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Abstra
t

The semi-
lassi
al quantisation of the two lowest energy stati
 solutions of bound-

ary sine-Gordon model is 
onsidered. A relation between the Lagrangian and boot-

strap parameters is established by 
omparing their quantum 
orre
ted energy di�er-

en
e and the exa
t one. This relation is also 
on�rmed by studying the semi-
lassi
al

limit of soliton re�e
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1 Introdu
tion

The sine-Gordon model is one of the most extensively studied quantum �eld theories.

The interest stems partly from the wide range of appli
ations that extend from parti
le

physi
s to 
ondensed matter systems and partly from the fa
t that many of the interesting

physi
al quantities 
an be 
omputed exa
tly due to its integrability. All these properties are

inherited by the boundary sine-Gordon model (BSG) obtained by restri
ting the ordinary

one to the negative half line by imposing appropriate, integrability preserving, boundary


onditions at x = 0 [1℄, [2℄.

The novel feature of BSG is the 
ompli
ated spe
trum of boundary bound states man-

ifesting themselves as appropriate poles in the various re�e
tion amplitudes [2℄-[6℄. These

exa
t amplitudes are obtained from solving the boundary versions of the Yang-Baxter,

unitarity and 
rossing equations [2℄ in the bootstrap program [4℄, [3℄, [5℄, [6℄. Therefore

in the general 
ase the re�e
tion fa
tors and the spe
trum of bound states depend on

two `bootstrap' or `infrared' parameters that 
hara
terize the solutions of these equations.

These parameters should be determined somehow by the two `ultraviolet' or `Lagrangian'

boundary parameters appearing in the boundary potential enfor
ing the boundary 
ondi-

tion. This question leads then to the problem of establishing a relation between the exa
t

algebrai
 solution of the quantum theory and the 
lassi
al Lagrangian. A semi-
lassi
al

quantisation of the 
lassi
al theory may provide the ne
essary link.

The quest for the relation 
onne
ting the two sets of parameters (also 
alled UV-

IR relation below) has a long history. For Diri
hlet boundary 
onditions, when only one

bootstrap and one Lagrangian parameters survive, it was obtained already in [2℄. A general

expression was given by Al.B. Zamolod
hikov [7℄ obtained from des
ribing the BSG model

as a bulk and boundary perturbed 
onformal �eld theory, but unfortunately these results

remained unpublished. Re
ently some arguments were presented for the general form of

the UV � IR relation in [6℄ by 
omparing the parameter dependen
ies of some patterns

(su
h as global symmetries and ground state sequen
es) in the bootstrap solution and in

the 
lassi
al theory. While this general form is 
onsistent with Zamolod
hikov's solution,

it leaves the 
oupling 
onstant dependen
y of a 
ru
ial 
oe�
ient undetermined. A TCSA

study of the spe
trum of BSG in �nite volume [8℄ 
on�rmed that Zamolod
hikov's 
onstant

has the 
orre
t β dependen
y. In 
ontrast in the boundary sinh-Gordon model the UV � IR

relation was determined by Corrigan and Taormina by 
omparing the WKB and bootstrap

spe
tra of breathers [9℄. It turns out after analyti
ally 
ontinuing this relation to the sine-

Gordon model, that its general form is the expe
ted one, but its 
oe�
ient depends on β
in a di�erent way.

Motivated by the above we 
onsider in this paper two problems in boundary sine-

Gordon model, where the semi-
lassi
al approximation 
an be determined starting from

the 
lassi
al Lagrangian, and the results 
an be 
ompared to the appropriate limits of the

exa
t solution. We 
hoose these problems to involve in one way or other the solitons in

BSG, as they have no analogues in sinh-Gordon theory, thus the results 
annot be obtained

or predi
ted by a simple analyti
 
ontinuation.

The �rst problem we investigate is the semi-
lassi
ally 
orre
ted energy di�eren
e of
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the two lowest energy stati
 solutions in boundary sine-Gordon model. These 
lassi
al

solutions are in fa
t given by a stati
 bulk soliton/antisoliton `standing at the right pla
e'

[10℄ [6℄, thus their semi-
lassi
al quantisation amounts to the adaptation of the soliton

quantisation [11℄ to the boundary problem. On the other hand these solutions may be

thought of as the 
lassi
al analogues of the exa
t ground state |〉, and the �rst ex
ited

boundary state |0〉 respe
tively [6℄, thus the semi-
lassi
ally 
orre
ted energy di�eren
e

should be 
ompared to the limit of these two exa
t energies. This leads then to a relation

between the Lagrangian and the bootstrap parameters.

The se
ond problem we investigate is the semi-
lassi
al soliton re�e
tion on the bound-

ary at x = 0. The idea to 
ompare the semi-
lassi
al phase shift of this pro
ess - obtained

from the 
lassi
al time delay - and the limit of the exa
t amplitude 
oming from the alge-

brai
 solution was suggested by Saleur, Skorik and Warner [10℄. Although they determined

the 
lassi
al time delay in the general 
ase (for ground state boundary at least), they made

the 
omparison for Diri
hlet boundary 
onditions only. Here we show that the 
omparison

in the general 
ase leads to the same UV-IR relation we obtained from the �rst problem.

The paper is organized as follows: the semi-
lassi
al quantisation of the stati
 solutions

is 
arried out in se
t. 2. The results are 
ompared to the limit of the exa
t solution in

se
tion 3. Se
tion 4 is reserved for the investigation of the soliton re�e
tion and we make

our 
on
lusions in se
t. 5.

2 Semi-Classi
al quantisation of the stati
 solutions

In this se
tion we 
arry out the semi-
lassi
al quantisation of two stati
 solutions in bound-

ary sine-Gordon model and 
ompute the semi-
lassi
al quantum 
orre
tion to the di�eren
e

between their 
lassi
al energies. We start by summarizing some known fa
ts about this

theory and the 
lassi
al solutions in question.

The boundary version of sine-Gordon model is de�ned by the a
tion [2℄:

S =

∫ ∞

−∞
dt

∫ 0

−∞
dxLSG−

∫ ∞

−∞
dtVB(ΦB), LSG =

1

2
(∂µΦ)

2−m2

β2
(1− cos(βΦ)), (2.1)

where Φ(x, t) is a s
alar �eld, β is a real dimensionless 
oupling and ΦB(t) = Φ(x, t)|x=0.

To preserve the integrability of the bulk theory the boundary potential is 
hosen as

VB(ΦB) = M0

(

1− cos

(

β

2
(ΦB − φ0)

))

,

where M0 and φ0 are free parameters. As a result the s
alar �eld satis�es the boundary


ondition:

∂xΦ|x=0 = −M0
β

2
sin

(

β

2
(ΦB − φ0)

)

. (2.2)

Colle
ting all the possible equivalen
es between the boundary parameters their fundamen-

tal domain turns out to be [5℄ [6℄:

0 ≤ M0 ≤ ∞ ; 0 ≤ φ0 ≤
π

β
.
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In the 
lassi
al theory the two stati
 solutions with lowest energy are given by a stati


bulk soliton/antisoliton `standing at the right pla
e' [10℄ [6℄: i.e. by 
hoosing Φ ≡ Φs(x, a
+)

or Φ ≡ Φs̄(x, a
−) for x ≤ 0, where

Φs(x, a
+) =

4

β
ar
tg(em(x−a+)), Φs̄(x, a

−) =
2π

β
− Φs(x, a

−),

and a± are determined by the boundary 
ondition, eq.(2.2):

sinh(ma±) =

4m
M0β2 ± cos(β

2
φ0)

sin(β
2
φ0)

.

