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Abstra
t

We des
ribe the volume dependen
e of matrix elements of lo
al boundary �elds

to all orders in inverse powers of the volume. Using the s
aling boundary Lee-Yang

model as testing ground, we 
ompare the matrix elements extra
ted from boundary

trun
ated 
onformal spa
e approa
h to exa
t form fa
tors obtained using the boot-

strap method. We obtain solid 
on�rmation for the boundary form fa
tor bootstrap,

whi
h is di�erent from all previously available tests in that it is a non-perturbative

and dire
t 
omparison of exa
t form fa
tors to multi-parti
le matrix elements of lo
al

operators, 
omputed from the Hamiltonian formulation of the quantum �eld theory.

1 Introdu
tion

The investigation of integrable boundary quantum �eld theories started with the seminal

work of Ghoshal and Zamolod
hikov [1℄, who set up the boundary R-matrix bootstrap,

whi
h makes possible the determination of the re�e
tion matri
es and provides 
omplete

des
ription of the theory on the mass shell.

For the 
al
ulation of 
orrelation fun
tions, matrix elements of lo
al operators between

asymptoti
 states have to be 
omputed. In a boundary quantum �eld theory there are
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two types of operators, the bulk and the boundary operators, where their names indi
ate

their lo
alization point. The boundary form fa
tor program for 
al
ulating the matrix

elements of lo
al boundary operators between asymptoti
 states was initiated in [2℄. The

validity of form fa
tor solutions was 
he
ked in the 
ase of the boundary s
aling Lee-Yang

model by 
al
ulating the two-point fun
tion using a spe
tral sum and 
omparing it to

the predi
tion of 
onformal perturbation theory. In [3℄ the spe
trum of independent form

fa
tor solutions in the s
aling Lee-Yang model and the sinh-Gordon model was 
ompared

to the boundary operator 
ontent of the ultraviolet boundary 
onformal �eld theory and a


omplete agreement was found. Further solutions of the boundary form fa
tor axioms were


onstru
ted and their stru
ture was analyzed for the sinh-Gordon theory at the self-dual

point in [4℄, and for the A2 a�ne Toda �eld theory in [5℄.

While the 
he
ks performed so far have 
on�rmed the validity of the boundary form

fa
tor bootstrap proposed in [2℄, they 
an still be 
onsidered in
omplete. The spe
tral sum

evaluated in that paper only re
eives a very small 
ontribution from form fa
tors with more

than two parti
les, thus it 
annot be 
onsidered as a test of higher form fa
tor fun
tions,

and therefore it does not 
onstitute a stringent veri�
ation of the singularity axioms, whi
h

form the basis of the re
ursive 
onstru
tion of form fa
tors. The solution 
ounting in [3℄

does involve form fa
tors up to arbitrary number; however, the 
ounting pro
edure uses

only some rough features of the axioms su
h as power 
ounting of the polynomials involved,

and the stru
ture of the kernels of the re
ursion relations.

It is therefore desirable to have a dire
t 
omparison of form fa
tors to matrix elements

of lo
al operators evaluated dire
tly from the boundary quantum �eld theory in a non-

perturbative framework. For periodi
 boundary 
onditions, it was shown re
ently in [6, 7℄

that su
h a 
omparison 
an be a
hieved by extra
ting the matrix elements in �nite volume,

for whi
h one 
an use the very e�
ient trun
ated 
onformal spa
e approa
h. In this paper

we give the extension of this framework to the boundary 
ase, using the boundary s
aling

Lee-Yang model as our paradigmati
 example.

The paper is stru
tured as follows. In se
tion 2 we review the ne
essary ingredients

of the boundary form fa
tor bootstrap and give the form fa
tor solution in the boundary

s
aling Lee-Yang model for the boundary operator with the lowest s
aling dimension, up

to 6 parti
les. In se
tion 3 we derive a framework whi
h makes it possible to 
al
ulate �-

nite volume matrix elements using the in�nite volume form fa
tors, to all orders in inverse

powers of the volume L, i.e. negle
ting only 
orre
tions that de
ay exponentially fast with

L. In se
tion 4 we give the ne
essary ba
kground on the boundary trun
ated 
onformal

spa
e method, and also dis
uss the numeri
al pre
ision and sour
es of errors. The a
tual


omparison between the predi
tions from the bootstrap solution and the numeri
ally eval-

uated �nite volume matrix elements is performed in se
tion 5, and the 
on
lusions are

drawn in se
tion 6.
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2 Boundary form fa
tor bootstrap for the s
aling Lee-

Yang model

2.1 The boundary form fa
tor axioms

The axioms satis�ed by the form fa
tors of a lo
al boundary operator were derived in

[2℄. Here we only list them without mu
h further explanation. Let us suppose that we

treat an integrable boundary quantum �eld theory in the (in�nite volume) domain x < 0,
with a single s
alar parti
le of mass m, whi
h has a two-parti
le S matrix S(θ) (using

the standard rapidity parametrization) and a one-parti
le re�e
tion fa
tor R(θ) o� the

boundary, satisfying the boundary re�e
tion fa
tor bootstrap 
onditions of Ghoshal and

Zamolod
hikov [1℄. For a lo
al operator O(t) lo
alized at the boundary (lo
ated at x = 0,
and parametrized by the time 
oordinate t) the form fa
tors are de�ned as

out〈θ
′

1, θ
′

2, . . . , θ
′

m|O(t)|θ1, θ2, . . . , θn〉in =

FO
mn(θ

′

1, θ
′

2, . . . , θ
′

m; θ1, θ2, . . . , θn)e
−imt(

P

cosh θi−
P

cosh θ
′

j)

for θ1 > θ2 > . . . > θn > 0 and θ
′

1 < θ
′

2 < . . . < θ
′

m < 0, using the asymptoti
 in/out state
formalism introdu
ed in [8℄. They 
an be extended analyti
ally to 
omplex values of the

rapidity variables. With the help of the 
rossing relations derived in [2℄ all form fa
tors


an be expressed in terms of the elementary form fa
tors

out〈0|O(0)|θ1, θ2, . . . , θn〉in = FO
n (θ1, θ2, . . . , θn) (2.1)

whi
h 
an be shown to satisfy the following axioms

1

:

