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Abstract

The paper concerns a particular example of the Gibbs sampler and its mixing efficiency. Coordinates
of a point are rerandomized in the unit square [0, 1]2 to approach a stationary distribution with density
proportional to exp(−A2(u− v)2) for (u, v) ∈ [0, 1]2 with some large parameter A.

Diaconis conjectured the mixing time of this process to be O(A2) which we confirm in this paper.
This improves on the currently known O(exp(A2)) estimate.

1 Introduction

A standard use of Markov chains is to sample from a probability distribution that would be otherwise
hard to access. This can happen when the distribution is supported on a set implicitly defined by some
constraints, e.g., a convex body in a high dimensional space [5], [7], proper colorings of a graph [3], [8],
etc. Several frameworks have been designed to achieve this goal including the Metropolis algorithm and the
Gibbs sampler and their variants. There is a vast range of applications and studies, we refer the reader to
[2], [1] for orientation.

A central and recurring question is the efficiency of these algorithms in the different settings. We highlight
two phenomena that can decrease the performance of such algorithms. First, the incremental change the
Markov chain allows is usually quite rigid and given by the structure of the state space. However, the desired
stationary distribution does not need to be aligned with the directions where the Markov chain mixes fast.
Second, some boundary effects might occur if the Markov chain can get trapped in some remote part of the
state space.

In this paper we analyze an example of the Gibbs sampling procedure proposed by Diaconis which is
surprisingly simple considering it captures both of the two phenomena above. We call the coordinate Gibbs
sampler for the diagonal distribution the following process. Fix a large positive constant A and on [0, 1]2

define the distribution π with density proportional to exp(−A2(u − v)2) for (u, v) ∈ [0, 1]2. At each step
randomly choose coordinate u or v and rerandomize it according to the conditional distribution of π. Notice
that the distribution of this Markov chain is mostly concentrated near the diagonal of the unit square, while
only horizontal and vertical transitions are allowed. Furthermore, near (0, 0) and (1, 1) we see that both the
high density of π and also the boundaries of the square hinder the movement of the chain.

The efficiency of the algorithm is quantified by the mixing time of the Markov chain. For any Markov
chain X(0), X(1), . . . on some state space Ω (which is [0, 1]2 in our case) let L(X(t)) denote the distribution
of the state at time t and η be the stationary distribution assuming it is unique (denoted by π for our case).
Using the total variation distance between measures, ‖ρ−σ‖TV := supS⊆Ω |ρ(S)−σ(S)| we define the mixing
time as

tmix(X, ε) := sup
X(0)∈Ω

min {t : ‖L(X(t))− η‖TV ≤ ε} .

Diaconis conjectured that the mixing time of the example proposed is O(A2), the goal of this paper is to
confirm this bound.
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Theorem 1. Let X(t) follow the coordinate Gibbs sampler for the diagonal distribution. For any 0 < α < 1
there exists β > 0 such that for large enough A,

tmix(X,α) ≤ βA2.

Up until now only O(exp(A2)) was known which easily follows from a minorization condition of the
transition kernel.

Observe that the diagonal nature of the distribution plays an important role in the mixing behavior,
making the distribution and the randomization steps unaligned. If we took the distribution with density
proportional to exp(A2(u − 1/2)2) for (u, v) ∈ [0, 1]2, then the mixing time would decrease to be O(1).
Indeed, this is a product distribution, product of one for u and one (uniform) for v, consequently after a
rerandomization is performed along both coordinates, the distribution of the process will exactly match the
prescribed one. This will happen with probability arbitrarily close to 1 within a corresponding finite number
of steps, not depending on the value of A.

The rest of the paper is organized as follows. In Section 2 a formal definition of the process of interest is
provided and further variants are introduced that help the analysis. Section 3 provides the building blocks
for the proof, to understand the short-term behavior of the process based on the initialization. Afterwards,
the proof of Theorem 1 is aggregated in Section 4. Finally, a complementing lower bound demonstrating
that Theorem 1 is essentially sharp is given in Section 5 together with some numerical simulations.

2 Preliminaries, alternative processes

We now formally define the coordinate Gibbs sampler for the diagonal distribution which we denote by X(t),
then we introduce variants that will be more convenient to handle.

Let ϕ(x) := exp(−A2x2) for some large A > 0 and let π be the probability distribution on [0, 1]2 with
density Z−1ϕ(u − v) at (u, v) ∈ [0, 1]2 (where Z =

∫
[0,1]2

ϕ(u − v)). We write π(·, v) for the conditional

distribution of the u coordinate when v is fixed (similarly for π(u, ·)). Denote by πu the projection of π, that
is, the overall distribution of the u coordinate.

