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Abstract

This paper is devoted to the qualitative properties of discretized parabolic operators,
such as nonnegativity and nonpositivity preservation, maximum/minimum principles
and maximum norm contractivity. In the linear case, earlier papers of the authors
(Faragó and Horváth in SIAM Sci Comput 28:2313–2336, 2006, IMA J Numer Anal
29:606–631, 2009) have established the connections between the above qualitative
properties and have given sufficient conditions for their validity. The present paper
extends the above results to nonlinear discretized parabolic operators, also motivated
by the authors’ recent paper (Faragó and Horváth in J Math Anal Appl 448:473–497,
2017), which has given related results on the continuous PDE level. A systematic study
is presented, ranging from general discrete mesh operators to proper finite element
applications.
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1 Introduction and preliminaries

The qualitative properties of the continuous and discrete solutions of partial differen-
tial equations are under intensive research nowadays. Namely, beyond the convergence
of a numerical method, it is also important to preserve the characteristic qualitative
properties of the modeled phenomenon to the numerical solution. This guarantees
that the numerical scheme actually used on computers is reliable and efficient. The
preservation of the properties can be achieved by a deep analysis of the schemes and
it is generally guaranteed with proper assumptions for the spatial discretization and
the time-step. For linear parabolic problems the most extensively studied properties
are the different maximum and minimum principles, the nonnegativity and nonpos-
itivity preservation and the maximum norm contractivity. Such results can be found
in the works [1,5,7,15,16,20–22,24–27] and in the references therein. Not only the
preservation of the qualitative properties are important themselves but also their rela-
tions. These relations were revealed in an organized framework using discrete mesh
operators for linear discrete parabolic problems in an earlier paper of the authors [6].

In the recent decades the interest has turned to the more complicated case of various
nonlinear problems in this context, see e.g. [9,12–14,17,19,23,28] where sufficient con-
ditions are given for the qualitative properties, usually related to maximum/minimum
principles. However, a study of the relations between such properties has not been
carried out yet. Our goal is to give a systematic study on this topic for proper classes
of nonlinear problems. Besides the mentioned linear case [5,6], we are motivated by
the corresponding background on the continuous PDE level, on which we have derived
similar results for certain nonlinear parabolic operators in [3,8].

Let us consider the parabolic operator

N [u] ≡
∂u

∂t
− div

(
K (x, t,∇u)

)
+ q(x, t, u) (1)

in the cylinder Ω × (0, T ), where Ω is a bounded domain in R
d and T > 0 is a fixed

number. The coefficients K : Ω × (0, T ) × R
d → R

d and q : Ω × (0, T ) × R → R

are given sufficiently smooth functions. We also suppose that K (x, t, 0) = 0 and
q(x, t, 0) = 0. These conditions are not too restrictive, since the functions q and
K generally describe some reaction process and flux quantity, respectively, which
vanish in the absence of the given quantity. In [8], we have investigated the qualitative
properties of the operator (1) on the continuous level and revealed the implications
between its properties. For different versions of minimum and maximum principles
(SMP, SBMP, WMP, WBMP), nonnegativity and nonpositivity preservation (NNP,
NPP) and maximum norm contractivity (MNC), we have obtained the conditions
summarized in Fig. 1. We note that we have simplified the original figure to the case
of Dirichlet boundary conditions, and a similar figure applies to minimum principles
and nonnegativity preservation.

The goal of this paper is to derive the discrete versions of the above implications
and other statements of our previous paper [8]. Thereby we also properly extend our
earlier study on the linear parabolic case [5,6], where a diagram analogous to Fig. 1
has been given. We introduce general discrete mesh operators (DMOs), we define their
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Fig. 1 Connections between the qualitative properties of the nonlinear parabolic operator (1)

qualitative properties, we characterize the relations between them and give sufficient
conditions for the validity of these properties. Then we adapt this study to two-level
mesh operators, and finally we apply the results to establish the preservation of the
qualitative properties for proper finite element applications.

2 Nonlinear discrete parabolic mesh operators and the relations
between their qualitative properties

Let Ω be again a bounded domain in R
d (d = 1, 2, . . .) with the usual notation ∂Ω

for its boundary. The space mesh is described by the sets

P = {x1, x2, . . . , xN } and P∂ = {xN+1, xN+2, . . . , xN+N∂
},

consisting of distinct points of Ω and ∂Ω , respectively. We define N̄ = N + N∂ and
P̄ = P ∪ P∂ . Let T be again a positive number and Δt a positive time-step such
that T = ΔtnT for some positive integer nT . For the time mesh we introduce the set
R = {t ∈ R | t = tn := nΔt, n = 0, 1, . . . , nT }. For any t ∈ R we introduce the
notations

Rt :={τ ∈ R | 0<τ < t}, Rt̄ :={τ ∈ R | 0<τ ≤ t}, R0
t̄
:={τ ∈ R | 0≤τ ≤ t}
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532 R. Horváth et al.

and the sets

Qt = P × Rt , Q̄t = P̄ × R0
t̄
, Q t̄ = P × Rt̄ , Γt = (P∂ × R0

t̄
) ∪ (P × {0}).

Definition 1 A mapping from the space of real-valued functions defined on Q̄T to
the space of real-valued functions defined on QT is called a discrete mesh operator

(DMO).

Thus, a DMO assigns mesh functions to mesh functions. The domain of a DMO D,
that is the space of real-valued functions defined on Q̄T , is denoted by dom(D). We
define the qualitative properties of DMOs in an analogous way as they were defined
for the nonlinear partial differential operator (1) in [8]. Inequalities are understood
pointwise on the whole domain of the given mesh function.

Definition 2 A DMO D satisfies

(a) the discrete nonnegativity preservation (DNNP) property if:

v ∈ dom(D), t ∈ RT , D[v]|Q t̄
≥ 0, v|Γt ≥ 0, ⇒ v|Q t̄

≥ 0;

(b) the discrete nonpositivity preservation (DNPP) property if:

v ∈ dom(D), t ∈ RT , D[v]|Q t̄
≤ 0, v|Γt ≤ 0, ⇒ v|Q t̄

≤ 0;

(c) the discrete weak boundary maximum principle (DWBMP) and the discrete strong

boundary maximum principle (DSBMP), respectively, if for all t ∈ RT and v ∈
dom(D) with D[v]|Q t̄

≤ 0:

max v|Q̄t
≤

{
max{0, max v|Γt } (DWBMP),

max v|Γt (DSBMP)

(DSBMP means that v attains its maximum on the parabolic boundary, and
DWBMP means the same only for a nonnegative maximum);

(d) the discrete weak boundary minimum principle (DWBmP) and the discrete strong

boundary minimum principle (DSBmP), respectively, if for all t ∈ RT and v ∈
dom(D) with D[v]|Q t̄

≥ 0:

min v|Q̄t
≥

{
min{0, min v|Γt } (DWBmP),

min v|Γt (DSBmP)

(DSBmP means that v attains its minimum on the parabolic boundary, and
DWBmP means the same only for a nonpositive minimum);

(e) the discrete weak maximum principle (DWMP) and the discrete strong maximum

principle (DSMP), respectively, if for all t ∈ RT and v ∈ dom(D):
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max v|Q̄t
≤

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t · max

{
0, sup

Q t̄

D[v]
}

+ max{0, max v|Γt } (DWMP),

t · max

{
0, sup

Q t̄

D[v]
}

+ max v|Γt (DSMP);

