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1 Introdution

The sine-Gordon model is one of the most extensively studied quantum �eld theories.

The interest stems partly from the wide range of appliations that extend from partile

physis to ondensed matter systems and partly from the fat that many of the interesting

physial quantities an be omputed exatly due to its integrability. All these properties are

inherited by the boundary sine-Gordon model (BSG) obtained by restriting the ordinary

one to the negative half line by imposing appropriate, integrability preserving, boundary

onditions at x = 0 [1℄, [2℄.

The novel feature of BSG is the ompliated spetrum of boundary bound states man-

ifesting themselves as appropriate poles in the various re�etion amplitudes [2℄-[6℄. These

exat amplitudes are obtained from solving the boundary versions of the Yang-Baxter,

unitarity and rossing equations [2℄ in the bootstrap program [4℄, [3℄, [5℄, [6℄. Therefore

in the general ase the re�etion fators and the spetrum of bound states depend on

two `bootstrap' or `infrared' parameters that haraterize the solutions of these equations.

These parameters should be determined somehow by the two `ultraviolet' or `Lagrangian'

boundary parameters appearing in the boundary potential enforing the boundary ondi-

tion. This question leads then to the problem of establishing a relation between the exat

algebrai solution of the quantum theory and the lassial Lagrangian. A semi-lassial

quantisation of the lassial theory may provide the neessary link.

The quest for the relation onneting the two sets of parameters (also alled UV-

IR relation below) has a long history. For Dirihlet boundary onditions, when only one

bootstrap and one Lagrangian parameters survive, it was obtained already in [2℄. A general

expression was given by Al.B. Zamolodhikov [7℄ obtained from desribing the BSG model

as a bulk and boundary perturbed onformal �eld theory, but unfortunately these results

remained unpublished. Reently some arguments were presented for the general form of

the UV � IR relation in [6℄ by omparing the parameter dependenies of some patterns

(suh as global symmetries and ground state sequenes) in the bootstrap solution and in

the lassial theory. While this general form is onsistent with Zamolodhikov's solution,

it leaves the oupling onstant dependeny of a ruial oe�ient undetermined. A TCSA

study of the spetrum of BSG in �nite volume [8℄ on�rmed that Zamolodhikov's onstant

has the orret β dependeny. In ontrast in the boundary sinh-Gordon model the UV � IR

relation was determined by Corrigan and Taormina by omparing the WKB and bootstrap

spetra of breathers [9℄. It turns out after analytially ontinuing this relation to the sine-

Gordon model, that its general form is the expeted one, but its oe�ient depends on β
in a di�erent way.

Motivated by the above we onsider in this paper two problems in boundary sine-

Gordon model, where the semi-lassial approximation an be determined starting from

the lassial Lagrangian, and the results an be ompared to the appropriate limits of the

exat solution. We hoose these problems to involve in one way or other the solitons in

BSG, as they have no analogues in sinh-Gordon theory, thus the results annot be obtained

or predited by a simple analyti ontinuation.

The �rst problem we investigate is the semi-lassially orreted energy di�erene of
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the two lowest energy stati solutions in boundary sine-Gordon model. These lassial

solutions are in fat given by a stati bulk soliton/antisoliton `standing at the right plae'

[10℄ [6℄, thus their semi-lassial quantisation amounts to the adaptation of the soliton

quantisation [11℄ to the boundary problem. On the other hand these solutions may be

thought of as the lassial analogues of the exat ground state |〉, and the �rst exited

boundary state |0〉 respetively [6℄, thus the semi-lassially orreted energy di�erene

should be ompared to the limit of these two exat energies. This leads then to a relation

between the Lagrangian and the bootstrap parameters.

The seond problem we investigate is the semi-lassial soliton re�etion on the bound-

ary at x = 0. The idea to ompare the semi-lassial phase shift of this proess - obtained

from the lassial time delay - and the limit of the exat amplitude oming from the alge-

brai solution was suggested by Saleur, Skorik and Warner [10℄. Although they determined

the lassial time delay in the general ase (for ground state boundary at least), they made

the omparison for Dirihlet boundary onditions only. Here we show that the omparison

in the general ase leads to the same UV-IR relation we obtained from the �rst problem.

The paper is organized as follows: the semi-lassial quantisation of the stati solutions

is arried out in set. 2. The results are ompared to the limit of the exat solution in

setion 3. Setion 4 is reserved for the investigation of the soliton re�etion and we make

our onlusions in set. 5.

2 Semi-Classial quantisation of the stati solutions

In this setion we arry out the semi-lassial quantisation of two stati solutions in bound-

ary sine-Gordon model and ompute the semi-lassial quantum orretion to the di�erene

between their lassial energies. We start by summarizing some known fats about this

theory and the lassial solutions in question.

The boundary version of sine-Gordon model is de�ned by the ation [2℄:

S =

∫ ∞

−∞
dt

∫ 0

−∞
dxLSG−

∫ ∞

−∞
dtVB(ΦB), LSG =

1

2
(∂µΦ)

2−m2

β2
(1− cos(βΦ)), (2.1)

where Φ(x, t) is a salar �eld, β is a real dimensionless oupling and ΦB(t) = Φ(x, t)|x=0.

To preserve the integrability of the bulk theory the boundary potential is hosen as

VB(ΦB) = M0

(

1− cos

(

β

2
(ΦB − φ0)

))

,

where M0 and φ0 are free parameters. As a result the salar �eld satis�es the boundary

ondition:

∂xΦ|x=0 = −M0
β

2
sin

(

β

2
(ΦB − φ0)

)

. (2.2)

Colleting all the possible equivalenes between the boundary parameters their fundamen-

tal domain turns out to be [5℄ [6℄:

0 ≤ M0 ≤ ∞ ; 0 ≤ φ0 ≤
π

β
.
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In the lassial theory the two stati solutions with lowest energy are given by a stati

bulk soliton/antisoliton `standing at the right plae' [10℄ [6℄: i.e. by hoosing Φ ≡ Φs(x, a
+)

or Φ ≡ Φs̄(x, a
−) for x ≤ 0, where

Φs(x, a
+) =

4

β
artg(em(x−a+)), Φs̄(x, a

−) =
2π

β
− Φs(x, a

−),

and a± are determined by the boundary ondition, eq.(2.2):

sinh(ma±) =

4m
M0β2 ± cos(β

2
φ0)

sin(β
2
φ0)

.