I. Permutation:

FO
n (θ1, . . . , θi, θi+1, . . . , θn) = S(θi − θi+1)F

O
n (θ1, . . . , θi+1, θi, . . . , θn) (2.2)

II. Re�e
tion:

FO
n (θ1, . . . , θn−1, θn) = R(θn)F

O
n (θ1, . . . , θn−1,−θn) (2.3)

III. Crossing re�e
tion:

FO
n (θ1, θ2, . . . , θn) = R(iπ − θ1)F

O
n (2iπ − θ1, θ2, . . . , θn) (2.4)

IV. Kinemati
al singularity

−iRes
θ=θ′

FO
n+2(θ + iπ, θ

′

, θ1, . . . , θn) =

(

1−
n
∏

i=1

S(θ − θi)S(θ + θi)

)

FO
n (θ1, . . . , θn) (2.5)

1

There is a further axiom 
orresponding to boundary ex
ited state poles, but it will not be needed in

the sequel.
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V. Boundary kinemati
al singularity

−iRes
θ=0

FO
n+1(θ +

iπ

2
, θ1, . . . , θn) =

g

2

(

1−
n
∏

i=1

S(
iπ

2
− θi)

)

FO
n (θ1, . . . , θn) (2.6)

where g is the one-parti
le 
oupling to the boundary

R(θ) ∼ ig2

2θ − iπ
, θ ∼ i

π

2
(2.7)

VI. Bulk dynami
al singularity

−iRes
θ=θ′

FO
n+2(θ + iu, θ

′ − iu, θ1, . . . , θn) = ΓFO
n+1(θ, θ1, . . . , θn) (2.8)


orresponding to a bound state pole of the S matrix

S(θ) ∼ iΓ2

θ − 2iu
, θ ∼ 2iu

(in a theory with a single parti
le, the only possible value is u = π/3).
We further assume maximum analyti
ity i.e. that the form fa
tors have only the min-

imal singularity stru
ture 
onsistent with the above axioms. The general form fa
tor

solution 
an be written in the following form [2℄

Fn(θ1, θ2, . . . , θn) = Gn(θ1, θ2, . . . , θn)

n
∏

i=1

r(θi)
∏

i<j

f(θi − θj)f(θi + θj) (2.9)

where f is the minimal bulk two-parti
le form fa
tor satisfying the 
onditions

f(θ) = S(θ)f(−θ), f(iπ + θ) = f(iπ − θ)

and having the minimum possible number of singularities in the physi
al strip 0 ≤ θ < π
together with the slowest possible growth at in�nity [9℄, and r is the minimal boundary

one-parti
le form fa
tor satisfying

r(θ) = R(θ)r(−θ) ; r(iπ + θ) = R(−θ)r(iπ − θ) (2.10)

plus analyti
 
onditions similar to those of f , but in this 
ase in the strip 0 ≤ θ < π/2.
The fun
tions Gn are totally symmetri
 and meromorphi
 in the rapidities θi. They

are also even and periodi
 in them with the period 2πi, so they 
an only be fun
tions of

the variables

yi = eθi + e−θi

In a theory with only one parti
le (su
h as the s
aling Lee-Yang model), the only possible

singularity of the S matrix in the physi
al strip is lo
ated at θ = 2πi/3 
orresponding to

4



the self-fusion of the parti
le (plus the 
rossed 
hannel pole for the same pro
ess at πi/3)
and the relevant fusion 
oupling is de�ned as

Γ2 = −i Res
θ= 2π

3
i
S(θ)

Assuming f is 
hosen su
h that it has a pole at θ = 2πi/3 so that it en
odes this singularity
and that the boundary dynami
al singularities (but not the kinemati
al ones!) are similarly


ontained in the 1PFF fun
tion r, the fun
tions Gn 
an be written in the form

Gn(θ1, θ2, . . . , θn) =
Pn(y1, y2 . . . , yn)
∏

i yi
∏

i<j

(yi + yj)

where the Pn are entire fun
tions symmetri
 in their arguments. Assuming that the 
orrela-

tion fun
tions involving the operators in 
onsideration only have power-like short-distan
e

singularities, the asymptoti
 growth of the form fa
tors is limited by

Fn(θ1 + Λ, θ2 + Λ, . . . , θn + Λ) ∼ edΛ

for some real number d, and therefore Pn 
an only be polynomials of �nite degree [2℄.

2.2 S
aling Lee-Yang model with boundary

The s
aling Lee-Yang model with boundary is a 
ombined bulk and boundary perturbation

of the boundary version of the M2,5 Virasoro minimal model, whi
h was investigated in

detail in [10℄. The 
onformal �eld theory has 
entral 
harge c = −22/5 and the Virasoro

algebra has two irredu
ible representations V∆ with highest weight ∆ = ∆1,1 = 0 and

∆ = ∆1,2 = −1/5. There is a unique nontrivial relevant bulk perturbation given by the

spinless �eld φ with s
aling dimensions ∆ = ∆̄ = −1/5 whi
h for an appropriate 
hoi
e of

the sign of the 
oupling �ows to a massive infrared �xed point.

Boundary 
onformal �eld theory was developed in [11, 12, 13℄ and the interested reader

is referred to them for details. Applying the formalism to the 
onformal Lee-Yang model

it 
an be seen that there are two 
onformally invariant boundary 
onditions. On one of

them, denoted 1 (i.e. identity) in [10℄, there is no possibility for a boundary perturbation.