(DWMP and DSMP complete the bound in DWBMP and DSBMP, respectively,
with a term including D[v] when the latter has no prescribed sign);

(f) the discrete weak minimum principle (DWmP) and the discrete strong minimum

principle (DSmP), respectively, if for all t ∈ RT and v ∈ dom(D):

min v|Q̄t
≥

⎧
⎪⎪⎨
⎪⎪⎩

t · min

{
0, inf

Q t̄

D[v]
}

+ min{0, min v|Γt } (DWmP),

t · min

{
0, inf

Q t̄

D[v]
}

+ min v|Γt (DSmP);

(DWmP and DSmP complete the bound in DWBmP and DSBmP, respectively,
with a term including D[v] when the latter has no prescribed sign);

(g) the discrete maximum norm contractivity (DMNC) property if for any t ∈ RT

and any two functions v1, v2 ∈ dom(D) such that

D[v1] = D[v2] in Q t̄ , v1|P∂×R0
t̄

= v2|P∂×R0
t̄
,

the relation

max
x∈P̄

|v1(x, t) − v2(x, t)| ≤ max
x∈P̄

|v1(x, 0) − v2(x, 0)|

is valid.

Remark 1 (i) The above qualitative properties are formulated for mesh operators sim-
ilarly to the linear case [6]. The analogous properties for corresponding systems
of equations can be formulated in an obvious way. For example, the DNNP simply
expresses that nonnegative data yield a nonnegative solution.

(ii) We have defined the maximum and minimum principles separately. It can be
checked easily that if a DMO D possesses the property D[−v] = −D[v] (e.g. if
D is linear) for all v ∈ dom(D) then the maximum principles are equivalent to
the corresponding minimum principles and the DNPP is equivalent to the DNNP.

We start with some straightforward relations between the above properties.

Proposition 1 For a DMO, the discrete strong maximum principles DSMP and

DSBMP imply the discrete weak maximum principles DWMP, DWBMP, respectively.

The discrete maximum principles DSMP and DWMP imply the discrete boundary max-

imum principles DSBMP and DWBMP, respectively. Similar statements are true for

the minimum principles. If the operator satisfies one of the maximum (resp. minimum)

principles then it also preserves the nonpositivity (resp. nonnegativity).
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Proof These follow directly from the above definitions. 
�

Now we investigate the implications in the opposite direction, that is we formulate
conditions under which the DNPP implies the maximum principles. To this end, we
introduce two special grid functions, the constant one 11 : Q̄T → R and the “function
t” tt : Q̄T → R, respectively:

11(x, t) := 1 for all (x, t) ∈ Q̄T , tt(x, t) := t for all (x, t) ∈ Q̄T .

The restrictions of these functions to QT will be denoted in the same way.

Theorem 1 Let a DMO D possess the following property: for all functions v ∈
dom(D) and for all nonnegative numbers α and β, the relation

D[v − αtt − β11] ≤ D[v] − α11 (∀α ≥ 0, β ≥ 0) (2)

is satisfied. Then the DNPP implies the DWMP and the DNNP implies the DWmP.

Proof Assume that the DMO D possesses the DNPP. Let v be a fixed function from
dom(D) and let t ∈ RT be a fixed value. Let

M1 := max

{
0, sup

Q t̄

D[v]
}

, M2 := max{0, max v|Γt }.

For the DWMP to hold, we must prove that v(x, τ ) ≤ M1 t + M2 (∀(x, τ ) ∈ Q̄t ). Let
us define the new grid function ṽ = v − M1tt − M211. Then, based on the assumption
of the theorem, we have

D[ṽ] = D[v − M1tt − M211] ≤ D[v] − M111,

which relation shows that D[ṽ] ≤ 0 on Q t̄ . Moreover

ṽ = v − M1tt − M211 ≤ v − M211 ≤ 0

on Γt . The discrete nonpositivity preservation property (DNPP) implies that ṽ ≤ 0 in
Q t̄ , thus also in Q̄t , i.e. v ≤ M1tt + M2 ≤ M1t + M2 in Q̄t as required.

The other implication regarding the minimum principle can be proven similarly.
The values M1 and M2 must be defined with minimums and infimums, and condition
(2) should be applied with the function v := v − M1tt − M211 and with the parameters
α = −M1 and β = −M2. 
�

Theorem 2 Let a DMO D possess the following property: for all functions v ∈
dom(D) and for all nonnegative number α and real number β, the relation

D[v − αtt − β11] ≤ D[v] − α11 (∀α ≥ 0, β ∈ R) (3)

is satisfied. Then the DNPP implies the DSMP and the DNNP implies the DSmP.
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Proof The proof for DSMP is similar to the proof of Theorem 1, because the condition
of the theorem guarantees the given estimation independently of the sign of β. To
complete the proof we only need to redefine the parameter M2 as M2 := max v|Γt .
The case of DSmP can be obtained similarly. 
�

Remark 2 Note that the conditions of Theorems 1–2 are generalizations of the condi-
tions obtained for linear DMOs in [6]: D[11] ≥ 0 (resp. D[11] = 0) and D[tt] ≥ 1.
This follows simply from D[v −αtt −β11] = D[v]−αD[tt]−βD[11] ≤ D[v]−α11.

Now we consider the implication of the DMNC property. Similarly to the continuous
case in [8], we cannot deduce the DMNC of D directly from the DNNP and DNPP
properties of D. Instead, we must require the same properties for some linearized
version of the operator D, the so-called divided difference mesh operator, which is
generally used to approximate derivatives.

Theorem 3 Let us suppose that the DMO D satisfies the following assumptions:

(i) D[v − β11] ≤ D[v] is satisfied for all nonnegative values β and for all functions

v ∈ dom(D);

(ii) for all fixed functions w̄, w̃ ∈ dom(D), there exists a DMO Lw̄,w̃ that possesses

both the DNNP and the DNPP properties, moreover, applying this operator to

the function w̄ − w̃, we obtain

Lw̄,w̃[w̄ − w̃] = D[w̄] − D[w̃].

Then the DMO D possesses the DMNC property.

Proof Let us suppose that v1 and v2 are two arbitrary functions from dom(D) with
the properties

D[v1] = D[v2] in Q t̄ , v1|P∂×R0
t̄

= v2|P∂×R0
t̄
, (4)

where t ∈ RT is a fixed number. With the notation ζ := maxx∈P̄ |v1(x, 0)− v2(x, 0)|
(ζ is a nonnegative number) we have to prove that

max
x∈P̄

|v1(x, t) − v2(x, t)| ≤ ζ. (5)

Let us consider the function w− = v1 − v2 − ζ11. This function is nonpositive on Γt .
According to assumption (ii), there exists a DMO Lv1,v2+ζ11, such that Lv1,v2+ζ11[v1 −
v2−ζ11] = D[v1]−D[v2+ζ11] ≤ D[v1]−D[v2] = 0. Here we applied assumption (i)
(with the choices v = v2+ζ11 and β = ζ ) and condition (4). Thus Lv1,v2+ζ11[w−] ≤ 0.
Because Lv1,v2+ζ11 is nonpositivity preserving, this implies that w− ≤ 0 on Q t̄ (thus
also on Q̄t ), that is

max
x∈P̄

{v1(x, t) − v2(x, t)} ≤ ζ. (6)

Similarly, let us consider the function w+ = v1 − v2 + ζ11. This function is nonneg-
ative on Γt . According to assumption (ii), there exists a DMO Lv1,v2−ζ11, such that
Lv1,v2−ζ11[v1−v2+ζ11] = D[v1]−D[v2−ζ11] ≥ D[v1]−D[v2] = 0. Here we applied
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Fig. 2 Connections between the qualitative properties of a discrete nonlinear mesh operator

assumption (i) (with v = v2 and β = ζ ) and condition (4). Thus Lv1,v2−ζ11[w+] ≥ 0.
Because Lv1,v2−ζ11 is nonnegativity preserving, this implies that w+ ≥ 0 on Q t̄ (thus
also on Q̄t ), that is maxx∈P̄ {v2(x, t) − v1(x, t)} ≤ ζ. This estimate together with (6)
shows the required estimate (5). 
�

The implications proven in this section are summarized in Fig. 2. For the discrete
minimum principles and the DNNP the figure would be similar.