When defining the coordinate Gibbs sampler for the diagonal distribution, we separate the decision of
the direction of randomization and the randomization itself. For t = 1, 2, . . . let r(t) be an i.i.d. sequence
of variables of characters U, V taking both with probability 1/2. Given some initial point X(0) ∈ [0, 1]2 the
random variable X(t) = (Xu(t), Xv(t)) is generated as a Markov chain from X(t− 1) by randomizing along
the axis given by r(t). Formally,

X(t) :=

{(
u+, Xv(t− 1)

)
, if r(t) = U,where u+ ∼ π(·, Xv(t− 1)),(

Xu(t− 1), v+
)
, if r(t) = V,where v+ ∼ π(Xu(t− 1), ·),

,

where u+, v+ are conditionally independent of the past at all steps.
Note that when multiple U ’s follow each other in the series r(t) (similarly for V ), the values u+ are re-

peatedly overwritten and forgotten, with no further mixing happening for the overall distribution. Therefore
we define an alternative process where this effect does not occur, but rather the directions of randomization
are deterministic.

Let X∗(0) := X(0), then the following process is generated:

X∗(2s) :=
(
u+, X∗v (2s− 1)

)
, where u+ ∼ π(·, X∗v (2s− 1)),

X∗(2s+ 1) :=
(
X∗u(2s), v+

)
, where v+ ∼ π(X∗u(2s), ·).

It would be convenient for the analysis if it wasn’t necessary to distinguish the steps based on the parity
of the time index. For that reason, consider the following modification. At every even step take X∗(2s)
as before, at every odd step take X∗(2s + 1) flipped along the diagonal of the square (exchange the two
coordinates). Equivalently, flip the process at every step while generating. As a result, the randomization
happens in the same direction at every step. Note that the target distribution π is symmetric along the
diagonal therefore no adjustment is needed for the flipping. Formally, the process described is the following:
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Let Y (0) := X(0), then the random variables Y (t) are generated from Y (t− 1) as follows

Y (t) :=
(
u+, Yu(t− 1)

)
, where u+ ∼ π(·, Yu(t− 1)).

Observe that the scalar process Yu(t) is a Markov chain by itself simply because Y (t) depends on Y (t−1)
only through Yu(t− 1).

3 Dynamics of Yu(t)

In this section we prove two properties of the evolution of Yu(t), which will be the key elements to compute
the mixing time bounds. First, we show that the process cannot stay arbitrarily long at the sides of the unit
interval, in [0, 1/2− δ) or (1/2 + δ, 1], where some small enough parameter δ > 0 will be chosen. Second, we
prove that starting from a point in the middle part [1/2− δ, 1/2 + δ], the distribution of the process quickly
approaches the stationary distribution.

3.1 Reaching the middle

We work on the case when the Yu(0) is away from the middle of [0, 1]. We want to ensure that the process
does not stay near the boundaries for a long period. To quantify this, the time to reach the middle is defined
as follows:

Definition 2. Let νm := min{s : Yu(s) ∈ [1/2− δ, 1/2 + δ]}.

Without the loss of generality we may assume that Yu(0) is on the left part of [0, 1], thanks to the
symmetry of π w.r.t. (1/2, 1/2). Therefore we start from Yu(0) < 1/2 − δ. For this period before reaching
the middle we introduce a slightly simplified process Y ′, where both coordinates are allowed to take values
in [0,∞) in principle. This is not supposed to have a substantially different behavior, but will allow more
convenient analytic investigation as fewer boundaries are present.

For any v ∈ R let σv be the measure on [0,∞) with density proportional to ϕ(u − v) conditioned on
u ∈ [0,∞). Let Y ′(0) := X(0), then define the Markov chain Y ′(t) as follows:

Y ′(t) :=
(
u+, Y ′u(t− 1)

)
, where u+ ∼ σY ′u(t−1).

We can generate Y ′(t) to be coupled to Y (t) as long as possible. For a fixed v, π(u, v) is proportional to
ϕ(u− v) conditioned on u ∈ [0, 1]. Therefore, when we need to generate u+ we draw a random sample from
σY ′u(t−1) and use it for both Y (t) and Y ′(t) if u+ < 1. Otherwise, we use it for Y ′(t) but for Y (t) we draw a
new independent sample from π(·, Y ′u(t− 1)). It is easy to verify this is overall a valid method for generating
a random variable of distribution π(·, Y ′u(t− 1)).

In the latter case, we also signal decoupling by setting a stopping time ν1
c = t. We show this rarely

happens, when governed by a variant of νm. Let ν̃m := min{s : Yu(s) ≥ 1/2− δ}.

Lemma 3. For any α1 > 0 there is β1 > 0 such that P (ν1
c < min(ν̃m, α1A

2)) = O(exp(−β1A
2)).

Proof. We want to bound the probability of decoupling at every point in time.
When u+ is drawn, Y ′u(t− 1) < 1/2− δ is ensured as ν̃m has not yet occurred. For any v < 1/2− δ we

have

σv({u+ > 1}) ≤ 2P (u > 1, u ∼ N (v, 1/(2A2))) ≤ 2
exp(−A2(1/2 + δ)2)

2
√
πA(1/2 + δ)

.

Here we use that the conditional probability is at most twice the unconditional one (because of v ≥ 0), use
the monotonicity in v, then apply a standard tail probability estimate for the Gaussian distribution.

