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Abstract
Astrophysical measurements regarding compact stars are just ahead of a big evolution jump, since the
NICER experiment deployed on ISS on 14th June 2017. This will provide soon data that would enable
the determination of compact star radius with less than 10 % error. This can be further constrained by
the new observation of gravitational waves originated from merging neutron stars, GW170817. This
poses new challenges to nuclear models aiming to explain the structure of super dense nuclear matter
found in neutron stars.

A detailed studies of the QCD phase diagram shows the importance of bosonic quantum fluctuations
in the cold dense matter equation of state. Here we used a demonstrative model with one bosonic and
one fermionic degree of freedom coupled by Yukawa coupling we show the effect of bosonic quantum
fluctuations on compact star observables such as mass, radius and compactness.

We have also calculated the difference in the value of compressibility which is caused by quantum
fluctuations. The above mentioned quantities are calculated in mean field, one-loop and in high order
many loop approximation. The results show that the magnitude of these effects is in the range of 4-5 %,
which place it into the region where modern measurements may detect it. This forms a base for further
investigations that how these results carry over to more complicated models.

Keywords: Dense matter – Stars: neutron – Equation of state – Astroparticle physics – Gravitational
waves

1 INTRODUCTION

Studying the interior of compact stars is challenged by
the lack of direct observations. However, astrophysical
measurements regarding these celestial objects are just
ahead of a big evolution jump, since the NICER experi-
ment was deployed on ISS on 14th June 2017 NASA
(2017). The improved X-ray data analysis methods
by Ozel et al. (2016a) provide more and more precise
data, which enable us to determinate the radii of com-
pact stars with less than 10 % error Ozel et al. (2016b).
Moreover, a further window to the sky, the discovery of
gravitational waves Abbott et al. (2016a,b) introduced
a novel method to investigate the inner structures of
neutron stars in a completely new manner as presented
in Rezzolla & Takami (2016). The combined measure-
ments of gravitational and electromagnetic observations,
GW170817 by Ligo/Virgo (2017) highlights the era of
multi messenger astronomy which can provide higher
accuracy compact star parameters.
Despite the ever increasing accuracy of astrophysi-

cal measurements, the modeling of the nuclear matter

using neutron star data is still plagued with the masqua-
rade problem: different equation of states (EoS) yield
similar values for observables of compact astrophysi-
cal objects Alford et al. (2005). This means that any
method which can support us to select models consider-
ing compact star observables, can resolve the masquerade
problem and provide constraints on the models of the
superdense nuclear matter.

The high-energy accelerator experiments and the lat-
tice QCD calculations are proved to be a valuable tool
for studying the properties of nuclear matter in states
characterized by high temperature (T ≈ 150MeV) and
low densities. Still, since the matter of compact stars
lie at the high-density and cold (T < 10MeV) region of
the phase diagram of the strongly interacting matter, it
is still unreachable by these techniques above. Here, the
phenomenological, effective, and non-perturbative field
theory models are usually applied and the state-of-the-
art equation of state calculations must contain all the
symmetries of the field theory including the relativistic
and quantum effects (fluctuations) as well. These the-
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oretical approaches are the only tool so far to connect
the astrophysical observations with the nuclear theory
description of the neutron star matter. One of the aim
of the recent theoretical developments is to provide a
mathematical method to handle approximations, while
keeping the physically relevant information (e.g. phase
transition, degrees of freedom, bound states, etc).
Detailed studies of the QCD phase diagram shows

the importance of correct treatment of bosonic fluc-
tuations Kovács & Szép (2007). Considering quantum
fluctuations in effective theories of nuclear matter may
help us differentiate between models, since the effect of
quantum fluctuations may vary model by model. The
first step in this investigation is to show that taking
into account quantum fluctuations change the physical
predictions of the model. In this case the observable
quantities of compact stars are expected to change too.
In this work we use the results of Refs. Pósfay et al.

(2015) and Barnaföldi et al. (2017b,a) and apply a simple
model including a Yukawa-like interaction between one
fermionic and bosonic degree of freedom and consider
quantum fluctuations induced by the self interaction the
bosons. Within the framework of the functional renor-
malization group (FRG) method, using the Wetterich
equation, we can compute thermodynamic quantities
in the Local Potential Approximation (LPA) with the
optimized Litim regulator by Litim (2001). The obtained
equation of state is investigated by solving the Tolman –
Oppenheimer –Volkov (TOV) equations to calculate the
mass-radius relation of compact stars at different levels
of approximation for the quantum fluctuations. We have
also calculated the effect of quantum fluctuations on com-
pressibility and compactness. This latter is an important
quantity to predict gravitational waveform parameters
originating from e.g. binary neutron star mergers Hin-
derer et al. (2010). Our aim with this demonstrative
model is to examine the effect of quantum fluctuations
on astrophysical observable quantities and to study how
and why these effect emerge. Here, we predict the mag-
nitude of the uncertainty of macroscopical observables
caused by microscopical fluctuations.