(a+ and a− are obtained from eah other by φ0 ↔ 2π
β
− φ0). The energies of these two

solutions an be written as

Es(M0, φ0) ≡ Ebulk + VB =
4m

β2
+M0 −M0R(+),

Es̄(M0, φ0) =
4m

β2
+M0 −M0R(−) = Es(M0,

2π

β
− φ0), (2.3)

where we introdued

R(±) =
[

1± 2A cos(α) + A2
]1/2

, A =
4m

M0β2
, α =

β

2
φ0.

The di�erene between these two energies, whih is alled below the `lassial energy dif-

ferene',

∆Ecl ≡ Es̄(M0, φ0)− Es(M0, φ0) = M0(R(+)− R(−)),

is positive for α ∈ [0, π
2
), M0 > 0 showing that in this range the soliton generates the

ground state and the antisoliton the �rst exited one. From eq.(2.3) it follows that for

φ0 → 0+1

Es = 0, Es̄ =

{

2M0 M0 <
4m
β2

8m
β2 M0 >

4m
β2

. (2.4)

In the proess of semi-lassial quantisation the osillators assoiated to the linearized

�utuations around the stati solutions Φ(x, t) = Φs,s̄ + eiωtξ±(x) are quantised [11℄. The

equations of motion of these �utuations an be written:

[

− d2

dx2
+m2 − 2m2

cosh2(m[x− a±])

]

ξ±(x) = ω2ξ±(x); x < 0 , (2.5)

and ξ±(x) must satisfy also the linearized version of the boundary ondition (2.2):

ξ′±(x)|x=0 = −M0β
2

4

1± A cosα

R(±)
ξ±(0). (2.6)

These eigenvalue problems an be solved exatly by mapping eq.(2.5) to a hypergeometri

di�erential equation [12℄.

1

This limit is not smooth, see our remark later.
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2.1 Disrete spetrum

In ase of the disrete spetrum it is onvenient to write ω2 = m2(1−ǫ2). The normalizable

solutions of eq.(2.5) must vanish at x → −∞, and assuming ǫ to be positive, they are given
by:

ξ±(x) = Nemǫ(x−a±)(ǫ− tanh[m(x− a±)]).

The boundary onditions, eq.(2.6), determine the possible values of ǫ as

ǫ2 + ǫ
R(±)

A
± cosα

A
= 0.

It is easy to show, that for the solitoni ground state there is no positive solution of this

equation, while for the antisolitoni `exited' state one of the roots, namely

ǫ =
R(+)−R(−)

2A
, (2.7)

is positive. In fat a simple (numerial) study shows that for all positive A-s and α ∈ [0, π
2
)

0 ≤ R(+)−R(−)

2A
≤ 1, and

R(+)− R(−)

2A
= 1 iff α = 0, and A < 1.

In the framework of semi-lassial quantisation these �ndings imply, that there are no

boundary bound states for the ground state, desribed by Φs, while for the state, desribed

by Φs̄, there is suh a boundary bound state. The semi-lassial energy of this bound state,

ω0 = m

√

1−
(

R(+)− R(−)

2A

)2

, (2.8)

is real, ω0 ≥ 0, and it vanishes only for α = 0 and A < 1. In ontrast to the traditional zero

modes this vanishing ω0 has nothing to do with Φs̄ not being invariant under a ontinuous

symmetry of the Lagrangian, and it indiates some sort of instability of the state desribed

by Φs̄. Indeed with this α and A values (2.4) gives an energy di�erene whih is preisely

the mass of the bulk soliton, and sine topologial harge is not onserved in the boundary

theory, the higher energy state an deay into the lower one by emitting a standing soliton.

At this point it is worth omparing the stability analysis of this α → 0 situation and

the one when α = 0 is set from the start, to emphasize the non smooth nature of the

limit. In the latter ase the two lassial solutions beome Φ1 ≡ 2π
β
and Φ2 ≡ 0. Repeating

the stability analysis reveals that there are no normalizable bound state solutions of the

�utuation equations for the ground state, Φ2, while for the `exited' state, Φ1, there is

a normalizable solution with ω2 = m2(1 − A−2). When A > 1 this solution signals the

existene of a boundary state, while for A < 1, when this ω2
beomes negative, it indiates

the instability of Φ1. The instabilities found both in the α → 0 and in the α ≡ 0 ases are

onsistent with the results of the bootstrap solution [5℄ [6℄ showing no exited boundary

states in this range of parameters.
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2.2 Continuous spetrum

In ase of the ontinuous spetrum it is onvenient to put ω2 = m2+q2 (with q ≥ 0). Then
the solutions of eq.(2.5), whih asymptotially beome plane waves, an be written as

ξ±(x) = Ã±e
−iq(x−a±) iq +m tanh(m[x− a±])

iq +m
+ B̃±e

iq(x−a±) iq −m tanh(m[x− a±])

iq −m
.

The ratio Ã±/B̃± is determined by the boundary ondition eq.(2.6) at x = 0. Using this

value the asymptoti (x → −∞) form of the �utuations an be written as

ξ±(x) → C±(e
ixq + e−ixqeiδ

±(q)),

where the lassial re�etion fator is

eiδ
±(q) =

m− iq

m+ iq

±A−1 cosα− q2

m2 + i q
m

R(±)
A

∓A−1 cosα + q2

m2 + i q
m

R(±)
A

. (2.9)

To handle the in�nite volume limit it is onvenient to on�ne the �utuations to a box of

size L, (i.e. to limit x to the setion (−L, 0)), and impose Neumann boundary onditions at

x = −L: ξ′(−L) = 0. This ondition then determines the possible values of the momenta:

q±n 2L+ δ±(q±n ) = 2nπ, n integer. (2.10)

The semi-lassial orretion to the lassial energy di�erene, ∆Ecl, is given by the

di�erene between the sums of the zero point energies of the �utuations around Φs̄ and

Φs:

∆Esemi = ∆Ecl +∆Ecor = ∆Ecl +
ω0

2
+

1

2

∑

n

(

√

m2 + (q−n )
2 −

√

m2 + (q+n )
2
)

.