These exceptional events may occur at most at α1A
2 different times, therefore by using the union bound

the overall probability is O(exp(−β1A
2)) for any β1 < (1/2 + δ)2.

Lemma 4. There exists β2 > 0 constant such that P (νm 6= ν̃m) = O(exp(−β2A
2).
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Proof. By a similar argument as above this bad event {νm 6= ν̃m} happens when Yu(t − 1) < 1/2 − δ but
Yu(t) > 1/2 + δ when ν̃m occurs, then a Gaussian tail probability estimate gives an upper bound of

2
exp(−A2(2δ)2)

2
√
πA(2δ)

.

The lemma holds with β2 = (2δ)2.

Handling Y ′(t) is still challenging due to the conditional distributions included in the definition. Therefore
we introduce the following process that will be both convenient to handle and to relate to Y ′(t).

Let Z̃(t) be a random walk with i.i.d. N (0, 1/(2A2)) increments, starting from Z̃(0) := Xu(0).
Let Z(t) := |Z̃(t)|.

Let us denote by φ the distribution of the centered Gaussian with variance 1/(2A2). During the analysis
of Z(t) we will also need to use the distribution of the absolute value of a Gaussian distribution with variance
1/(2A2). We denote it by φx when the original one is centered at x and it is easy to verify that we can
express it for any A ⊂ [0,∞) by φx(A) = φ(A− x) + φ(−A− x).

Proposition 5. Z(t) and Y ′u(t) can be coupled such that Z(t) ≤ Y ′u(t) for all t ≥ 0.

Proof. At 0 we have Z(0) = Y ′u(0). We construct the coupling iteratively, assuming Z(t− 1) ≤ Y ′u(t− 1) we
perform the next step of the coupling which will satisfy Z(t) ≤ Y ′u(t).

We will use the monotone coupling between the two. For two probability distributions ρ, ρ′ the monotone
coupling is the one assigning x to x′ when ρ((−∞, x]) = ρ′((−∞, x′]). (We now skip currently irrelevant
technical details about continuity, etc.). It is easy to verify that x ≤ x′ is maintained through this coupling
exactly if ρ((−∞, y]) ≥ ρ′((−∞, y]) for all y. In our case we will need the following:

Lemma 6. For any v ≥ v̄ ≥ 0 and u ≥ 0:

φv̄([0, u]) ≥ σv([0, u]).

Here v̄ corresponds to Z(t− 1) and v to Y ′u(t− 1) and we compare the distributions for step t.

Proof. We are going to prove the following two inequalities:

φv̄([0, u]) ≥ φv([0, u]), φv([0, u]) ≥ σv([0, u]).

For the first of the two we compute ∂vφv([0, u]):

∂vφv([0, u]) = ∂v (φ([−v − u,−v + u]))

= ∂v

 1∫∞
−∞ ϕ

−v+u∫
−v−u

ϕ


=

1∫∞
−∞ ϕ

(−ϕ(−v + u) + ϕ(−v − u)) ≤ 0.

This last inequality holds because | − v+ u| ≤ |− v− u| and ϕ(x) is decreasing in |x|. Consequently, when v̄
is increased to v, the measure of [0, u] decreases confirming the first inequality. This intuitively means that
when a Gaussian distribution is shifted to the right then even the reflected Gaussian is shifted (if it was
centered at a non-negative point).

The second inequality to confirm is the following:

φv([0, u]) = φ([−v − u,−v + u]) ≥ σv([0, u]).
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We rearrange and cancel out as much as possible from the domain of integrations.∫ −v+u

−v−u
ϕ

/∫ ∞
−∞

ϕ ≥
∫ −v+u

−v
ϕ

/∫ ∞
−v

ϕ∫ −v+u

−v−u
ϕ ·
∫ ∞
−v

ϕ ≥
∫ −v+u

−v
ϕ ·
∫ ∞
−∞

ϕ(∫ −v
−v−u

ϕ+

∫ −v+u

−v
ϕ

)
·
∫ ∞
−v

ϕ ≥
∫ −v+u

−v
ϕ ·
(∫ −v
−∞

ϕ+

∫ ∞
−v

ϕ

)
∫ −v
−v−u

ϕ ·
∫ ∞
−v

ϕ ≥
∫ −v+u

−v
ϕ ·
∫ −v
−∞

ϕ∫ −v
−v−u

ϕ ·
(∫ −v+u

−v
ϕ+

∫ ∞
−v+u

ϕ

)
≥
∫ −v+u

−v
ϕ ·
(∫ −v−u
−∞

ϕ+

∫ −v
−v−u

ϕ

)
∫ −v
−v−u

ϕ ·
∫ ∞
−v+u

ϕ ≥
∫ −v+u

−v
ϕ ·
∫ −v−u
−∞

ϕ

We substitute the functions to integrate and transform them to compare them on the same domain.

