case of
specular Andreev reflection the DOS depends linearly on
the energy for E → 0. Namely, it can be shown from
Eq. (3) that in this limit the DOS in semiclassical ap-
proximation (without the valley degeneracy) is given by
ρ(E) = 8 EA

π3(~vF )2 , where A is the area of the billiard. It

is interesting to note therefore that (apart from the val-
ley degeneracy) ρ(E) is bigger by a factor of 16/π2 than
in the case of neutrino billiards [23].
In summary, we calculated the energy levels of

graphene based Andreev billiards. We showed that for
energy levels corresponding to the case of Andreev retro-
reflection the graphene based Andreev billiards in a very
good approximation can be mapped to the normal metal-
superconducting billiards with the same geometry. We
also derived a semiclassical quantization rule in graphene
based Andreev billiards and the spectrum obtained from
this rule agrees very well with that obtained from the
exact quantum calculations for circular shape of GS bil-
liards.
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