
ar
X

iv
:0

71
2.

42
92

v1
  [

he
p-

th
] 

 2
7 

D
ec

 2
00

7

Solving topologi
al defe
ts via fusion

Z. Bajnok and Zs. Simon

November 8, 2018

Theoreti
al Physi
s Resear
h Group of the Hungarian A
ademy of S
ien
es,

H-1117 Pázmány s. 1/A, Budapest, Hungary

Abstra
t

Integrable defe
ts in two-dimensional integrable models are purely transmitting thus

topologi
al. By fusing them to integrable boundaries new integrable boundary 
onditions


an be generated, and, from the 
omparison of the two solved boundary theories, expli
it

solutions of defe
t models 
an be extra
ted. This idea is used to determine the trans-

mission fa
tors and defe
t energies of topologi
al defe
ts in sinh-Gordon and Lee-Yang

models. The transmission fa
tors are 
he
ked in Lagrangian perturbation theory in the

sinh-Gordon 
ase, while the defe
t energies are 
he
ked against defe
t thermodynami


Bethe ansatz equations derived to des
ribe the ground-state energy of diagonal defe
t

systems on a 
ylinder. Defe
t bootstrap equations are also analyzed and are 
losed by

determining the spe
trum of defe
t bound-states in the Lee-Yang model.

1 Introdu
tion

Re
ently, there has been an in
reasing interest in integrable quantum �eld theories in
luding

defe
ts or impurities. This is motivated both by the realisti
 physi
al appli
ations in statis-

ti
al and solid state physi
s and also by the need of theoreti
al understanding of this so-far

unexplored �eld.

The 
ommunity of integrable systems have not payed mu
h attention to defe
t theories at

the beginning due to the no-go theorem formulated by Del�no, Mussardo and Simonetti in

[1, 2℄. The theorem, formulated originally for diagonal theories and extended later for a large


lass of non-diagonal ones in [3℄, states that a relativisti
ally invariant theory with a non-free

integrable intera
tion in the bulk 
an allow only two types of integrable defe
ts: the purely

re�e
ting and the purely transmitting ones. (Although some e�ort has been made to over
ome

this obsta
le by giving up Lorentz invarian
e, see for instan
e [4℄ and referen
es therein, in

the present paper we restri
t ourselves to the relativisti
ally invariant 
ase.)

The analysis of boundary integrable theories was initiated in [5℄ by formulating, in an

axiomati
 way, the properties of the re�e
tion matrix: unitarity, boundary 
rossing unitarity

and boundary bootstrap equation. The boundary bootstrap framework was 
ompleted by

introdu
ing boundary Coleman-Thun me
hanism [6℄ and the bulk bootstrap equations [7℄.

Later this framework got a sound basis by developing boundary quantum �eld theories from

�rst prin
iples in [8, 9℄. The su

ess of the boundary bootstrap approa
h resulted in a large
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lass of 
losed bootstrap theories in whi
h the boundary re�e
tion fa
tors together with the

spe
trum of boundary ex
ited states were determined [5, 6, 10, 11, 12, 13, 14℄. The solutions,

obtained by the bootstrap method, are not 
onne
ted, however, to other formulations of

the model su
h as to the 
lassi
al �eld theory or to the perturbed 
onformal �eld theory

(both de�ned by a Lagrangian). To 
onne
t the di�erent des
riptions one either has to 
he
k

the re�e
tion fa
tors perturbatively, like in [15℄, or solve the theories in �nite volume. The

boundary thermodynami
 Bethe ansatz (BTBA), developed in [16℄, systemati
ally sums up

the �nite size 
orre
tions by taking into a

ount the s
atterings and re�e
tions. By analyzing

its small volume limit the needed link between the bootstrap and perturbed 
onformal �eld

theoreti
al des
riptions 
an be established.

As the no-go theorem showed non-free integrable defe
t theories are purely transmitting.

This fa
t kept ba
k the resear
hers for some time to analyze these models until new life was

put into the subje
t due to their expli
it Lagrangian realizations [17℄. Following the original

idea many integrable defe
t theories were 
onstru
ted at the 
lassi
al level [18, 19, 20℄. The

basis for the quantum formulation of defe
t theories is provided by the folding tri
k [21℄ by

whi
h one 
an map any defe
t theory into a boundary one. As a 
onsequen
e defe
t unitarity,

defe
t 
rossing symmetry and defe
t bootstrap equations together with defe
t Coleman-Thun

me
hanism are derived. Despite of these results the expli
itly solved relativisti
ally invariant

defe
t quantum �eld theories are quite rare, 
ontaining basi
ally the sine-Gordon and a�ne

Toda �eld theories [22, 23, 24℄ and even in these 
ases the expli
it relation to their Lagrangian

have not been worked out yet.

One may think that purely transmitting theories are too simple and there is no point

to analyze them, but we would like to argue that they 
arry very important information

about an integrable quantum �eld theory, without whi
h our knowledge 
annot be 
omplete.

Purely transitivity implies the 
onservation of momentum from whi
h the topologi
al nature

of the defe
t follows. Thus, su
h defe
ts 
an freely be transported in spa
e without a�e
ting

the physi
s of the theory. We 
an either move them 
lose to ea
h other or move them to

integrable boundary 
onditions and, as a result, new integrable boundary 
onditions 
an be

generated. These ideas were su

essfully applied in 
onformal �eld theories [25, 26, 27℄, in

integrable latti
e models [28, 29℄ and the aim of the present paper is to exploit it in solving

integrable defe
ts in the sinh-Gordon and Lee-Yang theories.

The paper is organized as follows: In se
tion 2, on the example of the sinh-Gordon the-

ory, we show how new boundary 
onditions 
an be obtained by fusing integrable defe
ts to

boundaries at the 
lassi
al level. We fo
us on two 
ases in detail: fusing the integrable defe
t

to Diri
hlet boundary 
ondition (DBC) the perturbed Neumann boundary 
ondition (PNBC)


an be obtained, while fusing it to the Neumann BC a new 
lass of time-dependent integrable

BCs 
an be generated. Se
tion 3 re
alls the quantum version of the fusion method together

with the properties of transmission fa
tors. By 
omparing the already known re�e
tion fa
tors

and boundary energies of the DBC to those of the PNBC solutions for the defe
t transmission

fa
tor and defe
t energy 
an be extra
ted. The same method is then used to determine defe
t

energies and transmission fa
tors of the s
aling Lee-Yang model. This method not only pro-

vides the expli
it solutions of the sinh-Gordon defe
t theory but also relates its parameter to

that of the Lagrangian. Sin
e the relation obtained here is di�erent from the suggestion of [23℄

we perform a perturbative analysis at one-loop level in se
tion 4. (In the subsequent paper [24℄

the same authors raised the possibility of the quantum renormalization of the transmission pa-

rameter, whi
h is 
on�rmed at one-loop level here). In se
tion 5 the 
al
ulated defe
t energies

are subje
t to another 
onsisten
y 
he
k. For this we derive a TBA equation to des
ribe the
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groundstate energy of a diagonal defe
t system on a 
ylinder. From a 
areful ultra-violet (UV)

analysis defe
t energies are extra
ted and the previous results are veri�ed. By 
ompleting the

defe
t bootstrap program we analyze the singularity stru
ture of the transmission fa
tors in

se
tion 6. Sin
e the sinh-Gordon transmission fa
tor does not 
ontain any singularity in the

physi
al strip we analyze the Lee-Yang model only. For ea
h pole of the transmission fa
tor in

the physi
al strip we asso
iate either a defe
t boundstate or a defe
t Coleman-Thun diagram

and 
al
ulate the ex
ited transmission fa
tors in the former 
ase from the defe
t bootstrap

equation. Finally, we 
on
lude in se
tion 7 and give dire
tions for further resear
h.