2 BOSONIC FLUCTUATIONS IN THE
INTERACTING FERMI GAS MODEL

To take into account the effect of quantum fluctuations
we use the functional renormalization group method,
which is a general way to calculate the effective action of
a system in quantum field theory. The obtained effective
action contains all quantum effects and can be used
directly to calculate the thermodynamics of the system
because it only contains measurable, infrared safe (IR)
quantities.
The FRG method introduces a regulator term Rk in

the action, which acts as a mass term, and suppresses
modes below the momentum scale k. Varying this scale,

the quantum fluctuations are taken into account at a
certain scale level. In our calculations we use the opti-
mized Litim regulator Litim (2001), which minimizes the
regulator-choice dependence of the results. This modi-
fication makes the effective action Γk scale dependent,
which evolution is described by the Wetterich equation
as explained in Refs. by Wetterich (1994); Gies (2012);
Wetterich (1993),

∂kΓk = 1
2

∫
dpD STr

[
(∂kRk)

(
Γ(2)
k +Rk

)−1
]
, (1)

where Γ(2)
k is the second derivative matrix of the effec-

tive action. The term ’STr’ denotes the normal trace
operation but includes a negative sign for fermionic
fields and sums over all indices. Integrating the Wet-
terich equaiton (1) at finite chemical potential yields
an effective actions which can be used to calculate ther-
modynamic quantities and the EoS for nuclear matter
at zero temperature and high densities. Since we are
interested in effective theories of nuclear matter, these
theories do not have to be renormalizable. They contain
a cut-off which defines the highest energy scale where
the theory is still considered as valid. The parameters
of the model are choosen in a way that they reproduce
the measured properties of the ordinary nuclear matter.
The resulting EoS and compact star parameters are the
predictions of the model with this initial condition.
The direct integration of the Wetterich equation (1)

is not possible in a general way, thus we have to make
assumptions for the form of the effective action. To study
the effect caused by the quantum fluctuations on the
EoS and on macroscopical compact star observables, we
use a simple Yukawa-type model with one bosonic and
one fermionic degree of freedom described by the bare
action:

Γk[ϕ,ψ] =

=
∫

d4x

[
ψ̄(i/∂ − gϕ)ψ + 1

2(∂µϕ)2 − Uk(ϕ)
]
,

(2)

where ϕ is the bosonic field of which fluctuations are
studied and ψ is the fermionic field corresponding to
nucleons in e.g. a more sophisticated model. The effect
of bosonic fluctuations is characterized by the scale-
dependent effective potential Uk. We make the ansatz
that the form of effective action (2) does not change
during the integration of the Wetterich equation. This is
consistent within LPA which is a non-pertrubative ansatz
and it means that the momentum dependence of the
vertices is dropped, but we can extend our calculations
to the regions of strong couplings. Following Pósfay
et al. (2015) the Wetterich equation for Uk at finite
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temperature is,

∂kUk = 1
2 STr ln

[
Rk + Γ(2)

k

]
=

= k4

12π2

[
1 + 2nB(ωB)

ωB
+

+ 4 −1 + nF (ωF − µ) + nF (ωF + µ)
ωF

]
,

(3)

where nB and nF are the Bose –Einstein and the Fermi –
Dirac distributions, respectively. Both are defined by

nB/F (ω) = 1
eβω ∓ 1

ω2
B = k2 + ∂2

ϕU,

ω2
F = k2 + g2ϕ2,

(4)

where g is the coupling, and β = 1/T is the inverse
temperature of the system. Note in this method the
thermodynamical parameters enter through the flow
equation at finite temperature and chemical potential.

At the cutoff scale we choose the initial conditions for
the potential in the form of ϕ4 model:

UΛ = Uk=Λ = m2
Λ

2 ϕ2 + λΛ

24 ϕ
4. (5)

The bare parameters mΛ and λΛ were choosen in a way
that our obtained equation of state agrees with other
phenomenologically more sophisticated EoS at high en-
ergies Barnaföldi et al. (2017a). The specific Wetterich
equation (3) for the demonstrative model given by (2)
is solved by the technique proposed by Barnaföldi et al.
(2017b) at zero temperature and finite chemical poten-
tial. The cut-off scale is chosen to be Λ = 1.4GeV as
a typical value applied in a similar model by Drews &
Weise (2015). The obtained EoS were studied in Ref. Bar-
naföldi et al. (2017a) and the corresponding neutron star
parameters were compared to other models. In this work
we show how the effect of quantum fluctuations manifest
themselves in the observable quantities of compact stars
when considering different levels of approximations.