(a+ and a− are obtained from ea
h other by φ0 ↔ 2π
β
− φ0). The energies of these two

solutions 
an be written as

Es(M0, φ0) ≡ Ebulk + VB =
4m

β2
+M0 −M0R(+),

Es̄(M0, φ0) =
4m

β2
+M0 −M0R(−) = Es(M0,

2π

β
− φ0), (2.3)

where we introdu
ed

R(±) =
[

1± 2A cos(α) + A2
]1/2

, A =
4m

M0β2
, α =

β

2
φ0.

The di�eren
e between these two energies, whi
h is 
alled below the `
lassi
al energy dif-

feren
e',

∆Ecl ≡ Es̄(M0, φ0)− Es(M0, φ0) = M0(R(+)− R(−)),

is positive for α ∈ [0, π
2
), M0 > 0 showing that in this range the soliton generates the

ground state and the antisoliton the �rst ex
ited one. From eq.(2.3) it follows that for

φ0 → 0+1

Es = 0, Es̄ =

{

2M0 M0 <
4m
β2

8m
β2 M0 >

4m
β2

. (2.4)

In the pro
ess of semi-
lassi
al quantisation the os
illators asso
iated to the linearized

�u
tuations around the stati
 solutions Φ(x, t) = Φs,s̄ + eiωtξ±(x) are quantised [11℄. The

equations of motion of these �u
tuations 
an be written:

[

− d2

dx2
+m2 − 2m2

cosh2(m[x− a±])

]

ξ±(x) = ω2ξ±(x); x < 0 , (2.5)

and ξ±(x) must satisfy also the linearized version of the boundary 
ondition (2.2):

ξ′±(x)|x=0 = −M0β
2

4

1± A cosα

R(±)
ξ±(0). (2.6)

These eigenvalue problems 
an be solved exa
tly by mapping eq.(2.5) to a hypergeometri


di�erential equation [12℄.

1

This limit is not smooth, see our remark later.
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2.1 Dis
rete spe
trum

In 
ase of the dis
rete spe
trum it is 
onvenient to write ω2 = m2(1−ǫ2). The normalizable

solutions of eq.(2.5) must vanish at x → −∞, and assuming ǫ to be positive, they are given
by:

ξ±(x) = Nemǫ(x−a±)(ǫ− tanh[m(x− a±)]).

The boundary 
onditions, eq.(2.6), determine the possible values of ǫ as

ǫ2 + ǫ
R(±)

A
± cosα

A
= 0.

It is easy to show, that for the solitoni
 ground state there is no positive solution of this

equation, while for the antisolitoni
 `exited' state one of the roots, namely

ǫ =
R(+)−R(−)

2A
, (2.7)

is positive. In fa
t a simple (numeri
al) study shows that for all positive A-s and α ∈ [0, π
2
)

0 ≤ R(+)−R(−)

2A
≤ 1, and

R(+)− R(−)

2A
= 1 iff α = 0, and A < 1.

In the framework of semi-
lassi
al quantisation these �ndings imply, that there are no

boundary bound states for the ground state, des
ribed by Φs, while for the state, des
ribed

by Φs̄, there is su
h a boundary bound state. The semi-
lassi
al energy of this bound state,

ω0 = m

√

1−
(

R(+)− R(−)

2A

)2

, (2.8)

is real, ω0 ≥ 0, and it vanishes only for α = 0 and A < 1. In 
ontrast to the traditional zero

modes this vanishing ω0 has nothing to do with Φs̄ not being invariant under a 
ontinuous

symmetry of the Lagrangian, and it indi
ates some sort of instability of the state des
ribed

by Φs̄. Indeed with this α and A values (2.4) gives an energy di�eren
e whi
h is pre
isely

the mass of the bulk soliton, and sin
e topologi
al 
harge is not 
onserved in the boundary

theory, the higher energy state 
an de
ay into the lower one by emitting a standing soliton.

At this point it is worth 
omparing the stability analysis of this α → 0 situation and

the one when α = 0 is set from the start, to emphasize the non smooth nature of the

limit. In the latter 
ase the two 
lassi
al solutions be
ome Φ1 ≡ 2π
β
and Φ2 ≡ 0. Repeating

the stability analysis reveals that there are no normalizable bound state solutions of the

�u
tuation equations for the ground state, Φ2, while for the `ex
ited' state, Φ1, there is

a normalizable solution with ω2 = m2(1 − A−2). When A > 1 this solution signals the

existen
e of a boundary state, while for A < 1, when this ω2
be
omes negative, it indi
ates

the instability of Φ1. The instabilities found both in the α → 0 and in the α ≡ 0 
ases are


onsistent with the results of the bootstrap solution [5℄ [6℄ showing no ex
ited boundary

states in this range of parameters.
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2.2 Continuous spe
trum

In 
ase of the 
ontinuous spe
trum it is 
onvenient to put ω2 = m2+q2 (with q ≥ 0). Then
the solutions of eq.(2.5), whi
h asymptoti
ally be
ome plane waves, 
an be written as

ξ±(x) = Ã±e
−iq(x−a±) iq +m tanh(m[x− a±])

iq +m
+ B̃±e

iq(x−a±) iq −m tanh(m[x− a±])

iq −m
.

The ratio Ã±/B̃± is determined by the boundary 
ondition eq.(2.6) at x = 0. Using this

value the asymptoti
 (x → −∞) form of the �u
tuations 
an be written as

ξ±(x) → C±(e
ixq + e−ixqeiδ

±(q)),

where the 
lassi
al re�e
tion fa
tor is

eiδ
±(q) =

m− iq

m+ iq

±A−1 cosα− q2

m2 + i q
m

R(±)
A

∓A−1 cosα + q2

m2 + i q
m

R(±)
A

. (2.9)

To handle the in�nite volume limit it is 
onvenient to 
on�ne the �u
tuations to a box of

size L, (i.e. to limit x to the se
tion (−L, 0)), and impose Neumann boundary 
onditions at

x = −L: ξ′(−L) = 0. This 
ondition then determines the possible values of the momenta:

q±n 2L+ δ±(q±n ) = 2nπ, n integer. (2.10)

The semi-
lassi
al 
orre
tion to the 
lassi
al energy di�eren
e, ∆Ecl, is given by the

di�eren
e between the sums of the zero point energies of the �u
tuations around Φs̄ and

Φs:

∆Esemi = ∆Ecl +∆Ecor = ∆Ecl +
ω0

2
+

1

2

∑

n

(

√

m2 + (q−n )
2 −

√

m2 + (q+n )
2
)

.

