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Abstrat

Integrable defets in two-dimensional integrable models are purely transmitting thus

topologial. By fusing them to integrable boundaries new integrable boundary onditions

an be generated, and, from the omparison of the two solved boundary theories, expliit

solutions of defet models an be extrated. This idea is used to determine the trans-

mission fators and defet energies of topologial defets in sinh-Gordon and Lee-Yang

models. The transmission fators are heked in Lagrangian perturbation theory in the

sinh-Gordon ase, while the defet energies are heked against defet thermodynami

Bethe ansatz equations derived to desribe the ground-state energy of diagonal defet

systems on a ylinder. Defet bootstrap equations are also analyzed and are losed by

determining the spetrum of defet bound-states in the Lee-Yang model.

1 Introdution

Reently, there has been an inreasing interest in integrable quantum �eld theories inluding

defets or impurities. This is motivated both by the realisti physial appliations in statis-

tial and solid state physis and also by the need of theoretial understanding of this so-far

unexplored �eld.

The ommunity of integrable systems have not payed muh attention to defet theories at

the beginning due to the no-go theorem formulated by Del�no, Mussardo and Simonetti in

[1, 2℄. The theorem, formulated originally for diagonal theories and extended later for a large

lass of non-diagonal ones in [3℄, states that a relativistially invariant theory with a non-free

integrable interation in the bulk an allow only two types of integrable defets: the purely

re�eting and the purely transmitting ones. (Although some e�ort has been made to overome

this obstale by giving up Lorentz invariane, see for instane [4℄ and referenes therein, in

the present paper we restrit ourselves to the relativistially invariant ase.)

The analysis of boundary integrable theories was initiated in [5℄ by formulating, in an

axiomati way, the properties of the re�etion matrix: unitarity, boundary rossing unitarity

and boundary bootstrap equation. The boundary bootstrap framework was ompleted by

introduing boundary Coleman-Thun mehanism [6℄ and the bulk bootstrap equations [7℄.

Later this framework got a sound basis by developing boundary quantum �eld theories from

�rst priniples in [8, 9℄. The suess of the boundary bootstrap approah resulted in a large
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lass of losed bootstrap theories in whih the boundary re�etion fators together with the

spetrum of boundary exited states were determined [5, 6, 10, 11, 12, 13, 14℄. The solutions,

obtained by the bootstrap method, are not onneted, however, to other formulations of

the model suh as to the lassial �eld theory or to the perturbed onformal �eld theory

(both de�ned by a Lagrangian). To onnet the di�erent desriptions one either has to hek

the re�etion fators perturbatively, like in [15℄, or solve the theories in �nite volume. The

boundary thermodynami Bethe ansatz (BTBA), developed in [16℄, systematially sums up

the �nite size orretions by taking into aount the satterings and re�etions. By analyzing

its small volume limit the needed link between the bootstrap and perturbed onformal �eld

theoretial desriptions an be established.

As the no-go theorem showed non-free integrable defet theories are purely transmitting.

This fat kept bak the researhers for some time to analyze these models until new life was

put into the subjet due to their expliit Lagrangian realizations [17℄. Following the original

idea many integrable defet theories were onstruted at the lassial level [18, 19, 20℄. The

basis for the quantum formulation of defet theories is provided by the folding trik [21℄ by

whih one an map any defet theory into a boundary one. As a onsequene defet unitarity,

defet rossing symmetry and defet bootstrap equations together with defet Coleman-Thun

mehanism are derived. Despite of these results the expliitly solved relativistially invariant

defet quantum �eld theories are quite rare, ontaining basially the sine-Gordon and a�ne

Toda �eld theories [22, 23, 24℄ and even in these ases the expliit relation to their Lagrangian

have not been worked out yet.

One may think that purely transmitting theories are too simple and there is no point

to analyze them, but we would like to argue that they arry very important information

about an integrable quantum �eld theory, without whih our knowledge annot be omplete.

Purely transitivity implies the onservation of momentum from whih the topologial nature

of the defet follows. Thus, suh defets an freely be transported in spae without a�eting

the physis of the theory. We an either move them lose to eah other or move them to

integrable boundary onditions and, as a result, new integrable boundary onditions an be

generated. These ideas were suessfully applied in onformal �eld theories [25, 26, 27℄, in

integrable lattie models [28, 29℄ and the aim of the present paper is to exploit it in solving

integrable defets in the sinh-Gordon and Lee-Yang theories.

The paper is organized as follows: In setion 2, on the example of the sinh-Gordon the-

ory, we show how new boundary onditions an be obtained by fusing integrable defets to

boundaries at the lassial level. We fous on two ases in detail: fusing the integrable defet

to Dirihlet boundary ondition (DBC) the perturbed Neumann boundary ondition (PNBC)

an be obtained, while fusing it to the Neumann BC a new lass of time-dependent integrable

BCs an be generated. Setion 3 realls the quantum version of the fusion method together

with the properties of transmission fators. By omparing the already known re�etion fators

and boundary energies of the DBC to those of the PNBC solutions for the defet transmission

fator and defet energy an be extrated. The same method is then used to determine defet

energies and transmission fators of the saling Lee-Yang model. This method not only pro-

vides the expliit solutions of the sinh-Gordon defet theory but also relates its parameter to

that of the Lagrangian. Sine the relation obtained here is di�erent from the suggestion of [23℄

we perform a perturbative analysis at one-loop level in setion 4. (In the subsequent paper [24℄

the same authors raised the possibility of the quantum renormalization of the transmission pa-

rameter, whih is on�rmed at one-loop level here). In setion 5 the alulated defet energies

are subjet to another onsisteny hek. For this we derive a TBA equation to desribe the
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groundstate energy of a diagonal defet system on a ylinder. From a areful ultra-violet (UV)

analysis defet energies are extrated and the previous results are veri�ed. By ompleting the

defet bootstrap program we analyze the singularity struture of the transmission fators in

setion 6. Sine the sinh-Gordon transmission fator does not ontain any singularity in the

physial strip we analyze the Lee-Yang model only. For eah pole of the transmission fator in

the physial strip we assoiate either a defet boundstate or a defet Coleman-Thun diagram

and alulate the exited transmission fators in the former ase from the defet bootstrap

equation. Finally, we onlude in setion 7 and give diretions for further researh.

2 Fusion method at the Lagrangian level

In this setion we demonstrate, on the example of the sinh-Gordon (ShG) theory, how new

integrable boundary onditions an be obtained by the fusion method at the Lagrangian or

lassial level [30℄.