3 COMPACT STAR OBSERVABLES AND
QUANTUM FLUCTUATIONS

In order to constrain the equation of state of the dense
nuclear matter the most important measurable proper-
ties of the neutron stars are their mass, M and radius,
R. The mass-radius curve shows the possible neutron
star configurations of a given EoS. In the case of our
demonstrative model, given by the action (2), we cal-
culated the mass-radius diagram for different levels of
approximations in Barnaföldi et al. (2017a).

3.1 The effect of fluctuations on compactness

Merging compact stars are also predicted sources of grav-
itational waves Rezzolla & Takami (2016). The form of

the emitted gravitational waves strongly depends on the
compactness of the neutron stars, which is defined as
C = M/R (Hinderer et al., 2010). We calculated here
how the compactness is related to the mass and the
radius of the neutron star in our toy model to study the
effect of quantum fluctuations. We compared our model
to some other EoS taken from Ref. Ozel et al. (2016a),
which are typically used in compact star models. The
physical quantities are calculated in different levels of
approximation: the mean field level which contains no
quantum effects, the one-loop level which is the low-
est order approximation for quantum effects, and the
high-order FRG LPA approximation, which is the most
accurate from these ones.
Relations are shown on Figs. 1 and 2 are important

when the neutron star parameters has to be determined
from gravity waves. The compactness is related to the
waveform but the equation of state is needed for the mass
and/or radius estimation. The obtained curves present,
that considering quantum fluctuations in different ap-
proximations changes the predicted value of mass and
radius – corresponding to a neutron star with a given
compactness. The deviation between calculations is the
most prominent in the domain of the large-mass and
high-density compact stars which are the most relevant
cases from both nuclear physics and astrophysics points
of view Kojo (2017).

Figure 1. The compactness-mass relation of neutron stars cal-
culated within the FRG-framework in different approximations.
Comparison to models WFF1 and SQM3 are also presented, in-
cluding the uncertainty of the observational resolution by shaded
bars Ozel et al. (2016a).

The maximal deviation between approximations is
about 5 % for mass and radius. The FRG-LPA method
always predict larger mass neutrons stars than the other
two. The mean field approximation is closer to the high
order FRG-LPA approximation, which shows that taking
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Figure 2. The compactness-radius relation of neutron stars cal-
culated within the FRG-framework in different approximations.
Comparison to models WFF1 and SQM3 are also presented Ozel
et al. (2016a).

into account high-orders are needed in the FRG-LPA
method for modeling the dense matter.

Based on these calculations one can argue, that using
mean field models is enough to study the neutron star
data, since it is so close to the high order calculation.
However, one has to be careful with such a prediction
because as shown by Barnaföldi et al. (2017b) the phase
diagram of the model behaves differently in various
approximations. The analyzed phase structure shows
about 30% difference between the mean field and high
order calculations. This fact becomes important if one
wants to use astrophysical data to study the phases of
dense nuclear matter, for example in studies of color
flavour locking (CFL) or color superconductor phase –
where the phases are quite close to each other. Moreover
these results shows that including quantum fluctuations
are important when the considered model has more
phases and the effect of quantum fluctuations depend
on the interactions in the model and they can change
the mass and radius of the resulting neutron star.
So far there is no known compact star with high-

precision measurement including both mass and radius,
thus one should use data from various sources for uncer-
tainty estimates. On Figure 1, an uncertainty estimate
of the recent observational data was plotted by shaded
bars. Note, that these uncertainty bars were taken based
on Ozel et al. (2016a), however we note mass-only mea-
surement alone can be more accurate, due to the Shapiro-
delay based precise measurements Demorest et al. (2010);
van Kerkwijk et al. (2011).

Using the demonstrative model described in Bar-
naföldi et al. (2017b) we can estimate whether or not the
effect of quantum fluctuations on compact star observ-
ables can be detected by modern data analysis methods.

For the estimation we assume that the relative size of the
effect of fluctuations remains the same in more realistic
models of neutron stars. We also consider the most opti-
mistic case on Figure 1 where the effect of fluctuations is
the biggest.Comparing the experimental uncertainty to
the effect of fluctuations, one can see that they are in the
same order of magnitude, although the accuracy of the
measurements is not yet enough to provide constraints
based on the effect of fluctuations.