Repla
ing � as usual � the sum over n by an appropriate integral in the L → ∞ limit,

exploiting the

q−n = q+n +
δ+ − δ−

2L


onsequen
e of eq.(2.10), and dropping all terms vanishing for L → ∞ gives:

∆Esemi =∆Ecl +
ω0

2
− M0β

2

8π
(R(+)− R(−)) +

1

2π

[m

A
(R(−)− R(+)) I1

− m cosα

A2
(R(+) +R(−)) I2

]

,
(2.11)

where

I1 =

∞
∫

0

dy
y2
√

1 + y2

D
, I2 =

∞
∫

0

dy

√

1 + y2

D
,

D = y4 + (1 + A−2)y2 + A−2 cos2 α .
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2.3 Renormalization

The �rst integral in eq.(2.11) is logarithmi
ally divergent, showing the need of regulariza-

tion and renormalization. This is hardly surprising sin
e neither the bulk nor the boundary

potentials are normal ordered, and already in the 
lassi
 paper [13℄ it is shown on the ex-

ample of the bulk soliton's mass 
orre
tion, that this naive pro
edure leads to logarithmi


divergen
es even in mass di�eren
es. The proper way to deal with these in�nities [13℄ [11℄

is to use the 
ounterterms, that a

ount for the di�eren
e between the normal ordered and

non ordered potentials.

In the boundary sine-Gordon model we use the same 
ounterterm for the bulk potential

as in the bulk theory:

Vcount[Φ] = −δm2

β2

0
∫

−∞

dx (1− cos(βΦ)) ; δm2 = −m2β2

4π

Λ
∫

0

dk√
k2 +m2

;

but the integral is over the x ≤ 0 half spa
e only. The argument for this 
hoi
e is based

on its lo
al nature: as su
h it should be independent of the presen
e of the boundary. For

the boundary potential we assume that its 
ounterterm has an analogous form

VB count[Φ] = −δM0

(

1− cos(
β

2
(ΦB − φ0))

)

,

with δM0 being some parameter. The total 
ontribution of 
ounterterms to the energy

di�eren
e

CT = Vcount[Φs̄] + VB count[Φs̄]− Vcount[Φs]− VB count[Φs]

may remove the logarithmi
 divergen
e in eq.(2.11), if it is proportional to R(+)− R(−).
This 
ondition determines δM0:

δM0 = −M0β
2

4 · 2π

Λ
∫

0

dk√
k2 +m2

,

and with this 
hoi
e CT be
omes

CT =
m

2πA
(R(+)− R(−))

Λ/m
∫

0

dy
√

y2 + 1
.

Sin
e the overall magnitude of CT is �xed by δm2
there are no more free parameters. Thus

the fa
t that adding CT to ∆Esemi does remove the divergen
e gives a partial justi�
ation

of the renormalization pro
edure used.

2

In the renormalized energy di�eren
e

∆Eren
semi = ∆Esemi + CT

2

By setting up a systemati
 perturbation theory in boundary sine-Gordon model treating simultaneously

both the bulk and the boundary intera
tions one 
an 
on�rm the 
orre
tness of both δm2
and δM0 [14℄.
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only the term 
ontaining I1 gets modi�ed and is repla
ed by

m

2Aπ
(R(−)−R(+)) I1 → m

2A3π
(R(+)− R(−)) Ĩ1,

with

Ĩ1 =

∞
∫

0

dy
√

1 + y2
y2 + cos2 α

D
.

The 
onvergent integrals Ĩ1, and I2 
an be 
omputed symboli
ally with the aid of Maple.

For this it is helpful to write D = (y2 + a)(y2 + b) with

a =

(

R(+) +R(−)

2A

)2

≥ 1, b =

(

R(+)− R(−)

2A

)2

, 0 ≤ b ≤ 1,

and tell Maple the range of these parameters. Using the expli
it form of these integrals,

after some algebra, the renormalized energy di�eren
e is obtained as

∆Eren
semi =M0(R(+)− R(−)) +

m

2

√

1−
(

R(+)− R(−)

2A

)2

− M0β
2

8π
(R(+)− R(−))

− m

π

√

1−
(

R(+)− R(−)

2A

)2

arccos

(

R(+)−R(−)

2A

)

.

(2.12)

It is a remarkable feature of this expression, that it depends only on the di�eren
e

(R(+)− R(−)) /(2A).

3 Comparison to the exa
t results

In this se
tion the main results of the previous semi-
lassi
al quantisation, namely the

(non) existen
e of semi-
lassi
al bound states, the 
lassi
al re�e
tion fa
tors and the semi-


lassi
ally 
orre
ted energy di�eren
e are 
ompared to the results obtained from the exa
t

(bootstrap) solution.

In this pro
ess the sine-Gordon �eld is assumed to 
orrespond to the semi-
lassi
al limit

of the �rst breather, while the exa
t ground state |〉 and the �rst ex
ited boundary state

|0〉 are identi�ed as the quantum analogues of the 
lassi
al states (solutions) Φs, Φs̄. This

latter identi�
ation was suggested in [6℄ on the basis of the existen
e of a (Z2 re�e
tion

type) transformation that 
hanges the roles of these two states in the same way as the


lassi
al Φ ↔ 2π
β
− Φ, φ0 ↔ 2π

β
− φ0 
hanges Φs and Φs̄ into ea
h other.

In the exa
t solution of the boundary sine-Gordon model [2℄, [5℄, [6℄, [4℄ the 
oupling


onstant β appears through

λ =
8π

β2
− 1,
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while the dependen
e on the boundary 
ondition appears in the form of two real parameters,

η and ϑ, the fundamental ranges of whi
h are [6℄

0 ≤ η ≤ π

2
(λ+ 1), 0 ≤ ϑ ≤ ∞ .

Boundary bound states appear in the exa
t solution as poles in the various re�e
tion

amplitudes at purely imaginary rapidity u = −iθ. The lo
ation of these poles depends on

the η parameter only and is given by appropriate 
ombinations of

νn =
η

λ
− (2n + 1)

π

2λ
, wk =

η̄

λ
− (2k + 1)

π

2λ
, η̄ = π(λ+ 1)− η .

Though the semi-
lassi
al quantisation is non perturbative, its validity is restri
ted to weak


oupling [11℄, whi
h in our 
ase means to β → 0. Therefore it is the λ → ∞ limit of the

exa
t solution that should be 
ompared to the semi-
lassi
al results. The η parameter

should be s
aled to obtain a non trivial spe
trum in this limit, and we propose to write

η = c
π

2
(λ+ 1), 0 ≤ c ≤ 1,

and keep c �xed.

3.1 Boundary states

The re�e
tion fa
tor of the �rst breather, B1
, on the ground state boundary is given by [4℄

R(1)(θ) =

(

1
2

) (

1
2λ

+ 1
)

(

1
2λ

+ 3
2

)

(

η
πλ

− 1
2

) (

iϑ
πλ

− 1
2

)

(

η
πλ

+ 1
2

) (

iϑ
πλ

+ 1
2

) , (x) =
sinh

(

θ
2
+ iπx

2

)

sinh
(

θ
2
− iπx

2

) . (3.1)

(θ is the rapidity of B1
). B1

's re�e
tion fa
tor on |0〉, R
(1)
|0〉 (θ), is obtained from this

expression by the substitution η → η̄ = π(λ + 1) − η [6℄ (see also [5℄). The only pole of

R(1)(θ) whi
h may des
ribe a boundary state is at

η

λ
− π

2
=

1

2
(ν0 − w1) .