Replaing � as usual � the sum over n by an appropriate integral in the L → ∞ limit,

exploiting the

q−n = q+n +
δ+ − δ−

2L

onsequene of eq.(2.10), and dropping all terms vanishing for L → ∞ gives:

∆Esemi =∆Ecl +
ω0

2
− M0β

2

8π
(R(+)− R(−)) +

1

2π

[m

A
(R(−)− R(+)) I1

− m cosα

A2
(R(+) +R(−)) I2

]

,
(2.11)

where

I1 =

∞
∫

0

dy
y2
√

1 + y2

D
, I2 =

∞
∫

0

dy

√

1 + y2

D
,

D = y4 + (1 + A−2)y2 + A−2 cos2 α .
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2.3 Renormalization

The �rst integral in eq.(2.11) is logarithmially divergent, showing the need of regulariza-

tion and renormalization. This is hardly surprising sine neither the bulk nor the boundary

potentials are normal ordered, and already in the lassi paper [13℄ it is shown on the ex-

ample of the bulk soliton's mass orretion, that this naive proedure leads to logarithmi

divergenes even in mass di�erenes. The proper way to deal with these in�nities [13℄ [11℄

is to use the ounterterms, that aount for the di�erene between the normal ordered and

non ordered potentials.

In the boundary sine-Gordon model we use the same ounterterm for the bulk potential

as in the bulk theory:

Vcount[Φ] = −δm2

β2

0
∫

−∞

dx (1− cos(βΦ)) ; δm2 = −m2β2

4π

Λ
∫

0

dk√
k2 +m2

;

but the integral is over the x ≤ 0 half spae only. The argument for this hoie is based

on its loal nature: as suh it should be independent of the presene of the boundary. For

the boundary potential we assume that its ounterterm has an analogous form

VB count[Φ] = −δM0

(

1− cos(
β

2
(ΦB − φ0))

)

,

with δM0 being some parameter. The total ontribution of ounterterms to the energy

di�erene

CT = Vcount[Φs̄] + VB count[Φs̄]− Vcount[Φs]− VB count[Φs]

may remove the logarithmi divergene in eq.(2.11), if it is proportional to R(+)− R(−).
This ondition determines δM0:

δM0 = −M0β
2

4 · 2π

Λ
∫

0

dk√
k2 +m2

,

and with this hoie CT beomes

CT =
m

2πA
(R(+)− R(−))

Λ/m
∫

0

dy
√

y2 + 1
.

Sine the overall magnitude of CT is �xed by δm2
there are no more free parameters. Thus

the fat that adding CT to ∆Esemi does remove the divergene gives a partial justi�ation

of the renormalization proedure used.

2

In the renormalized energy di�erene

∆Eren
semi = ∆Esemi + CT

2

By setting up a systemati perturbation theory in boundary sine-Gordon model treating simultaneously

both the bulk and the boundary interations one an on�rm the orretness of both δm2
and δM0 [14℄.
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only the term ontaining I1 gets modi�ed and is replaed by

m

2Aπ
(R(−)−R(+)) I1 → m

2A3π
(R(+)− R(−)) Ĩ1,

with

Ĩ1 =

∞
∫

0

dy
√

1 + y2
y2 + cos2 α

D
.

The onvergent integrals Ĩ1, and I2 an be omputed symbolially with the aid of Maple.

For this it is helpful to write D = (y2 + a)(y2 + b) with

a =

(

R(+) +R(−)

2A

)2

≥ 1, b =

(

R(+)− R(−)

2A

)2

, 0 ≤ b ≤ 1,

and tell Maple the range of these parameters. Using the expliit form of these integrals,

after some algebra, the renormalized energy di�erene is obtained as

∆Eren
semi =M0(R(+)− R(−)) +

m

2

√

1−
(

R(+)− R(−)

2A

)2

− M0β
2

8π
(R(+)− R(−))

− m

π

√

1−
(

R(+)− R(−)

2A

)2

arccos

(

R(+)−R(−)

2A

)

.

(2.12)

It is a remarkable feature of this expression, that it depends only on the di�erene

(R(+)− R(−)) /(2A).

3 Comparison to the exat results

In this setion the main results of the previous semi-lassial quantisation, namely the

(non) existene of semi-lassial bound states, the lassial re�etion fators and the semi-

lassially orreted energy di�erene are ompared to the results obtained from the exat

(bootstrap) solution.

In this proess the sine-Gordon �eld is assumed to orrespond to the semi-lassial limit

of the �rst breather, while the exat ground state |〉 and the �rst exited boundary state

|0〉 are identi�ed as the quantum analogues of the lassial states (solutions) Φs, Φs̄. This

latter identi�ation was suggested in [6℄ on the basis of the existene of a (Z2 re�etion

type) transformation that hanges the roles of these two states in the same way as the

lassial Φ ↔ 2π
β
− Φ, φ0 ↔ 2π

β
− φ0 hanges Φs and Φs̄ into eah other.

In the exat solution of the boundary sine-Gordon model [2℄, [5℄, [6℄, [4℄ the oupling

onstant β appears through

λ =
8π

β2
− 1,
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while the dependene on the boundary ondition appears in the form of two real parameters,

η and ϑ, the fundamental ranges of whih are [6℄

0 ≤ η ≤ π

2
(λ+ 1), 0 ≤ ϑ ≤ ∞ .

Boundary bound states appear in the exat solution as poles in the various re�etion

amplitudes at purely imaginary rapidity u = −iθ. The loation of these poles depends on

the η parameter only and is given by appropriate ombinations of

νn =
η

λ
− (2n + 1)

π

2λ
, wk =

η̄

λ
− (2k + 1)

π

2λ
, η̄ = π(λ+ 1)− η .

Though the semi-lassial quantisation is non perturbative, its validity is restrited to weak

oupling [11℄, whih in our ase means to β → 0. Therefore it is the λ → ∞ limit of the

exat solution that should be ompared to the semi-lassial results. The η parameter

should be saled to obtain a non trivial spetrum in this limit, and we propose to write

η = c
π

2
(λ+ 1), 0 ≤ c ≤ 1,

and keep c �xed.

3.1 Boundary states

The re�etion fator of the �rst breather, B1
, on the ground state boundary is given by [4℄

R(1)(θ) =

(

1
2

) (

1
2λ

+ 1
)

(

1
2λ

+ 3
2

)

(

η
πλ

− 1
2

) (

iϑ
πλ

− 1
2

)

(

η
πλ

+ 1
2

) (

iϑ
πλ

+ 1
2

) , (x) =
sinh

(

θ
2
+ iπx

2

)

sinh
(

θ
2
− iπx

2

) . (3.1)

(θ is the rapidity of B1
). B1

's re�etion fator on |0〉, R
(1)
|0〉 (θ), is obtained from this

expression by the substitution η → η̄ = π(λ + 1) − η [6℄ (see also [5℄). The only pole of

R(1)(θ) whih may desribe a boundary state is at

η

λ
− π

2
=

1

2
(ν0 − w1) .

This orresponds to a bound state if it is in the physial strip, i.e. if 0 ≤ 1
2
(ν0 − w1) ≤ π

2
.