The ShG theory is de�ned on the whole line by the following Lagrangian

LShG(Φ) =
1

2
(∂tΦ)

2 − 1

2
(∂xΦ)

2 − m2
cl

b2
cosh bΦ , (1)

It desribes an integrable �eld theory and by restriting the theory to the half line this property

an be only maintained, whenever the following boundary potential is introdued [5℄

LBShG = Θ(−x)LShG(Φ)− δ(x)B(Φ) ; B(Φ) = M0 cosh
b

2
(Φ− ϕ0) (2)

By varying M0 from 0 to ∞ the arising boundary ondition interpolates between the Neumann

∂xΦ|x=0 = 0 and the Dirihlet Φ(0, t) = ϕ0 ones.

The most general integrable defet ondition an be obtained by the analytial ontinuation

of the sine-Gordon result [23℄. The Lagrangian in the ShG ase reads as

LDShG = Θ(−x)LShG(Φ−)− δ(x)D(Φ−,Φ+) + Θ(x)LShG(Φ+) (3)

where the defet potential ontains just one single parameter:

2D(Φ−,Φ+) = Φ+Φ̇− − Φ−Φ̇+ +Mcle
µ cosh

b

2
(Φ+ +Φ−) +Mcle

−µ cosh
b

2
(Φ+ − Φ−)

Here Φ∓ are the �elds living on the left/right half-line, respetively and Mcl =
4mcl

b2
.

The fusion idea is based on the integrability of the defet: Integrability guaranties the

existene of an in�nite number of ommuting onserved harges whih results in the possibility

of shifting the trajetories of partiles, without hanging the amplitude of any sattering

proess. The shifting of all the trajetories an alternatively be desribed by shifting the

loation of the defet, whih then, does not alter the physis.

At the level of the Lagrangian this observation an be formulated in the following way: The

spetrum of the system, whih ontains a defet in the origin, x = 0, in front of a boundary,

loated at x = a,

LDBShG = Θ(−x)LShG(Φ−)− δ(x)D(Φ−,Φ+) + Θ(x)Θ(a− x)LShG(Φ+)− δ(x− a)B(Φ+)

3



does not atually depend on a. Thus we an perform the a → 0 limit and represent the same

system as a boundary one, but with a di�erent (dressed) boundary ondition:

LDBShG = Θ(−x)LShG(Φ−)− δ(x)B
′

(Φ−,Φ+) ; B
′

(Φ−,Φ+) = D(Φ−,Φ+) +B(Φ+)

The �eld Φ+ lives on the boundary only and an be thought naively to be a boundary degree

of freedom. It does not have, however, any kineti term so it merely implements a new

time-dependent integrable boundary ondition. Let us speify these �ndings in two onrete

examples that will be used later on.

If the original boundary ondition is the Dirihlet one with Φ(a, t) = φ0, then the arising

dressed boundary ondition is

B
′

(Φ−,Φ+) = D(Φ−, ϕ0) =
Mcle

µ

2
cosh

b

2
(Φ− + φ0) +

Mcle
−µ

2
cosh

b

2
(Φ− − φ0) (4)

where we dropped the total time derivatives. This BC is exatly of the form of (2) with

parameters

Mcl cosh(µ ± b

2
φ0) = M0e

∓ b
2
ϕ0

Thus by fusing the integrable defet to the DBC we an reonstrut the most general (two pa-

rameter family of) PNBCs. Interestingly φ0 and µ are the lassial analogues of the parameters

in whih the boundary re�etion is fatorized [45℄, see also (13,14) in setion 3.

By fusing the defet to the NBC we obtain the boundary potential

B
′

(Φ−,Φ+) = D(Φ−,Φ+)

Variation of ation provides BCs in the form:

∂tΦ−|x=0 = −∂B
′

(Φ+,Φ−)
∂Φ+

; (∂tΦ+ − ∂xΦ−)|x=0 =
∂B

′

(Φ+,Φ−)
∂Φ−

(5)

By expressing Φ+ in terms of Φ− and ∂tΦ− then plugging bak to the seond equation we

obtain a highly non-trivial boundary ondition for Φ− ontaining its seond time derivative,

whih is nevertheless integrable as it follows from the onstrution. Obviously, this solution

was not overed by the two parameter family of (time-independent) integrable boundary on-

ditions determined in [5℄, thus by the fusion method we were able to onstrut a new type

of integrable BC. By fusing other integrable defets with new free parameters to this dressed

boundary we an generate integrable BCs with as many parameters as we want. What is nie

in the onstrution, that the solution of the defets transmission fator will provide, via the

fusion method, solutions for these general integrable BCs, too, as we will show in the next

setion.

Finally, we note that similar onstrution an be used in the ase of the Lee-Yang model,

however, the expliit form of the integrable defet perturbation has not been identi�ed at the

Lagrangian level yet ( for details see the next setion).

3 Fusion method in the bootstrap

For simpliity we present the fusion idea in the ase of an integrable diagonal sattering theory

with one partile type of mass m. The general disussion an be found in [21℄.
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In integrable bulk theories multi-partile sattering proesses fatorize into the produt of

two partile satterings, S(θ12), where θ12 = θ1− θ2 is the rapidity di�erene of the sattering

partiles whose momenta are parametrized as pi = m sinh θi. In relativistially invariant

theories the two partile S-matrix satis�es unitarity and rossing symmetry

S(−θ) = S−1(θ) ; S(iπ − θ) = S(θ)

One boundaries are introdued the basi proess is the multi-partile re�etion. Integra-

bility ensures its fatorization into pairwise satterings S(θij) and individual re�etions R(θi),
where θi is the rapidity of the re�eted partile. The re�etion matrix satis�es unitarity and

boundary rossing unitarity [5℄

R(−θ) = R−1(θ) ; R(
iπ

2
− θ) = S(2θ)R(

iπ

2
+ θ)

Integrable non-free defets are severely restrited: they are either purely re�eting (thus

boundaries, like above) or purely transmitting. The latter ase an be desribed by the two,

left (−) and right (+), transmission matries T−(θ) and T+(−θ). We parametrize T+ suh a

way that for its physial domain (θ < 0) its argument is always positive. Transmission fators

satisfy unitarity and defet rossing symmetry [21℄

T+(−θ) = T−1
− (θ) ; T−(θ) = T+(iπ − θ) (6)

If we plae a defet with transmission matries T±(θ) in front of a boundary with re�etion

matrix R(θ) then the fused boundary will also be integrable and have re�etion fator R
′

(θ):

R
′

(θ) = T+(θ)R(θ)T−(θ) (7)

The orrespondene (7) between the original R(θ) and the fused R
′

(θ) re�etion fators an

be used either to generate new BCs or, if the two BCs are already known, to solve defet

transmission fators. This will be illustrated in the next subsetions for the sinh-Gordon and

Lee-Yang models.