In the next section, we formulate the above results and conditions for a special type
of DMOs: for the so-called two-level DMOs.

3 Two-level DMOs and the relations between their qualitative
properties

For the sake of simplicity, we denote the value of a mesh function v at the point (xi , tn)

by vn
i . Moreover, we introduce the column vectors

vn = [vn
1 , . . . , vn

N̄
]T , vn

0 = [vn
1 , . . . , vn

N ]T , vn
∂ = [vn

N+1, . . . , v
n

N̄
]T .

In many numerical solution methods of parabolic partial differential equations, such
as finite difference and finite element methods, DMOs appear in the following special
form:
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(D[v])n
i = (X

(vn)
1 vn − X

(vn−1)
2 vn−1)i , i = 1, . . . , N , n = 1, . . . , nT , (7)

where X
(vn)
1 , X

(vn−1)
2 ∈ R

N×N̄ are given matrices. Here the superscripts indicate
that the matrices may depend on the vectors vn and vn−1, that is on the values of
the mesh function v at the time levels tn and tn−1, respectively. These matrices may
depend also on the index n of the time level and on the time-step Δt , although for
the sake of simplicity we do not indicate this dependence in the notation. Because
in the computation of (D[v])n

i only the nth and (n − 1)th time levels are involved,
an operator in the form (7) is called a two-level discrete mesh operator (DMO2). To
shorten the writing of the formulas, we introduce the formal notation

J (w1, w2) := X
(w1)
1 w1 − X

(w2)
2 w2 (w1, w2 ∈ R

N̄ ).

Then (D[v])n = J (vn, vn−1). Our goal is to formulate the conditions of the
theorems in the previous section to DMO2s. Let us introduce the column vector
e := [1, . . . , 1]T ∈ R

N̄ . The N -element and the (N̄ − N )-element versions of this
vector will be denoted by e0 and e∂ , respectively.

Theorem 4 Condition (2) can be guaranteed for the DMO2 (7) by imposing the fol-

lowing assumption on the matrices X
(.)
1 and X

(.)
2 :

(W) J (w1 − ae, w2 − be) ≤ J (w1, w2) − a−b
Δt

e0 for all w1, w2 ∈ R
N̄ and for

all nonnegative values a ≥ b ≥ 0.

Proof It can be seen easily that condition (2) is equivalent with the condition

J (vn − αnΔte − βe, vn−1 − α(n − 1)Δte − βe) ≤ J (vn, vn−1) − αe0 (8)

(∀v ∈ dom(D), n ∈ {1, . . . , nT }, α ≥ 0, β ≥ 0) for DMO2s. Thus, let v be an
arbitrary fixed mesh function from dom(D), n ∈ {1, . . . , nT } a fixed number, and
α ≥ 0, β ≥ 0 two fixed nonnegative numbers. Assumption (W ) with the choices
a = αnΔt + β, b = α(n − 1)Δt + β, w1 = vn and w2 = vn−1 results in the required
condition (8) directly. 
�

Condition (3) can be guaranteed with a stricter condition, where the sign of the
parameters a and b is not fixed unlike in condition (W).

Theorem 5 Condition (3) can be guaranteed for the DMO2 (7) by imposing the fol-

lowing assumption on the matrices X
(.)
1 and X

(.)
2 :

(S) J (w1 − ae, w2 − be) ≤ J (w1, w2) − a−b
Δt

e0 for all w1, w2 ∈ R
N̄ and for all

values a ≥ b.

Proof We have to guarantee condition (8) again but now with arbitrary real values
β. The validity of the condition can be proven in a similar way as for the previous
theorem. 
�
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The letters W and S in the notations of the above assumptions indicate that these
assumptions guarantee the validity of the weak and strong maximum principles,
respectively. This is shown by the next theorem.

Theorem 6 If a DMO2 possesses the DNPP property and fulfills condition (W ), then

it possesses all the weak maximum principles DWMP and DWBMP. If a DMO2 pos-

sesses the DNPP property and fulfills condition (S), then it possesses all the maximum

principles DWMP, DSMP, DWBMP and DSBMP.

Similarly, if a DMO2 possesses the DNNP property and fulfills condition (W ), then

it possesses all the weak minimum principles DWmP and DWBmP. If a DMO2 pos-

sesses the DNNP property and fulfills condition (S), then it possesses all the minimum

principles DWmP, DSmP, DWBmP and DSBmP.

Proof It is a direct consequence of the previous theorems. 
�

Remark 3 For linear DMO2s the matrices X
(.)
1 and X

(.)
2 do not depend on the values

of the mesh function v. Let us denote these matrices just by X1 and X2, respectively.
In this case condition (W ) simplifies to the condition

−a(X1 − X2)e + X2(b − a)e ≤ −
a − b

Δt
e0, ∀a ≥ b ≥ 0.

Let us substitute the values of the parameters into the above relation. We obtain

−(αnΔt + β)(X1 − X2)e + X2(−αΔt)e ≤
−αΔt

Δt
e0 = −αe0, ∀α, β ≥ 0

(remember that α and β are arbitrary nonnegative numbers). This condition is satisfied
if (X1− X2)e ≥ 0 and Δt(n(X1− X2)e+ X2e) ≥ e0. Thus we obtained the conditions
derived for linear DMO2s in [6].

Condition (S) gives back also the conditions derived in [6] for linear DMO2s:
(X1 − X2)e = 0, Δt X2e ≥ e0. Namely, condition (S) has the form

−(αnΔt + β)(X1 − X2)e + X2(−αΔt)e ≤ −αe0, ∀α ≥ 0, β ∈ R,

which is trivially satisfied under the above conditions.

Until this point we have investigated only the implications between certain qual-
itative properties of DMO2s. Now we give sufficient conditions for the DNNP and
DNPP properties. In view of Theorem 6, these conditions together with the condition
(S) will guarantee all the maximum–minimum principles.

Let us introduce the following partitions of the matrices X
(.)
1 and X

(.)
2 :

X
(.)
1 = [X

(.)
10 |X (.)

1∂ ], X
(.)
2 = [X

(.)
20 |X (.)