2 Fusion method at the Lagrangian level

In this se
tion we demonstrate, on the example of the sinh-Gordon (ShG) theory, how new

integrable boundary 
onditions 
an be obtained by the fusion method at the Lagrangian or


lassi
al level [30℄.

The ShG theory is de�ned on the whole line by the following Lagrangian

LShG(Φ) =
1

2
(∂tΦ)

2 − 1

2
(∂xΦ)

2 − m2
cl

b2
cosh bΦ , (1)

It des
ribes an integrable �eld theory and by restri
ting the theory to the half line this property


an be only maintained, whenever the following boundary potential is introdu
ed [5℄

LBShG = Θ(−x)LShG(Φ)− δ(x)B(Φ) ; B(Φ) = M0 cosh
b

2
(Φ− ϕ0) (2)

By varying M0 from 0 to ∞ the arising boundary 
ondition interpolates between the Neumann

∂xΦ|x=0 = 0 and the Diri
hlet Φ(0, t) = ϕ0 ones.

The most general integrable defe
t 
ondition 
an be obtained by the analyti
al 
ontinuation

of the sine-Gordon result [23℄. The Lagrangian in the ShG 
ase reads as

LDShG = Θ(−x)LShG(Φ−)− δ(x)D(Φ−,Φ+) + Θ(x)LShG(Φ+) (3)

where the defe
t potential 
ontains just one single parameter:

2D(Φ−,Φ+) = Φ+Φ̇− − Φ−Φ̇+ +Mcle
µ cosh

b

2
(Φ+ +Φ−) +Mcle

−µ cosh
b

2
(Φ+ − Φ−)

Here Φ∓ are the �elds living on the left/right half-line, respe
tively and Mcl =
4mcl

b2
.

The fusion idea is based on the integrability of the defe
t: Integrability guaranties the

existen
e of an in�nite number of 
ommuting 
onserved 
harges whi
h results in the possibility

of shifting the traje
tories of parti
les, without 
hanging the amplitude of any s
attering

pro
ess. The shifting of all the traje
tories 
an alternatively be des
ribed by shifting the

lo
ation of the defe
t, whi
h then, does not alter the physi
s.

At the level of the Lagrangian this observation 
an be formulated in the following way: The

spe
trum of the system, whi
h 
ontains a defe
t in the origin, x = 0, in front of a boundary,

lo
ated at x = a,

LDBShG = Θ(−x)LShG(Φ−)− δ(x)D(Φ−,Φ+) + Θ(x)Θ(a− x)LShG(Φ+)− δ(x− a)B(Φ+)

3



does not a
tually depend on a. Thus we 
an perform the a → 0 limit and represent the same

system as a boundary one, but with a di�erent (dressed) boundary 
ondition:

LDBShG = Θ(−x)LShG(Φ−)− δ(x)B
′

(Φ−,Φ+) ; B
′

(Φ−,Φ+) = D(Φ−,Φ+) +B(Φ+)

The �eld Φ+ lives on the boundary only and 
an be thought naively to be a boundary degree

of freedom. It does not have, however, any kineti
 term so it merely implements a new

time-dependent integrable boundary 
ondition. Let us spe
ify these �ndings in two 
on
rete

examples that will be used later on.

If the original boundary 
ondition is the Diri
hlet one with Φ(a, t) = φ0, then the arising

dressed boundary 
ondition is

B
′

(Φ−,Φ+) = D(Φ−, ϕ0) =
Mcle

µ

2
cosh

b

2
(Φ− + φ0) +

Mcle
−µ

2
cosh

b

2
(Φ− − φ0) (4)

where we dropped the total time derivatives. This BC is exa
tly of the form of (2) with

parameters

Mcl cosh(µ ± b

2
φ0) = M0e

∓ b
2
ϕ0

Thus by fusing the integrable defe
t to the DBC we 
an re
onstru
t the most general (two pa-

rameter family of) PNBCs. Interestingly φ0 and µ are the 
lassi
al analogues of the parameters

in whi
h the boundary re�e
tion is fa
torized [45℄, see also (13,14) in se
tion 3.

By fusing the defe
t to the NBC we obtain the boundary potential

B
′

(Φ−,Φ+) = D(Φ−,Φ+)

Variation of a
tion provides BCs in the form:

∂tΦ−|x=0 = −∂B
′

(Φ+,Φ−)
∂Φ+

; (∂tΦ+ − ∂xΦ−)|x=0 =
∂B

′

(Φ+,Φ−)
∂Φ−

(5)

By expressing Φ+ in terms of Φ− and ∂tΦ− then plugging ba
k to the se
ond equation we

obtain a highly non-trivial boundary 
ondition for Φ− 
ontaining its se
ond time derivative,

whi
h is nevertheless integrable as it follows from the 
onstru
tion. Obviously, this solution

was not 
overed by the two parameter family of (time-independent) integrable boundary 
on-

ditions determined in [5℄, thus by the fusion method we were able to 
onstru
t a new type

of integrable BC. By fusing other integrable defe
ts with new free parameters to this dressed

boundary we 
an generate integrable BCs with as many parameters as we want. What is ni
e

in the 
onstru
tion, that the solution of the defe
ts transmission fa
tor will provide, via the

fusion method, solutions for these general integrable BCs, too, as we will show in the next

se
tion.

Finally, we note that similar 
onstru
tion 
an be used in the 
ase of the Lee-Yang model,

however, the expli
it form of the integrable defe
t perturbation has not been identi�ed at the

Lagrangian level yet ( for details see the next se
tion).

3 Fusion method in the bootstrap

For simpli
ity we present the fusion idea in the 
ase of an integrable diagonal s
attering theory

with one parti
le type of mass m. The general dis
ussion 
an be found in [21℄.
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In integrable bulk theories multi-parti
le s
attering pro
esses fa
torize into the produ
t of

two parti
le s
atterings, S(θ12), where θ12 = θ1− θ2 is the rapidity di�eren
e of the s
attering

parti
les whose momenta are parametrized as pi = m sinh θi. In relativisti
ally invariant

theories the two parti
le S-matrix satis�es unitarity and 
rossing symmetry

S(−θ) = S−1(θ) ; S(iπ − θ) = S(θ)

On
e boundaries are introdu
ed the basi
 pro
ess is the multi-parti
le re�e
tion. Integra-

bility ensures its fa
torization into pairwise s
atterings S(θij) and individual re�e
tions R(θi),
where θi is the rapidity of the re�e
ted parti
le. The re�e
tion matrix satis�es unitarity and

boundary 
rossing unitarity [5℄

R(−θ) = R−1(θ) ; R(
iπ

2
− θ) = S(2θ)R(

iπ

2
+ θ)