3.1 Solution of defet sinh-Gordon theory

The spetrum of ShG theory de�ned by (1) onsists of one partile type with mass [32℄

m =
4
√
π

Γ(1−B
2 )Γ(1 + B

2 )

(−πm2
clΓ(1 + b2)

b2Γ(−b2)

)

1

2+2b2

; B =
b2

8π + b2
(8)

The two partile sattering matrix is given by

S =
sinh θ − i sinBπ

sinh θ + i sinBπ
= −(−B)(1 +B) , (x) =

sinh(θ2 + iπx
2 )

sinh(θ2 − iπx
2 )

It has no poles in the physial strip: 0 ≤ θ < iπ and is invariant under the weak-strong duality,

b2

8π → 8π
b2
. The bulk energy density turns out to be [33℄

ǫbulk =
m2

8 sinh πB
(9)
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Integrable boundary onditions an be either Dirihlet type with Φ(0, t) = φ0 or PN type

(2). The orresponding re�etion fators an be obtained from the analytial ontinuation of

the sine-Gordon's �rst breather's one [5, 34℄. In the Dirihlet ase it reads as

RDir(θ, ηDir) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

iBηDir

π
− 1

2

)

(

iBηDir

π
+ 1

2

)
(10)

where the re�etion parameter ηDir is related to φ0 as

ηDir =
4π

b
φ0 (11)

The boundary energy has been also alulated [16℄

ǫDir
bdry(ηDir) =

m

4 sinBπ

(

2 coshBηDir − sin
πB

2
− cos

πB

2
− 1

)

(12)

In the PN ase the re�etion fator turns out to be

RPN(θ, η, ϑ) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

iBη
π

− 1
2

)

(

iBη
π

+ 1
2

)

(

iBϑ
π

− 1
2

)

(

iBϑ
π

+ 1
2

)
(13)

while the relation of η, ϑ to the parameters of the Lagrangian (UV-IR relation) is [45℄

M cosh
b2

8π
(η ± ϑ) = M0e

∓ bϕ0
2 ; M = mcl

√

2

b2 sin(b2/8)
(14)

The boundary energy has been also determined [31, 45℄ as

ǫPNbdry(η, ϑ) =
m

4 sinBπ

(

2 coshBη + 2coshBϑ− sin
πB

2
− cos

πB

2
− 1

)

(15)

We note that the results - both for the UV-IR relation and for the boundary energy - were

obtained in the framework of perturbed BCFT in whih the perturbing operator is normal-

ordered to have a de�nite saling dimension.

The integrable defet potential for the sinh-Gordon model an be written as in (3). Let us

denote the transmission fators by T±(θ, µ). Fusing lassially this defet to a DBC a PNBC

an be obtained (4). The quantum analogue of this statement in view of (7) is

RPN(θ, η, ϑ) = T+(θ, µ)RDir(θ, ηDir)T−(θ, µ)

Comparing the re�etion fator of the PNBC (13) to that of the Dirihlet one (10) and taking

into aount defet unitarity and defet rossing symmetry (6) we an extrat the transmission

fators for the defet. The simplest possible solution orresponds to η = ηDir and

T−(θ) = −i
sinh

(

θ
2 − iπ

4 + Bϑ
2

)

sinh
(

θ
2 +

iπ
4 + Bϑ

2

) ; T+(θ) = i
sinh

(

θ
2 − iπ

4 − Bϑ
2

)

sinh
(

θ
2 + iπ

4 − Bϑ
2

)
(16)

All other solutions ontain additional CDD type fators satisfying (6). Atually the solution

(16) itself is a CDD fator, therefore it is the simplest non-trivial solution of (6).
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To �nd the orrespondene between the parameter of the quantum transmission fator ϑ
and the Lagrangian parameter µ we follow the following strategy: Sine the boundary results

are derived in the perturbed BCFT normalization we allow not only the parameter µ but also

Mcl to renormalize. Their renormalized quantum values are determined from the requirement

that when fusing the defet to the DBC with (11) we obtain the PNBC with (14). The unique

solution turns out to be

Me±
b2ϑ
8π = Mcle

±µ
(17)

The renormalization of Mcl may depend on the sheme in whih the quantum potential is

de�ned. The b → 0 limit, in whih M → Mcl, shows that ϑ is the quantum renormalized

version of µ.
Also the defet energy an be extrated as the di�erene of the boundary energies orre-

sponding to the PN (15) and to the Dirihlet (12) one:

ǫDef(ϑ) = ǫPNbdry(η, ϑ)− ǫDir
bdry(η) =

m coshBϑ

2 sinBπ
(18)

Summarizing, by the fusion method we were able to solve the defet theory de�ned by the

Lagrangian (3): The transmission fators are (16), the defet energy is (18), and the bootstrap

parameter ϑ parametrizes the Lagrangian as (17). We spend the next setion to provide

onsisteny heks of this solution.

One the defet theory is solved we an use it to generate new integrable BCs from known

ones. In the example presented in setion 2 the defet with parameter µ was fused to the NBC

to generate a more general integrable BC (5). The quantum version of this fusion dresses up

the Neumann re�etion fator

RN(θ) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

1
2 − B

2

)

(

1
2 +

B
2

)
(19)

to the re�etion fator

R(θ, ϑ) = T+(θ, µ(ϑ))RN(θ)T−(θ, µ(ϑ)) =

(

1
2

) (

1− B
2

)

(

3
2 − B

2

)

(

1
2 − B

2

)

(

1
2 +

B
2

)

(

iBϑ
π

− 1
2

)

(

iBϑ
π

+ 1
2

)
(20)

Thus we solved the more general integrable BC de�ned by (5) without doing any serious

alulation. It is important to note, that the extra fator appearing in (20) ompared to (19)

is a CDD fator. Consequently, we have determined the physial meaning of the CDD fators

appearing in the re�etion fators: they represent integrable defets of the form of (5) standing

in front of integrable boundaries. In priniple, we an fuse as many integrable defets with

various parameters as we want, the resulting theory an be solved and its re�etion fator

ontains the orresponding boundary CDD fators.