2∂ ], (9)

where X
(.)
10 and X

(.)
20 are square matrices from R

N×N , and X
(.)
1∂ , X

(.)
2∂ ∈ R

N×N∂ .
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Theorem 7 Let us suppose that the matrices in the definition of the DMO2 (7) possess

the following properties: for any z ∈ R
N̄ ,

(P1) z∂ ≤ 0, X
(z)
1 z ≤ 0 ⇒ z0 ≤ 0 (resp. z∂ ≥ 0, X

(z)
1 z ≥ 0 ⇒ z0 ≥ 0),

(P2) z ≤ 0 ⇒ X
(z)
2 z ≤ 0 (resp. z ≥ 0 ⇒ X

(z)
2 z ≥ 0).

Then DMO2 (7) possesses the DNPP (resp. DNNP) property.

Proof We prove the DNPP case. The DNNP case can be proven similarly. Let v ∈
dom(D) and t ∈ RT with the properties D[v]|Q t̄

≤ 0, v|Γt ≤ 0. We have to show
that v|Q t̄

≤ 0. This implication can be reformulated as follows. We have to show that

under the above conditions (P1)–(P2), the conditions X
(vn)
1 vn − X

(vn−1)
2 vn−1 ≤ 0,

v0 ≤ 0, vn
∂ ≤ 0 imply vn

0 ≤ 0 (n = 1, . . . , t/Δt). The nonpositivity of the vectors
vn

0 ≤ 0 can be shown recursively using the identity

X
(vn)
1 vn =

(
X

(vn)
1 vn − X

(vn−1)
2 vn−1

)
+ X

(vn−1)
2 vn−1,

where, due to assumption (P2), the right-hand side is nonpositive. Thus the left-hand
side is also nonpositive, and in view of the conditions vn

∂ ≤ 0 and (P1) we obtain that
vn

0 ≤ 0. This completes the proof. 
�

The following theorem gives joint conditions for DNPP and DNNP that are stronger
than (P1)–(P2) but can be checked more directly.

Theorem 8 If X
(.)
2 ≥ 0, X

(.)
1∂ ≤ 0 and X

(.)
10 is regular with (X

(.)
10)−1 ≥ 0 then the

DMO2 (7) possesses the DNPP and DNNP properties.

Proof To apply Theorem 7, we check that assumptions (P1)–(P2) are satisfied. Indeed,
the validity of (P2) is trivial. Moreover, condition (P1) is obtained in the following way.
The nonpositivity of X

(z)
1 z = X

(z)
10 z0 + X

(z)
1∂ z∂ and the relation X

(z)
1∂ z∂ ≥ 0 gives the

relation X
(z)
10 z0 ≤ 0. The nonpositivity of z0 can be seen after multiplication with the

nonnegative inverse matrix (X
(z)
10 )−1. Finally, the same arguments apply with reversed

signs as well. 
�

We close this section with the reformulation of the condition that guarantees the
DMNC property for DMO2s.

Theorem 9 Let us suppose that the DMO2 D satisfies the following assumptions:

(W=) J (w1 − ae, w2 − ae) ≤ J (w1, w2) for all w1, w2 ∈ R
N̄ and for all

nonnegative values a ≥ 0;

(L) for all fixed functions w̄, w̃ ∈ dom(D), there exists a DMO Lw̄,w̃ that pos-

sesses both the DNNP and the DNPP properties, moreover applying this operator

to the function w̄ − w̃ we obtain

Lw̄,w̃[w̄ − w̃] = D[w̄] − D[w̃].

Then the DMO2 (7) possesses the DMNC property.
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Proof Choosing a = β and using the form (7) of a DMO2, we obtain the conditions
of Theorem 3. 
�

Remark 4 We used the equality sign in the subscript because this condition can be
obtained from condition (W) with the setting a = b. Condition (L) is the same as
condition (ii) in Theorem 3.

4 Relations between the qualitative properties of the finite element
discretization of a nonlinear parabolic problem

In this section we apply the results of the previous section to the finite element (FE)
solution of a nonlinear parabolic problem. We consider the problem N [u] = f , where
N is the nonlinear operator (1) and f : QT → R is a given continuous function. We
will characterize the relations of the qualitative properties of these finite element
solutions, and formulate conditions that guarantee their validity.

4.1 Formulation and preliminaries

First we rewrite the equation N [u] = f in order to have proper product forms. Let us
define

r̃(x, t, ξ, ξ̄ ) :=
∫ 1

0
∂3q(x, t, sξ + (1 − s)ξ̄ )ds,

Ã(x, t, η, η̄) :=
[∫ 1

0
∂3 j

Kk(x, t, sη + (1 − s)η̄) ds

]

k, j=1,...,d

,

where ∂3 denotes the derivative w.r.t. the third argument of the function q, further,
Kk is the kth coordinate function of the vector function K and ∂3 j

denotes the partial
derivative according to the j th coordinate of the third argument of K . Using the
Newton–Leibniz formula, we have

r̃(x, t, ξ, ξ̄ )(ξ − ξ̄ ) = q(x, t, ξ) − q(x, t, ξ̄ ). (10)

Substituting ξ̄ = 0 into the above expression, we obtain

r(x, t, ξ)ξ = q(x, t, ξ) − q(x, t, 0) = q(x, t, ξ), (11)

where we used the simplified notation r(x, t, ξ) := r̃(x, t, ξ, 0) and applied the
assumption q(x, t, 0) = 0. Note that if q is nondecreasing w.r.t. ξ then r ≥ 0. A
similar procedure can be carried out for the vector function K , using the d × d matrix
function Ã:

Ã(x, t, η, η̄)(η − η̄) =
[∫ 1

0

d

ds
Kk(x, t, sη + (1 − s)η̄) ds

]

k=1,...,d

= K (x, t, η) − K (x, t, η̄). (12)
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In view of the assumption made earlier K (x, t, 0) = 0 and substituting η̄ = 0 into to
above expression, we can write

A(x, t, η)η = K (x, t, η) − K (x, t, 0) = K (x, t, η), (13)

where we used the simplified notation A(x, t, η) = Ã(x, t, η, 0). With the above tech-
nique the equation N [u] = f can be reformulated as

∂u

∂t
− div

(
A(x, t,∇u)∇u

)
+ r(x, t, u)u = f . (14)

The weak form of the equation can be formulated in a usual way as follows: find u

that is C1 w.r.t. t , u(., t) ∈ H1(Ω) for all t ∈ (0, T ), and u satisfies

∫

Ω

∂u

∂t
ν dx +

∫

Ω

(
A(x, t,∇u)∇u · ∇ν + r(x, t, u)uν

)
dx =

∫

Ω

f ν dx . (15)

(∀ν ∈ H1
0 (Ω), t ∈ (0, T )).