Integrable non-free defe
ts are severely restri
ted: they are either purely re�e
ting (thus

boundaries, like above) or purely transmitting. The latter 
ase 
an be des
ribed by the two,

left (−) and right (+), transmission matri
es T−(θ) and T+(−θ). We parametrize T+ su
h a

way that for its physi
al domain (θ < 0) its argument is always positive. Transmission fa
tors

satisfy unitarity and defe
t 
rossing symmetry [21℄

T+(−θ) = T−1
− (θ) ; T−(θ) = T+(iπ − θ) (6)

If we pla
e a defe
t with transmission matri
es T±(θ) in front of a boundary with re�e
tion

matrix R(θ) then the fused boundary will also be integrable and have re�e
tion fa
tor R
′

(θ):

R
′

(θ) = T+(θ)R(θ)T−(θ) (7)

The 
orresponden
e (7) between the original R(θ) and the fused R
′

(θ) re�e
tion fa
tors 
an

be used either to generate new BCs or, if the two BCs are already known, to solve defe
t

transmission fa
tors. This will be illustrated in the next subse
tions for the sinh-Gordon and

Lee-Yang models.

3.1 Solution of defe
t sinh-Gordon theory

The spe
trum of ShG theory de�ned by (1) 
onsists of one parti
le type with mass [32℄

m =
4
√
π

Γ(1−B
2 )Γ(1 + B

2 )

(−πm2
clΓ(1 + b2)

b2Γ(−b2)

)

1

2+2b2

; B =
b2

8π + b2
(8)

The two parti
le s
attering matrix is given by

S =
sinh θ − i sinBπ

sinh θ + i sinBπ
= −(−B)(1 +B) , (x) =

sinh(θ2 + iπx
2 )

sinh(θ2 − iπx
2 )

It has no poles in the physi
al strip: 0 ≤ θ < iπ and is invariant under the weak-strong duality,

b2

8π → 8π
b2
. The bulk energy density turns out to be [33℄

ǫbulk =
m2

8 sinh πB
(9)
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Integrable boundary 
onditions 
an be either Diri
hlet type with Φ(0, t) = φ0 or PN type

(2). The 
orresponding re�e
tion fa
tors 
an be obtained from the analyti
al 
ontinuation of

the sine-Gordon's �rst breather's one [5, 34℄. In the Diri
hlet 
ase it reads as

RDir(θ, ηDir) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

iBηDir

π
− 1

2

)

(

iBηDir

π
+ 1

2

)
(10)

where the re�e
tion parameter ηDir is related to φ0 as

ηDir =
4π

b
φ0 (11)

The boundary energy has been also 
al
ulated [16℄

ǫDir
bdry(ηDir) =

m

4 sinBπ

(

2 coshBηDir − sin
πB

2
− cos

πB

2
− 1

)

(12)

In the PN 
ase the re�e
tion fa
tor turns out to be

RPN(θ, η, ϑ) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

iBη
π

− 1
2

)

(

iBη
π

+ 1
2

)

(

iBϑ
π

− 1
2

)

(

iBϑ
π

+ 1
2

)
(13)

while the relation of η, ϑ to the parameters of the Lagrangian (UV-IR relation) is [45℄

M cosh
b2

8π
(η ± ϑ) = M0e

∓ bϕ0
2 ; M = mcl

√

2

b2 sin(b2/8)
(14)

The boundary energy has been also determined [31, 45℄ as

ǫPNbdry(η, ϑ) =
m

4 sinBπ

(

2 coshBη + 2coshBϑ− sin
πB

2
− cos

πB

2
− 1

)

(15)

We note that the results - both for the UV-IR relation and for the boundary energy - were

obtained in the framework of perturbed BCFT in whi
h the perturbing operator is normal-

ordered to have a de�nite s
aling dimension.

The integrable defe
t potential for the sinh-Gordon model 
an be written as in (3). Let us

denote the transmission fa
tors by T±(θ, µ). Fusing 
lassi
ally this defe
t to a DBC a PNBC


an be obtained (4). The quantum analogue of this statement in view of (7) is

RPN(θ, η, ϑ) = T+(θ, µ)RDir(θ, ηDir)T−(θ, µ)

Comparing the re�e
tion fa
tor of the PNBC (13) to that of the Diri
hlet one (10) and taking

into a

ount defe
t unitarity and defe
t 
rossing symmetry (6) we 
an extra
t the transmission

fa
tors for the defe
t. The simplest possible solution 
orresponds to η = ηDir and

T−(θ) = −i
sinh

(

θ
2 − iπ

4 + Bϑ
2

)

sinh
(

θ
2 +

iπ
4 + Bϑ

2

) ; T+(θ) = i
sinh

(

θ
2 − iπ

4 − Bϑ
2

)

sinh
(

θ
2 + iπ

4 − Bϑ
2

)
(16)

All other solutions 
ontain additional CDD type fa
tors satisfying (6). A
tually the solution

(16) itself is a CDD fa
tor, therefore it is the simplest non-trivial solution of (6).
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To �nd the 
orresponden
e between the parameter of the quantum transmission fa
tor ϑ
and the Lagrangian parameter µ we follow the following strategy: Sin
e the boundary results

are derived in the perturbed BCFT normalization we allow not only the parameter µ but also

Mcl to renormalize. Their renormalized quantum values are determined from the requirement

that when fusing the defe
t to the DBC with (11) we obtain the PNBC with (14). The unique

solution turns out to be

Me±
b2ϑ
8π = Mcle

±µ
(17)

The renormalization of Mcl may depend on the s
heme in whi
h the quantum potential is

de�ned. The b → 0 limit, in whi
h M → Mcl, shows that ϑ is the quantum renormalized

version of µ.
Also the defe
t energy 
an be extra
ted as the di�eren
e of the boundary energies 
orre-

sponding to the PN (15) and to the Diri
hlet (12) one:

ǫDef(ϑ) = ǫPNbdry(η, ϑ)− ǫDir
bdry(η) =

m coshBϑ

2 sinBπ
(18)

Summarizing, by the fusion method we were able to solve the defe
t theory de�ned by the

Lagrangian (3): The transmission fa
tors are (16), the defe
t energy is (18), and the bootstrap

parameter ϑ parametrizes the Lagrangian as (17). We spend the next se
tion to provide


onsisten
y 
he
ks of this solution.

On
e the defe
t theory is solved we 
an use it to generate new integrable BCs from known

ones. In the example presented in se
tion 2 the defe
t with parameter µ was fused to the NBC

to generate a more general integrable BC (5). The quantum version of this fusion dresses up

the Neumann re�e
tion fa
tor

RN(θ) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

1
2 − B

2

)

(

1
2 +

B
2

)
(19)

to the re�e
tion fa
tor

R(θ, ϑ) = T+(θ, µ(ϑ))RN(θ)T−(θ, µ(ϑ)) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

1
2 − B

2

)

(

1
2 +

B
2

)

(

iBϑ
π

− 1
2

)

(

iBϑ
π

+ 1
2

)
(20)

Thus we solved the more general integrable BC de�ned by (5) without doing any serious


al
ulation. It is important to note, that the extra fa
tor appearing in (20) 
ompared to (19)

is a CDD fa
tor. Consequently, we have determined the physi
al meaning of the CDD fa
tors

appearing in the re�e
tion fa
tors: they represent integrable defe
ts of the form of (5) standing

in front of integrable boundaries. In prin
iple, we 
an fuse as many integrable defe
ts with

various parameters as we want, the resulting theory 
an be solved and its re�e
tion fa
tor


ontains the 
orresponding boundary CDD fa
tors.