Finally, we note that plaing two defets with parameters ϑ± = ±i(1− π
2B ) after eah other

both the sattering matrix and the energy of a standing partile an be reprodued. Thus the

defet with imaginary parameter an be onsidered as a 'half' partile. Similar phenomena

was observed in [23℄ at the lassial level.

3.2 Solution of defet saling Lee-Yang model

The saling Lee-Yang model an be de�ned as the perturbation of the M(2,5) onformal min-

imal model with entral harge c = −22
5 . It ontains two modules of the Virasoro algebra
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orresponding to the Id and the ϕ(z, z̄) primary �elds with weight (0, 0) and (−1
5 ,−1

5), re-
spetively. The only relevant perturbation by the �eld ϕ results in the simplest sattering

theory with one neutral partile of mass m and sattering matrix [35℄

S(θ) =
sinh θ + i sin π

3

sinh θ − i sin π
3

= −
(

1

3

)(

2

3

)

The pole at θ = iπ
3 shows that the partile an form a bound-state. The relation

S(θ + i
π

3
)S(θ − i

π

3
) = S(θ)

however, implies that the bound-state is the original partile itself and the bulk bootstrap is

losed. The bulk energy onstant is given by ǫbulk = − 1
4
√
3
m2

.

We an impose two onformal invariant boundary onditions in the model [36, 37℄. They

an be labeled by I and Φ and orrespond to the highest weight representations of a single

opy of the Virasoro algebra with weight 0 and −1
5 , respetively. Introduing the integrable

bulk perturbations with the I onformal invariant boundary ondition the integrability is

maintained and the re�etion fator of the partile an be written as

RI(θ) =

(

1

2

)(

1

6

)(

−2

3

)

while the boundary energy is given by ǫIbdry = m
2

(√
3− 1

)

. If the onformal invariant bound-

ary ondition orresponds to Φ then additionally to the bulk perturbation we an introdue a

one-parameter family of integrable boundary perturbations and the orresponding re�etion

fator turns out to be

Rb(θ) =

(

1

2

)(

1

6

)(

−2

3

)(

b− 1

6

)(

b+ 1

6

)(

5− b

6

)(−5− b

6

)

while the boundary energy is ǫbdry = m
2

(√
3− 1 + 2 sin bπ

6

)

. The boundary bound-states were

analyzed in [6℄ where the boundary bootstrap program was arried out.

The Lee-Yang model has two types of onformal defets [38℄, but only one of them admits

relevant hiral defet �elds. They have weights (−1
5 , 0), (0,−1

5 ). We onjeture that perturbing

in the bulk and with a ertain ombination of these defet �elds we an maintain integrability

and arrive at a purely transmitting theory. We plan to analyze this issue systematially in

a forthoming publiation. Let us denote the transmission fators of this integrable defet

by T±(θ). Using that the fusion of the defet to the I boundary results in the perturbed Φ
boundary we have

Rb(θ) = T+(θ, b)RI(θ)T−(θ, b)

This is supported by the fat that fusing the onformal defet to the I boundary we obtain

the Φ boundary. Sine the partile appears as a bound-state in the two partile sattering

proess the transmission matrix satis�es the defet bootstrap equation [3℄:

T−(θ +
iπ

3
)T−(θ −

iπ

3
) = T−(θ) (21)

Using this relation together with the defet unitarity and defet rossing symmetry (6) we an

�x the transmission fator as

T−(θ) = [b+ 1][b− 1] ; [x] = i
sinh(θ2 + iπx12 )

sinh(θ2 + iπx12 − iπ2 )
(22)

8



(Atually the inverse of the solution is also a solution but the two are related by the b → 6+ b
transformation). The defet energy, as in the sinh-Gordon ase, an be obtained as

ǫdef = ǫbdry − ǫIbdry = m sin
bπ

6

We are going to reover this expression from the UV analysis of defet TBA in setion 5. We

also note that the defet with parameter b = 3 behaves as a standing partile both from the

energy and from the sattering point of view.

4 Peturbative alulations

In this setion we hek the exat solution of the ShG defet system in the free/lassial

(b → 0) limit, and develop a systemati perturbative expansion. The parameter b2 plays the

same role as ~ whih an be seen by saling it out from the Lagrangian via Φ → bΦ. Sine

the lassial groundstate Φ = 0 is invariant under this saling, the b2 → 0 limit orresponds

both to the free and also to the lassial limit. Moreover, the perturbative expansion in b2 is

equivalent both to the loop expansion and to the semi-lassial approximation.

4.1 Classial/free limit

As a �rst step we identify the b → 0 limit of the defet Lagrangian (3) as:

L = Θ(−x)

[

1

2
(∂µΦ−)

2 − m2
cl

2
Φ2
−

]

+Θ(x)

[

1

2
(∂µΦ+)

2 − m2
cl

2
Φ2
+

]

−δ(x)

2

(

Φ+Φ̇− − Φ−Φ̇+ +mcl

[

cosh µ
(

Φ2
+ +Φ2

−
)

+ 2 sinhµΦ+Φ−
]

)

Then we expand the �elds on the two sides of the defet in terms of reation/annihilation

operators

Φ±(x, t) =
∫ ∞

−∞

dk

2π

1

2ω(k)

(

a±(k)e
ikx−iω(k)t + a+±(k)e

−ikx+iω(k)t
)

; ω(k) =
√

k2 +m2
cl

where the a, a+ operators are adjoint of eah other with ommutators:

[a±(k), a
+
±(k

′

)] = 2π2ω(k)δ(k − k
′

)

Imposing the defet ondition (obtained by varying the ation) at the origin

±∂tΦ± ∓ ∂xΦ∓ = mcl(sinhµΦ± + cosh µΦ∓)

we an onnet the reation/annihilation operators as

a±(±k) = T∓(k)a∓(±k) ; T∓(k) = −mcl sinhµ∓ iω(k)

mcl cosh µ− ik
; k > 0

This shows that the defet is purely transmitting, that is we do not have any re�eted wave.

The transmission fator in the rapidity parametrization (k = mcl sinh θ) an be written also

in the following form:

T−(θ) = −i
sinh(θ2 − iπ

4 + µ
2 )

sinh(θ2 +
iπ
4 + µ

2 )

9



Clearly it has exatly the same form as the exat quantum one (16) exept the Bϑ ↔ µ
replaement. Having observed this oinidene the authors in [23℄ suggested that they might

be the same Bϑ = µ. Using our defet UV-IR relation (17) we an perform the expansion:

Bϑ = µ(1− b2

8π
+ . . .) (23)

The term of �rst order shows that our exat solution is orret in the lassial limit, i.e. for

b → 0. The term of seond order shows that the Bϑ = µ relation suggested in [23℄ is not valid:

Bϑ aquires nontrivial quantum orretion. Sine the renormalization of the parameter µ is

ruial to deide about the two proposals we perform a perturbative hek at order b2.