The standard semidiscretization of the problem can be carried out as follows. Let
Th be a finite element mesh over the spatial solution domain Ω ⊂ R

d , where h denotes
the usual discretization parameter. We choose basis functions denoted by φ1, . . . , φN̄

such that they satisfy the conditions

φi (x j ) = δi j , φi ≥ 0 (i = 1, . . . , N̄ ),

N̄∑

i=1

φi ≡ 1, (16)

where δi j is the Kronecker symbol. Note that the above requirements are fulfilled for
the standard linear, bilinear or prismatic finite elements. Let Vh and V 0

h denote the finite
element subspaces Vh = span{φ1, . . . , φN̄ } ⊂ H1(Ω), V 0

h = span{φ1, . . . , φN } ⊂
H1

0 (Ω), respectively. Then the semidiscrete problem for (15) reads as follows: find a
function uh = uh(x, t), uh(., t) ∈ Vh (t ∈ (0, T )) such that

∫

Ω

∂uh

∂t
νh dx +

∫

Ω

(
A(x, t,∇uh)∇uh · ∇νh + r(x, t, uh)uhνh

)
dx =

∫

Ω

f νh dx

(17)
(∀νh ∈ V 0

h , t ∈ (0, T )). We do not prescribe now the initial and boundary conditions,
these will be included in the studied properties as shown by Definition 2. We seek uh

in the form

uh(x, t) =
N̄∑

i=1

uh
i (t)φi (x). (18)

Inserting (18) into (17) with νh = φi and introducing uh(t) = [uh
1(t), . . . , uh

N̄
(t)]T ,

we are led to the following system of ordinary differential equations:

M
duh(t)

dt
+ S(uh(t))uh(t) = f h(t), (19)
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where

M = [Mi j ]N×N̄ , Mi j =
∫

Ω

φ j (x)φi (x) dx,

S(uh(t)) = S
(uh(t))
1 + S

(uh(t))
2 ,

S
(uh(t))
1 =

[(
S

(uh(t))
1

)
i j

]

N×N̄

, S
(uh(t))
2 =

[(
S

(uh(t))
2

)
i j

]

N×N̄

,

(
S

(uh(t))
1

)
i j

=
∫

Ω

A(x, t,∇uh)∇φ j · ∇φi dx,

(
S

(uh(t))
2

)
i j

=
∫

Ω

r(x, t, uh)φ jφi dx,

f h(t) = [ f h
i (t)]

N×1, f h
i (t) =

∫

Ω

f (x, t)φi (x) dx . (20)

The function uh = uh(t) is generally called the semidiscrete solution. In order to get
a fully discrete numerical scheme, we choose a time-step Δt and denote the approxi-
mation to uh(nΔt) and f h(nΔt) by vn and f n (for n = 0, 1, 2, . . . , nT ), respectively.

To discretize (19) in time, we apply the so-called θ -method with some given param-
eter θ ∈ (0, 1]. (The case θ = 0 is omitted for practical reasons, and it does not have
the advantage of explicitness unlike in the case of finite difference methods.) We thus
obtain a system of nonlinear algebraic equations

M
vn − vn−1

Δt
+θ S(vn)vn +(1−θ)S(vn−1)vn−1 = f (n,θ) := θ f n +(1−θ) f n−1, (21)

n = 1, . . . , nT . Let us introduce the well-defined matrix

P :=
(

diag

(∫

Ω

φi , . . . ,

∫

Ω

φN

))−1

∈ R
N×N .

We may multiply the above equality with the matrix P from left: using notation
M̃ := (1/Δt)P M ,

M̃(vn − vn−1) + θ P S(vn)vn + (1 − θ)P S(vn−1)vn−1 = P f (n,θ), (22)

which can be reformulated in the form

X
(vn)
1 vn − X

(vn−1)
2 vn−1 = P f (n,θ), (23)

where X
(vn)
1 = M̃ +θ P S(vn), X

(vn−1)
2 = M̃ −(1−θ)P S(vn−1). Note that the left-hand

side of (23) defines a DMO2 for the mesh function v, that is,

(D[v])n =
(
M̃ + θ P S(vn)

)
vn −

(
M̃ − (1 − θ)P S(vn−1)

)
vn−1, (24)
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which is the discrete equivalent of the continuous operator (1). Hence, for the desired
qualitative study of the present finite element problem, it is enough to ensure that (24)
satisfies the conditions formulated for DMO2s in the previous section.

We formulate some properties of the above matrices.

Lemma 1 Let z = [z1, . . . , z N̄ ]T ∈ R
N̄ be an arbitrary column vector, and let zh :=

∑N̄
k=1 zkφk . Then

(i) S
(z)
1 e = 0.

(ii)
(
S

(z)
2 z

)
i
=

∫

Ω

q (x, t, zh) φi dx, i = 1, . . . , N .

(iii) S
(z+ce)
1 = S

(z)
1 for any real constant c.

(iv) The matrix M is nonnegative and the vector Me is positive.

Proof We will use repeatedly the third condition in (16).

(i) The i th coordinate satisfies

(S
(z)
1 e)i =

N̄∑

j=1

(∫

Ω
A (x, t, ∇zh) ∇φ j · ∇φi dx

)

=
∫

Ω
A (x, t,∇zh) ∇

⎛
⎝

N̄∑

j=1

φ j

⎞
⎠ · ∇φi dx =

∫

Ω
A (x, t, ∇zh) ∇1 · ∇φi dx = 0.

(ii) Applying the reformulation (11),

(
S

(z)
2 z

)
i
=

N̄∑

j=1

(∫

Ω

r (x, t, zh) φ jφi dx

)
z j

=
∫

Ω

r (x, t, zh) zhφi dx =
∫

Ω

q (x, t, zh) φi .

(iii)
(

S
(z+ce)
1

)
i j

=
∫

Ω

A

⎛
⎝x, t,∇

⎛
⎝

N̄∑

k=1

(zk + c)φk

⎞
⎠

⎞
⎠ ∇φ j · ∇φi dx

=
∫

Ω

A (x, t,∇ (zh + c))∇φ j · ∇φi dx =
(

S
(z)
1

)
i j

.

(iv) The nonnegativity of the matrix M follows from the nonnegativity of the basis
functions φi ; further,

(Me)i =
N̄∑

j=1

∫

Ω

φ jφi dx =
∫

Ω

⎛
⎝

N̄∑

j=1

φ j

⎞
⎠ φi dx =

∫

Ω

φi dx > 0.

Thus the proof of the theorem is complete. 
�
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4.2 Implication of discrete maximum/minimum principles

Now we are ready to give a sufficient condition for the relations involving discrete
maximum/minimum principles. Based on the previous results, this problem can be
reduced to Theorem 6, i.e. to ensuring conditions (W) or (S) for the weak or strong
forms of the principles, respectively.

Theorem 10 If the function ξ �→ q(x, t, ξ) is nondecreasing, then the DNPP (or

DNNP) property implies the discrete weak maximum principles DWMP and DWBMP

(or discrete weak minimum principles DWmP and DWBmP, respectively) for the

DMO2 (24).

Proof In order to apply Theorem 6, we need to show that the condition (W ) is satisfied.
Consider an arbitrary vector w1 ∈ R

N̄ and a positive constant a. Applying Lemma 1
(i)–(iii), using the nonnegativity of the basis functions and that the function ξ �→
q(x, t, ξ) is nondecreasing, we have

S
(w1−ae)
1 (w1 − ae) = S

(w1)
1 w1, S

(w1−ae)
2 (w1 − ae) ≤ S

(w1)
2 w1,

hence S(w1−ae)(w1 − ae) ≤ S(w1)w1. In order to show property (W ), let us fix the
arbitrary vectors w1 and w2 and the nonnegative numbers a ≥ b ≥ 0. Using also the
properties (i) and (iii)–(iv) in Lemma 1 the required estimation can be carried out as
follows:

J (w1 − ae, w2 − be) = X
(w1−ae)
1 (w1 − ae) − X

(w2−be)
2 (w2 − be)

=
(

M̃ + θ P S(w1−ae)
)

(w1 − ae) −
(

M̃ − (1 − θ)P S(w2−be)
)

(w2 − be)

≤ M̃(w1 − ae) + θ P S(w1)w1 − M̃(w2 − be) + (1 − θ)P S(w2)w2

= X
(w1)
1 w1 − X

(w2)
2 w2 − M̃(a − b)e = X

(w1)
1 w1 − X

(w2)
2 w2 −

a − b

Δt
P Me

= X
(w1)
1 w1 − X

(w2)
2 w2 −

a − b

Δt
e0 = J (w1, w2) −

a − b

Δt
e0,

where we used the equality P Me = e0. 
�
Theorem 11 If q(x, t, ξ) ≡ 0, then the DNPP (or DNNP) property implies the discrete

strong maximum principles DMP and DBMP (or discrete strong minimum principles

DmP and WBmP, respectively) for the DMO2 (24).