In the semi-lassial (λ → ∞) limit, keeping c �xed,

1

2
(ν0 − w1) = (c− 1)

π

2
+

cπ

2λ
∼ (c− 1)

π

2
,

and sine this is negative we onlude that B1
an not reate a bound state on |〉. On the

other hand, R
(1)
|0〉 (θ) has a pole at

π

λ
− η

λ
+

π

2
=

1

2
(w0 − ν1) ,
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whih may desribe a bound state if it is in the physial strip. Sine in the semi-lassial

limit

1

2
(w0 − ν1) = (1− c)

π

2
+

(2− c)π

2λ
∼ (1− c)

π

2

is in the physial strip we onlude that B1
an reate a bound state (in fat it is the state

|1〉) when re�eting on |0〉. Realling, that semi-lassially B1
should orrespond to the

sine-Gordon �eld, we see that these �ndings �t niely with the semi-lassial results and

strengthen the assoiation (Φs ,Φs̄) ↔ (|〉 , |0〉).
The energy of this bound state above E|0〉 is determined by the loation of the pole

E −E|0〉 = m1 cos

(

(1− c)
π

2
+

(2− c)π

2λ

)

, (3.2)

where m1 = 2M sin
(

π
2λ

)

is the mass of the B1
and M is the soliton mass. Using the

semi-lassial expression M = 8m
β2

(

1− β2

8π

)

one �nds from (3.2) for λ → ∞ (β → 0)

E −E|0〉 ∼ m sin
(cπ

2

)

.

Identifying this limiting energy di�erene with the energy of the semi-lassial bound state

ω0, eq.(2.8), determines the (limiting value of the) `infrared' (bootstrap) parameter η in

terms of the `ultraviolet' (Lagrangian) M0 and φ0:

sin
(cπ

2

)

=

√

1−
(

R(+)− R(−)

2A

)2

. (3.3)

3.2 The limit of the re�etion fators

The next step is to establish a relation between the (semi)lassial limits of R(1)(θ) and

R
(1)
|0〉 (θ), and the lassial re�etion fators eiδ

±(q)
. Sine the exat quantum re�etion

fators eq.(3.1) depend also on the ϑ parameter, for a non trivial limit we have to sale

also this parameter. In analogy with the η parameter we propose to write

ϑ = ϑcl(λ+ 1), 0 ≤ ϑcl ≤ ∞.

This way, keeping only the leading onstant terms in the λ → ∞ limit, one obtains:

R(1)(θ) → i sinh θ − 1

i sinh θ + 1

cos
(

cπ
2

)

cosh ϑcl − sinh2 θ + i sinh θ
(

cos
(

cπ
2

)

+ cosh ϑcl

)

cos
(

cπ
2

)

coshϑcl − sinh2 θ − i sinh θ
(

cos
(

cπ
2

)

+ cosh ϑcl

) . (3.4)

The expression for the limiting value of R
(1)
|0〉 (θ) is obtained by making the substitution

c → c̄ = 2 − c, (whih amounts to hanging the sign of cos
(

cπ
2

)

) in eq.(3.4). Identifying
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these limiting R(1)(θ) and R
(1)
|0〉 (θ) with eiδ

±(q)
, eq.(2.9), using sinh θ = q

m
, determines the

bootstrap parameters

cπ
2
and ϑcl as

cos
(cπ

2

)

+ coshϑcl =
R(+)

A
,

coshϑcl − cos
(cπ

2

)

=
R(−)

A
,

(3.5)

together with

cos
(cπ

2

)

coshϑcl =
cosα

A
. (3.6)

The algebrai solution of eq.(3.5)

cos
(cπ

2

)

=
R(+)− R(−)

2A
, coshϑcl =

R(+) +R(−)

2A
, (3.7)

satis�es eq.(3.6) and is also onsistent with eq.(3.3).

3.3 The limit of E|0〉 − E|〉 and the UV-IR relation

Aording to the bootstrap solution [5℄ [6℄ the energy di�erene between the lowest exited

boundary state and the ground state is given by

∆Ebst ≡ E|0〉 −E|〉 = M cos ν0 = M cos
(η

λ
− π

2λ

)

,

where M is the soliton mass. In the semi-lassial limit, using the appropriately saled η
parameter, this an be written as

∆Ebst = M cos
(cπ

2

)

−M sin
(cπ

2

) β2

8π

(cπ

2
− π

2

)

+MO(β4) . (3.8)

Now it is easy to show, using the omplete semi-lassial expression, M = 8m
β2

(

1− β2

8π

)

,

in the �rst term, the leading M = 8m
β2 in the (higher order) seond one, together with the

atual value of cos
(

cπ
2

)

in (3.7), that the �rst four terms of ∆Ebst oinide term by term

with the expression of ∆Eren
semi eq.(2.12).

Now we an understand the importane of the fat that in spite of the intermediate

stages the dependeny on (R(+)+R(−))/(2A) anels in the �nal form of the semi-lassial

∆Eren
semi. This should happen sine ∆Ebst, just as the whole spetrum of boundary states

predited by the bootstrap solution, is also independent of ϑ thus in the semi-lassial limit

it should depend only on

cπ
2
but should be independent of ϑcl.

The nie mathing between ∆Eren
semi and ∆Ebst on�rms the relation between the boot-

strap and Lagrangian parameters eq.(3.7). This relation makes it possible to determine

the (semi-lassial limit of the) only free parameter in the so alled UV-IR relation.

11



On general grounds the generi form of the relation between the bootstrap and La-

grangian parameters of boundary sine-Gordon model (i.e of the UV-IR relation) is

cos

(

η

λ+ 1

)

cosh

(

ϑ

λ+ 1

)

=
M0

Mcrit
cosα ,

sin

(

η

λ+ 1

)

sinh

(

ϑ

λ+ 1

)

=
M0

Mcrit

sinα ,

(3.9)

where the parameter Mcrit (M0/Mcrit) may depend on β. Our aim is to say something on

this parameter and on this dependene. First of all,

η
λ+1

and

ϑ
λ+1

are nothing but cπ/2
and ϑcl in the way they were introdued, thus eq.(3.9) determines in fat these parameters

for all values of λ. Making this identi�ation expliit in eq.(3.9) and omparing to eq.(3.6)

gives, that in the semi-lassial limit

M0

Mcrit
=

1

A
, i.e. Mcrit =

4m

β2
. (3.10)

Note that this is the same value as the lassial one appearing in eq.(2.4).