4.2 Perturbation theory

As a �rst step we ollet the free propagators. If the �elds are on the same side of the defet

we have

0〈0|T
(

Φ±(x, t)Φ±(x
′

, t
′

)
)

|0〉0 =
∫

d2q
(2π)2

i
q2−m2

cl
+iǫ

eiq(y−y
′

) = G±
±(y, y

′)

y

y’

where q = (k, ω) and y = (x, t). The absene of an eik(x+x
′

)
term shows the absene of

re�etion. The other two point funtions are

0〈0|T
(

Φ∓(x, t)Φ±(x
′

, t
′

)
)

|0〉0 =
∫

d2q
(2π)2

i
q2−m2

cl
+iǫ

T±(ω, k)eiq(y−y
′

) = G±
∓(y, y

′)

y’

y

where

T±(ω, k) = −mcl sinhµ± iω

mcl coshµ− ik

In the �nal equations we used the fat that the ω ontour an be losed on the upper/lower half

plane. As it was shown in [8℄ the re�etion fator an be read o� from the 〈T (Φ±Φ±)〉propagator
of the �elds. The defet/boundary equivalene [21℄ then implies that the transmission fator

an be read o� from the 〈T (Φ∓Φ±)〉 propagator.
The perturbation at order b2 follows from (1):

δL = −Θ(−ζ)

[

m2
clb

2

4!
Φ4
−

]

−Θ(ζ)

[

m2
clb

2

4!
Φ4
+

]

−δ(ζ)
mclb

2

4 · 4!
[

coshµ
(

Φ4
+ + 6Φ2

+Φ
2
− +Φ4

−
)

+ 4 sinhµΦ+Φ−
(

Φ2
+ +Φ2

−
)]

We alulate the propagators upto �rst order in b2:

〈0|T
(

Φ∓(x, t)Φ±(x
′

, t
′

)
)

|0〉 = 0〈0|T
(

Φ∓(x, t)Φ±(x
′

, t
′

)(1− i

∫

dζ

∫

dτ δL + . . .)

)

|0〉0

Using Wik's theorem we obtain the ontribution of the following diagrams:

We have two bulk diagrams presented on Figure 1:

10



y’

y

y’

y

Figure 1: The two bulk diagrams with prefator

m2
cl
b2

2

where the bulk interation point, denoted by an empty irle, represents z = (ζ, τ) and we have
to integrate over the whole left/right spae-time. Thus the ontribution of the �rst diagram

is

m2
clb

2

2

∫ ∞

−∞
dτ

∫ 0

−∞
dz G−

−(y, z)G
−
−(z, z)G

+
−(z, y

′)

Clearly G−
−(z, z) is divergent and we have to regularize it by introduing a uto� Λ:

G−
−(z, z) =

∫

d2q

(2π)2
i

q2 −m2
cl + iǫ

=

∫ Λ

0

1
√

k2 +m2
cl

dk

2π
= ∆(mcl)

Its ontribution an be absorbed into the renormalization of the mass parameter m2
cl →

m2
cl −m2

cl
b2

2 ∆(mcl) whih results in extra ounter term diagrams presented on Figure 2:

y’

y

y’

y

Figure 2: Bulk ounter-term diagrams with prefator −m2
cl
b2

2 ∆(mcl)

The ontributions from the defet terms an be grouped in two sets of diagrams. The �rst

ontains the same divergent loop integral and onsists of those on Figure 3:

y’

y

y’

y

y’

y

y’

y

Figure 3: Divergent even defet loop diagrams with prefator

mclb
2

8 coshµ

where the interation vertex is even together with the odd diagrams presented on Figure 4:
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y’

y

y’

y

y’

y

y’

y

Figure 4: Divergent odd defet loop diagrams with prefator

mclb
2

8 sinhµ

We have to integrate in time τ over the real axis and the left/right part of the defet represents

the ontration with the operators Φ− and Φ+, respetively. They all ontain the divergent

and regularized ∆(mcl) loop integral whih an be absorbed into the renormalization of the

defet parameter mcl → mcl−mcl
b2

4 ∆(mcl), whih is onsistent with the bulk renormalization.

The resulting ounter-terms produe the diagrams on Figure 5:

y’

y

y’

y

y’

y

y’

y

Figure 5: Defet ounter terms with prefators−mcl
b2

4 ∆(mcl) cosh µ and−mcl
b2

4 ∆(mcl) sinhµ,
respetively

The fat that all these singularities an be absorbed into the renormalization of mcl is a

nontrivial statement, sine we have eight divergent diagrams having di�erent propagators on

the outer legs those we aneled just by renormalizing one single parameter in the original

Lagrangian. The form of the renormalized Lagrangian is the same as the original one thus

the integrable/topologial nature of the defet is not spoiled by quantum e�ets, there is no

anomaly. Observe also that the bulk mass term m2
cl and the boundary term mcl renormalizes

the same way so the bulk is the square of the other.

The last group of the diagrams is the one whih really ontributes to the transmission

fator. They are presented on Figure 6:

y’

y

y’

y

y’

y

y’

y

Figure 6: Defet diagrams ontributing to the transmission fator. They have prefators

mclb
2

4 sinhµ and

mclb
2

4 cosh µ, respetively
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The ontribution of the �rst diagram is

mclb
2

4
sinhµ

∫ ∞

−∞
dτ G−

−(y, z)G
+
−(z, z)G

+
−(z, y

′)

Eah of the terms on Figure 6 ontains the �nite ontribution of the propagator

G∓
±(z, z) =

∫

d2q

(2π)2
i

q2 −m2
cl + iǫ

T±(ω, k) = − µ

2π

This term together with the prefator an be interpreted as the �nite renormalization of the

parameter µ → µ + δµ, where δµ = −µb2

8π . Summing up all the ontributions and taking into

aount the di�erent transmission fator dependent ontributions on the outer legs we obtain

the orretion of order b2 to the transmission fator as

T−(θ,Bϑ(µ)) = T−(θ, µ) +
µb2

8π

1

1− i sinh(θ + µ)
+O(b4)

whih is in omplete agreement with (23). Thus we on�rmed the renormalization of the

parameter µ, but we have not heked the renormalization of the parameter M whih has not

shown up at this order. We suspet, however, that in this perturbative sheme the boundary

parameter mcl renormalizes as the square-root of the m2
cl term and only µ renormalizes as

Bϑ. It would be interesting to perform a two-loop perturbative alulation to deide about

the renormalization of Mcl in the perturbative sheme.