In the other 
ase, denoted Φ in [10℄, there is a nontrivial relevant boundary �eld ϕ with

s
aling dimension −1/5 and the general perturbed boundary 
onformal �eld theory a
tion


an be written as

Aλ,Φ(h) = AΦ + λ

∞
∫

−∞

dy

0
∫

−∞

dxφ(x, y) + h

∞
∫

−∞

dyϕ(y) (2.11)

where AΦ denotes the a
tion for M(2/5) with the Φ boundary 
ondition imposed at x = 0,
and λ and h denote the bulk and boundary 
ouplings respe
tively. The a
tion of Aλ,1 is

similar, but the last term on the right hand side is missing. For λ > 0 the bulk behaviour
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is des
ribed by an integrable massive theory having only a single parti
le with mass m
with the following S matrix [14℄:

S(θ) = −
(

1

3

)(

2

3

)

= −
[

1

3

]

; (x) =
sinh

(

θ
2
+ iπx

2

)

sinh
(

θ
2
− iπx

2

) , [x] = (x)(1− x)

The minimal bulk two-parti
le form fa
tor only has a zero at θ = 0 and a pole at θ = 2πi
3

in the strip 0 ≤ ℑm(θ) < π and is of the form [15℄:

f(θ) =
y − 2

y + 1
v(iπ − θ)v(−iπ + θ) , y = eθ + e−θ

(2.12)

where

v(θ) = exp

{

2

∫ ∞

0

dt

t
ei

θt
π

sinh t
2
sinh t

3
sinh t

6

sinh2 t

}

For the perturbed Φ boundary, the re�e
tion amplitude of the parti
le depends on the

boundary 
oupling 
onstant as [10℄

R(θ)Φ =

(

1

2

)(

1

6

)(

−2

3

)[

b+ 1

6

] [

b− 1

6

]

where the dimensionless parameter b is related to the dimensionful h as [16℄

h(b) = −hcritm
6/5 sin

[(

b+
1

2

)

π

5

]

(2.13)

hcrit = π
3
52

4
55

1
4

sin 2π
5

√

Γ(3
5
)Γ(4

5
)

(

Γ(2
3
)

Γ(1
6
)

)

6
5

= 0.685289983991 . . .

and m is the mass of the parti
le giving the overall s
ale in the infrared des
ription, whi
h

is related to the bulk 
oupling λ as [17, 18℄

m = κλ5/12
(2.14)

κ = 219/12
√
π
(Γ(3/5)Γ(4/5))5/12

55/16Γ(2/3)Γ(5/6)
= 2.64294466304 . . .

In the 
ase of the 1 boundary the re�e
tion amplitude is the parameter independent ex-

pression

R(θ)1 =

(

1

2

)(

1

6

)(

−2

3

)
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2.3 Re
ursion relations and form fa
tor solution for the Φ bound-

ary 
ondition

The minimal boundary one-parti
le form fa
tor is [2℄

rΦ(θ) =
i sinh θ

(sinh θ − i sin π(b+1)
6

)(sinh θ − i sin π(b−1)
6

)
u(θ) (2.15)

where

u(θ) = exp

{
∫ ∞

0

dt

t

[

1

sinh t
2

− 2 cosh
t

2
cos

[(

iπ

2
− θ

)

t

π

]

sinh 5t
6
+ sinh t

2
− sinh t

3

sinh2 t

]}

Taking the following Ansatz

Fn(θ1, . . . , θn) = N HnQn(y1, . . . , yn)
∏

i

rΦ(θi)

yi

∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
(2.16)

where

Hn =

(

i3
1
4

2
1
2v(0)

)n

(2.17)

and N is a normalization 
onstant to be �xed later, the (2.8) bulk dynami
al (D), (2.5) bulk

kinemati
al (K) and (2.6) boundary kinemati
al (B) singularity axioms give the following

re
ursion relations for the polynomials Qn [2, 3℄

D : Q2(y+, y−) = (y2 − 3 + β)Q1(y)

Qn+2(y+, y−, y1, . . . , yn) = (y2 − 3 + β)Dn(y|y1, . . . yn)Qn+1(y, y1, . . . , yn) , n > 0;

K : Q2(−y, y) = 0

Qn+2(−y, y, y1, . . . , yn) = (y4 − (3 + β)y2 + β2)Kn(y|y1, . . . yn)Qn(y1, . . . , yn) , n > 0;

B : Q1(0) = 0

Qn+1(0, y1, . . . yn) = βBn(y1, . . . yn)Qn(y1, . . . , yn) , n > 0;

where we introdu
ed the parameter

β = 1 + 2 cos
πb

6

and Dn, Kn and Bn are given by

Kn(y|y1, . . . yn) =
1

2(y+ − y−)

[

n
∏

i=1

(yi − y−)(yi + y+)−
n
∏

i=1

(yi + y−)(yi − y+)

]

Bn(y1, . . . , yn) =
1

2
√
3

(

n
∏

i=1

(yi +
√
3)−

n
∏

i=1

(yi −
√
3)

)

7



Dn(y|y1, . . . yn) =
n
∏

i=1

(y + yi)

where

y+ = ωz + ω−1z−1

y− = ω−1z + ωz−1 , ω = e
iπ
3

with the auxiliary variable z de�ned as a solution of y = z + z−1
(i.e. writing y = 2 cosh θ

we obtain z = eθ). The symmetry of the above expressions in y± ensures that the resulting

relations only depend on y and also that Kn is a polynomial in all of its variables [3℄.

The polynomials Qn 
an be expanded using the elementary symmetri
 polynomials

de�ned by the generating fun
tion

n
∏

i=1

(z + yi) =
n
∑

k=0

zn−kσk(y1, . . . , yn)

The solution of the re
ursion relations D, K and B pro
eeds as follows. All the re
ursion


oe�
ients Dn, Kn and Bn 
an be expanded in produ
ts of symmetri
 polynomials of the

variables y1, . . . , yn and, for the �rst two, powers of the additional variable y. For the

minimal solution of these equations the polynomials Qn have degree n(n+ 1)/2 [2℄, so we


an write an Ansatz as a general linear 
ombination of produ
ts of elementary symmetri


polynomials not ex
eeding this degree. Using the relation

σk(y, y1, . . . , yn) = σk(y1, . . . , yn) + yσk−1(y1, . . . , yn)

we 
an expand both sides of the re
ursion relations in terms of produ
ts of σk and powers

of y. Equating the 
oe�
ients of independent terms on the two sides, we obtain a linear

system of equations for the 
oe�
ients of the Ansatz, whi
h 
an then be solved. The

minimal solution turns out to be unique (apart from an overall normalization that 
an be

�xed by 
hoosing the 
oe�
ient of Q1), and up to 6 parti
les it is given by

Qϕ
1 = σ1

Qϕ
2 = σ1(β + σ2)

Qϕ
3 = σ1 [σ3(σ2 + 3) + βσ1(σ2 + β)]

Qϕ
4 = σ1(σ2 + 3)