There are several points that should be stressed about Mcrit in general and its atual

value in partiular. The �rst point to mention is that M0/Mcrit appearing in eq.(3.9) may

depend on the regularization sheme used to de�ne the quantum theory and the value in

(3.10) is in the `semi-lassial sheme'. In a reent paper Corrigan and Taormina obtained

the UV-IR relation in sinh-Gordon model by semi-lassially quantising the (periodi)

boundary breathers [9℄. Analytially ontinuing their results in β (and aounting for the

di�erenes between the parameters) one an show, that their Mcrit is idential to eq.(3.10).

In this respet it is worth emphasizing that the analogues of the stati solutions Φs and

Φs̄ just like the states |〉 and |0〉, upon whih our investigation is based, are absent in the

sinh-Gordon theory, thus the results of this paper give an independent on�rmation of the

Mcrit obtained in [9℄.

In [9℄ it is onjetured that this result forMcrit may be exat. To support this onjeture

we note that our results make it possible to hek that Mcrit reeives no O(β0) orretion:

Mcrit =
4m

β2

(

1 +O(β4)
)

.

To show this denote the (β dependent) M0/Mcrit as H and determine cos
(

cπ
2

)

from eq.(3.9)

cos
(cπ

2

)

=
H

2

(√
1 +H−2 + 2H−1 cosα−

√
1 +H−2 − 2H−1 cosα

)

,

and �nally write H = 1
A

(

1 + δH β2

8π

)

. Now plugging this expression for cos
(

cπ
2

)

(and

the equivalent one for cπ/2) into (3.8) reveals that the only hoie that guarantees the

agreement between eq.(3.8) and eq.(2.12) is δH = 0.3

3

Sine the MO(β4) terms are not alulated we annot say anything about the higher order orretions.
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Perturbed onformal �eld theory is another useful sheme to desribe the boundary

sine-Gordon model. In this desription BSG is viewed as a c = 1 boundary CFT perturbed

by the (relevant) vertex operators onstituting the bulk and boundary potentials [17℄:

S = Sc=1 +
µ

2

∞
∫

−∞

dt

0
∫

−∞

dx(Vβ[Φ] + V−β[Φ]) +
µ̃

2

∞
∫

−∞

dt(Ψβ/2[Φ]e
−iα +Ψ−β/2[Φ]e

iα) ,

where

Vβ[Φ] = n(z, z̄) : eiβΦ(x,t) : , Ψβ/2[Φ] =: ei
β

2
Φ(0,t) : ,

and n(z, z̄) denotes the appropriate normal ordering funtion. The µ and µ̃ parameters

play the role of m and M0 respetively and have non trivial dimensions:

[µ] = mass 2−β2

4π , [µ̃] = mass 1−β2

8π .

The relation between µ and the soliton mass M is known from a TBA study of the bulk

sine-Gordon model [15℄

µ = κ(β)M2−2∆, κ(β) =
2Γ(∆)

πΓ(1−∆)

(√
πΓ
(

1
2−2∆

)

2Γ
(

∆
2−2∆

)

)2−2∆

, ∆ =
β2

8π
. (3.11)

In this sheme the UV-IR relation takes the form of eq.(3.9) with the replaement

M0

Mcrit

→ µ̃

µcrit

, µcrit =

√

2µ

sin β2

8

. (3.12)

This relation was obtained by Al.B. Zamolodhikov [7℄ and has reently been veri�ed by a

TCSA study of the spetrum of boundary sine-Gordon model [8℄.

Thus the β dependene of the onstant on the right hand side of eq.(3.9) is di�erent in

the semi-lassial and in the perturbed CFT shemes. Nevertheless in the semi-lassial

limit the two results oinide. In the perturbed CFT sheme the limiting values of cπ/2
and ϑcl should be obtained from eq.(3.9) with

µ̃
µ
= H . Furthermore, for the omparison,

the µ, µ̃ and the m, M0 parameters of the two shemes should be related to eah other.

Using the semi-lassial expression for M in the β → 0 limit of eq.(3.11) gives µ → m2

β2

and mathing the leading (lassial) term of eq.(3.8) to the sheme independent ∆Ecl �xes

µ̃ → M0; thus µcrit → 4m
β2 = Mcrit indeed.

4 Semi-Classial soliton re�etions

In this setion the semi-lassial limits of soliton/antisoliton re�etion amplitudes on the

boundary at x = 0 are studied. The relevant lassial solutions are time dependent -

as opposed to the stati ones onsidered in setion 2 - but just like the stati ones are

13



spei� to sine-Gordon and have no analogues in sinh-Gordon theory. A long time ago

a ompletely general expression for the semi-lassial phase shift was given in terms of

the lassial time delay and of the number of semi-lassial bound states by Jakiw and

Woo [16℄. The idea to ompare in boundary sine-Gordon model this expression and the

semi-lassial limit of the exat re�etion amplitudes (obtained from the bootstrap) as a

onsisteny hek and to gain information on the relation between the Lagrangian and the

bootstrap parameters was put forward by Saleur, Skorik and Warner (SSW) in [10℄. SSW

determined the lassial time delay in ase of soliton/antisoliton re�etions on ground state

boundary for the general boundary onditions, but only for Dirihlet boundary onditions

made the omparison with the exat results. In this setion the omparison is made in

ase of ground state boundaries with general boundary onditions and also for the lowest

exited boundary in ase of Neumann boundary ondition.

4.1 Neumann boundary ondition

The expression given in [16℄ for the semi-lassial phase shift eiδ(E)
is

δ(E) = nBπ +

E
∫

Eth

dE ′∆t(E ′), (4.1)

where nB is the number of the (semi-lassial) bound states and ∆t(E ′) is the lassial time

delay. As an illustration onsider the (anti)solitons re�eting on a ground state Neumann

boundary, i.e. when ∂xΦ|x=0 = 0 (orresponding to M0 = 0)4. Then there are lassial

solutions only for solitons re�eting as antisolitons (and vie versa) but not for solitons

re�eting as solitons. Furthermore, the lassial solution desribing an asymptoti soliton

with veloity v heading to and re�eting from the boundary at x = 0 an be obtained by

restriting to the x ≤ 0 half line a speial solution of the bulk theory, that desribes a

soliton with veloity v sattering on an antisoliton with veloity −v [10℄, [17℄. Therefore

the lassial time delay of the soliton re�eting on the Neumann boundary is idential to

the time delay in the soliton antisoliton sattering in the bulk theory:

∆t =
2 ln v

mγv
, γ =

1√
1− v2

.