−v∫
−v−u

e−A
2x2

dx ·
∞∫

−v+u

e−A
2y2dy ≥

−v+u∫
−v

e−A
2x2

dx ·
−v−u∫
−∞

e−A
2y2dy

u∫
0

e−A
2(x+v)2dx ·

∞∫
u

e−A
2(y−v)2dy ≥

u∫
0

e−A
2(x−v)2dx ·

∞∫
u

e−A
2(y+v)2dy

u∫
0

∞∫
u

e−A
2(x2+y2+2v2+2v(x−y))dydx ≥

u∫
0

∞∫
u

e−A
2(x2+y2+2v2−2v(x−y))dydx

On all the domain of integration we have x ≤ y. Therefore the exponent is larger at every point for the
left hand side, which confirms the second inequality, completing the proof of the lemma.

Lemma 6 thus ensures that the monotone coupling preserves the ordering, and we can indeed use the
recursive coupling scheme while keeping Z(t) ≤ Y ′u(t) at every step.

Proposition 7. For any α3 > 0 there exists β3 > 0 with the following. For large enough A with probability
at least 1− α3 we have νm < β3A

2.

Proof. First we look at the hitting time analogous to ν̃m for Y ′u defined as ν̂m = min{s : Y ′u(s) ≥ 1/2 − δ}.
Without aiming for tight estimates ν̂m ≤ t can be ensured by Y ′u(t) ≥ 1/2 − δ and by Proposition 5 this
holds whenever Z(t) ≥ 1/2− δ. The latter is equivalent to Z̃(t) /∈ [−1/2 + δ, 1/2− δ].

For some β3 > 0, the distribution of Z̃(β3A
2) is N (Xu(0), β3/2). Choosing β3 large enough, the probabil-

ity of this falling into [−1/2 + δ, 1/2− δ] can be made below α3/2 and this event is a superset of ν̂m > β3A
2.

Now apply Lemma 3 with α1 = β3. Note that ν̃m 6= ν̂m can only happen if ν1
c < ν̃m. Also Lemma

4 ensures that νm and ν̃m almost always coincide. Altogether, we have νm = ν̃m = ν̂m < β3A
2 with an

exceptional probability at most O(exp(−β2A
2)) + O(exp(−β1A

2)) + α3/2, this stays below α3 when A is
large enough, which completes the proof.

3.2 Diffusion from the middle

In the previous subsection we have seen that the process Yu(t) eventually has to reach the middle of the
interval [0, 1] as formulated in Proposition 7. Now we complement the analysis and consider the case when
the process is initialized from the middle, meaning Yu(0) ∈ [1/2 − δ, 1/2 + δ]. Intuitively, we expect the
process to evolve as a random walk with independent Gaussian increments. However, we have to be careful
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as boundary effects might alter the behavior of Yu(t) when it moves near the ends of the interval [0, 1]. In
this subsection we provide the techniques to estimate these boundary effects which will allow to conclude
that the mixing of a random walk still translates to comparable mixing of Yu(t).

Let W (t) be a random walk with i.i.d. N (0, 1/(2A2)) increments, starting from W (0) := Yu(0). Our goal
is to couple W (t) with Yu(t) which only has a chance as long as W (t) stays within [0, 1].

Definition 8. Let ν2
c := min{s : W (s) /∈ [0, 1]}.

Lemma 9. There exist a coupling of the processes Yu and W such that Yu(t) = W (t) whenever t < ν2
c .

Proof. Assume the coupling holds until t − 1, having Yu(t − 1) = W (t − 1). Let ζ ∼ N (0, 1/(2A2)) be
independent from the past, then define W (t) = W (t− 1) + ζ. For Yu(t), accept Yu(t− 1) + ζ if it is in [0, 1]
otherwise redraw it according to π(·, Yu(t− 1)).

The same values are obtained for the two processes at t except if W (t) is outside [0, 1]. This is exactly
the event we wanted to indicate with ν2

c when we allow the two processes to decouple.

Lemma 10. For any α4 > 0 there exists β4 > 0 with the following property. For A large enough, if
Yu(0) ∈ [1/2− δ, 1/2 + δ] there holds P (ν2

c < α4A
2) < β4. We also have β4 → 0 as we choose α4 → 0.

Proof. We need to control the minimum and the maximum of a random walk where we use the following
result of Erdős and Kac [4]:

Theorem 11 (Erdős-Kac). Let ξ1, ξ, . . . i.i.d. random variables, Eξk = 0, D2ξk = 1. Let Sk = ξ1 + ξ2 +
. . .+ ξk. Then for any α ≥ 0

lim
n→∞

P (max(S1, S2, . . . , Sn) < α
√
n) =

√
2

π

∫ α

0

exp(−x2/2)dx.

Translating to the current situation, now that we use an initial value Yu(0) ∈ [1/2 − δ, 1/2 + δ] as a
reference, we want an upper bound on the probability that the partial sums generating W (t) never exceed
1/2 − δ (nor they go below −1/2 + δ). The increments have variance 1/(2A2) and the number of steps is
α4A

2. Formally,

P
(
max(0,W (1)−W (0), . . . ,W (α4A

2)−W (0)) < 1/2− δ
)

= P

(
max(0,W (1)−W (0), . . . ,W (α4A

2)−W (0))
√

2A <
1− 2δ√

2α4

√
α4A2

)
→
√

2

π

∫ 1−2δ√
2α4

0

exp(−x2/2)dx.