[

(3σ1 + σ3)σ4 + β(σ2 + 3)σ3 + β2σ1(σ2 + β)
]

Qϕ
5 = σ1((3 + σ2)(3σ1 + σ3)− σ5)

×
[

σ4(3βσ1 + βσ3 + σ5) + (β − 3)β(β2σ1 − σ5) + (3 + σ2)(β
3σ1 + β2σ3 + 3σ5)

]

Qϕ
6 = σ1

[

−σ4σ5 − 3σ1σ6 + (σ2 + 3)(3σ1σ4 + σ3σ4 − 3σ5 − σ1σ6) + 3(σ2 + 3)2(3σ1 + σ3)
]

×
{

β(σ2 + 3)(β3σ1 + β2σ3 + 3σ5) + (9σ1 + 3σ3 + σ5)(3σ4 + σ6)

+(β − 3)[81σ1 − 9σ5 + σ4σ5 + 3σ1σ6

+(β + 3)(3σ1σ4 + σ3σ4 − σ1σ6 + (β − 3)(9σ1 + β2σ1 − σ5))]
}
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The �rst three form fa
tors in this sequen
e were originally 
omputed in [2℄ where it was

demonstrated that this solution 
orresponds to the relevant boundary �eld ϕ, whi
h gives

the boundary perturbation a

ording to (2.11). The 
omplete form fa
tors 
an be written

as [2℄

Fn(θ1, . . . , θn) = 〈ϕ〉HnQ
ϕ
n(y1, . . . , yn)

∏

i

rΦ(θi)

yi

∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
(2.18)

where

〈ϕ〉 = − 5

6hcrit

cos(πb
6
)

cos( π
10
(2b+ 1))

m−1/5
(2.19)

is the exa
t expe
tation value of the boundary operator ϕ [10℄.

3 Boundary form fa
tors in �nite volume

3.1 Bethe-Yang equations

Let us 
onsider an integrable boundary quantum �eld theory with parti
les of spe
ies

a = 1, . . . , N and 
orresponding masses ma. As usual in two-dimensional �eld theory, we

label asymptoti
 parti
les with their rapidities θ, whi
h gives their energy and momentum

as

Ea ± pa = mae
±θa

We assume the bulk s
attering is diagonal and is given by the two-parti
le S matri
es

Sa1a2 (θ1 − θ2) = e

iδa1a2(θ1−θ2)

We further assume that the re�e
tion on the boundaries is also diagonal and is given by

the re�e
tion fa
tors

R(α)
a (θ) = e

iδ
(α)
a (θ) , R(β)

a (θ) = e

iδ
(β)
a (θ)

(3.1)

where α and β denote the left and right boundary 
onditions, respe
tively.

In the diagonal 
ase, the multi-parti
le energy levels in a �nite volume L are des
ribed

by the following Bethe-Yang equations [19℄:

Qj (θ1, . . . , θn)a1...an = 2πIj (3.2)

where the phases des
ribing the wave fun
tion monodromy are given by

Qj (θ1, . . . , θn)a1...an = 2majL sinh θj+
∑

k 6=j

(

δajak (θj − θk) + δajak (θj + θk)
)

+δ(α)aj
(θj)+δ(β)aj

(θj)

Here all rapidities θj (and a

ordingly all quantum numbers Ij) are taken to be positive

2

.

We 
an take the quantum numbers ordered as I1 ≤ . . . ≤ In; in the s
aling Lee-Yang model

2

Boundary re�e
tions 
hange the sign of the momentum, so �nite volume multi-parti
le states 
an be


hara
terized by the absolute value of the rapidities.
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they must all be di�erent due to the ex
lusion prin
iple. We denote the 
orresponding

multi-parti
le state by

|{I1, . . . , In}〉a1...an,L
and its energy (relative to the ground state) is given by

EI1...In(L) =

n
∑

j=1

maj cosh θ̃j

where

{

θ̃j

}

j=1,...,n
is the solution of eqns. (3.2) at the given volume L. The Bethe-Yang

equations gives the energy of the multi-parti
le states to all order in 1/L, negle
ting only

�nite size e�e
ts de
aying exponentially with L.

3.2 Non-diagonal matrix elements

Following the ideas outlined in [6, 7℄ we begin with examining a two-point fun
tion of two

boundary operators

〈O1(τ)O2(0)〉L
where τ is Eu
lidean time. Let us suppose for de�niteness that we 
onsider operators

lo
ated on the right boundary.

We �rst need to establish that the �nite size 
orre
tions to the two-point fun
tion will

then be of the form

〈O1(τ)O2(0)〉L − 〈O1(τ)O2(0)〉 ∼ e−µL
(3.3)

Unfortunately, for the boundary situation there is no analogue of Lüs
her's systemati


�nite volume expansion [20℄ that was used for periodi
 boundary 
onditions. Let us re
all

that the essential input in the argument is the analyti
 stru
ture of Green's fun
tion, whi
h

was worked out for the boundary 
ase in [8℄; just as in the bulk 
ase, the singularities are

given by diagrams with all internal lines on-shell. It 
an be seen from Lüs
her's derivation

that the 
orre
tion results from the singularities of momentum spa
e Green's fun
tions

whi
h o

ur in the momentum integrals of the �nite volume expansion, and the exponent

µ (whi
h is on the s
ale of the mass gap of the theory) is given by the singularity lying


losest to the physi
al domain. This argument 
annot be 
onsidered a proper derivation;

it would go mu
h beyond the s
ope of this paper and requires developing the �nite volume

expansion for the boundary 
ase. However, we still have a strong reason to a

ept that

(3.3) holds; in retrospe
t, this is also 
on�rmed by the numeri
al results in se
tion 5.