The number of bound states, i.e. the number of boundary breathers with Neumann b..

were obtained in [17℄ by semi-lassially quantising the lassial boundary breathers with

the result that nB =
[

λ
2

]

. In the semi-lassial limit λ → ∞ thus nB ∼ λ
2
= 4π

β2 . Sine the

energy of the re�eting soliton is E = M√
1−v2

= M cosh(θ) = 8m
β2

√
1−v2

, eq.(4.1) yields in this

4

Sine the vanishing M0 makes α a redundant parameter, and the bootstrap parameters take �xed

values (η beomes the maximally allowed

π

2
(λ + 1) and ϑ vanishes) this illustration may serve only as a

onsisteny hek.
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ase

δ(E) =
4π2

β2
+

16

β2

tanh θ
∫

0

dv′
ln v′

1− v′2
.

In the exat solution of BSG with Neumann b.. there are two amplitudes that desribe the

re�etions of solitons and antisolitons on the ground state boundary: P (θ) desribes the
`diagonal' sattering, i.e. when solitons re�et as solitons and antisolitons as antisolitons,

while Q(θ) desribes the `non - diagonal' sattering, when solitons re�et as antisolitons

(and vie versa). In [17℄ simple integral representations were given for them:

P (θ) =
sin(λπ

2
)

sin
(

λπ
2
+ iλθ

)e−iI(λ,θ), Q(θ) = −i
sinh(λθ)

sin
(

λπ
2
+ iλθ

)e−iI(λ,θ) ,

I(λ, θ) =

∫ ∞

0

dt

t
t sin

(

2θt

π

)

[

2 sinh
(

3t
2

)

sinh
(

λ−1
2λ

t
)

sinh
(

t
2λ

)

sinh(2t)
+

sinh(t/λ)− sinh(t)

cosh(t) sinh(t/λ)

]

.

In the semi-lassial limit P (θ) ∼ e−λθe−iI(λ,θ) → 0, whih is onsistent with the absene

of diagonal lassial re�etion. On the other hand

Q → ei
λπ
2 e−iI1(λ,θ), I1(λ, θ) = lim

λ→∞
I(λ, θ) = λ

∞
∫

0

dt

t2
sin

(

2θt

π

)

tanh

(

t

2

)

+O(λ0) , (4.2)

where we negleted all O(λ0) terms in the exponents. The integral ∂θI1 an be found in

Gradstein Ryzhikh, [19℄, thus

I1 = −2λ

π

∫ θ

0

dv ln tanh v = −2λ

π

∫ tanh θ

0

dv′
ln v′

1− v′2
.

Using �nally the semi-lassial relation λ ∼ 8π
β2 in eq.(4.2) reprodues the semi-lassial

phase shift indeed.

4.1.1 Exited Neumann boundary

The exat soliton/antisoliton re�etion amplitudes are known also when the Neumann

boundary is in its exited states |n〉 n = 1, . . . ,
[

λ
2

]

5

. The P , Q re�etion fators on the

lowest exited state |1〉 hange as [17℄

P → P̃ = P (θ)B(λ, θ), Q → Q̃ = Q(θ)B(λ, θ),

5

For Neumann boundary ondition the pole desribed by ν0 is at θ = iπ
2
, and it orresponds to the

emission of a soliton/antisoliton by the boundary [2℄ rather than to a bound state. Alternatively one an

say that |0〉 beomes idential to the ground state |〉, as not only their energies but also the P (θ) and Q(θ)
re�etion fators on them beome idential [17℄.
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B(λ, θ) = tan

[

u

2
+

π

2

(

1

λ
+

1

2

)]

tan

[

u

2
− π

2

(

1

λ
− 1

2

)]

tan2
(u

2
+

π

4

)

, u = −iθ .

In the semi-lassial limit

lim
λ→∞

B(λ, θ) =
1− i sinh θ

1 + i sinh θ
tan2

(−iθ

2
+

π

4

)

,

whih gives only an O(λ0) orretion in the exponent of Q̃. Thus the leading term in the

exponent, i.e. the semi-lassial phase shift, is idential to what was found for the ground

state boundary.

With Neumann b.. the state |1〉 may be thought of lassially as a (lassial) breather

bound to the boundary at x = 0 [17℄. Thus the lassial re�etion proess may be desribed

as a soliton antisoliton pair re�eting on the breather at x = 0, and the lassial time delay

should be obtained from this piture. The relevant lassial solution is onstruted by the

τ funtion method [10℄ [18℄ in two steps. First a 4 soliton solution desribing two pairs of

solitons and antisolitons is determined and the relevant time delays are obtained. Then

we ontinue the parameters of one of the pairs to purely imaginary values to desribe the

breather and make the neessary hanges in the expression of the time delay.

In the τ funtion method eah soliton and antisoliton is haraterized by its veloity,

by its `rapidity type' parameter and by its `position type' parameter. In the solution below

the following parameters are used: the soliton of the �rst (seond) pair moves with veloity

u (v), its rapidity type parameter is denoted by k (p) and its position type parameter by a1
(b1); for the antisoliton of the �rst (seond) pair the orresponding quantities are −u (−v),
1/k (1/p), and a2 (b2) respetively. (These quantities give a redundant haraterization as

u and k -alternatively v and p - an be expressed in terms of the θ1 and θ2 rapidities of the
�rst and seond solitons: u = tanh θ1, k = eθ1 ; v = tanh θ2, p = eθ2). Then, using also the

γ =
1√

1− u2
, γ̃ =

1√
1− v2

quantities, in the entre of mass system the τ funtion of the solution may be written as

τ = 1 + e−2γxe−a1−a2u2 − e−2γ̃xe−b1−b2u2

− e−γ(x+ut)e−γ̃(x+vt)e−a1−b1

(

k−p
k+p

)2

+ e−γ(x+ut)e−γ̃(x−vt)e−a1−b2

(

k− 1

p

k+ 1

p

)2

+ e−γ(x−ut)e−γ̃(x+vt)e−a2−b1

(

1

k
−p

1

k
+p

)2

− e−γ(x−ut)e−γ̃(x−vt)e−a2−b2

(

1

k
− 1

p
1

k
+ 1

p

)2

+ e−2γxe−2γ̃xe−a1−a2−b1−b2u2v2
(

k−p
k+p

)2
(

k− 1

p

k+ 1

p

)2
(

1

k
−p

1

k
+p

)2
(

1

k
− 1

p
1

k
+ 1

p

)2

+i[e−γ(x+ut)e−a1 − e−γ(x−ut)e−a2 + e−γ̃(x+vt)e−b1 − e−γ̃(x−vt)e−b2

+e−2γxe−γ̃(x+vt)e−a1−a2−b1u2
(

k−p
k+p

)2 ( 1

k
−p

1

k
+p

)2

−e−2γxe−γ̃(x−vt)e−a1−a2−b2u2

(

k− 1

p

k+ 1

p

)2(
1

k
− 1

p
1

k
+ 1

p

)2

+e−2γ̃xe−γ(x+ut)e−a1−b1−b2v2
(

k−p
k+p

)2
(

k− 1

p

k+ 1

p

)2

−e−2γ̃xe−γ(x−ut)e−a2−b1−b2v2
(

1

k
−p

1

k
+p

)2
(

1

k
− 1

p
1

k
+ 1

p

)2

] .
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(Here we use dimensionless x and t oordinates : x → mx, t → mt, thus the true time delay