This 
orresponds to a bound state if it is in the physi
al strip, i.e. if 0 ≤ 1
2
(ν0 − w1) ≤ π

2
.

In the semi-
lassi
al (λ → ∞) limit, keeping c �xed,

1

2
(ν0 − w1) = (c− 1)

π

2
+

cπ

2λ
∼ (c− 1)

π

2
,

and sin
e this is negative we 
on
lude that B1

an not 
reate a bound state on |〉. On the

other hand, R
(1)
|0〉 (θ) has a pole at

π

λ
− η

λ
+

π

2
=

1

2
(w0 − ν1) ,
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whi
h may des
ribe a bound state if it is in the physi
al strip. Sin
e in the semi-
lassi
al

limit

1

2
(w0 − ν1) = (1− c)

π

2
+

(2− c)π

2λ
∼ (1− c)

π

2

is in the physi
al strip we 
on
lude that B1

an 
reate a bound state (in fa
t it is the state

|1〉) when re�e
ting on |0〉. Re
alling, that semi-
lassi
ally B1
should 
orrespond to the

sine-Gordon �eld, we see that these �ndings �t ni
ely with the semi-
lassi
al results and

strengthen the asso
iation (Φs ,Φs̄) ↔ (|〉 , |0〉).
The energy of this bound state above E|0〉 is determined by the lo
ation of the pole

E −E|0〉 = m1 cos

(

(1− c)
π

2
+

(2− c)π

2λ

)

, (3.2)

where m1 = 2M sin
(

π
2λ

)

is the mass of the B1
and M is the soliton mass. Using the

semi-
lassi
al expression M = 8m
β2

(

1− β2

8π

)

one �nds from (3.2) for λ → ∞ (β → 0)

E −E|0〉 ∼ m sin
(cπ

2

)

.

Identifying this limiting energy di�eren
e with the energy of the semi-
lassi
al bound state

ω0, eq.(2.8), determines the (limiting value of the) `infrared' (bootstrap) parameter η in

terms of the `ultraviolet' (Lagrangian) M0 and φ0:

sin
(cπ

2

)

=

√

1−
(

R(+)− R(−)

2A

)2

. (3.3)

3.2 The limit of the re�e
tion fa
tors

The next step is to establish a relation between the (semi)
lassi
al limits of R(1)(θ) and

R
(1)
|0〉 (θ), and the 
lassi
al re�e
tion fa
tors eiδ

±(q)
. Sin
e the exa
t quantum re�e
tion

fa
tors eq.(3.1) depend also on the ϑ parameter, for a non trivial limit we have to s
ale

also this parameter. In analogy with the η parameter we propose to write

ϑ = ϑcl(λ+ 1), 0 ≤ ϑcl ≤ ∞.

This way, keeping only the leading 
onstant terms in the λ → ∞ limit, one obtains:

R(1)(θ) → i sinh θ − 1

i sinh θ + 1

cos
(

cπ
2

)

cosh ϑcl − sinh2 θ + i sinh θ
(

cos
(

cπ
2

)

+ cosh ϑcl

)

cos
(

cπ
2

)

coshϑcl − sinh2 θ − i sinh θ
(

cos
(

cπ
2

)

+ cosh ϑcl

) . (3.4)

The expression for the limiting value of R
(1)
|0〉 (θ) is obtained by making the substitution

c → c̄ = 2 − c, (whi
h amounts to 
hanging the sign of cos
(

cπ
2

)

) in eq.(3.4). Identifying
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these limiting R(1)(θ) and R
(1)
|0〉 (θ) with eiδ

±(q)
, eq.(2.9), using sinh θ = q

m
, determines the

bootstrap parameters

cπ
2
and ϑcl as

cos
(cπ

2

)

+ coshϑcl =
R(+)

A
,

coshϑcl − cos
(cπ

2

)

=
R(−)

A
,

(3.5)

together with

cos
(cπ

2

)

coshϑcl =
cosα

A
. (3.6)

The algebrai
 solution of eq.(3.5)

cos
(cπ

2

)

=
R(+)− R(−)

2A
, coshϑcl =

R(+) +R(−)

2A
, (3.7)

satis�es eq.(3.6) and is also 
onsistent with eq.(3.3).

3.3 The limit of E|0〉 − E|〉 and the UV-IR relation

A

ording to the bootstrap solution [5℄ [6℄ the energy di�eren
e between the lowest ex
ited

boundary state and the ground state is given by

∆Ebst ≡ E|0〉 −E|〉 = M cos ν0 = M cos
(η

λ
− π

2λ

)

,

where M is the soliton mass. In the semi-
lassi
al limit, using the appropriately s
aled η
parameter, this 
an be written as

∆Ebst = M cos
(cπ

2

)

−M sin
(cπ

2

) β2

8π

(cπ

2
− π

2

)

+MO(β4) . (3.8)

Now it is easy to show, using the 
omplete semi-
lassi
al expression, M = 8m
β2

(

1− β2

8π

)

,

in the �rst term, the leading M = 8m
β2 in the (higher order) se
ond one, together with the

a
tual value of cos
(

cπ
2

)

in (3.7), that the �rst four terms of ∆Ebst 
oin
ide term by term

with the expression of ∆Eren
semi eq.(2.12).

Now we 
an understand the importan
e of the fa
t that in spite of the intermediate

stages the dependen
y on (R(+)+R(−))/(2A) 
an
els in the �nal form of the semi-
lassi
al

∆Eren
semi. This should happen sin
e ∆Ebst, just as the whole spe
trum of boundary states

predi
ted by the bootstrap solution, is also independent of ϑ thus in the semi-
lassi
al limit

it should depend only on

cπ
2
but should be independent of ϑcl.

The ni
e mat
hing between ∆Eren
semi and ∆Ebst 
on�rms the relation between the boot-

strap and Lagrangian parameters eq.(3.7). This relation makes it possible to determine

the (semi-
lassi
al limit of the) only free parameter in the so 
alled UV-IR relation.

11



On general grounds the generi
 form of the relation between the bootstrap and La-

grangian parameters of boundary sine-Gordon model (i.e of the UV-IR relation) is

cos

(

η

λ+ 1

)

cosh

(

ϑ

λ+ 1

)

=
M0

Mcrit
cosα ,

sin

(

η

λ+ 1

)

sinh

(

ϑ

λ+ 1

)

=
M0

Mcrit

sinα ,

(3.9)

where the parameter Mcrit (M0/Mcrit) may depend on β. Our aim is to say something on

this parameter and on this dependen
e. First of all,

η
λ+1

and

ϑ
λ+1

are nothing but cπ/2
and ϑcl in the way they were introdu
ed, thus eq.(3.9) determines in fa
t these parameters

for all values of λ. Making this identi�
ation expli
it in eq.(3.9) and 
omparing to eq.(3.6)

gives, that in the semi-
lassi
al limit

M0

Mcrit
=

1

A
, i.e. Mcrit =

4m

β2
. (3.10)

Note that this is the same value as the 
lassi
al one appearing in eq.(2.4).