We note that we have also performed a perturbative alulation of order b2 of the re�etion
fator, whih an be extrated from G+

+(y, y
′), and on�rmed the absene of re�etion at this

order. In [39℄ the form of the sine-Gordon Lagrangian was �xed at order b6 by demanding

the absene of partile reation. Following a similar line it would be tempting to see how the

absene of re�etion restrits the form of the defet potential in perturbation theory.

5 Defet thermodynami Bethe ansatz

In this setion we would like to hek the onsisteny between the transmission fators and

defet energies. In doing so we derive a DTBA to desribe the ground state energy of a

purely transmitting diagonal integrable defet on the irle of perimeter L. In boundary and

defet systems there are two inequivalent ways to derive TBA equations. We an either fous

on the groundstate energy or on the so-alled g-fators whih is related to the �nite volume

normalization of defet/boundary states. Both BTBA equations have been analyzed in [16℄

although the g-funtion type required further re�nement [40℄. Some details of the g-funtion
type DTBA an be found in [41℄ and referenes therein. Here we onsider the groundstate

DTBA in the periodi setting as opposed to the strip geometry analyzed in [21℄.

5.1 Derivation of DTBA

In order to derive the DTBA equation for the ground state energy we ompatify the time-

like diretion with period R and alulate the partition funtion in two inequivalent ways by

hanging the role of the spae and time oordinates.

In the original desription the defet is loated in spae as drawn in Figure 7:
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defect line

L

0

x

t

Figure 7: Defet is loated in spae

By taking the R → ∞ limit the groundstate energy an be extrated from the partition

funtion as

lim
R→∞

Z(L,R) = lim
R→∞

Tr
(

e−H(L)R
)

= e−E0(L)R + . . .

In the alternative desription when the role of time and spae is exhanged as shown on Figure

8:

x
t

L
0

defect operator

Figure 8: Defet is loated in time ating as a defet operator

the defet beomes an operator of the form [21℄

D = exp

{
∫ ∞

−∞

dθ

2π
T+(

iπ

2
− θ)a+(θ)a(θ)

}

whih ats on the Hilbert spae of the periodi model, H. The partition funtion an be

alulated as

Z(L,R) = Tr
(

e−H(R)LD
)

=
∑

|n〉∈H

〈n|D|n〉e−En(R)L

〈n|n〉 (24)

The Hilbert spae onsists of multi-partile states

|θ1, θ2, . . . , θn〉 = a+(θ1)a
+(θ2) . . . a

+(θn)|0〉 ; θ1 > θ2 > . . . > θn

14



on whih the defet operator ollets nontrivial diagonal matrix elements from

D|θ1, θ2, . . . , θn〉 = T+(
iπ

2
− θ1)T+(

iπ

2
− θ2) . . . T+(

iπ

2
− θn)|θ1, θ2, . . . , θn〉+ . . .

while the energy operator ats as

H|θ1, θ2, . . . , θn〉 = (m cosh(θ1) +m cosh(θ2) + . . .+m cosh(θn)) |θ1, θ2, . . . , θn〉

We an introdue another energy operator via Ĥ = H − 1
L
logD suh that the partition

funtion an be written as

Z(L,R) = Tr
(

e−H(R)LD
)

= Tr
(

e−Ĥ(R)L
)

=
∑

|n〉∈H
e−Ên(R)L

This partition funtion an be alulated in the R → ∞ limit by standard saddle point

approximation taking into aount the sattering of the partiles. The alulation follows the

usual route of TBA alulations, but now the kineti term is shifted m cosh θ → m cosh θ −
1
L
log T+(

iπ
2 − θ). As a onsequene we obtain the following DTBA equations for the pseudo

energy

ǫ̃(θ) = mL cosh θ − log T+(
iπ

2
− θ)−

∫ ∞

−∞

dθ
′

2π
φ(θ − θ

′

) log(1 + e−ǫ̃(θ
′

)) (25)

where φ(θ) = −i d
dθ

logS(θ). One ǫ̃ is known the ground state energy an be expressed as

E0(L) = −m

∫ ∞

−∞

dθ

2π
cosh θ log(1 + e−ǫ̃(θ))

Here we do not have to shift the cosh θ term sine it omes from the derivative of the momentum

(sinh θ), whih appears in the quantization ondition. For the result in this generality see e.g.

[42℄.

Alternatively, we an rede�ne the pseudo energy as ǫ̃(θ) = ǫ(θ)− log T+(
iπ
2 − θ) to obtain

ǫ(θ) = mL cosh θ −
∫ ∞

−∞

dθ
′

2π
φ(θ − θ

′

) log

(

1 + T+(
iπ

2
− θ

′

)e−ǫ(θ
′

)

)

from whih the ground state energy turns out to be

E0(L) = −m

∫ ∞

−∞

dθ

2π
cosh θ log

(

1 + T+(
iπ

2
− θ)e−ǫ(θ)

)

The ground state energy is real whih an be easily seen form (6) sine T ∗
+(

iπ
2 −θ) = T+(

iπ
2 +θ).

As a simple onsisteny hek we an see that the DTBA equation for the trivial defet,

T+ = 1, redues to the periodi TBA equation [43℄. We analyze the large and small volume

limits separately in the next two subsetions.

5.2 Lüsher type orretion in defet systems

If the volume L is large then ǫ(θ) ∼= mL cosh θ is large and we an expand the logarithm to

obtain

E0(L) = −m

∫ ∞

−∞

dθ

2π
cosh θ T+(

iπ

2
− θ)e−mL cosh θ +O(e−2mL)
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This result an be alulated diretly from (24) by taking the large L limit there. In that

ase, however, only the one-partile transmission term ontributes whih is universal for any

quantum �eld theory. The result obtained is the analogue of the boundary Lüsher type

orretion to the ground state energy [44℄ and is valid in any theory even in non-integrable

ones.