Using (3.3) we 
an then follow the arguments outlined in [6℄ without essential modi-

�
ations. Just as in the periodi
 
ase we �nd that the in�nite volume and �nite volume

matrix elements are just related by the square root of the ratio of normalization of the 
or-

responding states (up to the 
orre
tions negle
ted in (3.3)). This results in the following

relation:

〈0|O(0)|{I1, . . . , In}〉a1...an,L =
FO
a1...an(θ̃1, . . . , θ̃n)

√

ρa1...an(θ̃1, . . . , θ̃n)
+O(e−µL) (3.4)
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where FO
a1...an(θ̃1, . . . , θ̃n) is the form fa
tor of the operator O (in the in�nite volume theory,

i.e. on the half-line x < 0),
{

θ̃j

}

j=1,...,n
is the solution of eqns. (3.2) at the given volume

L, and

ρa1...an(θ̃1, . . . , θ̃n) = det

{

∂Qk(θ1, . . . , θn)a1...an
∂θl

}

k,l=1,...,n

(3.5)

is the �nite volume density of states, whi
h is the Ja
obi determinant of the mapping

between the spa
e of quantum numbers and the spa
e of rapidities given by the Bethe-Yang

equations (3.2). Using the 
rossing relations derived in [2℄ and following the arguments of

[6℄, general matrix elements 
an be written as

b1...bm〈{I ′1, . . . , I ′m}|O(0)|{I1, . . . , In}〉a1...an,L =

FO
b̄m...̄b1a1...an

(θ̃′m + iπ, . . . , θ̃′1 + iπ, θ̃1, . . . , θ̃n)
√

ρa1...an(θ̃1, . . . , θ̃n)ρb1...bm(θ̃
′
1, . . . , θ̃

′
m)

+O(e−µL) (3.6)

as long as the sets of the rapidities 
orresponding to the two states,

{

θ̃j

}

j=1,...,n
and

{

θ̃′j

}

j=1,...,m
, are disjoint i.e. when there are no dis
onne
ted 
ontributions. Here b̄j benotes

the parti
le spe
ies 
onjugate to bj .
The exponent µ in (3.4,3.6) 
an also be estimated using the Poisson summation formula.

The argument for the periodi
 
ase was written down in subse
tion 2.2 of ref. [6℄ and 
arries

over without essential modi�
ation. The result is that the deviation between the dis
rete

and 
ontinuous versions of the spe
tral sums is determined by the analyti
 singularity

stru
ture of the form fa
tors and the phase-shifts involved in (3.4,3.6) and the leading


orre
tion is given by the one with the smallest imaginary part in rapidity variables, just as

the 
orre
tion indi
ated in (3.3). Taking the two sour
es of exponential 
orre
tions together

the result is that it is the singularity 
losest to the physi
al domain whi
h determines the

leading exponential 
orre
tion in (3.4,3.6). In fa
t this was already ta
itly assumed by using

the same exponent µ as in (3.3). This is essentially the same result that was obtained by

Lüs
her for mass 
orre
tions whi
h periodi
 boundary 
onditions in �nite volume [20℄. For

the 
ase of periodi
 boundary 
onditions su
h 
orre
tions to �nite volume s
attering states

and form fa
tors were re
ently investigated in [21℄.

Note that the determinant (3.5) has the following behaviour for large L:

ρa1...an(θ̃1, . . . , θ̃n) =

(

n
∏

l=1

2malL cosh θ̃l

)

(

1 +O
(

L−1
))

The leading terms is just the density of states for non-intera
ting parti
les, and it is inde-

pendent of the bulk and boundary phase-shifts. The 
orre
tions are of the order of 1/(mL)
where m is the typi
al mass s
ale. In the numeri
al examples given in se
tion 5 this means

that the intera
tion 
orre
tions are of relative size ∼ 10−1
in the volume range 
onsidered

there.
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3.3 Diagonal matrix elements

When dis
onne
ted 
ontributions are present, a more 
areful analysis is required. As in

[7℄ we must start by �nding out the 
onditions under whi
h there 
an be equal rapidities

in the two states. It is easy to see that due to the �nite size 
orre
tions 
oming from the

Bethe-Yang equations (3.2) and the positivity of all the quantum numbers Ij this 
an only

happen when the quantum number sets happen to be identi
al, i.e. for the 
ase of diagonal

matrix elements

a1...an〈{I1, . . . , In}|O(0)|{I1, . . . , In}〉a1...an,L
A

ording to (3.6) for this 
ase we have to 
onsider

Fān...ā1a1...an(θn + iπ, ..., θ1 + iπ, θ1, ..., θn)

Due to the existen
e of kinemati
al poles (2.5) the above expression is not well-de�ned.

Let us 
onsider the regularized version

Fān...ā1a1...an(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn)

Just as for bulk form fa
tors, the singular parts of this expression drop when taking the

limits ǫi → 0 simultaneously

3

; however, the end result depends on the dire
tion of the

limit, i.e. on the ratio of the ǫi parameters. The terms that are relevant in the limit 
an

be written in the following general form:

Fān...ā1a1...an(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn) = (3.7)

n
∏

i=1

1

ǫi
·

n
∑

i1=1

...

n
∑

in=1

Aa1...an
i1...in

(θ1, . . . , θn)ǫi1ǫi2 ...ǫin + . . .

where Aa1...an
i1...in

is a 
ompletely symmetri
 tensor of rank n in the indi
es i1, . . . , in, and the

ellipsis denote terms that vanish when taking ǫi → 0 simultaneously. This tensor 
an in

prin
iple be 
al
ulated using an appropriate version the graphi
al methods developed in

[7℄, but we do not go into details here as it is not needed in the sequel (the interested

reader is referred to [22℄).

The 
onne
ted matrix element 
an be de�ned as the ǫi independent part of eqn. (3.7),
i.e. the part whi
h does not diverge whenever any of the ǫi is taken to zero:

F c
a1...an(θ1, θ2, ..., θn) = n!Aa1...an

1...n (θ1, . . . , θn) (3.8)

where the appearan
e of the fa
tor n! is simply due to the permutations of the ǫi.
For the 
ase of periodi
 boundary 
onditions Saleur proposed a way of expressing a

diagonal matrix element in terms of 
onne
ted form fa
tors [23℄, on the basis of earlier ideas

by Balog [24℄ and the Gaudin determinant formula for the inner produ
t of Bethe states

3

This 
an be proved by elementary manipulations involving the bulk kinemati
al singularity axiom

(2.5).
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[25℄. This proposal was tested in [7℄ for periodi
 boundary 
onditions against trun
ated


onformal spa
e, and a spe
ta
ular agreement was found.