Finally, we note that pla
ing two defe
ts with parameters ϑ± = ±i(1− π
2B ) after ea
h other

both the s
attering matrix and the energy of a standing parti
le 
an be reprodu
ed. Thus the

defe
t with imaginary parameter 
an be 
onsidered as a 'half' parti
le. Similar phenomena

was observed in [23℄ at the 
lassi
al level.

3.2 Solution of defe
t s
aling Lee-Yang model

The s
aling Lee-Yang model 
an be de�ned as the perturbation of the M(2,5) 
onformal min-

imal model with 
entral 
harge c = −22
5 . It 
ontains two modules of the Virasoro algebra
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orresponding to the Id and the ϕ(z, z̄) primary �elds with weight (0, 0) and (−1
5 ,−1

5), re-
spe
tively. The only relevant perturbation by the �eld ϕ results in the simplest s
attering

theory with one neutral parti
le of mass m and s
attering matrix [35℄

S(θ) =
sinh θ + i sin π

3

sinh θ − i sin π
3

= −
(

1

3

)(

2

3

)

The pole at θ = iπ
3 shows that the parti
le 
an form a bound-state. The relation

S(θ + i
π

3
)S(θ − i

π

3
) = S(θ)

however, implies that the bound-state is the original parti
le itself and the bulk bootstrap is


losed. The bulk energy 
onstant is given by ǫbulk = − 1
4
√
3
m2

.

We 
an impose two 
onformal invariant boundary 
onditions in the model [36, 37℄. They


an be labeled by I and Φ and 
orrespond to the highest weight representations of a single


opy of the Virasoro algebra with weight 0 and −1
5 , respe
tively. Introdu
ing the integrable

bulk perturbations with the I 
onformal invariant boundary 
ondition the integrability is

maintained and the re�e
tion fa
tor of the parti
le 
an be written as

RI(θ) =

(

1

2

)(

1

6

)(

−2

3

)

while the boundary energy is given by ǫIbdry = m
2

(√
3− 1

)

. If the 
onformal invariant bound-

ary 
ondition 
orresponds to Φ then additionally to the bulk perturbation we 
an introdu
e a

one-parameter family of integrable boundary perturbations and the 
orresponding re�e
tion

fa
tor turns out to be

Rb(θ) =

(

1

2

)(

1

6

)(

−2

3

)(

b− 1

6

)(

b+ 1

6

)(

5− b

6

)(−5− b

6

)

while the boundary energy is ǫbdry = m
2

(√
3− 1 + 2 sin bπ

6

)

. The boundary bound-states were

analyzed in [6℄ where the boundary bootstrap program was 
arried out.

The Lee-Yang model has two types of 
onformal defe
ts [38℄, but only one of them admits

relevant 
hiral defe
t �elds. They have weights (−1
5 , 0), (0,−1

5 ). We 
onje
ture that perturbing

in the bulk and with a 
ertain 
ombination of these defe
t �elds we 
an maintain integrability

and arrive at a purely transmitting theory. We plan to analyze this issue systemati
ally in

a forth
oming publi
ation. Let us denote the transmission fa
tors of this integrable defe
t

by T±(θ). Using that the fusion of the defe
t to the I boundary results in the perturbed Φ
boundary we have

Rb(θ) = T+(θ, b)RI(θ)T−(θ, b)

This is supported by the fa
t that fusing the 
onformal defe
t to the I boundary we obtain

the Φ boundary. Sin
e the parti
le appears as a bound-state in the two parti
le s
attering

pro
ess the transmission matrix satis�es the defe
t bootstrap equation [3℄:

T−(θ +
iπ

3
)T−(θ −

iπ

3
) = T−(θ) (21)

Using this relation together with the defe
t unitarity and defe
t 
rossing symmetry (6) we 
an

�x the transmission fa
tor as

T−(θ) = [b+ 1][b− 1] ; [x] = i
sinh(θ2 + iπx12 )

sinh(θ2 + iπx12 − iπ2 )
(22)
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(A
tually the inverse of the solution is also a solution but the two are related by the b → 6+ b
transformation). The defe
t energy, as in the sinh-Gordon 
ase, 
an be obtained as

ǫdef = ǫbdry − ǫIbdry = m sin
bπ

6

We are going to re
over this expression from the UV analysis of defe
t TBA in se
tion 5. We

also note that the defe
t with parameter b = 3 behaves as a standing parti
le both from the

energy and from the s
attering point of view.

4 Peturbative 
al
ulations

In this se
tion we 
he
k the exa
t solution of the ShG defe
t system in the free/
lassi
al

(b → 0) limit, and develop a systemati
 perturbative expansion. The parameter b2 plays the

same role as ~ whi
h 
an be seen by s
aling it out from the Lagrangian via Φ → bΦ. Sin
e

the 
lassi
al groundstate Φ = 0 is invariant under this s
aling, the b2 → 0 limit 
orresponds

both to the free and also to the 
lassi
al limit. Moreover, the perturbative expansion in b2 is

equivalent both to the loop expansion and to the semi-
lassi
al approximation.

4.1 Classi
al/free limit

As a �rst step we identify the b → 0 limit of the defe
t Lagrangian (3) as:

L = Θ(−x)

[

1

2
(∂µΦ−)

2 − m2
cl

2
Φ2
−

]

+Θ(x)

[

1

2
(∂µΦ+)

2 − m2
cl

2
Φ2
+

]

−δ(x)

2

(

Φ+Φ̇− − Φ−Φ̇+ +mcl

[

cosh µ
(

Φ2
+ +Φ2

−
)

+ 2 sinhµΦ+Φ−
]

)

Then we expand the �elds on the two sides of the defe
t in terms of 
reation/annihilation

operators

Φ±(x, t) =
∫ ∞

−∞

dk

2π

1

2ω(k)

(

a±(k)e
ikx−iω(k)t + a+±(k)e

−ikx+iω(k)t
)

; ω(k) =
√

k2 +m2
cl

where the a, a+ operators are adjoint of ea
h other with 
ommutators:

[a±(k), a
+
±(k

′

)] = 2π2ω(k)δ(k − k
′

)

Imposing the defe
t 
ondition (obtained by varying the a
tion) at the origin

±∂tΦ± ∓ ∂xΦ∓ = mcl(sinhµΦ± + cosh µΦ∓)

we 
an 
onne
t the 
reation/annihilation operators as

a±(±k) = T∓(k)a∓(±k) ; T∓(k) = −mcl sinhµ∓ iω(k)

mcl cosh µ− ik
; k > 0

This shows that the defe
t is purely transmitting, that is we do not have any re�e
ted wave.