5.3 Defet energy

Here we analyze the small volume behavior of the ground state energy. Its normalization

depends on the sheme in whih the quantum �eld theory is de�ned. If we would like to

ompare the DTBA normalization to that of a perturbed defet onformal �eld theory, in

whih the perturbing operators have dimensions h on the defet and (h, h) in the bulk, then

we have:

E0(L) = −ǫdef − ǫbulkL+
2π

L

∞
∑

n=0

cn l
n(1−h) ; l = mL

Only the perturbative terms, cn, are present in a perturbed rational defet CFT. (In non-

rational CFT-s, like the UV limit of the boundary sinh-Gordon theory, we expet terms with

logarithmi behaviour, see [45℄ for the details). By alulating the small volume limit of

E0(L) from DTBA ǫdef and ǫbulk an be extrated exatly. The omputation is analogous to

the boundary one [31, 36℄, so we sketh only here. In the L → 0 limit the solution for ǫ̃ in (25)

develops two kink regions around θ = ± log 2
l
and a breather region around the origin. The

behaviour of the solutions are determined by the θ → ±∞ asymptotis of the integral kernel

and defet soure term:

φ(θ) = Ce−|θ| +O(e−2|θ|) ; log(T+(
iπ

2
− θ)) = A±e

∓θ +O(e∓2θ) as θ → ±∞

The two kink funtions are responsible for the terms giving the entral harge and the bulk

energy onstant, while the entral/breather part gives the defet energy in the following form:

ǫbulk =
m2

2C
; ǫdef = −m(A+ +A−)

2C
(26)

We note that the kink type behaviour does not exists for the whole parameter range of C
and A±. The results is understood that we analytially ontinued it from a range where the

alulation is reliable.

Let us onretes the result for the two ases in question. In the sinh-Gordon model

C = 4 sinhπB ; A± = −2e∓Bϑ

so using (26) we reover (9) and (18).

In the Lee-Yang ase we have

C = −2
√
3 ; A± = ∓2i(e±iπ b+1

6 + e±iπ b−1

6 )

Plugging these expressions bak to (26) the results on�rms the bulk energy density and the

defet energy.

We emphasize that the agreement obtained in the two ases on�rm the solutions on one

side and the DTBA equation on the other.
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The other perturbative oe�ients cn an be alulated from the DTBA only numerially.

In the Lee-Yang ase, however, one an gain further analytial information. One has to de�ne

Y (θ) = e−ǫ(θ)
and to show from (21) that it satis�es the Lee-Yang Y -system relation

Y (θ − iπ

3
)Y (θ +

iπ

3
) = 1 + Y (θ)

from whih the Y (θ) = Y (θ + 5iπ
3 ) periodiity follows. Similarly to the boundary ase this

gives the exponent of the perturbative expansion to be

6
5 showing that the dimension of the

perturbing operator is h = −1
5 .

6 Defet bound-states and bootstrap losure

In this setion we analyze the analyti struture of the transmission fators for the whole

range of their parameters. Sine the sinh-Gordon transmission fators (16) never have poles

in the physial strip we fous on the Lee-Yang model only. Reall that in our onvention the

physial strip of the transmission fators T∓(θ) are ℑmθ ∈ [0, π2 ].

6.1 Pole analysis on the ground-state defet

We analyze the pole struture of both

T−(θ) = [b+ 1][b− 1] and T+(θ) = [5− b][−5− b]

as the funtion of the parameter b, simultaneously. We note that by folding the theory to

a boundary one (with two partiles) we ould analyze its bootstrap in the usual boundary

formulation. Here, however, we present the results in the defet language sine the diagrams

are more lear-ut. (The whole proedure, going from the re�etion fator to the defet

transmission fator, an be interpreted as taking a sort of square root of the boundary theory.

By losing the defet bootstrap we would like to show that suh a theory is indeed sensible.

Sine on the I boundary there is no boundstate any pole of the re�etion fator appears either

in T− or in T+ so the bootstrap will be very similar to the boundary one [6℄).

In determining the fundamental range of the parameter b we an see that b → b + 12 is

a symmetry. Moreover b ↔ 6 − b exhanges T− ↔ T+ so we an restrit ourselves to the

range b ∈ [−3, 3]. We will see by analyzing the defet exited states that the fundamental

range is even smaller, only b ∈ [−3, 2], as in the boundary ase, sine at b = 2 the role of the

ground-state and the �rst exited state is exhanged.

The poles and zeros of the transmission fator T−(θ) are

poles of T− are at θ = −i
π

6
(b± 5) ; zeros of T− are at θ = −i

π

6
(b± 1)

The analogous expressions for T+ are

poles of T+ are at θ = i
π

6
(b± 1) ; zeros of T+ are at θ = i

π

6
(b± 5)

They an be drawn as the funtion of the parameter b as shown on Figure 9:
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b
−3 0−2 −1 1 2 3

π
2

0

|1+>

|2+>

Figure 9: Poles and zeros of T+ and T− as funtion of b . Solid lines orrespond to poles,

while dashed ones to zeroes. The dotted lines show the fundamental range.

For b ∈ [−1, 2] there is a pole in the transmission fator T+ at θ = iu = iπ6 (b + 1), for
whih we assoiate a defet boundstate and denote it by |1+〉. Its energy is m cos π

6 (b + 1)
and the orresponding exited transmission fator an be alulated from the defet bootstrap

equation shown on Figure 10:

θ

iu0 

1+ 

θ

iu
0 

1+ 

Figure 10: Defet bootstrap equations

T
|1+〉
− (θ) = T−(θ)S(θ + iu)

From the defet rossing symmetry (6) we an alulate T
|1+〉
+ (θ) as

T
|1+〉
+ (θ) = T

|1+〉
− (iπ − θ) = T−(iπ − θ)S(iπ − θ + iu) = T+(θ)S(θ − iu)

whih is onsistent with the other bootstrap equation where the seond partile arrives from

the right. The resulting transmission fators are

T
|1+〉
− (θ) = [b+ 1][b+ 3] ; T

|1+〉
+ (θ) = [5− b][3 − b]

They are related to the groundstate ones as T
|1+〉
± (b → 4 − b, θ) = T∓(b, θ). This symmetry

together with the defet energies indiate that when b exeeds 2 the role of the ground-state

and the exited state |1+〉 are exhanged. This on�rms that the fundamental range is indeed

b ∈ [−3, 2].
In the range b ∈ [1, 2] the transmission fator T+(θ) has another pole at θ = iπ6 (b− 1) for

whih we assoiate the defet boundstate |2+〉. It has energy m cos π
6 (b− 1) and transmission

fator

T
|2+〉
± (θ) = T±(θ)S(θ ∓ i

π

6
(b− 1))

Now we turn to the pole analysis of exited defet states.
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6.2 Pole analysis on the exited defet state |1+〉
The poles and zeros of the transmission fators on the state |1+〉 are indiated on Figure 11.

b
−3 0−2 −1 1 2 3

π
2

0

1

2 3

4

Figure 11: Poles and zeros on the |1+〉 defet exited state. Dotted line shows the range where

the exited state |1+〉 exists

The state exist in the b ∈ [−1, 2] domain so we have to explain the poles in this range only.