is obtained from the dimensionless one presented below by dividing it by m). Analyzing

the t → ∓∞ limits of the solution and requiring that it should orrespond to the sum of

two non interating soliton antisoliton pairs determines the ai bi i = 1, 2 parameters in

terms of the initial (t = t0) soliton/antisoliton positions (xis,s
0 ) as well as the time delays:

from the t → −∞ limit it is found

a1=−γ(x1s
0 +ut0), a2=−γ(x1s

0 −ut0)+2 lnu+ln

(

1
k
−p

1
k
+p

)2

+ln

(

1
k
−

1
p

1
k
+1

p

)2

,

b1=−γ̃(x2s
0
+vt0)+ln( k−p

k+p)
2
, b2=−γ̃(x2s

0
−vt0)+2 ln v+ln

(

k− 1
p

k+1
p

)2

,

(4.3)

while the t → ∞ limit yields the time delays of the two pairs

∆t1 =
2 lnu+ ln

(

1

k
−p

1

k
+p

)2

+ ln
(

k−p
k+p

)2

γu
,

∆t2 =
2 ln v + ln

(

1

k
−p

1

k
+p

)2

− ln
(

k−p
k+p

)2

γ̃v
.

(4.4)

(The asymmetry in eq.(4.3-4.4) stems from assuming u > v). These expressions for the

time delay have a simple interpretation: they give the sum of the time delays su�ered in the

various ollisions. Indeed the �rst terms on the right hand sides of eq.(4.4) give the time

delays of the solitons from the sattering on their own partners, while a simple Lorentz

transformation shows, that the seond and third terms are nothing but the ontributions

from the sattering on the two members of the other pair.

In the Neumann boundary problem the breather should be loated at x = 0 and the

soliton/antisoliton pair (representing the sattering soliton) should also ome together at

the boundary. To aomplish this the 4 soliton solution should be expressed in terms of

the `ollision plae' and `ollision time' of eah pair instead of the initial positions. The

ollision plae of eah pair is trivially x∗1 = (x1s
0 + x1s

0 )/2, x∗2 = (x2s
0 + x2s

0 )/2. Assuming

that the slower moving members of the inner pair ollide �rst, the t∗1, t∗2 ollision times

an be obtained from the addition rule of the time delays just shown, and the ai, bi an be

expressed more symmetrially using these four quantities:

a1=−γ(x∗1+ut∗1)+lnu+ln

(

1
k
−p

1
k
+p

)2

, a2=−γ(x∗1−ut∗1)+lnu+ln

(

1
k
−

1
p

1
k
+1

p

)2

,

b1=−γ̃(x∗2+vt∗2)+ln v+ln( k−p
k+p)

2
, b2=−γ̃(x∗2−vt∗2)+ln v+ln

(

k− 1
p

k+1
p

)2

.

(4.5)

Now the parameters of the solution relevant for the Neumann problem are obtained as

follows: assuming we use the seond pair to desribe the breather we set x∗2 = 0 and

ontinue v to purely imaginary values v = iw (w real) and use eq.(4.5) to express the b
parameters; however the a parameters are to be obtained from eq.(4.3) with x1s

0 = −x1s
0 .
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The reason behind this is that the �rst two equations in (4.5) were obtained by assuming

that the soliton satters on the individual members of the other pair, whih is now replaed

by the breather. The time delay of the soliton is independent of these parameters and is

obtained from the �rst equation in (4.4), whih gives a real value in spite of p being a

omplex number:

p =

√

1 + v

1− v
=

√

1 + iw

1− iw
=

1 + iw√
1 + w2

= ei arctanw .

Using this time delay in the integral in the semi-lassial expression (4.1) gives

16

β2

tanh θ
∫

0

dv′
ln v′

1− v′2
+

8

β2

k
∫

0

dy

y

(

ln

(

y − p

y + p

)2

+ ln

(

y−1 − p

y−1 + p

)2
)

. (4.6)

The �rst integral reprodues what is obtained above for ground state boundary. In the

seond integral the p parameter of the breather is obtained by mathing the lassial and

quantum expressions of its energy

M sin
( π

2λ

)

=
M√
1 + w2

.

Therefore in the semi-lassial limit p = i+ π
2λ
; and using it in the seond integral shows

that it is only an O(λ0) orretion to the �rst one. Thus we veri�ed the mathing between

eq.(4.1) and the limit of the exat amplitude also in ase of solitons re�eting on exited

Neumann boundary.

4.2 Ground state boundary with general boundary onditions

Finally we show that omparing the semi-lassial limit of the exat soliton/antisoliton

re�etion amplitude on the ground state boundary with general boundary onditions and

the semi-lassial phase shift obtained from eq.(4.1) with the aid of the lassial time delay

derived by SSW in [10℄, one an on�rm the UV-IR relation disussed in the previous

setion.