Saleur's argument a
tually seems to be quite general, and so the appropriate version of

his formula for the boundary 
ase 
an easily be written, yielding the following 
onje
ture:

a1...an〈{I1 . . . In}|O(0)|{I1 . . . In}〉a1...an,L = (3.9)

1

ρa1...an(θ̃1, . . . , θ̃n)

∑

A⊂{1,2,...n}

F c
a(A)({θ̃k}k∈A)ρ̃a1...an(θ̃1, . . . , θ̃n|A) +O(e−µL)

The summation runs over all subsets A of {1, 2, . . . n}. For any su
h subset, we de�ne the


orresponding spe
ies index set

a(A) = {ak}k∈A
and the appropriate sub-determinant

ρ̃a1...an(θ̃1, . . . , θ̃n|A) = detJ a1...an
A (θ̃1, . . . , θ̃n)

of the n× n Bethe-Yang Ja
obi matrix

Ja1...an(θ̃1, . . . , θ̃n)kl =
∂Qk(θ1, . . . , θn)a1...an

∂θl
(3.10)

obtained by deleting the rows and 
olumns 
orresponding to the subset of indi
es A. The
determinant of the empty sub-matrix (i.e. when A = {1, 2, . . . n}) is de�ned to equal 1 by


onvention.

There is a simple way to assign an intuitive meaning to all the terms in (3.9). One needs

to 
onsider all possible ways to partition the parti
les into two sets, one of whi
h (A) is

onne
ted to the lo
al boundary operator O, while the parti
les in the 
omplementary set

(A†
) are just 
ontra
ted with ea
h other using the inner produ
t. For the latter 
ontra
tion

we obtain the inner produ
t

a(A†)〈{Ik}k∈A†|{Ik}k∈A†〉a(A†),L , A† = {1, . . . , n} \ A

whi
h is given by the appropriate density of states. As before, this density of states is

given by the Ja
obian of the quantum number � rapidity mapping. However, this must be


onsidered in the presen
e of the other parti
les (those in A) whi
h 
ontribute to the quan-

tization relations for the parti
les in the set A†
, and is therefore given by the 
orresponding

sub-determinant of the Ja
obian matrix (3.10).

Finally we remark that the result (3.9) 
an also be expressed with the so-
alled sym-

metri
 evaluation of diagonal matrix elements instead of the 
onne
ted one as it was done

for the bulk 
ase dis
ussed in [7℄; however it turns out that in the boundary 
ase it does

not lead to the same simpli�
ations as in the bulk (
f. [22℄) and therefore we omit these

details in the present work.
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4 Numeri
al determination of matrix elements

4.1 The boundary trun
ated 
onformal spa
e approa
h

Trun
ated 
onformal spa
e approa
h (TCSA) was developed by Yurov and Zamolod
hikov

[26℄, who used it to des
ribe the s
aling Lee-Yang model in �nite volume with periodi


boundary 
onditions. The boundary extension of TCSA (dubbed BTCSA) was developed

by G. Watts and 
ollaborators and �rst used in [10℄. A detailed des
ription of the method


an be found in Runkel's PhD thesis [27℄, whi
h provides a good starting point for develop-

ing a numeri
al algorithm. We implemented the 
omputations using the symboli
 algebra

software Mathemati
a.

Here we restri
t ourselves to spe
ify our 
onventions. Following [10℄ we used a basis

for the operator algebra in whi
h all the stru
ture 
onstants are real. To simplify matters

we spe
i�ed the left boundary 
ondition as the identity one (1) and put the Φ boundary


ondition to the right end, whi
h is also the position where our boundary �eld ϕ is lo
ated.

In su
h a 
ase the Hilbert spa
e 
onsists of a single V−1/5 module whose basis ve
tors

we denote by |i〉. We trun
ated this spa
e at various levels, the highest trun
ation taken

at level 25. On this �nite dimensional spa
e we 
omputed the matrix elements of the

Hamiltonian

H = H0 + λ

∫ L

0

Φ (τ = 0, x) dx+ hϕR(τ = 0)

We 
an measure all quantities in units of the bulk parti
le mass m, and introdu
e the

dimensionless volume variable l = mL. The dimensionless Hamiltonian matrix 
an then

be written in the form

hij =
π

l

[

(

∆i −
c

24

)

δij + κ′

(

l

π

)12/5
(

G−1B
)

ij
+ χ(b)

(

l

π

)6/5
(

G−1BR

)

ij

]

(4.1)

where ∆i is the 
onformal weight of the basis ve
tor |i〉, c = −22/5 is the 
entral 
harge,

the mass gap 
onstant

κ′ = κ−12/5 = 0.097048456298 . . .

is 
al
ulated from (2.14),

χ(b) = hcrit sin

(

(b+
1

2
)
π

5

)

is the boundary 
oupling h(b) (2.13) in dimensionless form, Gij = 〈i|j〉 is the usual 
onfor-
mal metri
 on the state spa
e, and the matrix elements of the perturbing operators

Bij = 〈i|
∫ ϑ

0

dϑΦ
(

eiϑ
)

|j〉 , (BR)ij = 〈i|ϕ(1)|j〉 (4.2)

are 
al
ulated on the upper half plane after the usual exponential mapping from the strip

as in [10℄.
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Figure 4.1: BTCSA levels (at trun
ation level 25) and Bethe-Yang predi
tions for b = −0.8.
Energy and volume are measured in units of the bulk parti
le mass m (i.e. e = E/m and

l = mL). The dis
rete points are the BTCSA levels (with the ground state subtra
ted),

while the 
ontinuous lines are the Bethe-Yang predi
tions.

4.2 State identi�
ation and evaluation of matrix elements

On
e the BTCSA spe
trum is obtained it is just a set of energy levels represented as a

bun
h of numeri
al eigenvalues for a series of dis
reet values of the volume parameter

l = mL. We need to sort these levels into lines parametrized by the volumes, labeled

by their multi-parti
le 
ontents. This is best a
hieved by numeri
al 
omparison to levels

predi
ted by the Bethe-Yang equations (3.2), whi
h is illustrated in �gure 4.1. The �gure

shows a very good agreement between the two sets of data, however, the lowest state does

not �t any of the Bethe-Yang lines. The reason is that it 
orresponds to a boundary ex
ited

state with energy

E∗ = m cos
π(b+ 1)

6
= 0.99452 . . .×m

Some states 
orresponding to multi-parti
le states with the right boundary in this ex
ited

state 
an be seen further up in the spe
trum as further points not �tting the Bethe-Yang

lines. They 
an be des
ribed if the re�e
tion fa
tor appearing in the Bethe-Yang equations

(3.2) is repla
ed by the one valid for the ex
ited state boundary, but we omit the details

here, sin
e the agreement between the BTCSA spe
trum and the boundary s
attering

theory des
ribed in se
tion 2.2 was already thoroughly established in [10℄.