Proof Now we need to show the condition (S). This goes in the same way as the proof
Theorem 10 such that the inequalities therein are replaced by equalities. 
�
Remark 5 Note that the conditions of the previous two theorems are the same as those
used to guarantee the same implications in the continuous case (see Fig. 1). That is,
there is no additional condition in the finite element case.

Corollary 1 In the case q(x, t, ξ) = 0, if the DMO2 (24) possesses the DNPP property

then it fulfills all the discrete maximum principles as well, and if the DMO2 (24)
possesses the DNNP property then it fulfills all the minimum principles as well.
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4.3 Implication of discrete maximum norm contractivity

Now we give conditions for the relation involving the DMNC property. This relies
on a proper linearization of the nonlinear matrix function S(.) between given z̄ and z̃,
defined as follows:

(
S(z̄,z̃)

)
i j

:=
∫

Ω

Ã (x, t,∇ z̄h,∇ z̃h)∇φ j · ∇φi dx +
∫

Ω

r̃ (x, t, z̄h, z̃h) φ jφi dx .

(25)

Theorem 12 Let us suppose that

(I) the function ξ �→ q(x, t, ξ) is nondecreasing, and

(L) for any two fixed discrete mesh functions w̄ and w̃, the mesh operators defined

as

(Lw̄,w̃[v])n = (M̃ + θ P S(w̄n ,w̃n))vn − (M̃ − (1 − θ)P S(w̄n−1,w̃n−1))vn−1 (26)

(n = 1, . . . , nT ), where S(.,.) stands for the linearized matrix function defined above,

possess both the DNNP and DNPP properties.

Then the DMO2 (23) possesses the DMNC property.

Proof We have to show that under the assumptions of the theorem the assumptions
(W=) and (L) in Theorem 9 are satisfied. Condition (W=) can be shown in a similar
way as condition (W) in Theorem 10, using the fact that a = b.

It is left to show that the condition (L) of this theorem implies the condition (L)
in Theorem 9. Thus we have to show the equality Lw̄,w̃[w̄ − w̃] = D[w̄] − D[w̃],
where D is the DMO2 defined in (24). In view of equalities (10) and (12), for any two
vectors z̄, z̃ ∈ R

N̄ we have

(
S(z̄,z̃)(z̄ − z̃)

)
i
=

N̄∑

j=1

(
S(z̄,z̃)

)
i j

(z̄ j − z̃ j )

=
∫

Ω
Ã (x, t,∇ z̄h , ∇ z̃h) (∇ z̄h − ∇ z̃h) · ∇φi dx +

∫

Ω
r̃ (x, t, z̄h , z̃h) (z̄h − z̃h) φi dx

=
∫

Ω
(K (x, t,∇ z̄h) − K (x, t,∇ z̃h)) · ∇φi dx +

∫

Ω
(q (x, t, z̄h) − q (x, t, z̃h)) φi dx

=
∫

Ω
(A (x, t, ∇ z̄h) ∇ z̄h − A (x, t,∇ z̃h) ∇ z̃h) · ∇φi dx

+
∫

Ω
(r (x, t, z̄h) z̄h − r (x, t, z̃h) z̃h) φi dx =

(
S(z̄) z̄ − S(z̃) z̃

)
i
.

Thus we obtain that

(
Lw̄,w̃[w̄ − w̃]

)n

=
(

M̃ + θ P S(w̄n ,w̃n)
) (

w̄n − w̃n
)
−

(
M̃ − (1 − θ)P S(w̄n−1,w̃n−1)

) (
w̄n−1 − w̃n−1

)
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= M̃
(
w̄n − w̃n

)
+ θ P

(
S(w̄n)w̄n − S(w̃n)w̃n

)

−
(

M̃
(
w̄n−1 − w̃n−1

)
− (1 − θ)P

(
S(w̄n−1)w̄n−1 − S(w̃n−1)w̃n−1

))

=
(

M̃ + θ P S(w̄n)
)

w̄n −
(

M̃ − (1 − θ)P S(w̄n−1)
)

w̄n−1

−
((

M̃ + θ P S(w̃n)
)

w̃n −
(

M̃ − (1 − θ)P S(w̃n−1)
)

w̃n−1
)

= (D[w̄] − D[w̃])n

(n = 1, . . . , nT ), which completes the proof. 
�

4.4 Ensuring the DNNP–DNPP properties

In the above we have seen that under certain conditions the DNNP or DNPP implies
the other studied properties for the DMO2 (24). Now we give conditions to ensure
that DNNP and DNPP hold themselves. Altogether, in this way we can also ensure
the validity of all the qualitative properties for the finite element mesh operator.

4.4.1 The general case

Definition 3 A finite element mesh Th is called strictly non-degenerate with respect to
the basis functions φ1, . . . , φN̄ and the coefficient functions K and q of the operator
(1) (or shortly strictly non-degenerate), if the following condition holds. For any i =
1, . . . , N , j = 1, . . . , N̄ and i �= j , whenever the basis functions φi and φ j have
overlapping support, we have

S
(z)
i j =

∫

Ω

(
A(x, t,∇zh)∇φ j · ∇φi + r(x, t, zh)φ jφi

)
dx < 0 (27)

for all vectors z ∈ R
N̄ , where A and r are the functions defined in (11) and (13) with

the coefficient functions K and q, respectively, and where we denote zh =
∑N̄

k=1 zkφk .

Remark 6 When K (x, t,∇u) = ∇u and q = 0 then for piecewise linear elements
on triangular meshes the strict non-degenerateness means the well-known acute angle
condition: all angles of the triangles in the triangulation must be less then π/2. For
bilinear elements on rectangular mesh the property means the strict non-narrowness
of the rectangles. Such geometric conditions can be used to ensure (27) in the general
case as well, as will be illustrated by Theorem 14 below.

Now we are ready to give sufficient conditions for the DNNP and DNPP properties
of the DMO2 (24).

Theorem 13 Let us suppose that

(i) ξ �→ q(x, t, ξ) is nondecreasing;

(ii) we use a strictly non-degenerate mesh in the construction of the finite element

solution.

Then there exist positive numbers Δtmin and Δtmax such that if Δtmin ≤ Δt ≤ Δtmax

then the DMO2 (24) possesses the property DNPP and DNNP.
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Proof We apply the conditions listed in Theorem 8. Let z ∈ R
N̄ be an arbitrary vector.