The transmission fa
tor in the rapidity parametrization (k = mcl sinh θ) 
an be written also

in the following form:

T−(θ) = −i
sinh(θ2 − iπ

4 + µ
2 )

sinh(θ2 +
iπ
4 + µ

2 )

9



Clearly it has exa
tly the same form as the exa
t quantum one (16) ex
ept the Bϑ ↔ µ
repla
ement. Having observed this 
oin
iden
e the authors in [23℄ suggested that they might

be the same Bϑ = µ. Using our defe
t UV-IR relation (17) we 
an perform the expansion:

Bϑ = µ(1− b2

8π
+ . . .) (23)

The term of �rst order shows that our exa
t solution is 
orre
t in the 
lassi
al limit, i.e. for

b → 0. The term of se
ond order shows that the Bϑ = µ relation suggested in [23℄ is not valid:

Bϑ a
quires nontrivial quantum 
orre
tion. Sin
e the renormalization of the parameter µ is


ru
ial to de
ide about the two proposals we perform a perturbative 
he
k at order b2.

4.2 Perturbation theory

As a �rst step we 
olle
t the free propagators. If the �elds are on the same side of the defe
t

we have

0〈0|T
(

Φ±(x, t)Φ±(x
′

, t
′

)
)

|0〉0 =
∫

d2q
(2π)2

i
q2−m2

cl
+iǫ

eiq(y−y
′

) = G±
±(y, y

′)

y

y’

where q = (k, ω) and y = (x, t). The absen
e of an eik(x+x
′

)
term shows the absen
e of

re�e
tion. The other two point fun
tions are

0〈0|T
(

Φ∓(x, t)Φ±(x
′

, t
′

)
)

|0〉0 =
∫

d2q
(2π)2

i
q2−m2

cl
+iǫ

T±(ω, k)eiq(y−y
′

) = G±
∓(y, y

′)

y’

y

where

T±(ω, k) = −mcl sinhµ± iω

mcl coshµ− ik

In the �nal equations we used the fa
t that the ω 
ontour 
an be 
losed on the upper/lower half

plane. As it was shown in [8℄ the re�e
tion fa
tor 
an be read o� from the 〈T (Φ±Φ±)〉propagator
of the �elds. The defe
t/boundary equivalen
e [21℄ then implies that the transmission fa
tor


an be read o� from the 〈T (Φ∓Φ±)〉 propagator.
The perturbation at order b2 follows from (1):

δL = −Θ(−ζ)

[

m2
clb

2

4!
Φ4
−

]

−Θ(ζ)

[

m2
clb

2

4!
Φ4
+

]

−δ(ζ)
mclb

2

4 · 4!
[

coshµ
(

Φ4
+ + 6Φ2

+Φ
2
− +Φ4

−
)

+ 4 sinhµΦ+Φ−
(

Φ2
+ +Φ2

−
)]

We 
al
ulate the propagators upto �rst order in b2:

〈0|T
(

Φ∓(x, t)Φ±(x
′

, t
′

)
)

|0〉 = 0〈0|T
(

Φ∓(x, t)Φ±(x
′

, t
′

)(1− i

∫

dζ

∫

dτ δL + . . .)

)

|0〉0

Using Wi
k's theorem we obtain the 
ontribution of the following diagrams:

We have two bulk diagrams presented on Figure 1:

10



y’

y

y’

y

Figure 1: The two bulk diagrams with prefa
tor

m2
cl
b2

2

where the bulk intera
tion point, denoted by an empty 
ir
le, represents z = (ζ, τ) and we have
to integrate over the whole left/right spa
e-time. Thus the 
ontribution of the �rst diagram

is

m2
clb

2

2

∫ ∞

−∞
dτ

∫ 0

−∞
dz G−

−(y, z)G
−
−(z, z)G

+
−(z, y

′)

Clearly G−
−(z, z) is divergent and we have to regularize it by introdu
ing a 
uto� Λ:

G−
−(z, z) =

∫

d2q

(2π)2
i

q2 −m2
cl + iǫ

=

∫ Λ

0

1
√

k2 +m2
cl

dk

2π
= ∆(mcl)

Its 
ontribution 
an be absorbed into the renormalization of the mass parameter m2
cl →

m2
cl −m2

cl
b2

2 ∆(mcl) whi
h results in extra 
ounter term diagrams presented on Figure 2:

y’

y

y’

y

Figure 2: Bulk 
ounter-term diagrams with prefa
tor −m2
cl
b2

2 ∆(mcl)

The 
ontributions from the defe
t terms 
an be grouped in two sets of diagrams. The �rst


ontains the same divergent loop integral and 
onsists of those on Figure 3:

y’

y

y’

y

y’

y

y’

y

Figure 3: Divergent even defe
t loop diagrams with prefa
tor

mclb
2

8 coshµ

where the intera
tion vertex is even together with the odd diagrams presented on Figure 4:
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y’

y

y’

y

y’

y

y’

y

Figure 4: Divergent odd defe
t loop diagrams with prefa
tor

mclb
2

8 sinhµ

We have to integrate in time τ over the real axis and the left/right part of the defe
t represents

the 
ontra
tion with the operators Φ− and Φ+, respe
tively. They all 
ontain the divergent

and regularized ∆(mcl) loop integral whi
h 
an be absorbed into the renormalization of the

defe
t parameter mcl → mcl−mcl
b2

4 ∆(mcl), whi
h is 
onsistent with the bulk renormalization.

The resulting 
ounter-terms produ
e the diagrams on Figure 5:

y’

y

y’

y

y’

y

y’

y

Figure 5: Defe
t 
ounter terms with prefa
tors−mcl
b2

4 ∆(mcl) cosh µ and−mcl
b2

4 ∆(mcl) sinhµ,
respe
tively

The fa
t that all these singularities 
an be absorbed into the renormalization of mcl is a

nontrivial statement, sin
e we have eight divergent diagrams having di�erent propagators on

the outer legs those we 
an
eled just by renormalizing one single parameter in the original

Lagrangian. The form of the renormalized Lagrangian is the same as the original one thus

the integrable/topologi
al nature of the defe
t is not spoiled by quantum e�e
ts, there is no

anomaly. Observe also that the bulk mass term m2
cl and the boundary term mcl renormalizes

the same way so the bulk is the square of the other.

The last group of the diagrams is the one whi
h really 
ontributes to the transmission

fa
tor. They are presented on Figure 6:

y’

y

y’

y

y’

y

y’

y

Figure 6: Defe
t diagrams 
ontributing to the transmission fa
tor. They have prefa
tors

mclb
2

4 sinhµ and

mclb
2

4 cosh µ, respe
tively
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The 
ontribution of the �rst diagram is

mclb
2

4
sinhµ

∫ ∞

−∞
dτ G−

−(y, z)G
+
−(z, z)G

+
−(z, y

′)

Ea
h of the terms on Figure 6 
ontains the �nite 
ontribution of the propagator

G∓
±(z, z) =

∫

d2q

(2π)2
i

q2 −m2
cl + iǫ

T±(ω, k) = − µ

2π

This term together with the prefa
tor 
an be interpreted as the �nite renormalization of the

parameter µ → µ + δµ, where δµ = −µb2

8π . Summing up all the 
ontributions and taking into

a

ount the di�erent transmission fa
tor dependent 
ontributions on the outer legs we obtain

the 
orre
tion of order b2 to the transmission fa
tor as

T−(θ,Bϑ(µ)) = T−(θ, µ) +
µb2

8π

1

1− i sinh(θ + µ)
+O(b4)

whi
h is in 
omplete agreement with (23). Thus we 
on�rmed the renormalization of the

parameter µ, but we have not 
he
ked the renormalization of the parameter M whi
h has not

shown up at this order. We suspe
t, however, that in this perturbative s
heme the boundary

parameter mcl renormalizes as the square-root of the m2
cl term and only µ renormalizes as

Bϑ. It would be interesting to perform a two-loop perturbative 
al
ulation to de
ide about

the renormalization of Mcl in the perturbative s
heme.