There are several points that should be stressed about Mcrit in general and its a
tual

value in parti
ular. The �rst point to mention is that M0/Mcrit appearing in eq.(3.9) may

depend on the regularization s
heme used to de�ne the quantum theory and the value in

(3.10) is in the `semi-
lassi
al s
heme'. In a re
ent paper Corrigan and Taormina obtained

the UV-IR relation in sinh-Gordon model by semi-
lassi
ally quantising the (periodi
)

boundary breathers [9℄. Analyti
ally 
ontinuing their results in β (and a

ounting for the

di�eren
es between the parameters) one 
an show, that their Mcrit is identi
al to eq.(3.10).

In this respe
t it is worth emphasizing that the analogues of the stati
 solutions Φs and

Φs̄ just like the states |〉 and |0〉, upon whi
h our investigation is based, are absent in the

sinh-Gordon theory, thus the results of this paper give an independent 
on�rmation of the

Mcrit obtained in [9℄.

In [9℄ it is 
onje
tured that this result forMcrit may be exa
t. To support this 
onje
ture

we note that our results make it possible to 
he
k that Mcrit re
eives no O(β0) 
orre
tion:

Mcrit =
4m

β2

(

1 +O(β4)
)

.

To show this denote the (β dependent) M0/Mcrit as H and determine cos
(

cπ
2

)

from eq.(3.9)

cos
(cπ

2

)

=
H

2

(√
1 +H−2 + 2H−1 cosα−

√
1 +H−2 − 2H−1 cosα

)

,

and �nally write H = 1
A

(

1 + δH β2

8π

)

. Now plugging this expression for cos
(

cπ
2

)

(and

the equivalent one for cπ/2) into (3.8) reveals that the only 
hoi
e that guarantees the

agreement between eq.(3.8) and eq.(2.12) is δH = 0.3

3

Sin
e the MO(β4) terms are not 
al
ulated we 
annot say anything about the higher order 
orre
tions.
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Perturbed 
onformal �eld theory is another useful s
heme to des
ribe the boundary

sine-Gordon model. In this des
ription BSG is viewed as a c = 1 boundary CFT perturbed

by the (relevant) vertex operators 
onstituting the bulk and boundary potentials [17℄:

S = Sc=1 +
µ

2

∞
∫

−∞

dt

0
∫

−∞

dx(Vβ[Φ] + V−β[Φ]) +
µ̃

2

∞
∫

−∞

dt(Ψβ/2[Φ]e
−iα +Ψ−β/2[Φ]e

iα) ,

where

Vβ[Φ] = n(z, z̄) : eiβΦ(x,t) : , Ψβ/2[Φ] =: ei
β

2
Φ(0,t) : ,

and n(z, z̄) denotes the appropriate normal ordering fun
tion. The µ and µ̃ parameters

play the role of m and M0 respe
tively and have non trivial dimensions:

[µ] = mass 2−β2

4π , [µ̃] = mass 1−β2

8π .

The relation between µ and the soliton mass M is known from a TBA study of the bulk

sine-Gordon model [15℄

µ = κ(β)M2−2∆, κ(β) =
2Γ(∆)

πΓ(1−∆)

(√
πΓ
(

1
2−2∆

)

2Γ
(

∆
2−2∆

)

)2−2∆

, ∆ =
β2

8π
. (3.11)

In this s
heme the UV-IR relation takes the form of eq.(3.9) with the repla
ement

M0

Mcrit

→ µ̃

µcrit

, µcrit =

√

2µ

sin β2

8

. (3.12)

This relation was obtained by Al.B. Zamolod
hikov [7℄ and has re
ently been veri�ed by a

TCSA study of the spe
trum of boundary sine-Gordon model [8℄.

Thus the β dependen
e of the 
onstant on the right hand side of eq.(3.9) is di�erent in

the semi-
lassi
al and in the perturbed CFT s
hemes. Nevertheless in the semi-
lassi
al

limit the two results 
oin
ide. In the perturbed CFT s
heme the limiting values of cπ/2
and ϑcl should be obtained from eq.(3.9) with

µ̃
µ
= H . Furthermore, for the 
omparison,

the µ, µ̃ and the m, M0 parameters of the two s
hemes should be related to ea
h other.

Using the semi-
lassi
al expression for M in the β → 0 limit of eq.(3.11) gives µ → m2

β2

and mat
hing the leading (
lassi
al) term of eq.(3.8) to the s
heme independent ∆Ecl �xes

µ̃ → M0; thus µcrit → 4m
β2 = Mcrit indeed.

4 Semi-Classi
al soliton re�e
tions

In this se
tion the semi-
lassi
al limits of soliton/antisoliton re�e
tion amplitudes on the

boundary at x = 0 are studied. The relevant 
lassi
al solutions are time dependent -

as opposed to the stati
 ones 
onsidered in se
tion 2 - but just like the stati
 ones are

13



spe
i�
 to sine-Gordon and have no analogues in sinh-Gordon theory. A long time ago

a 
ompletely general expression for the semi-
lassi
al phase shift was given in terms of

the 
lassi
al time delay and of the number of semi-
lassi
al bound states by Ja
kiw and

Woo [16℄. The idea to 
ompare in boundary sine-Gordon model this expression and the

semi-
lassi
al limit of the exa
t re�e
tion amplitudes (obtained from the bootstrap) as a


onsisten
y 
he
k and to gain information on the relation between the Lagrangian and the

bootstrap parameters was put forward by Saleur, Skorik and Warner (SSW) in [10℄. SSW

determined the 
lassi
al time delay in 
ase of soliton/antisoliton re�e
tions on ground state

boundary for the general boundary 
onditions, but only for Diri
hlet boundary 
onditions

made the 
omparison with the exa
t results. In this se
tion the 
omparison is made in


ase of ground state boundaries with general boundary 
onditions and also for the lowest

ex
ited boundary in 
ase of Neumann boundary 
ondition.

4.1 Neumann boundary 
ondition

The expression given in [16℄ for the semi-
lassi
al phase shift eiδ(E)
is

δ(E) = nBπ +

E
∫

Eth

dE ′∆t(E ′), (4.1)

where nB is the number of the (semi-
lassi
al) bound states and ∆t(E ′) is the 
lassi
al time

delay. As an illustration 
onsider the (anti)solitons re�e
ting on a ground state Neumann

boundary, i.e. when ∂xΦ|x=0 = 0 (
orresponding to M0 = 0)4. Then there are 
lassi
al

solutions only for solitons re�e
ting as antisolitons (and vi
e versa) but not for solitons

re�e
ting as solitons. Furthermore, the 
lassi
al solution des
ribing an asymptoti
 soliton

with velo
ity v heading to and re�e
ting from the boundary at x = 0 
an be obtained by

restri
ting to the x ≤ 0 half line a spe
ial solution of the bulk theory, that des
ribes a

soliton with velo
ity v s
attering on an antisoliton with velo
ity −v [10℄, [17℄. Therefore

the 
lassi
al time delay of the soliton re�e
ting on the Neumann boundary is identi
al to

the time delay in the soliton antisoliton s
attering in the bulk theory:

∆t =
2 ln v

mγv
, γ =

1√
1− v2

.