Note that 
ontrary to the 
ase of the periodi
 TCSA where the Hilbert spa
e 
an

be split into se
tors a

ording to total momentum, in BTCSA there is a single se
tor.
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As a result, the dense part of the spe
trum (the �
ontinuum�) already starts at the one-

parti
le threshold, whi
h makes the identi�
ation of individual levels harder than it was in

the periodi
 
ase. We found a number of one-parti
le and two-parti
le states, and 
ould

also identify the �rst two three-parti
le levels over a volume range extending to around

l ∼ 14 . . . 17, in marked 
ontrast with the periodi
 
ase where it was possible to perform a

systemati
 identi�
ation of levels with up to 4 parti
les [6℄ and even the lowest 5-parti
le
level was found [7℄. Even so we 
ould generate a massive amount of useful data for ea
h

value of the dimensionless parameter b.
On
e we identi�ed the levels, we extra
ted the 
orresponding eigenve
tors and evaluated

the matrix elements of the boundary operator ϕ using the method des
ribed in [6℄. Suppose

that we 
omputed two Hamiltonian eigenve
tors as fun
tions of the volume L:

|{I1, . . . , In}〉L =
∑

i

Ψi(I1, . . . , In;L)|i〉

|{I ′1, . . . , I ′k}〉L =
∑

j

Ψj(I
′
1, . . . , I

′
k;L)|j〉

Let the inner produ
ts of these ve
tors with themselves be given by

N =
∑

i,j

Ψi(I1, . . . , In;L)GijΨj(I1, . . . , In;L)

N ′ =
∑

i,j

Ψi(I
′
1, . . . , I

′
k;L)GijΨj(I

′
1, . . . , I

′
k;L)

where Gij = 〈i|j〉 is the metri
 on the spa
e of the 
onformal state ve
tors |i〉 as before.
Then the matrix elements of the �eld ϕ 
an be 
omputed as

m1/5〈{I ′1, . . . , I ′k}|ϕ(0)|{I1, . . . , In}〉L =
(π

l

)−1/5 1√
N

1√
N ′

∑

j,l

Ψj(I
′
1, . . . , I

′
k;L)(BR)jlΨl(I1, . . . , In;L) (4.3)

where BR is the boundary perturbation matrix entering the boundary Hamiltonian (4.1),

and the volume dependent prefa
tor 
omes from the transformation of the primary �eld ϕ
under the exponential map. The results will be reported in se
tion 5, but before that we

turn to the estimation of the a

ura
y of the BTCSA method.

4.3 Numeri
al a

ura
y of BTCSA and error sour
es

In order to understand what 
onstitutes a satisfa
tory agreement between the theoret-

i
al predi
tions and the numeri
al data, we need to understand the possible sour
es of

deviations.

The trun
ation inherent in BTCSA introdu
es a spe
i�
 sour
e of error, 
alled the

trun
ation error. It grows with the volume L and also it be
omes larger when higher
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levels are 
onsidered. It is very hard to 
ontrol and estimate this error very pre
isely. It


an be made smaller by extrapolation pro
edures su
h as the one used in [6, 7℄. Re
ently

a very e�
ient approa
h was introdu
ed in the form of a renormalization group under

the variation of the trun
ation level [28℄. To avoid ex
essive numeri
al 
omputations, we

do not use any extrapolation in the trun
ation level here; it turns out that the highest

trun
ation level we used (25, whi
h gives a 434 dimensional Hilbert spa
e) is enough to

a
hieve su�
ient pre
ision provided we 
hoose the parameter b in a suitable range. We

remark that in
reasing the trun
ation level to the values used in the periodi
 
ase [6, 7℄

(i.e. up to 30) is not very pra
ti
al be
ause the evaluation of the matrix elements of the

bulk perturbation is very time 
onsuming and the required CPU time grows very fast.

Another sour
e of error 
omes from the fa
t that numeri
al diagonalization be
omes

unstable where levels are nearly degenerate

4

; an example of this phenomenon is shown in

subse
tion 5.2.

A further reason for deviation is that every theoreti
al predi
tion that we test against

BTCSA is exa
t only up to residual �nite size 
orre
tions, i.e. 
ontributions that de
ay

exponentially with the volume. As dis
ussed in [6℄ for any measured quantity there exists

a volume range where the trun
ation errors and the residual �nite size 
orre
tions are

of the same order; this is the so-
alled s
aling regime where the agreement between the

theoreti
al predi
tions and the numeri
al results is optimal.

To see what pre
ision 
an be expe
ted in the s
aling regime, we evaluated three quan-

tities 
hara
teristi
 of the ground state. The energy of the ground state in �nite volume

has the large volume asymptoti
s

E0(L) = Bm2L+ Ebm+O
(

e−µL
)

where the exa
t value of the bulk energy 
onstant is [17℄

B = −
√
3

12

and the boundary energy 
onstant is given by [10℄

Eb =
√
3− 1

2
+ sin

πb

6

In addition, the �nite volume va
uum expe
tation value has the asymptoti
s

〈0|ϕ|0〉L = 〈ϕ〉+O
(

e−µL
)

where the exa
t asymptoti
 value 〈ϕ〉 is given by (2.19).