The pole of T
|1+〉
+ labeled by 1 on Figure 11 is at the same loation as the one whih

reates the exited state itself, namely at θ = iπ6 (b+1) in the full range b ∈ [−1, 2]. It an be

explained by the �rst of the defet Coleman-Thun diagrams on Figure 12

1+ 

0 

1+ 

b+1

b+1

0

1+ 

1+ 

b+1

1−b

b+3

1+ b+1

3−b

1−b
0

1+ 

Figure 12: Defet Coleman-Thun diagrams for the |1+〉 state. The angles are measured in

units of

iπ
6

The pole of T
|1+〉
+ labeled by 2 on Figure 11 is at θ = iπ6 (b + 3) and an be explained

by the seond diagram on Figure 12. Observe that by applying the Cutkosky rules [9℄ we

would obtain a pole of seond order but the transmission fator T− has a �rst order zero at

θ = iπ6 (1− b) whih, in this way, redues the order of the pole to one.

The pole of T
|1+〉
− labeled by 3 on Figure 11 is at θ = iπ6 (3 − b). In the range b ∈ [0, 1] it

an be explained by the third diagram on Figure 12. Sine the transmission fator T− on the

ground state has a zero at θ = iπ6 (1− b) the order of the diagram is redued to one again. In
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order for the diagram to exist the partile has to travel towards the defet, that is 1− b > 0.
This explains the pole in the range b ∈ [0, 1]. In the range b ∈ [1, 2] the partile reates a defet
boundstate whih is nothing but |2+〉. This an be seen both from the energy of the exited

state m cos π
6 (b+1)+m cos π

6 (3− b) = m cos π
6 (b− 1) and from the transmission fator. If the

left partile reates a defet boundstate at rapidity θ = iu then the exited states transmission

fators are T ex
± (θ) = T±(θ)S(θ ± iu). Now we an see from the bulk bootstrap equation that

T
|1+〉
± (θ)S(θ±i

π

6
(3−b)) = T±(θ)S(θ∓i

π

6
(b+1))S(θ±i

π

6
(3−b)) = T±(θ)S(θ∓i

π

6
(b−1)) = T

|2+〉
± (θ)

that is the transmission fators also supports the identi�ation.

6.3 The pole analysis on the exited defet state |2+〉
The defet boundstate labeled by |2+〉 has transmission fator

T
|2+〉
− (θ) = [b− 1][b + 1]2[b+ 3] ; T

|2+〉
+ (θ) = [3− b][5 − b]2[7− b]

The singularity struture an be summarized as follows.

b
−3 0−2 −1 1 2 3

π
2

0

5

6

7

Figure 13: Singularity struture of the transmission fators on the |2+〉 state. Bold straight

lines represent poles of seond order. The relevant interval where the boundstate |2+〉 exists
is indiated by dotted lines.

The pole labeled by 5 on Figure 13 is in T
|2+〉
+ (θ) at θ = iπ6 (b− 1) and an be explained in

the full range b ∈ [1, 2] by the �rst diagram on Figure 12, if we replae |1+〉 by |2+〉.
The pole labeled by 6 on Figure 13 is in T

|2+〉
− (θ) at θ = iπ6 (3 − b) and an be explained

by a diagram similar to the third one of Figure 12 in whih the |1+〉 state is replaed by |2+〉
and the vauum |0〉 is replaed by |1+〉.
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Figure 14: Defet Coleman-Thun diagrams for the exited state |2+〉

The pole labeled by 7 on Figure 13 is a seond order one in T
|2+〉
+ (θ) at θ = iπ6 (b+ 1) and

an be explained by the two diagrams on Figure 14. Clearly the transmission fator T−(θ)
does not have zeros neither at θ = iπ6 (3− b) nor at θ = iπ6 (b−1) so the pole is of seond order.

By now we explained all the poles of all the transmission fators of the ground and exited

defet states. We used either the reation of a new defet boundstate or presented the appro-

priate defet Coleman-Thun diagram whih was responsible for the singularity. By �nishing

this proedure the spetrum beome omplete and we managed to de�ne a sensible defet the-

ory. It would be nie to hek these �ndings by the defet trunated onformal spae approah

(TCSA).

7 Conlusions

We have demonstrated how the fusion idea an be used to solve topologial defets in the

sinh-Gordon and Lee-Yang models. In the sinh-Gordon ase we determined the transmission

fators and the defet energy as a funtion of a bootstrap parameter whose relation to the

Lagrangian was also given. We heked these results in perturbation theory and against the

newly derived DTBA.

In the Lee-Yang ase we determined the transmission fators together with the defet

energy and heked them in DTBA. For ertain range of the parameter the transmission

fator admits poles in the physial strip. We losed the defet bootstrap programme: we

explained all poles either by assoiating new defet boundstates or by giving the appropriate

defet Coleman-Thun mehanism both for the groundstate and for exited defet states.

The relation obtained between the transmission parameter and that of the Lagrangian in

the sinh-Gordon theory an be analytially ontinued to desribe the analogues relation in

the sine-Gordon theory. This result also passes the test of �rst order perturbation theory

and together with the transmission fators obtained in [22, 23℄ gives the omplete solution of

defet sine-Gordon model. We have heked this solution by performing the fusing proedure

on the solitoni transmission fators. This is analogous to the dressing proedure in the XXZ

spin hain developed in [46℄.

The perturbation theory developed here an also be used in higher rank a�ne Toda theories

to onnet the parameters of the transmission fator of the bootstrap solution [24℄ to the
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parameters of their Lagrangians [18℄.

The derivation of the DTBA generalizes to any diagonal sattering theory. A large and

small volume analysis analogous to the one presented in the paper will provide the leading

�nite size orretion to the groundstate energy and give the bulk/defet energies, respetively.

In the present paper we were onerned with the bootstrap (IR) desription of our models.

There is a need, however, to understand their UV behavior whih probably an be desribed

by perturbed defet CFTs. To onnet these alternative desriptions we an use methods

starting either from the IR side, like DTBA, or starting from the UV side, like defet TCSA.

There are works in progress in both diretions.
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