The number of bound states, i.e. the number of boundary breathers with Neumann b.
.

were obtained in [17℄ by semi-
lassi
ally quantising the 
lassi
al boundary breathers with

the result that nB =
[

λ
2

]

. In the semi-
lassi
al limit λ → ∞ thus nB ∼ λ
2
= 4π

β2 . Sin
e the

energy of the re�e
ting soliton is E = M√
1−v2

= M cosh(θ) = 8m
β2

√
1−v2

, eq.(4.1) yields in this

4

Sin
e the vanishing M0 makes α a redundant parameter, and the bootstrap parameters take �xed

values (η be
omes the maximally allowed

π

2
(λ + 1) and ϑ vanishes) this illustration may serve only as a


onsisten
y 
he
k.
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ase

δ(E) =
4π2

β2
+

16

β2

tanh θ
∫

0

dv′
ln v′

1− v′2
.

In the exa
t solution of BSG with Neumann b.
. there are two amplitudes that des
ribe the

re�e
tions of solitons and antisolitons on the ground state boundary: P (θ) des
ribes the
`diagonal' s
attering, i.e. when solitons re�e
t as solitons and antisolitons as antisolitons,

while Q(θ) des
ribes the `non - diagonal' s
attering, when solitons re�e
t as antisolitons

(and vi
e versa). In [17℄ simple integral representations were given for them:

P (θ) =
sin(λπ

2
)

sin
(

λπ
2
+ iλθ

)e−iI(λ,θ), Q(θ) = −i
sinh(λθ)

sin
(

λπ
2
+ iλθ

)e−iI(λ,θ) ,

I(λ, θ) =

∫ ∞

0

dt

t
t sin

(

2θt

π

)

[

2 sinh
(

3t
2

)

sinh
(

λ−1
2λ

t
)

sinh
(

t
2λ

)

sinh(2t)
+

sinh(t/λ)− sinh(t)

cosh(t) sinh(t/λ)

]

.

In the semi-
lassi
al limit P (θ) ∼ e−λθe−iI(λ,θ) → 0, whi
h is 
onsistent with the absen
e

of diagonal 
lassi
al re�e
tion. On the other hand

Q → ei
λπ
2 e−iI1(λ,θ), I1(λ, θ) = lim

λ→∞
I(λ, θ) = λ

∞
∫

0

dt

t2
sin

(

2θt

π

)

tanh

(

t

2

)

+O(λ0) , (4.2)

where we negle
ted all O(λ0) terms in the exponents. The integral ∂θI1 
an be found in

Gradstein Ryzhikh, [19℄, thus

I1 = −2λ

π

∫ θ

0

dv ln tanh v = −2λ

π

∫ tanh θ

0

dv′
ln v′

1− v′2
.

Using �nally the semi-
lassi
al relation λ ∼ 8π
β2 in eq.(4.2) reprodu
es the semi-
lassi
al

phase shift indeed.

4.1.1 Ex
ited Neumann boundary

The exa
t soliton/antisoliton re�e
tion amplitudes are known also when the Neumann

boundary is in its ex
ited states |n〉 n = 1, . . . ,
[

λ
2

]

5

. The P , Q re�e
tion fa
tors on the

lowest ex
ited state |1〉 
hange as [17℄

P → P̃ = P (θ)B(λ, θ), Q → Q̃ = Q(θ)B(λ, θ),

5

For Neumann boundary 
ondition the pole des
ribed by ν0 is at θ = iπ
2
, and it 
orresponds to the

emission of a soliton/antisoliton by the boundary [2℄ rather than to a bound state. Alternatively one 
an

say that |0〉 be
omes identi
al to the ground state |〉, as not only their energies but also the P (θ) and Q(θ)
re�e
tion fa
tors on them be
ome identi
al [17℄.
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B(λ, θ) = tan

[

u

2
+

π

2

(

1

λ
+

1

2

)]

tan

[

u

2
− π

2

(

1

λ
− 1

2

)]

tan2
(u

2
+

π

4

)

, u = −iθ .

In the semi-
lassi
al limit

lim
λ→∞

B(λ, θ) =
1− i sinh θ

1 + i sinh θ
tan2

(−iθ

2
+

π

4

)

,

whi
h gives only an O(λ0) 
orre
tion in the exponent of Q̃. Thus the leading term in the

exponent, i.e. the semi-
lassi
al phase shift, is identi
al to what was found for the ground

state boundary.

With Neumann b.
. the state |1〉 may be thought of 
lassi
ally as a (
lassi
al) breather

bound to the boundary at x = 0 [17℄. Thus the 
lassi
al re�e
tion pro
ess may be des
ribed

as a soliton antisoliton pair re�e
ting on the breather at x = 0, and the 
lassi
al time delay

should be obtained from this pi
ture. The relevant 
lassi
al solution is 
onstru
ted by the

τ fun
tion method [10℄ [18℄ in two steps. First a 4 soliton solution des
ribing two pairs of

solitons and antisolitons is determined and the relevant time delays are obtained. Then

we 
ontinue the parameters of one of the pairs to purely imaginary values to des
ribe the

breather and make the ne
essary 
hanges in the expression of the time delay.

In the τ fun
tion method ea
h soliton and antisoliton is 
hara
terized by its velo
ity,

by its `rapidity type' parameter and by its `position type' parameter. In the solution below

the following parameters are used: the soliton of the �rst (se
ond) pair moves with velo
ity

u (v), its rapidity type parameter is denoted by k (p) and its position type parameter by a1
(b1); for the antisoliton of the �rst (se
ond) pair the 
orresponding quantities are −u (−v),
1/k (1/p), and a2 (b2) respe
tively. (These quantities give a redundant 
hara
terization as

u and k -alternatively v and p - 
an be expressed in terms of the θ1 and θ2 rapidities of the
�rst and se
ond solitons: u = tanh θ1, k = eθ1 ; v = tanh θ2, p = eθ2). Then, using also the

γ =
1√

1− u2
, γ̃ =

1√
1− v2

quantities, in the 
entre of mass system the τ fun
tion of the solution may be written as