We note that we have also performed a perturbative 
al
ulation of order b2 of the re�e
tion
fa
tor, whi
h 
an be extra
ted from G+

+(y, y
′), and 
on�rmed the absen
e of re�e
tion at this

order. In [39℄ the form of the sine-Gordon Lagrangian was �xed at order b6 by demanding

the absen
e of parti
le 
reation. Following a similar line it would be tempting to see how the

absen
e of re�e
tion restri
ts the form of the defe
t potential in perturbation theory.

5 Defe
t thermodynami
 Bethe ansatz

In this se
tion we would like to 
he
k the 
onsisten
y between the transmission fa
tors and

defe
t energies. In doing so we derive a DTBA to des
ribe the ground state energy of a

purely transmitting diagonal integrable defe
t on the 
ir
le of perimeter L. In boundary and

defe
t systems there are two inequivalent ways to derive TBA equations. We 
an either fo
us

on the groundstate energy or on the so-
alled g-fa
tors whi
h is related to the �nite volume

normalization of defe
t/boundary states. Both BTBA equations have been analyzed in [16℄

although the g-fun
tion type required further re�nement [40℄. Some details of the g-fun
tion
type DTBA 
an be found in [41℄ and referen
es therein. Here we 
onsider the groundstate

DTBA in the periodi
 setting as opposed to the strip geometry analyzed in [21℄.

5.1 Derivation of DTBA

In order to derive the DTBA equation for the ground state energy we 
ompa
tify the time-

like dire
tion with period R and 
al
ulate the partition fun
tion in two inequivalent ways by


hanging the role of the spa
e and time 
oordinates.

In the original des
ription the defe
t is lo
ated in spa
e as drawn in Figure 7:
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defect line

L

0

x

t

Figure 7: Defe
t is lo
ated in spa
e

By taking the R → ∞ limit the groundstate energy 
an be extra
ted from the partition

fun
tion as

lim
R→∞

Z(L,R) = lim
R→∞

Tr
(

e−H(L)R
)

= e−E0(L)R + . . .

In the alternative des
ription when the role of time and spa
e is ex
hanged as shown on Figure

8:

x
t

L
0

defect operator

Figure 8: Defe
t is lo
ated in time a
ting as a defe
t operator

the defe
t be
omes an operator of the form [21℄

D = exp

{
∫ ∞

−∞

dθ

2π
T+(

iπ

2
− θ)a+(θ)a(θ)

}

whi
h a
ts on the Hilbert spa
e of the periodi
 model, H. The partition fun
tion 
an be


al
ulated as

Z(L,R) = Tr
(

e−H(R)LD
)

=
∑

|n〉∈H

〈n|D|n〉e−En(R)L

〈n|n〉 (24)

The Hilbert spa
e 
onsists of multi-parti
le states

|θ1, θ2, . . . , θn〉 = a+(θ1)a
+(θ2) . . . a

+(θn)|0〉 ; θ1 > θ2 > . . . > θn
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on whi
h the defe
t operator 
olle
ts nontrivial diagonal matrix elements from

D|θ1, θ2, . . . , θn〉 = T+(
iπ

2
− θ1)T+(

iπ

2
− θ2) . . . T+(

iπ

2
− θn)|θ1, θ2, . . . , θn〉+ . . .

while the energy operator a
ts as

H|θ1, θ2, . . . , θn〉 = (m cosh(θ1) +m cosh(θ2) + . . .+m cosh(θn)) |θ1, θ2, . . . , θn〉

We 
an introdu
e another energy operator via Ĥ = H − 1
L
logD su
h that the partition

fun
tion 
an be written as

Z(L,R) = Tr
(

e−H(R)LD
)

= Tr
(

e−Ĥ(R)L
)

=
∑

|n〉∈H
e−Ên(R)L

This partition fun
tion 
an be 
al
ulated in the R → ∞ limit by standard saddle point

approximation taking into a

ount the s
attering of the parti
les. The 
al
ulation follows the

usual route of TBA 
al
ulations, but now the kineti
 term is shifted m cosh θ → m cosh θ −
1
L
log T+(

iπ
2 − θ). As a 
onsequen
e we obtain the following DTBA equations for the pseudo

energy

ǫ̃(θ) = mL cosh θ − log T+(
iπ

2
− θ)−

∫ ∞

−∞

dθ
′

2π
φ(θ − θ

′

) log(1 + e−ǫ̃(θ
′

)) (25)

where φ(θ) = −i d
dθ

logS(θ). On
e ǫ̃ is known the ground state energy 
an be expressed as

E0(L) = −m

∫ ∞

−∞

dθ

2π
cosh θ log(1 + e−ǫ̃(θ))

Here we do not have to shift the cosh θ term sin
e it 
omes from the derivative of the momentum

(sinh θ), whi
h appears in the quantization 
ondition. For the result in this generality see e.g.

[42℄.

Alternatively, we 
an rede�ne the pseudo energy as ǫ̃(θ) = ǫ(θ)− log T+(
iπ
2 − θ) to obtain

ǫ(θ) = mL cosh θ −
∫ ∞

−∞

dθ
′

2π
φ(θ − θ

′

) log

(

1 + T+(
iπ

2
− θ

′

)e−ǫ(θ
′

)

)

from whi
h the ground state energy turns out to be

E0(L) = −m

∫ ∞

−∞

dθ

2π
cosh θ log

(

1 + T+(
iπ

2
− θ)e−ǫ(θ)

)

The ground state energy is real whi
h 
an be easily seen form (6) sin
e T ∗
+(

iπ
2 −θ) = T+(

iπ
2 +θ).

As a simple 
onsisten
y 
he
k we 
an see that the DTBA equation for the trivial defe
t,

T+ = 1, redu
es to the periodi
 TBA equation [43℄. We analyze the large and small volume

limits separately in the next two subse
tions.

5.2 Lüs
her type 
orre
tion in defe
t systems

If the volume L is large then ǫ(θ) ∼= mL cosh θ is large and we 
an expand the logarithm to

obtain

E0(L) = −m

∫ ∞

−∞

dθ

2π
cosh θ T+(

iπ

2
− θ)e−mL cosh θ +O(e−2mL)
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This result 
an be 
al
ulated dire
tly from (24) by taking the large L limit there. In that


ase, however, only the one-parti
le transmission term 
ontributes whi
h is universal for any

quantum �eld theory. The result obtained is the analogue of the boundary Lüs
her type


orre
tion to the ground state energy [44℄ and is valid in any theory even in non-integrable

ones.