Now ν2
c < α4A

2 can only occur if this event fails and the maximum exceeds 1/2 − δ, meaning W (t) might
exceed 1, or alternatively, the minimum of the process goes below −1/2 + δ corresponding to W (t) possibly
leaving [0, 1] at 0. Consequently, we may fix any small ε > 0, then for any large enough A we get

P (ν2
c < α4A

2) ≤ 2

(
1−

√
2

π

∫ 1−2δ√
2α4

0

exp(−x2/2)dx

)
+ ε =: β4. (1)

Observe that the right hand side of the expression indeed converges to 0 as α4 → 0.

Proposition 12. There exists a constant α5 > 0 such that for A large enough, if Yu(0) ∈ [1/2− δ, 1/2 + δ]
we have

‖L(Yu(α5A
2))− πu‖TV < 1/3.

Proof. We introduce α5 as a parameter. We will find sufficient conditions that ensure the claim of the
proposition to hold, then pick a α5 that satisfies the conditions found.
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We first compare two simpler distributions, that of W (α5A
2) and the uniform µ. By the definition of

W (t), the distribution of W (α5A
2) is N (Yu(0), α5/2).

‖L(W (α5A
2))− µ‖TV =

1

2

∫ ∞
−∞

∣∣∣∣exp(−(x− Yu(0))2/α5)
√
α5π

− 1[0,1](x)

∣∣∣∣ dx
The integrand has the form |a − b| which we replace by a + b − 2 min(a, b) (knowing these variables are
non-negative). Also, as the probability density functions integrate to 1, we get

‖L(W (α5A
2))− µ‖TV = 1−

∫ ∞
−∞

min

(
exp(−(x− Yu(0))2/α5)

√
α5π

,1[0,1](x)

)
dx

= 1−
∫ 1

0

min

(
exp(−(x− Yu(0))2/α5)

√
α5π

, 1

)
dx

≤ 1 + 2δ −
∫ 1+δ

−δ
min

(
exp(−(x− 1/2)2/α5)

√
α5π

, 1

)
dx =: γ.

(2)

The last inequality follows because the constant term is increased by 2δ, so is the length of the domain of the
integration but the integrand is bounded above by 1. This step also involves an implicit change of variable
depending on Yu(0), and it results in a final expression independent of this starting condition. The γ we get
is also independent of A, it does depend on δ but has a limit as δ → 0.

The claim of the lemma is about two other distributions, now we relate them to the ones just compared.
Using Lemma 10 for α4 = α5 we know that Yu(t) and W (t) can be coupled well up to t = α5A

2, which
directly implies

‖L(Yu(α5A
2))− L(W (α5A

2))‖TV ≤ β4, (3)

where β4 is the constant given by Lemma 10.
To compare πu with µ we show πu converges to µ in total variation as A→∞. For every x ∈ [0, 1] define

pu(x) =
A√
π

∫ 1−x

−x
ϕ(y)dy,

this is a function proportional to the density of πu. By standard Gaussian tail estimates for all x ∈ (0, 1) we
get

1− exp(−A2x2)

2
√
πAx

− exp(−A2(1− x)2)

2
√
πA(1− x)

≤ pu(x) ≤ 1.

Hence for all x ∈ (0, 1), pu(x)→ 1 as A→∞. These are uniformly bounded functions, so
∫ 1

0
pu → 1. The

expression to consider for the convergence of the distributions is

‖µ− πu‖TV =
1

2

∫ 1

0

∣∣∣∣∣1− pu(x)∫ 1

0
pu

∣∣∣∣∣ dx.
Here 1/

∫ 1

0
pu is converging to 1 and is therefore bounded after some threshold, so the functions are eventually

uniformly bounded and pointwise converging to 0. Thus the integrals also converge, and we get

lim
A→∞

‖µ− πu‖TV = 0. (4)

We can now combine our bounds of (2), (3) and (4):

‖L(Yu(α5A
2))− πu‖TV ≤ ‖L(Yu(α5A

2))− L(W (α5A
2))‖TV + ‖L(W (α5A

2))− µ‖TV

+ ‖µ− πu‖TV < β4 + γ + ε,

where ε > 0 can be as small as wanted by setting A large enough. The proposition holds if we can ensure
this sum to be small enough.
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Note that a strong compromise is present for the choice of the constant α5. In (3) we want to limit how
likely the boundaries of the unit interval are to be reached, at the same time in (2) we want to show that
Yu(s) is already spread out to some extent.