τ = 1 + e−2γxe−a1−a2u2 − e−2γ̃xe−b1−b2u2

− e−γ(x+ut)e−γ̃(x+vt)e−a1−b1

(

k−p
k+p

)2

+ e−γ(x+ut)e−γ̃(x−vt)e−a1−b2

(

k− 1

p

k+ 1

p

)2

+ e−γ(x−ut)e−γ̃(x+vt)e−a2−b1

(

1

k
−p

1

k
+p

)2

− e−γ(x−ut)e−γ̃(x−vt)e−a2−b2

(

1

k
− 1

p
1

k
+ 1

p

)2

+ e−2γxe−2γ̃xe−a1−a2−b1−b2u2v2
(

k−p
k+p

)2
(

k− 1

p

k+ 1

p

)2
(

1

k
−p

1

k
+p

)2
(

1

k
− 1

p
1

k
+ 1

p

)2

+i[e−γ(x+ut)e−a1 − e−γ(x−ut)e−a2 + e−γ̃(x+vt)e−b1 − e−γ̃(x−vt)e−b2

+e−2γxe−γ̃(x+vt)e−a1−a2−b1u2
(

k−p
k+p

)2 ( 1

k
−p

1

k
+p

)2

−e−2γxe−γ̃(x−vt)e−a1−a2−b2u2

(

k− 1

p

k+ 1

p

)2(
1

k
− 1

p
1

k
+ 1

p

)2

+e−2γ̃xe−γ(x+ut)e−a1−b1−b2v2
(

k−p
k+p

)2
(

k− 1

p

k+ 1

p

)2

−e−2γ̃xe−γ(x−ut)e−a2−b1−b2v2
(

1

k
−p

1

k
+p

)2
(

1

k
− 1

p
1

k
+ 1

p

)2

] .
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(Here we use dimensionless x and t 
oordinates : x → mx, t → mt, thus the true time delay

is obtained from the dimensionless one presented below by dividing it by m). Analyzing

the t → ∓∞ limits of the solution and requiring that it should 
orrespond to the sum of

two non intera
ting soliton antisoliton pairs determines the ai bi i = 1, 2 parameters in

terms of the initial (t = t0) soliton/antisoliton positions (xis,s
0 ) as well as the time delays:

from the t → −∞ limit it is found

a1=−γ(x1s
0 +ut0), a2=−γ(x1s

0 −ut0)+2 lnu+ln

(

1
k
−p

1
k
+p

)2

+ln

(

1
k
−

1
p

1
k
+1

p

)2

,

b1=−γ̃(x2s
0
+vt0)+ln( k−p

k+p)
2
, b2=−γ̃(x2s

0
−vt0)+2 ln v+ln

(

k− 1
p

k+1
p

)2

,

(4.3)

while the t → ∞ limit yields the time delays of the two pairs

∆t1 =
2 lnu+ ln

(

1

k
−p

1

k
+p

)2

+ ln
(

k−p
k+p

)2

γu
,

∆t2 =
2 ln v + ln

(

1

k
−p

1

k
+p

)2

− ln
(

k−p
k+p

)2

γ̃v
.

(4.4)

(The asymmetry in eq.(4.3-4.4) stems from assuming u > v). These expressions for the

time delay have a simple interpretation: they give the sum of the time delays su�ered in the

various 
ollisions. Indeed the �rst terms on the right hand sides of eq.(4.4) give the time

delays of the solitons from the s
attering on their own partners, while a simple Lorentz

transformation shows, that the se
ond and third terms are nothing but the 
ontributions

from the s
attering on the two members of the other pair.

In the Neumann boundary problem the breather should be lo
ated at x = 0 and the

soliton/antisoliton pair (representing the s
attering soliton) should also 
ome together at

the boundary. To a

omplish this the 4 soliton solution should be expressed in terms of

the `
ollision pla
e' and `
ollision time' of ea
h pair instead of the initial positions. The


ollision pla
e of ea
h pair is trivially x∗1 = (x1s
0 + x1s

0 )/2, x∗2 = (x2s
0 + x2s

0 )/2. Assuming

that the slower moving members of the inner pair 
ollide �rst, the t∗1, t∗2 
ollision times


an be obtained from the addition rule of the time delays just shown, and the ai, bi 
an be

expressed more symmetri
ally using these four quantities:

a1=−γ(x∗1+ut∗1)+lnu+ln

(

1
k
−p

1
k
+p

)2

, a2=−γ(x∗1−ut∗1)+lnu+ln

(

1
k
−

1
p

1
k
+1

p

)2

,

b1=−γ̃(x∗2+vt∗2)+ln v+ln( k−p
k+p)

2
, b2=−γ̃(x∗2−vt∗2)+ln v+ln

(

k− 1
p

k+1
p

)2

.

(4.5)

Now the parameters of the solution relevant for the Neumann problem are obtained as

follows: assuming we use the se
ond pair to des
ribe the breather we set x∗2 = 0 and


ontinue v to purely imaginary values v = iw (w real) and use eq.(4.5) to express the b
parameters; however the a parameters are to be obtained from eq.(4.3) with x1s

0 = −x1s
0 .
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The reason behind this is that the �rst two equations in (4.5) were obtained by assuming

that the soliton s
atters on the individual members of the other pair, whi
h is now repla
ed

by the breather. The time delay of the soliton is independent of these parameters and is

obtained from the �rst equation in (4.4), whi
h gives a real value in spite of p being a


omplex number:

p =

√

1 + v

1− v
=

√

1 + iw

1− iw
=

1 + iw√
1 + w2

= ei arctanw .

Using this time delay in the integral in the semi-
lassi
al expression (4.1) gives

16

β2

tanh θ
∫

0

dv′
ln v′

1− v′2
+

8

β2

k
∫

0

dy

y

(

ln

(

y − p

y + p

)2

+ ln

(

y−1 − p

y−1 + p

)2
)

. (4.6)

The �rst integral reprodu
es what is obtained above for ground state boundary. In the

se
ond integral the p parameter of the breather is obtained by mat
hing the 
lassi
al and

quantum expressions of its energy

M sin
( π

2λ

)

=
M√
1 + w2

.

Therefore in the semi-
lassi
al limit p = i+ π
2λ
; and using it in the se
ond integral shows

that it is only an O(λ0) 
orre
tion to the �rst one. Thus we veri�ed the mat
hing between

eq.(4.1) and the limit of the exa
t amplitude also in 
ase of solitons re�e
ting on ex
ited

Neumann boundary.

4.2 Ground state boundary with general boundary 
onditions

Finally we show that 
omparing the semi-
lassi
al limit of the exa
t soliton/antisoliton

re�e
tion amplitude on the ground state boundary with general boundary 
onditions and

the semi-
lassi
al phase shift obtained from eq.(4.1) with the aid of the 
lassi
al time delay

derived by SSW in [10℄, one 
an 
on�rm the UV-IR relation dis
ussed in the previous

se
tion.