5.3 Defe
t energy

Here we analyze the small volume behavior of the ground state energy. Its normalization

depends on the s
heme in whi
h the quantum �eld theory is de�ned. If we would like to


ompare the DTBA normalization to that of a perturbed defe
t 
onformal �eld theory, in

whi
h the perturbing operators have dimensions h on the defe
t and (h, h) in the bulk, then

we have:

E0(L) = −ǫdef − ǫbulkL+
2π

L

∞
∑

n=0

cn l
n(1−h) ; l = mL

Only the perturbative terms, cn, are present in a perturbed rational defe
t CFT. (In non-

rational CFT-s, like the UV limit of the boundary sinh-Gordon theory, we expe
t terms with

logarithmi
 behaviour, see [45℄ for the details). By 
al
ulating the small volume limit of

E0(L) from DTBA ǫdef and ǫbulk 
an be extra
ted exa
tly. The 
omputation is analogous to

the boundary one [31, 36℄, so we sket
h only here. In the L → 0 limit the solution for ǫ̃ in (25)

develops two kink regions around θ = ± log 2
l
and a breather region around the origin. The

behaviour of the solutions are determined by the θ → ±∞ asymptoti
s of the integral kernel

and defe
t sour
e term:

φ(θ) = Ce−|θ| +O(e−2|θ|) ; log(T+(
iπ

2
− θ)) = A±e

∓θ +O(e∓2θ) as θ → ±∞

The two kink fun
tions are responsible for the terms giving the 
entral 
harge and the bulk

energy 
onstant, while the 
entral/breather part gives the defe
t energy in the following form:

ǫbulk =
m2

2C
; ǫdef = −m(A+ +A−)

2C
(26)

We note that the kink type behaviour does not exists for the whole parameter range of C
and A±. The results is understood that we analyti
ally 
ontinued it from a range where the


al
ulation is reliable.

Let us 
on
retes the result for the two 
ases in question. In the sinh-Gordon model

C = 4 sinhπB ; A± = −2e∓Bϑ

so using (26) we re
over (9) and (18).

In the Lee-Yang 
ase we have

C = −2
√
3 ; A± = ∓2i(e±iπ b+1

6 + e±iπ b−1

6 )

Plugging these expressions ba
k to (26) the results 
on�rms the bulk energy density and the

defe
t energy.

We emphasize that the agreement obtained in the two 
ases 
on�rm the solutions on one

side and the DTBA equation on the other.
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The other perturbative 
oe�
ients cn 
an be 
al
ulated from the DTBA only numeri
ally.

In the Lee-Yang 
ase, however, one 
an gain further analyti
al information. One has to de�ne

Y (θ) = e−ǫ(θ)
and to show from (21) that it satis�es the Lee-Yang Y -system relation

Y (θ − iπ

3
)Y (θ +

iπ

3
) = 1 + Y (θ)

from whi
h the Y (θ) = Y (θ + 5iπ
3 ) periodi
ity follows. Similarly to the boundary 
ase this

gives the exponent of the perturbative expansion to be

6
5 showing that the dimension of the

perturbing operator is h = −1
5 .

6 Defe
t bound-states and bootstrap 
losure

In this se
tion we analyze the analyti
 stru
ture of the transmission fa
tors for the whole

range of their parameters. Sin
e the sinh-Gordon transmission fa
tors (16) never have poles

in the physi
al strip we fo
us on the Lee-Yang model only. Re
all that in our 
onvention the

physi
al strip of the transmission fa
tors T∓(θ) are ℑmθ ∈ [0, π2 ].

6.1 Pole analysis on the ground-state defe
t

We analyze the pole stru
ture of both

T−(θ) = [b+ 1][b− 1] and T+(θ) = [5− b][−5− b]

as the fun
tion of the parameter b, simultaneously. We note that by folding the theory to

a boundary one (with two parti
les) we 
ould analyze its bootstrap in the usual boundary

formulation. Here, however, we present the results in the defe
t language sin
e the diagrams

are more 
lear-
ut. (The whole pro
edure, going from the re�e
tion fa
tor to the defe
t

transmission fa
tor, 
an be interpreted as taking a sort of square root of the boundary theory.

By 
losing the defe
t bootstrap we would like to show that su
h a theory is indeed sensible.

Sin
e on the I boundary there is no boundstate any pole of the re�e
tion fa
tor appears either

in T− or in T+ so the bootstrap will be very similar to the boundary one [6℄).

In determining the fundamental range of the parameter b we 
an see that b → b + 12 is

a symmetry. Moreover b ↔ 6 − b ex
hanges T− ↔ T+ so we 
an restri
t ourselves to the

range b ∈ [−3, 3]. We will see by analyzing the defe
t ex
ited states that the fundamental

range is even smaller, only b ∈ [−3, 2], as in the boundary 
ase, sin
e at b = 2 the role of the

ground-state and the �rst ex
ited state is ex
hanged.

The poles and zeros of the transmission fa
tor T−(θ) are

poles of T− are at θ = −i
π

6
(b± 5) ; zeros of T− are at θ = −i

π

6
(b± 1)

The analogous expressions for T+ are

poles of T+ are at θ = i
π

6
(b± 1) ; zeros of T+ are at θ = i

π

6
(b± 5)

They 
an be drawn as the fun
tion of the parameter b as shown on Figure 9:
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b
−3 0−2 −1 1 2 3

π
2

0

|1+>

|2+>

Figure 9: Poles and zeros of T+ and T− as fun
tion of b . Solid lines 
orrespond to poles,

while dashed ones to zeroes. The dotted lines show the fundamental range.

For b ∈ [−1, 2] there is a pole in the transmission fa
tor T+ at θ = iu = iπ6 (b + 1), for
whi
h we asso
iate a defe
t boundstate and denote it by |1+〉. Its energy is m cos π

6 (b + 1)
and the 
orresponding ex
ited transmission fa
tor 
an be 
al
ulated from the defe
t bootstrap

equation shown on Figure 10:

θ

iu0 

1+ 

θ

iu
0 

1+ 

Figure 10: Defe
t bootstrap equations

T
|1+〉
− (θ) = T−(θ)S(θ + iu)

From the defe
t 
rossing symmetry (6) we 
an 
al
ulate T
|1+〉
+ (θ) as

T
|1+〉
+ (θ) = T

|1+〉
− (iπ − θ) = T−(iπ − θ)S(iπ − θ + iu) = T+(θ)S(θ − iu)

whi
h is 
onsistent with the other bootstrap equation where the se
ond parti
le arrives from

the right. The resulting transmission fa
tors are

T
|1+〉
− (θ) = [b+ 1][b+ 3] ; T

|1+〉
+ (θ) = [5− b][3 − b]

They are related to the groundstate ones as T
|1+〉
± (b → 4 − b, θ) = T∓(b, θ). This symmetry

together with the defe
t energies indi
ate that when b ex
eeds 2 the role of the ground-state

and the ex
ited state |1+〉 are ex
hanged. This 
on�rms that the fundamental range is indeed

b ∈ [−3, 2].
In the range b ∈ [1, 2] the transmission fa
tor T+(θ) has another pole at θ = iπ6 (b− 1) for

whi
h we asso
iate the defe
t boundstate |2+〉. It has energy m cos π
6 (b− 1) and transmission

fa
tor

T
|2+〉
± (θ) = T±(θ)S(θ ∓ i

π

6
(b− 1))

Now we turn to the pole analysis of ex
ited defe
t states.
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6.2 Pole analysis on the exited defe
t state |1+〉
The poles and zeros of the transmission fa
tors on the state |1+〉 are indi
ated on Figure 11.

b
−3 0−2 −1 1 2 3

π
2

0

1

2 3

4

Figure 11: Poles and zeros on the |1+〉 defe
t ex
ited state. Dotted line shows the range where

the ex
ited state |1+〉 exists

The state exist in the b ∈ [−1, 2] domain so we have to explain the poles in this range only.