We first check the nonnegativity of the matrix X
(z)
2 . In view of the nonnegativity

of the matrices P and M and the strict non-degeneracy of the mesh, the off-diagonal
elements of X

(z)
2 = (1/Δt)P M − (1 − θ)P S(z) are trivially nonnegative. The non-

negativity of the diagonal elements yields the condition

1∫
Ω φi dx

(
1

Δt

∫

Ω
φ2

i dx−(1−θ)

∫

Ω

(
A (x, t,∇zh)∇φi · ∇φi + r (x, t, zh) φ2

i

)
dx

)
≥0

(28)

(i = 1, . . . , N ). This condition is trivially satisfied if Δt is sufficiently small, say
Δt ≤ Δtmax for some appropriate positive value Δtmax.

Now we check the non-positivity of the off-diagonal elements of

X
(z)
1 = (1/Δt)P M + θ P S(z).

If the basis functions φi and φ j have disjoint support, then clearly (X
(z)
1 )i j = 0.

If φi and φ j have overlapping support, then using the condition θ > 0, the strict
non-degeneracy of the mesh and the positivity of the diagonal elements of P , the off-
diagonal elements of the matrix θ P S(z) are negative. Thus, in view of the nonnegativity
of P M , if Δt is sufficiently large, say Δt ≥ Δtmin for some appropriate positive
value Δtmin, then the off-diagonal elements of X

(z)
1 are nonpositive. This condition

guarantees the condition X
(z)
1∂ ≤ 0.

Now we show that the matrix X
(0)
10 is nonsingular and its inverse is nonnegative.

We will see that this condition does not requires any additional assumption. We do
this with the usual M-matrix technique. In the previous paragraph, we showed that
if Δt ≥ Δtmin then the off-diagonal of X

(z)
1 is nonpositive. In order to show that the

matrix X
(z)
10 is an M-matrix (that is it is regular and its inverse is nonnegative) it is

enough to show that the product X
(z)
1 e is positive (hence in view of the nonpositivity

of X
(z)
1∂ the vector X

(z)
10 e0 is also positive). Here we have

X
(z)
1 e =

1

Δt
e0 + θ P S

(z)
2 e =

1

Δt
e0 + θ

[∫
Ω

r(x, t, zh)φi dx∫
Ω

φi dx

]

i=1,...,N

,

where we used property (i) in Lemma 1. Because q is nondecreasing in its third
argument, the function r is nonnegative. Thus the above vector is positive, and this
was what we wanted to show. 
�

Remark 7 (On the strict non-degenerateness property) The strict non-degenerateness
of the finite element mesh is clearly a crucial property for the final results, and it can
be ensured with various sufficient conditions. This has been studied in detail in our
papers [9,10], depending on the structural conditions of the PDE problem. Here we
show a case where a brief set of sufficient conditions can be given. Namely, strict
non-degenerateness can be ensured with the following conditions: assume that
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(i) the coefficient q has a bounded derivative w.r.t. ξ , i.e. there exists a constant
α > 0 such that

0 ≤
∂q(x, t, ξ)

∂ξ
≤ α; (29)

(ii) the finite element meshes are regular in the sense that there exists a positive
number Cm such that

measd(supp(φi )) ≤ Cmhd (30)

(∀i = 1, . . . , N̄ ), where measd denotes the d-dimensional measure and supp(φi )

is the support of φi ;
(iii) there exists a positive constant μ > 0, depending on the coefficient (13), such

that ∫

Ω

A(x, t, η)∇φi · ∇φ j dx ≤ −μhd−2 (∀i �= j); (31)

whenever the basis functions φi and φ j have overlapping support;
(iv) the mesh is fine enough, namely, it satisfies the condition

h < h0 :=
√

μ

αCm

. (32)

Under the conditions (i)–(iv) the finite element mesh is strictly non-degenerate (see
Definition 3). Indeed, for the indices i �= j and an arbitrary vector z ∈ R

N̄ , we have
the estimation

S
(z)
i j =

∫

Ω

(
A(x, t,∇zh)∇φ j · ∇φi + r(x, t, zh)φ jφi

)
dx ≤ −μhd−2 + αCmhd

= hd(αCm − μ/h2) < hd(αCm − μ/h2
0) = 0, (33)

where we also used the properties (16) and the fact that r inherits the bound α from
∂q
∂ξ

.

Remark 8 (i) The magnitude of Δtmin and Δtmax in Theorem 13 has been considered
in a similar situation in the study of DWMP in [10]. A study of the expressions
where they appear in Theorem 13 shows that both bounds give

Δt = O(h2) (34)

as h → 0 for the θ -method for θ < 1, and especially, as seen immediately from
(28), there is no upper bound in the implicit case θ = 1.
To sum up, based on the above, we can say that the discrete weak maxi-
mum/minimum principles hold if we use a fine enough regular strictly non-
degenerate space mesh together with a time division satisfying Δt = O(h2).

(ii) The discrete maximum norm contractivity can be ensured in a similar way as
above, since the linearized mesh operator (25)–(26) contains coefficients Ã and r̃

in analogy with the coefficients A and r in (27); in particular, the monotonicity
of q implies r̃ ≥ 0. That is, a fine enough regular strictly non-degenerate space
mesh, together with a time division satisfying (34), provides the DMNC as well.
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4.4.2 A special case: scalar diffusion coefficient

Based on the above observations, one can easily treat a relevant situation when the
diffusion coefficient is a scalar function, which is the case in most practical situations.
For such problems, (14) becomes

∂u

∂t
− div

(
a(x, t,∇u)∇u

)
+ r(x, t, u)u = f (35)

(in this case A(x, t, η) = a(x, t, η) I , where I is the identity matrix), where a :
Ω × (0, T ) × R

d → R is some given continuous scalar function, assumed to be
bounded from both sides: m ≤ a(x, t, η) ≤ M (∀(x, t, η) ∈ Ω × (0, T ) × R

d) for
some constants M ≥ m > 0. The following theorem gives sufficient conditions that
can be checked a priori, i.e. its assumptions contain computable constants (from the
data or the generated mesh).

Theorem 14 Let Ω ⊂ R
d for d = 2 or 3, and suppose that

(i) the coefficient q in (1) satisfies (29) for some α > 0;

(ii) we consider piecewise linear finite elements on a regular and strictly acute sim-

plicial mesh, i.e. all diameters hS of the simplices S satisfy � h ≤ hS ≤ h for

some constant 0 < � ≤ 1 independent of the mesh, and all angles γ (in 3D

including also the face angles) are bounded as 0 < γ0 ≤ γ ≤ γ1 < π/2;

(iii) letting h0 :=
√

m κd cos γ1 sin2d−3 γ0 �d−2/(α2d), where κ2 := 1/8 and κ3 :=
1/128, the mesh parameter h satisfies h < h0.

Then there exist positive numbers Δtmin and Δtmax such that if Δtmin ≤ Δt ≤ Δtmax

then the DMO2 (24) possesses the property DNPP and DNNP.