The most general re�e
tion fa
tor of the soliton antisoliton multiplet |s, s̄〉 on the ground
state boundary, satisfying the boundary versions of the Yang Baxter, unitarity and 
rossing

equations was found by Ghoshal and Zamolod
hikov [2℄ as:

R(η, ϑ, θ) =

(

P+(η, ϑ, θ) Q(η, ϑ, θ)
Q(η, ϑ, θ) P−(η, ϑ, θ)

)

=

(

P+
0 (η, ϑ, θ) Q0(θ)
Q0(θ) P−

0 (η, ϑ, θ)

)

R0(θ)
σ(η, θ)

cos(η)

σ(iϑ, θ)

cosh(ϑ)
,

P±
0 (η, ϑ, θ) = cosh(λθ) cos(η) cosh(ϑ)± i sinh(λθ) sin(η) sinh(ϑ)

Q0(θ) = i sinh(λθ) cosh(λθ) .
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In [10℄ useful integral representations are given for R0(θ) and σ(x, θ); for R0(θ) we use this,
while - by going ba
k to the in�nite produ
t representation of [2℄ and [6℄ - we repla
e

σ(x, θ)

cos x
=

Σ(x, θ)

cos(x+ iλθ)

with

ln Σ(x, θ) = i

∞
∫

0

dy

y

sin(2θy
π
)

sinh(y/λ)

sinh(y − 2x
πλ
y)

cosh(y)
,

as this gives a 
onvergent integral in the entire range 0 ≤ η ≤ π
2
(λ+ 1). Expressing η and

ϑ in terms of c and ϑcl as in se
tion 3 and using the integral representations one obtains

R0(θ)Σ(η, θ)Σ(iϑ, θ) = eiδ̂eJ , J =

∞
∫

0

dy

y

sin
(

2yθ
π

)

sin
(

2yϑcl

π
(λ−1 + 1)

)

sinh(y/λ)
. (4.7)

In the semi-
lassi
al limit, negle
ting the O(λ0) terms in the exponent

eJ →
{

eλϑcl θ > ϑcl

eλθ θ < ϑcl
.

Therefore the three amplitudes, P±
and Q, have rather di�erent semi-
lassi
al limits de-

pending on whether the rapidity of the in
ident parti
le is bigger or smaller than ϑcl:

lim
λ→∞

P± =e±icπ
2
λeic

π
2
λeiδ̂, lim

λ→∞
Q = 0, θ < ϑcl

lim
λ→∞

P± =0, lim
λ→∞

Q = eic
π
2
λeiδ̂, θ > ϑcl .

(4.8)

This behaviour is 
onsistent with the known fa
ts, that 
lassi
ally, for Diri
hlet boundary


onditions (ϑcl = ∞) solitons re�e
t as solitons, while for Neumann boundary 
ondition

(ϑcl = 0) as antisolitons. Furthermore the 
lassi
al solution found by SSW [10℄ shows

the same 
riti
al behaviour as in eq.(4.8), so that ϑcl may be identi�ed with one of the

parameters of that paper. To make the 
orresponden
e 
omplete one has to 
ompute the

semi-
lassi
al limit of iδ̂ as well. Using the aforementioned integral representations, after

some algebra, keeping only the leading terms, one �nds:

lim
λ→∞

iδ̂ = −iλ

∞
∫

0

dy

y2
sin

(

2θy

π

)(

tanh(
y

2
) +

sinh([c− 1]y)

cosh y
+ tanh y − tanh y cos(

2yϑcl

π
)

)

= −i(I1 + I2 + I3 + I4) .

All integrals Ij are 
omputed by realizing that

∂Ij
∂θ


an be found in [19℄. There is a subtlety

with I4, as,
∂I4
∂θ

=
λ

π
ln

(

tanh

[

θ + ϑcl

2

]

tanh

[ |θ − ϑcl|
2

])

,
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where |θ − ϑcl| is the modulus of θ − ϑcl. Therefore the θ < ϑcl and the θ > ϑcl domains

are separated by a logarithmi
 singularity, and this mat
hes ni
ely with eq.(4.8). Finally

iδ̂ =
iλ

π

θ
∫

θth

dv ln
tanh2 v tanh2(v/2)

tanh
(

1
2
(v + i cπ

2
)
)

tanh
(

1
2
(v − i cπ

2
)
)

tanh
[

v+ϑcl

2

]

tanh
[

|v−ϑcl|
2

] ,

where θth is 0 in the θ < ϑcl domain, while it is ϑcl in the θ > ϑcl one. Now we are

in a position to 
ompare this to the integral of the 
lassi
al time delay derived in [10℄.

SSW used two parameters, ζ and ηSSW (whi
h we denote by χ̂ to avoid 
onfusion) in that

paper to des
ribe the dependen
e of the time delay on the Lagrangian parameters. These

parameters are related to the Lagrangian parameters of this paper by

2 cosh ζ cos χ̂ = −M0β
2

2m
cosα ,

2 sinh ζ sin χ̂ = −M0β
2

2m
sinα .

(4.9)

Now making the shift χ̂ = π + χ and the identi�
ations

χ → c
π

2
, ζ → ϑcl,


onverts on the one hand the integral of the 
lassi
al time delay in [10℄ into δ̂, while
on the other it maps eq.(4.9) to our previous UV-IR relation eq.(3.9-3.10).

6

Thus it is

demonstrated that the UV-IR relation and Mcrit = 4m
β2 in parti
ular are also 
onsistent

with the semi-
lassi
al soliton/antisoliton re�e
tions.

5 Con
lusions

In this paper two semi-
lassi
al issues of boundary sine-Gordon models are investigated

to get a better understanding of the relation between the exa
t (algebrai
) solution of the

quantum theory and the 
lassi
al Lagrangian.

First the semi-
lassi
al 
orre
tions to the energy di�eren
e of the two lowest energy

stati
 solutions were determined. In this pro
edure it turned out that one has to renor-

malize also the boundary potential just in the same way as the bulk one to obtain a �nite

result. Then we showed that 
omparing the main results of the semi-
lassi
al quantisation

- whi
h in
lude in addition to the energy di�eren
e the semi-
lassi
al bound states and

the 
lassi
al re�e
tion fa
tor of the sine-Gordon �eld - and the semi-
lassi
al limit of the

exa
t solution one 
an obtain a relation between the Lagrangian and bootstrap param-

eters provided we s
ale the bootstrap parameters in an appropriate way. After analyti



ontinuation the form of this relation 
oin
ides with what was found by Corrigan and

6

Note that the ζ → ϑcl identi�
ation is the same as the one obtained from 
omparing the 
riti
al

behaviour of the 
lassi
al solution [10℄ and the limit of the quantum amplitude mentioned above.
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Taormina by semi-
lassi
ally quantising the boundary breathers in sinh-Gordon theory [9℄.

Sin
e our 
omputation is done in a se
tor of sine-Gordon theory, whi
h has no analogue

in sinh-Gordon, this is an independent 
on�rmation of the results in [9℄. We also showed

that in the semi-
lassi
al limit the UV-IR relation obtained from des
ribing the boundary

sine-Gordon model as a bulk and boundary perturbed 
onformal �eld theory [7℄ 
oin
ides

with our result.

Finally we analyzed the semi-
lassi
al soliton re�e
tions building on the ideas and re-

sults put forward by Saleur, Skorik and Warner [10℄. As a 
onsisten
y 
he
k we showed

that the semi-
lassi
al phase shift determined from the 
lassi
al time delay and the num-

ber of bound states agrees with the semi-
lassi
al limit of the exa
t re�e
tion amplitudes

both for ground state and for the �rst ex
ited Neumann boundary. In the latter 
ase

we obtained the time delay from the analyti
 
ontinuation of a spe
ial two soliton - two

antisoliton solution of the bulk theory, that we 
onstru
ted by the τ fun
tion method.

Then we analyzed the semi-
lassi
al limit of soliton/antisoliton re�e
tions on ground state

boundary with general boundary 
onditions and 
on�rmed the UV-IR relation 
onne
ting

the Lagrangian and bootstrap parameters.
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