3.2 Compressibility-sensitivity on
fluctuations

The compressibility of nuclear matter is one of the most
sensitive measure of the nuclear matter. It is also strongly
influences the mass and radius of the resulting neutron
star, and related to compactness too. The compressibility,
χ, is defined by

1
χ

= n
∂P

∂n
, (6)

where n is the density of matter and P is the pressure.
The compressibility given by eq. (6) can also be expressed
as a function of average energy per particle:

1
χ

= 2n2 ∂

∂n
(E/A) + n3 ∂

2

∂n2 (E/A), (7)

where E/A is the energy of one nucleon. If the E/A has
a minimum, the model describes a stable nucleus with
binding energy, hence the saturation density n0 and the
compression modulus K is defined at the minimum:

K = k2
F

∂2

∂k2
F

(E/A) (8)

where kF is the Fermi-momentum. In this case the com-
pressibility and the compression modulus are connected:

K = 9
n0 χ

. (9)

However, our demonstrative model has no binding
energy, but the compressibility can be calculated. In a
more sophisticated model there can be only a multiplica-
tive constant difference between the compressibility and
the compression modulus. Comparing compressibility as
a function of relative density at different levels of ap-
proximation implies that the fluctuations has a similar
effect on the compression modulus in more sophisticated
models.

The results are shown on Fig. 3 relative to the mean
field calculations as a reference (solid line). Since our
model is a proof-of-concept demonstrative-model and
does not contain a repulsive force except the Fermionic-
nature of nucleons, the densities are higher than the
nuclear saturation density n0 = 0.153 fm-3. Due to
this, the compressibility values are also higher, but here
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Figure 3. Compressibility calculated at different approximation of
the EoS, as a function of nuclear density. Everything is normalized
to the mean field approximation values.

we are interested only in the relative difference of the
corresponding approximations.

For this reason on Fig. 3 we show the relative compress-
ibility compared to the mean field calculation, which
constraints no quantum effects. The high order FRG
calculation (dashed line) is the most accurate and it
is approximately 8 % higher then the mean field result.
The one-loop calculation, which considers quantum fluc-
tuations at the lowest order (dotted line) is about 3−4 %
higher than the reference mean field one. Fig. 3 shows
that the first order approximation is not satisfying for
the purposes of calculating the compressibility.

4 DISCUSSION

Taking into account the recent experimental devices,
analysis methods, and the expected statistics, we com-
pared the obtained uncertainty to the calculated effect
of the quantum fluctuations. As Figures 1, 2, and 3 show,
the proposed difference originated by taking into account
the quantum fluctuations at different order, appears as
. 5% effect on the macroscopical observables of compact
stars. In comparison to this, the experimental data were
found to have about . 10% used Refs. Demorest et al.
(2010); Ozel et al. (2016a).

Certainly, our comparison presents the best-case sce-
nario, especially, in sense of the theoretical calculations,
where the maximal deviance was taken into account. To
quantify this, on Fig. 4 we presented the mass-radius
relation including the difference of the FRG-LPA M(R)
result relative to the mean field approximation as shaded
area.

Based on our investigation for the maximal rela-
tive difference on mass and radius, max(∆M/MMF (R))
and max(∆R/RMF (M)) respectively, which are plot-
ted on the bottom and side graphs of the Fig. 4,
one can see easily, that the relative deviation is the
largest at the maximal mass and radius close to the
stable solution. Here max(∆M/MMF (Rmax)) ≥ 0.1 and

Figure 4. The M(R) diagram calculated for the FRG-method
(FRG-LPA) and mean field (MF) approximation, including maxi-
mum relative deviation caused by the quantum fluctuation effects
on mass and radius.

max(∆R/RMF (Mmax) ≥ 0.05. The difference between
the mean field and FRG-LPA calculations is approxi-
mately constant for other sections of the M-R diagram
and approximately 4% for the mass and 2% for the
radius.

It is important to emphasize that our model is demon-
strative, and the deviation on the M-R diagram may
vary according to the interplay of interaction terms in
other models, however the deviations proposed to have
the same order of magnitude as in our model.

5 CONCLUSION

Based on Refs. Pósfay et al. (2015); Barnaföldi et al.
(2017b,a) using the FRG method, we calculated the ef-
fect of bosonic quantum fluctuations on neutron star
observables considering the simplest interacting Fermi-
gas model and compared our results to some other sim-
ilar model EoS as well. We concluded that high-order
calculations are needed for the consistency between the
phase diagram and the observable quantities such as
the mass and radius of compact stars, compactness, and
thermodynamical quantities like compressibility.
We presented that the difference between compact

star observables corresponding to the various approxi-
mations of the EoS is in the order of ∼ 5%. The effect is
most prominent on the M-R diagram near the maximum
mass and radius. We have also concluded that although
modern measurements are not accurate enough to detect
these effects, they are very close and it is probable that
high-statistics and high accuracy NICER data analyzed
by novel techniques will resolve the deviations caused
by quantum fluctuations.
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