The most general re�etion fator of the soliton antisoliton multiplet |s, s̄〉 on the ground
state boundary, satisfying the boundary versions of the Yang Baxter, unitarity and rossing

equations was found by Ghoshal and Zamolodhikov [2℄ as:

R(η, ϑ, θ) =

(

P+(η, ϑ, θ) Q(η, ϑ, θ)
Q(η, ϑ, θ) P−(η, ϑ, θ)

)

=

(

P+
0 (η, ϑ, θ) Q0(θ)
Q0(θ) P−

0 (η, ϑ, θ)

)

R0(θ)
σ(η, θ)

cos(η)

σ(iϑ, θ)

cosh(ϑ)
,

P±
0 (η, ϑ, θ) = cosh(λθ) cos(η) cosh(ϑ)± i sinh(λθ) sin(η) sinh(ϑ)

Q0(θ) = i sinh(λθ) cosh(λθ) .
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In [10℄ useful integral representations are given for R0(θ) and σ(x, θ); for R0(θ) we use this,
while - by going bak to the in�nite produt representation of [2℄ and [6℄ - we replae

σ(x, θ)

cos x
=

Σ(x, θ)

cos(x+ iλθ)

with

ln Σ(x, θ) = i

∞
∫

0

dy

y

sin(2θy
π
)

sinh(y/λ)

sinh(y − 2x
πλ
y)

cosh(y)
,

as this gives a onvergent integral in the entire range 0 ≤ η ≤ π
2
(λ+ 1). Expressing η and

ϑ in terms of c and ϑcl as in setion 3 and using the integral representations one obtains

R0(θ)Σ(η, θ)Σ(iϑ, θ) = eiδ̂eJ , J =

∞
∫

0

dy

y

sin
(

2yθ
π

)

sin
(

2yϑcl

π
(λ−1 + 1)

)

sinh(y/λ)
. (4.7)

In the semi-lassial limit, negleting the O(λ0) terms in the exponent

eJ →
{

eλϑcl θ > ϑcl

eλθ θ < ϑcl
.

Therefore the three amplitudes, P±
and Q, have rather di�erent semi-lassial limits de-

pending on whether the rapidity of the inident partile is bigger or smaller than ϑcl:

lim
λ→∞

P± =e±icπ
2
λeic

π
2
λeiδ̂, lim

λ→∞
Q = 0, θ < ϑcl

lim
λ→∞

P± =0, lim
λ→∞

Q = eic
π
2
λeiδ̂, θ > ϑcl .

(4.8)

This behaviour is onsistent with the known fats, that lassially, for Dirihlet boundary

onditions (ϑcl = ∞) solitons re�et as solitons, while for Neumann boundary ondition

(ϑcl = 0) as antisolitons. Furthermore the lassial solution found by SSW [10℄ shows

the same ritial behaviour as in eq.(4.8), so that ϑcl may be identi�ed with one of the

parameters of that paper. To make the orrespondene omplete one has to ompute the

semi-lassial limit of iδ̂ as well. Using the aforementioned integral representations, after

some algebra, keeping only the leading terms, one �nds:

lim
λ→∞

iδ̂ = −iλ

∞
∫

0

dy

y2
sin

(

2θy

π

)(

tanh(
y

2
) +

sinh([c− 1]y)

cosh y
+ tanh y − tanh y cos(

2yϑcl

π
)

)

= −i(I1 + I2 + I3 + I4) .

All integrals Ij are omputed by realizing that

∂Ij
∂θ

an be found in [19℄. There is a subtlety

with I4, as,
∂I4
∂θ

=
λ

π
ln

(

tanh

[

θ + ϑcl

2

]

tanh

[ |θ − ϑcl|
2

])

,
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where |θ − ϑcl| is the modulus of θ − ϑcl. Therefore the θ < ϑcl and the θ > ϑcl domains

are separated by a logarithmi singularity, and this mathes niely with eq.(4.8). Finally

iδ̂ =
iλ

π

θ
∫

θth

dv ln
tanh2 v tanh2(v/2)

tanh
(

1
2
(v + i cπ

2
)
)

tanh
(

1
2
(v − i cπ

2
)
)

tanh
[

v+ϑcl

2

]

tanh
[

|v−ϑcl|
2

] ,

where θth is 0 in the θ < ϑcl domain, while it is ϑcl in the θ > ϑcl one. Now we are

in a position to ompare this to the integral of the lassial time delay derived in [10℄.

SSW used two parameters, ζ and ηSSW (whih we denote by χ̂ to avoid onfusion) in that

paper to desribe the dependene of the time delay on the Lagrangian parameters. These

parameters are related to the Lagrangian parameters of this paper by

2 cosh ζ cos χ̂ = −M0β
2

2m
cosα ,

2 sinh ζ sin χ̂ = −M0β
2

2m
sinα .

(4.9)

Now making the shift χ̂ = π + χ and the identi�ations

χ → c
π

2
, ζ → ϑcl,

onverts on the one hand the integral of the lassial time delay in [10℄ into δ̂, while
on the other it maps eq.(4.9) to our previous UV-IR relation eq.(3.9-3.10).

6

Thus it is

demonstrated that the UV-IR relation and Mcrit = 4m
β2 in partiular are also onsistent

with the semi-lassial soliton/antisoliton re�etions.

5 Conlusions

In this paper two semi-lassial issues of boundary sine-Gordon models are investigated

to get a better understanding of the relation between the exat (algebrai) solution of the

quantum theory and the lassial Lagrangian.

First the semi-lassial orretions to the energy di�erene of the two lowest energy

stati solutions were determined. In this proedure it turned out that one has to renor-

malize also the boundary potential just in the same way as the bulk one to obtain a �nite

result. Then we showed that omparing the main results of the semi-lassial quantisation

- whih inlude in addition to the energy di�erene the semi-lassial bound states and

the lassial re�etion fator of the sine-Gordon �eld - and the semi-lassial limit of the

exat solution one an obtain a relation between the Lagrangian and bootstrap param-

eters provided we sale the bootstrap parameters in an appropriate way. After analyti

ontinuation the form of this relation oinides with what was found by Corrigan and

6

Note that the ζ → ϑcl identi�ation is the same as the one obtained from omparing the ritial

behaviour of the lassial solution [10℄ and the limit of the quantum amplitude mentioned above.
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Taormina by semi-lassially quantising the boundary breathers in sinh-Gordon theory [9℄.

Sine our omputation is done in a setor of sine-Gordon theory, whih has no analogue

in sinh-Gordon, this is an independent on�rmation of the results in [9℄. We also showed

that in the semi-lassial limit the UV-IR relation obtained from desribing the boundary

sine-Gordon model as a bulk and boundary perturbed onformal �eld theory [7℄ oinides

with our result.

Finally we analyzed the semi-lassial soliton re�etions building on the ideas and re-

sults put forward by Saleur, Skorik and Warner [10℄. As a onsisteny hek we showed

that the semi-lassial phase shift determined from the lassial time delay and the num-

ber of bound states agrees with the semi-lassial limit of the exat re�etion amplitudes

both for ground state and for the �rst exited Neumann boundary. In the latter ase

we obtained the time delay from the analyti ontinuation of a speial two soliton - two

antisoliton solution of the bulk theory, that we onstruted by the τ funtion method.

Then we analyzed the semi-lassial limit of soliton/antisoliton re�etions on ground state

boundary with general boundary onditions and on�rmed the UV-IR relation onneting

the Lagrangian and bootstrap parameters.
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