The pole of T
|1+〉
+ labeled by 1 on Figure 11 is at the same lo
ation as the one whi
h


reates the ex
ited state itself, namely at θ = iπ6 (b+1) in the full range b ∈ [−1, 2]. It 
an be

explained by the �rst of the defe
t Coleman-Thun diagrams on Figure 12

1+ 

0 

1+ 

b+1

b+1

0

1+ 

1+ 

b+1

1−b

b+3

1+ b+1

3−b

1−b
0

1+ 

Figure 12: Defe
t Coleman-Thun diagrams for the |1+〉 state. The angles are measured in

units of

iπ
6

The pole of T
|1+〉
+ labeled by 2 on Figure 11 is at θ = iπ6 (b + 3) and 
an be explained

by the se
ond diagram on Figure 12. Observe that by applying the Cutkosky rules [9℄ we

would obtain a pole of se
ond order but the transmission fa
tor T− has a �rst order zero at

θ = iπ6 (1− b) whi
h, in this way, redu
es the order of the pole to one.

The pole of T
|1+〉
− labeled by 3 on Figure 11 is at θ = iπ6 (3 − b). In the range b ∈ [0, 1] it


an be explained by the third diagram on Figure 12. Sin
e the transmission fa
tor T− on the

ground state has a zero at θ = iπ6 (1− b) the order of the diagram is redu
ed to one again. In
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order for the diagram to exist the parti
le has to travel towards the defe
t, that is 1− b > 0.
This explains the pole in the range b ∈ [0, 1]. In the range b ∈ [1, 2] the parti
le 
reates a defe
t
boundstate whi
h is nothing but |2+〉. This 
an be seen both from the energy of the ex
ited

state m cos π
6 (b+1)+m cos π

6 (3− b) = m cos π
6 (b− 1) and from the transmission fa
tor. If the

left parti
le 
reates a defe
t boundstate at rapidity θ = iu then the ex
ited states transmission

fa
tors are T ex
± (θ) = T±(θ)S(θ ± iu). Now we 
an see from the bulk bootstrap equation that

T
|1+〉
± (θ)S(θ±i

π

6
(3−b)) = T±(θ)S(θ∓i

π

6
(b+1))S(θ±i

π

6
(3−b)) = T±(θ)S(θ∓i

π

6
(b−1)) = T

|2+〉
± (θ)

that is the transmission fa
tors also supports the identi�
ation.

6.3 The pole analysis on the ex
ited defe
t state |2+〉
The defe
t boundstate labeled by |2+〉 has transmission fa
tor

T
|2+〉
− (θ) = [b− 1][b + 1]2[b+ 3] ; T

|2+〉
+ (θ) = [3− b][5 − b]2[7− b]

The singularity stru
ture 
an be summarized as follows.

b
−3 0−2 −1 1 2 3

π
2

0

5

6

7

Figure 13: Singularity stru
ture of the transmission fa
tors on the |2+〉 state. Bold straight

lines represent poles of se
ond order. The relevant interval where the boundstate |2+〉 exists
is indi
ated by dotted lines.

The pole labeled by 5 on Figure 13 is in T
|2+〉
+ (θ) at θ = iπ6 (b− 1) and 
an be explained in

the full range b ∈ [1, 2] by the �rst diagram on Figure 12, if we repla
e |1+〉 by |2+〉.
The pole labeled by 6 on Figure 13 is in T

|2+〉
− (θ) at θ = iπ6 (3 − b) and 
an be explained

by a diagram similar to the third one of Figure 12 in whi
h the |1+〉 state is repla
ed by |2+〉
and the va
uum |0〉 is repla
ed by |1+〉.
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0

2+ 

2+ 

b−1

b+1

3−b

2+ 

2+ 

1+

3−b

b+1

b−1

Figure 14: Defe
t Coleman-Thun diagrams for the ex
ited state |2+〉

The pole labeled by 7 on Figure 13 is a se
ond order one in T
|2+〉
+ (θ) at θ = iπ6 (b+ 1) and


an be explained by the two diagrams on Figure 14. Clearly the transmission fa
tor T−(θ)
does not have zeros neither at θ = iπ6 (3− b) nor at θ = iπ6 (b−1) so the pole is of se
ond order.

By now we explained all the poles of all the transmission fa
tors of the ground and ex
ited

defe
t states. We used either the 
reation of a new defe
t boundstate or presented the appro-

priate defe
t Coleman-Thun diagram whi
h was responsible for the singularity. By �nishing

this pro
edure the spe
trum be
ome 
omplete and we managed to de�ne a sensible defe
t the-

ory. It would be ni
e to 
he
k these �ndings by the defe
t trun
ated 
onformal spa
e approa
h

(TCSA).

7 Con
lusions

We have demonstrated how the fusion idea 
an be used to solve topologi
al defe
ts in the

sinh-Gordon and Lee-Yang models. In the sinh-Gordon 
ase we determined the transmission

fa
tors and the defe
t energy as a fun
tion of a bootstrap parameter whose relation to the

Lagrangian was also given. We 
he
ked these results in perturbation theory and against the

newly derived DTBA.

In the Lee-Yang 
ase we determined the transmission fa
tors together with the defe
t

energy and 
he
ked them in DTBA. For 
ertain range of the parameter the transmission

fa
tor admits poles in the physi
al strip. We 
losed the defe
t bootstrap programme: we

explained all poles either by asso
iating new defe
t boundstates or by giving the appropriate

defe
t Coleman-Thun me
hanism both for the groundstate and for ex
ited defe
t states.

The relation obtained between the transmission parameter and that of the Lagrangian in

the sinh-Gordon theory 
an be analyti
ally 
ontinued to des
ribe the analogues relation in

the sine-Gordon theory. This result also passes the test of �rst order perturbation theory

and together with the transmission fa
tors obtained in [22, 23℄ gives the 
omplete solution of

defe
t sine-Gordon model. We have 
he
ked this solution by performing the fusing pro
edure

on the solitoni
 transmission fa
tors. This is analogous to the dressing pro
edure in the XXZ

spin 
hain developed in [46℄.

The perturbation theory developed here 
an also be used in higher rank a�ne Toda theories

to 
onne
t the parameters of the transmission fa
tor of the bootstrap solution [24℄ to the
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parameters of their Lagrangians [18℄.

The derivation of the DTBA generalizes to any diagonal s
attering theory. A large and

small volume analysis analogous to the one presented in the paper will provide the leading

�nite size 
orre
tion to the groundstate energy and give the bulk/defe
t energies, respe
tively.

In the present paper we were 
on
erned with the bootstrap (IR) des
ription of our models.

There is a need, however, to understand their UV behavior whi
h probably 
an be des
ribed

by perturbed defe
t CFTs. To 
onne
t these alternative des
riptions we 
an use methods

starting either from the IR side, like DTBA, or starting from the UV side, like defe
t TCSA.

There are works in progress in both dire
tions.
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