Still, a specific choice is possible. For α5 = 0.10 Lemma 10 provides β4 ≈ 0.051 when using δ = ε = 0
and computer calculations for (1). By choosing δ, ε > 0 but small enough, trusting computers but not too
much, we can safely say β4 < 0.06. In (2) using the same choice of α5 we numerically get γ ≈ 0.263 for
δ = ε = 0. Once again we allow a safety margin to only claim β4 + γ + ε < 1/3.

4 Overall mixing

We are now ready to establish mixing time bounds for the process we understand the best, Yu(t), then we
will translate those results to the original process of interest X(t).

Let us define
d(t) := sup

Yu(0)∈[0,1]

‖L(Yu(t))− πu‖TV,

which measures the distance from the stationary distribution from the worst starting point. We can give
good bounds based on the previous sections:

Lemma 13. There exists a constant β6 > 0 such that d(β6A
2) < 4/9.

Proof. Intuitively, from any starting point we can first wait for the process to reach the middle and then let
the diffusion happen from there, as these are components we can already control.

Let us apply Proposition 7 with α3 = 1/9 providing a certain β3. Once the process is in the middle part
[1/2 − δ, 1/2 + δ] we know by Proposition 12 that in the subsequent α5A

2 steps sufficient diffusion occurs.
Let β6 = β3 + α5.

Formally, fix Yu(0) ∈ [0, 1]. We perform our calculations by conditioning on the value of νm.

‖L(Yu((β3 + α5)A2))− πu‖TV =

∥∥∥∥∥
∞∑
s=0

P (νm = s)L(Yu((β3 + α5)A2) | νm = s)− πu

∥∥∥∥∥
TV

.

Conditioned on νm = s, Yu(s) ∈ [1/2− δ, 1/2 + δ], therefore Proposition 12 provides ‖L(Yu(s+α5A
2) | νm =

s) − πu‖TV < 1/3. We use this for s ≤ β3A
2, then performing β3A

2 − s more steps can only decrease this
distance, see [6, Chapter 4] for a detailed discussion about this. For s > β3A

2 we use the trivial bound on
the total variation distance. We get

‖L(Yu((β3 + α5)A2))− πu‖TV ≤
β3A

2∑
s=0

P (νm = s) · 1

3
+ P (νm > β3A

2) · 1 ≤ 1

3
+ α3 =

4

9
.

A slight variation of d(t) compares the distribution of the process when launched from two different
starting points.

d̄(t) := sup
Y 1
u (0),Y 2

u (0)∈[0,1]

‖L(Y 1
u (t))− L(Y 2

u (t))‖TV,

Standard results provide the inequalities d(t) ≤ d̄(t) ≤ 2d(t) and the submultiplicativity d̄(s+ t) ≤ d̄(s)d̄(t),
see [6, Chapter 4]. The results therein are given for finite state Markov chains but are straightforward to
translate to the current case of absolutely continuous distributions and transition kernels.

Proposition 14. For any 0 < α7 < 1 there exists β7 > 0 such that

tmix(Yu, α7) ≤ β7A
2.
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Proof. Using Lemma 13 for any k ≥ 1 we get

d(kβ6A
2) ≤ d̄(kβ6A

2) ≤ (d̄(β6A
2))k ≤ (2d(β6A

2))k ≤
(

8

9

)k
.

For k = dlogα7/ log(8/9)e this is less than α7 thus by setting β7 = β6dlogα7/ log(8/9)e the process will be
close enough to the stationary distribution as required at t = β7A

2.

Lemma 15. The mixing time of Yu and Y are nearly the same, for any 0 < α7 < 1

tmix(Y, α7) = tmix(Yu, α7) + 1.

Proof. First, we use that the total variation distance between the marginals is at most the distance between
the overall distributions. Consequently, for any t we have ‖L(Yu(t− 1))− πu‖TV ≤ ‖L(Y (t))− π‖TV. This
gives tmix(Y, α7) ≥ tmix(Yu, α7) + 1.

For the other direction, assume ‖L(Yu(t)) − πu‖TV ≤ α7 for some t. This means there is an optimal
coupling with a random variable Ỹ 1

u having distribution πu such that P (Yu(t) 6= Ỹ 1
u ) ≤ α7. As Ỹ 1

u has
distribution πu, it is possible to draw an additional random variable Ỹ 2

u to get (Ỹ 2
u , Ỹ

1
u ) with distribution π.

This is the same step when generating Yu(t + 1) from Yu(t) thus we may keep the above coupling
whenever already present. Therefore we have P

(
(Yu(t + 1), Yu(t)) 6= (Ỹ 2

u , Ỹ
1
u )
)
≤ α7 which can also be

written as ‖L(Y (t+ 1))− π‖TV ≤ α7. This implies tmix(Y, α7) ≤ t+ 1, completing the proof.

We are now ready to prove the main theorem of the paper, as stated in the introduction.

Theorem 1. Let X(t) be the coordinate Gibbs sampler for the diagonal distribution. For any 0 < α < 1
there exists β > 0 such that for large enough A

tmix(X,α) ≤ βA2.