Proof We apply Theorem 13. First, the function q is nondecreasing by (29). We must
now verify that the mesh is strictly non-degenerate. This is based on Remark 7,
so we check conditions (29)–(32). First, (29) holds by assumption. Now, consider
basis functions φi and φ j that have overlapping support, and consider a simplex
S ⊂ supp φi ∩ supp φ j with diameter hS . Then the strictly acute angle condition
implies

∇φi · ∇φ j ≤ −σh−2
S on S,

where σ := cos γ1 > 0 (see e.g. [14]). Then measd(S) ≥ κd sin2d−3 γ0 hd
S with κd

from assumption (iii), see [2]. Hence

∫

Ω

a(x, t, η)∇φi · ∇φ j dx ≤ m

∫

S

∇φi · ∇φ j dx

≤ −mσh−2
S measd(S) ≤ −mσ κd sin2d−3 γ0 hd−2

S ≤ −μhd−2 (36)

with μ := mσ κd sin2d−3 γ0�
d−2, i.e. (31) holds. Finally we note that any supp(φi )

is contained in a square (cube) with edge 2h, hence (30) holds with Cm = 2d . Thus
we obtain that
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h < h0 :=

√
m κd cos γ1 sin2d−3 γ0 �d−2

α2d
=

√
mσ κd sin2d−3 γ0 �d−2

α2d
=

√
μ

αCm

,

i.e. (32) also holds. 
�

Remark 9 The strictly acute angle condition can be relaxed so that estimates like (36)
can still be executed, see [10]: some obtuse interior angles may occur in the simplices
of the meshes, or alternatively, nonobtuseness suffices if one requires strict acuteness
on a proper (asymptotically non-vanishing) subpart of each intersection of supports.

Remark 10 One can give explicit bounds on Δtmin and Δtmax so that Theorem 14 holds,
depending on the dimension and coefficients of the problem. This can be illustrated in
the 2D case for our model problem (35) as follows. In view of the proof of Theorem 13,
the upper bound on Δt comes from the condition

1

Δt

∫

Ω

φ2
i dx − (1 − θ)

∫

Ω

(
a (x, t,∇zh) |∇φi |2 + r (x, t, zh) φ2

i

)
dx ≥ 0 (37)

as a consequence of (28), and similarly, the lower bound comes from the condition

1

Δt

∫

Ω

φi φ j dx + θ

∫

Ω

(
a (x, t,∇zh)∇φi · ∇φ j + r (x, t, zh) φi φ j

)
dx ≤ 0. (38)

Clearly, it suffices to have the above estimates on each triangle T for basis functions
φi and φ j with overlapping supports. Using the assumed bounds m ≤ a ≤ M and
the relation 0 ≤ r ≤ α (which follows from conditions (11) and (29) and from the
Newton–Leibniz rule), some rearrangement and taking maxima yields that a sufficient
condition for the desired two estimates is

(1 − θ)

(
M max

i

∫
T

|∇φi |2∫
T

φ2
i

+ α

)
≤

1

Δt
≤ θ

(
m min

i, j

−
∫

T
∇φi · ∇φ j∫
T

φi φ j

− α

)
.

(39)

For the l.h.s., we have from [11, p. 277] that
∫

T
|∇φi |2 = 1

2 (cot βi1 + cot βi2) and∫
T

φ2
i = |T |/6, where βi1 and βi2 are the angles opposite to the i th node and |T |

denotes the area of the triangle T . Now let us use condition (ii) of Theorem 14: first,
all angles are bounded below by γ0, hence

∫
T

|∇φi |2 ≤ cot γ0 ≤ 1/ sin γ0, further,
all edges are bounded below by �h, hence |T | ≥ 1

2 (�h)2 sin γ0. For the r.h.s., the
assumptions imply −

∫
T

∇φi · ∇φ j ≥ cos γ1 h−2 |T |, further, using [11, p. 277]
again, we have

∫
T

φi φ j = |T |/12. Altogether, we have

max
i

∫
T

|∇φi |2∫
T

φ2
i

≤
12

(�h sin γ0)2
and min

i, j

−
∫

T
∇φi · ∇φ j∫
T

φi φ j

≥
12 cos γ1

h2
.
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Setting the above into (39), we obtain that the condition

(1 − θ)

(
12M

(� sin γ0)2

1

h2
+ α

)
≤

1

Δt
≤ θ

(
12m cos γ1

h2
− α

)
(40)

is sufficient to ensure that Theorem 14 holds. Altogether, the two sides of (40) are
computable bounds for 1/Δtmax and 1/Δtmin if h <

√
12m cos γ1/α, which are in

accordance with the property Δt = O(h2) as h → 0. Moreover, since the l.h.s. of (40)
vanishes for θ = 1, we also see that the requirement Δtmin ≤ Δtmax can be satisfied
by choosing θ sufficiently close to 1 (the bound on θ can be calculated readily from
(40)), in particular, this always holds for the fully implicit method.

In the more general case than (29), the nonlinearity q may grow superlinearly with
some power order:

0 ≤
∂q(x, t, ξ)

∂ξ
≤ α + β|ξ |p−2, (41)

where p > 2 is an exponent for which a Sobolev embedding of H1(Ω) into L p(Ω)

holds. If ‖uh‖L p is bounded for the discrete solutions, then S
(uh)
i j can be estimated

similarly to (33), but now one obtains an extra term βh2d/p from Hölder’s inequality:
−μhd−2 + αCmhd + βh2d/p, where the condition p > 2 yields 2d/p < d, and
hence the expression still remains negative for small h. In this way the mesh is still
strictly non-degenerate. The details of such derivations, including the boundedness of
‖uh‖L p , can be found in [10].

Typical situations for problems (35) are reaction–diffusion equations

∂u

∂t
− div

(
a(x, t)∇u

)
+ q(x, u) = f ,

where a(x, t) is a positive bounded diffusion coefficient. For nonlinearities satisfying
(29) or (41), respectively, we may mention the Michaelis–Menten reaction q(x, u) =
u/(ε(u + κ)) in enzyme kynetics and autocatalytic chemical reactions q(x, u) = uσ

for some σ > 1, see [4,18].

Corollary 2 Under the conditions of Theorem 14, all the discrete weak maxi-

mum/minimum principles DWMP, DWBMP, DWmP and DWBmP also hold for the

finite element DMO2 (24).

Proof This readily follows from Theorem 10, since assumption (i) of Theorem 14
shows that ξ �→ q(x, t, ξ) is nondecreasing. 
�

4.5 Summary of the results

The results of the above theorems for the finite element DMO2 (24) are summarized
in an implication diagram in Fig. 3.
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Fig. 3 Connections between the qualitative properties of the discrete nonlinear two-level mesh operator
(24) that was constructed with the finite element discretization method

5 Conclusions

In this paper we have investigated the connections between the maximum/minimum
principles, the nonnegativity and nonpositivity preservation and maximum norm con-
tractivity properties of nonlinear discrete mesh operators. First we have revealed the
relations between the properties of general mesh operators. We have summarized the
implications in Fig. 2. Then we have formulated the same conditions to a special case:
to the two-level nonlinear discrete mesh operators. In Theorem 6, we have obtained
that the maximum/minimum principles generally imply the nonnegativity and nonpos-
itivity preservation properties but the implications in the opposite direction are valid
only under some supplementary assumptions. The discrete maximum norm contrac-
tivity property has been guaranteed in Theorem 9. Since we saw that the cornerstones
of the implications are the nonnegativity and nonpositivity preservation properties,
we turned to the validation of these properties in Theorems 7 and 8. As an applica-
tion, which is important and interesting also on its own, we have considered the finite
element solution of a nonlinear equation. We have shown that beyond the conditions
that were required also in the continuous case, the nonnegativity/nonpositivity can be
guaranteed by choosing a strictly non-degenerate spatial mesh and an appropriate time
step. The implications are summarized in Fig. 3.
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