Proof. We use Proposition 14 with α7 = α/2 and get a constant β7 such that tmix(Yu, α/2) ≤ β7A
2 and by

Lemma 15 also tmix(Y, α/2) ≤ β7A
2 + 1. At each step the distribution of X∗ and Y might differ only by

flipping along the diagonal, which does not change the distance from the (symmetric) π thus also leaves the
mixing time the same so we get tmix(X∗, α7/2) ≤ β7A

2 + 1.
The definition of X∗ was based on the observation that when the same coordinate is rerandomized

repeatedly, no additional mixing happens and the values at that coordinate simply get overwritten. Let us
now quantify this effect, counting how many times did the direction of randomization change:

N(t) := |{s : 1 ≤ s ≤ t− 1, r(s) 6= r(s+ 1)}|.

With this notation we see that L(X(t) | N(t) = k, r(1) = V ) = L(X∗(k + 1)) for all t ≥ 1.
Without the loss of generality we now focus on the case of r(1) = V . Let us express the distribution of

X(t) conditioning on the value of N(t).

L(X(t) | r(1) = V ) =

t−1∑
k=0

P (N(t) = k)L(X∗(k + 1)) =

t−1∑
k=0

1

2t−1

(
t− 1

k

)
L(X∗(k + 1)).

We substitute t = 3β7A
2 and evaluate the total variation distance from π.

‖L(X(3β7A
2) | r(1) = V )− π‖TV ≤

t−1∑
k=0

1

2t−1

(
t− 1

k

)
‖L(X∗(k + 1))− π‖TV

≤ P (Binom(3β7A
2 − 1, 1/2) < β7A

2) · 1 + 1 · ‖L(X∗(β7A
2 + 1))− π‖TV

≤ exp(−εβ7A
2) +

α

2
.

The last line holds with some positive ε by Hoeffding’s inequality for the Binomial distribution and by
substituting the upper bound on the total variation distance when we know k is above the mixing time. For
large enough A this is below α.

By symmetry, the same bound holds for L(X(3β7A
2) | r(1) = U) and by convexity it is also true for the

mixture of the two, the unconditional distribution of X(3β7A
2). This concludes the proof with β = 3β7.
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Finally, let us comment on the multitude of constants αi, βi appearing throughout the proofs, verifying
that they can be consistently chosen when needed. First, a small enough δ > 0 has to be picked for the proof
of Proposition 12 which also relies on Lemma 10. Once it is fixed, observe that in the remaining Sections
3.1 and 4 all the constants only depend on other ones with lower indices, with the last α, β of Theorem 1
also depending on some previous ones. This excludes the issue of circular dependence.

5 Further estimates

In this section we complement the main result Theorem 1 by a lower bound showing that the order of A2 is
exact and by demonstrating the evolution of the distribution via numerical simulations.

Such a lower bound is plausible once having Lemma 9 and Lemma 10, these roughly say that when
starting from the middle Yu behaves like a random walk for order of A2 steps and reaches only constant
distance in order of A2 steps. Let us proceed by forming a formal argument.

Theorem 16. Let X(t) be the coordinate Gibbs sampler for the diagonal distribution. There exists constants
α′, β′ > 0 such that for large enough A

tmix(X,α′) > β′A2.

First of all, to bound the mixing time from below it is sufficient to give a lower bound on the number
of steps needed for a single starting point. In this spirit, we set X(0) = (1/2, 1/2). With this choice, the
arguments in Section 3.2 can be applied.

Set S = [0, 1/4]2 ∪ [3/4, 1]2. Once we prove π(S) − P (X(β′A2) ∈ S) > α′ for a proper choice of α′, β′

that warrants a large total variation distance at the time β′A2 and confirms our bound for the mixing time.

Lemma 17. π(S) ≥ 1/8.

Proof. If we divide the unit square to 4-by-4 equal size smaller squares, then S is composed of two of these
smaller squares, see Figure 1. It is enough to show that the selected squares forming S have greater or equal

Figure 1: 4-by-4 division of the unit square to smaller squares. Horizontal and vertical intervals are labeled
with letters for easier reference. The shaded area represents S.

probability than the other squares w.r.t. π, this directly confirms π(S) ≥ 2/16 = 1/8.
To verify this, we compare the unnormalized density ϕ on them. We use the simple inequality that for

u, v ∈ [0, 1/4] and any x ≥ 0 we have

ϕ(u− v) ≥ ϕ(u− (1/2− v + x)).

Indeed, note that ϕ(y) is monotone decreasing with |y|. Then for u ≥ v, x = 0 an easy comparison of the
arguments provides the bound, while the other cases follow similarly. Observe that for x = 0 this inequality
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compares ϕ at some point and its reflection to the line v = 1/4. Setting x > 0 corresponds to a further shift
increasing the v coordinate after the reflection.

Using this we see that the points of the small square labeled by (a, a) in Figure 1 correspond to the points
of (a, b) after a reflection so ϕ is pointwise larger on (a, a) by the above inequality. The same comparison
holds against (a, c), (a, d) where an additional shift is necessary besides the reflection. Consequently, π is
maximal for the (a, a) square compared to the others in its column.

Additionally, note that ϕ(u− v) is invariant under the shift of (u, v) in the direction (1, 1). Therefore π
is exactly the same for the four squares on the diagonal. Furthermore, all the other squares are diagonally
shifted and/or reflected (w.r.t. the diagonal) copies of the ones considered above, where we have seen that
their probability is upper bounded by the probability of the square (a, a). The distribution π is symmetric
w.r.t. the diagonal, so we conclude that (a, a) (and therefore also (d, d)) have indeed maximal probability
among all squares.

Lemma 18. For any α′1 > 0 there exists β′1 > 0 such that for large enough A any t ≤ β′1A2 satisfies

P (Y (t) ∈ S) < α′1.

Proof. We want to rely on the previous observations that Yu(t) behaves like a random walk for a while with
certain Gaussian increments. Using Lemma 10 we can choose α4 > 0 so that the corresponding β4 goes
below α′1/2. Let us denote this α4 by β′2 for convenience.

Also, there exists β′3 > 0 so that

P (N (1/2, β′3/2) ∈ [0, 1/4] ∪ [3/4, 1]) < α′1/2,

and clearly the same probability bound holds if the variance is decreased. Fixing Yu(0) = W (0) = 1/2, the
distribution of W (β′3A

2) is exactly N (1/2, β′3/2).
To join our estimates we form

P (Y (t) ∈ S) ≤ P (Yu(t) ∈ [0, 1/4] ∪ [3/4, 1]) ≤ P (W (t) 6= Yu(t)) + P (W (t) ∈ [0, 1/4] ∪ [3/4, 1]).

For t ≤ β′2A
2 the first term is below α′1/2 as it is an upper bound for the decoupling of W,Yu to happen.

For t ≤ β′3A2 the second term is below α′1/2. Altogether, if t ≤ min(β′2, β
′
3)A2,

P (Y (t) ∈ S) < α′1.

Therefore by choosing β′1 = min(β′2, β
′
3) we complete the proof.

Proof of Theorem 16. Apply Lemma 18 with α′1 = 1/16 to get some β′1. The distribution of X(β′1A
2) is a

mixture of the distributions of Y (t) and their diagonally flipped version for t ≤ β′1A
2, where t corresponds

to how many times the rerandomization happened in a new direction. The set S is symmetric w.r.t. the
diagonal so for P (X(β′1A

2) ∈ S) we can simply say it is a convex combination of P (Y (t) ∈ S), t ≤ β′1A
2

without needing any correction for the diagonal flip. Now by Lemma 18 each of these probabilities are below
α′1, therefore it follows that

P (X(β′1A
2) ∈ S) < α′1 =

1

16
.

Comparing this with the statement of Lemma 17 we get

π(S)− P (X(β′1A
2) ∈ S) >

1

16
.

Consequently ‖L(X(β′1A
2)) − π‖TV > 1/16, so tmix(X, 1/16) > β′1A

2. Thus the theorem holds with the
choice α′ = 1/16, β′ = β′1.

Finally, we present numerical approximations of the evolution of the distribution over time for different
values of A. The unit square is discretized with a resolution of 500× 500 and the distribution is calculated
along these points. The starting point is always (0, 0) at the lower left corner. The results are presented in
Figure 2 for different A and different t. Both the convergence to the stationary distribution is visible and
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also how this distribution becomes more concentrated along the diagonal for higher values of A. We also
computed the time necessary to get within a total variation distance of 1/4 of the stationary distribution, for
A = 10, t = 71, for A = 50, t = 1858, for A = 250, t = 47233 is needed. This is a good proxy for the mixing
time, note that only a single (but intuitively bad) starting point was tested and the discretization might have
introduced some error. Still, the quadratic growth of t with respect to the increase of A is already apparent.

(a) A = 10, t = 100 (b) A = 10, t = 1000 (c) A = 10, t = 10000

(d) A = 50, t = 100 (e) A = 50, t = 1000 (f) A = 50, t = 10000

(g) A = 250, t = 100 (h) A = 250, t = 1000 (i) A = 250, t = 10000

Figure 2: Density of L(X(t)) for different parameters A and t. Darker colors represent higher values (shades
scale individually for each image).

Acknowledgments

The author would like to express his thanks to Persi Diaconis and György Michaletzky for their inspiring
comments and to the American Institute of Mathematics for the stimulating workshop they hosted and
organized.

References

[1] P. Diaconis, The Markov chain Monte Carlo revolution, Bulletin of the American Mathematical Society,
46 (2009), pp. 179–205.

[2] P. Diaconis and L. Saloff-Coste, What do we know about the Metropolis algorithm?, Journal of
Computer and System Sciences, 57 (1998), pp. 20–36.

12



[3] M. Dyer, A. D. Flaxman, A. M. Frieze, and E. Vigoda, Randomly coloring sparse random graphs
with fewer colors than the maximum degree, Random Structures & Algorithms, 29 (2006), pp. 450–465.
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