One 
an extra
t estimates for these quantities from the s
aling regime of BTCSA, whi
h

are 
ompared with the predi
ted values in table 4.1. Besides noting the very good agree-

ment it is useful to pay parti
ular attention to the va
uum expe
tation value, be
ause it

4

Eigenve
tors 
orresponding to degenerate or nearly degenerate levels are very sensitive to any small

perturbation, and thus even a small trun
ation error 
an have a disproportionately large e�e
t.
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b B (BTCSA) Eb (exa
t) Eb (BTCSA) m1/5 〈ϕ〉 (exa
t) m1/5 〈ϕ〉 (BTCSA)
−2.3 −0.144750 −0.567555 −0.568208 −1.023503 −1.043671
−2.0 −0.144736 −0.500000 −0.499934 −1.034417 −1.052965
−1.7 −0.144588 −0.411121 −0.411366 −1.049802 −1.066242
−1.4 −0.144472 −0.303105 −0.303446 −1.070303 −1.083938
−1.1 −0.144376 −0.178614 −0.178994 −1.096875 −1.106887
−1.0 −0.144351 −0.133975 −0.134351 −1.107309 −1.115903
−0.8 −0.144305 −0.040711 −0.041154 −1.136265 −1.130931
−0.5 −0.144286 0.107206 0.106815 −1.174595 −1.174435
−0.2 −0.144315 0.261497 0.261078 −1.231176 −1.226541
0.0 −0.144372 0.366025 0.365596 −1.278610 −1.270723
0.3 −0.144523 0.522460 0.522032 −1.370592 −1.356133

Table 4.1: Boundary energy and va
uum expe
tation of ϕ: exa
t predi
tions 
ompared to

BTCSA. The exa
t value of B is −0.144338 . . . .

is in fa
t the simplest (zero-parti
le) form fa
tor that 
an be measured. In fa
t we found

that the deviation of the BTCSA determination of the matrix elements from the theo-

reti
al predi
tions (3.6,3.9) follows well the pre
ision of the determination of the va
uum

expe
tation value. We 
an therefore see that the highest pre
ision 
an be a
hieved when

−1.1 . b . 0.0, and so it is in this range that the numeri
al tests are the most reliable.

5 Comparing theoreti
al predi
tions with BTCSA data

In this se
tion we present examples of the 
omparison between the theoreti
al predi
tions

(3.6,3.9) and BTCSA data. All the results presented below are for b = −0.8, the same

value of the model's parameter as in �gure 4.1, whi
h is in the optimum range for numeri
al

pre
ision. We a
tually performed the 
al
ulations for fourteen di�erent values of b between
−2.3 and +0.3. We isolated the va
uum state, four one-parti
le, four two-parti
le and two

three-parti
le states for ea
h value of b, 
al
ulated matrix elements for all possible pairwise


ombinations of these states, and found similarly good agreement as presented below. The

numeri
al deviations gradually in
rease when moving away from the optimum range of b.
In the optimum range, we found deviations of the order 10−3

in the s
aling regime; for the

extremal values, the deviations in
reased to a few per
ent for higher levels. There was not

a single matrix element in this huge set of data for whi
h any unexpe
tedly large deviation

o

urred; therefore we 
an state that the numeri
al data are in full agreement with the

theoreti
al predi
tions.

We also re
all (
f. [6℄) that the relative phases of di�erent multi-parti
le states resulting

from numeri
al diagonalization are in general di�erent from the 
onventions that follow

from the form fa
tor axioms in subse
tion 2.1. Therefore the relations (3.4,3.6) must be

understood to hold up to some phase fa
tors, and in the numeri
al 
omparisons in �gures

5.1 and 5.3 we use the absolute values of the matrix elements. This issue does not arise
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for the diagonal 
ase as any su
h phase fa
tor drops out from (3.9); in �gure 5.5 we only

removed a minus sign that appears on both side of this relation after evaluation.

5.1 Elementary form fa
tors

Elementary form fa
tors are de�ned in eqn. (2.1); these are the ones whi
h enter the form

fa
tor equations given in subse
tion 2.1, and all other form fa
tors 
an be obtained from

them by 
rossing. Comparing su
h matrix elements against BTCSA provide a test for

form fa
tor fun
tions with all their arguments real, a

ording to eqn. (3.4). However, the

numeri
al magnitude of the 
orresponding �nite volume matrix elements de
reases very

fast with the number of parti
les. The three-parti
le matrix elements are already too small

to be measured meaningfully from BTCSA (they are of the order of trun
ation errors),

and therefore we limited ourselves to the one- and two-parti
le 
ases, shown in �gure 5.1.

Note that the two-parti
le matrix elements are already smaller than the one-parti
le ones

by more than an order of magnitude; a

ordingly, the relative pre
ision in their 
ase is

around one per
ent, while for the one-parti
le matrix elements we 
ould a
hieve around

10−3
(or even slightly better) in the s
aling regime. A

ording to the dis
ussion at the end

of subse
tion 3.2 this is enough to test that the in
lusion of the phase-shifts in (3.5) whi
h

des
ribe the intera
tion between the parti
les and also with the boundary is ne
essary to

a
hieve agreement between the theoreti
al predi
tions (3.4) and trun
ated 
onformal spa
e

data. This is illustrated in �gure 5.2 where besides plotting the 
orre
t predi
tion (3.4)

involving the full one-parti
le density of states

ρ1(θ) = 2mL cosh θ +
∂δ(α)(θ)

∂θ
+

∂δ(β)(θ)

∂θ

whi
h takes into a

ount intera
tions as de�ned in (3.5), we also plot a version where the

density of states is substituted by

ρnaive1 (θ) = 2mL cosh θ

Here δ(α) and δ(β) are the boundary phase-shifts de�ne in (3.1). Note that for small L the

di�eren
e between the naive and the full phase-shift goes to 0. This may seem surprising

at �rst, but it is due to the fa
t that θ in
reases with de
reasing L and the phase-shift

derivatives de
rease exponentally for θ away from 0. Although �gure 5.2 only shows the


ase of the �rst one-parti
le state, similar results are obtained for all the form fa
tors

dis
ussed in this paper.

5.2 Non-diagonal matrix elements

Form fa
tor fun
tions with more than two parti
les 
an only be measured with su�
ient

a

ura
y from more general (non-diagonal) matrix elements, for whi
h the theoreti
al pre-

di
tion is given by eqn. (3.6). We present su
h data in �gure 5.3, whi
h provide a 
he
k for

form fa
tor fun
tions involving up to 6 parti
les; the relative deviation between the BTCSA
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Figure 5.1: One-parti
le and two-parti
le elementary form fa
tors. l = mL is the dimen-

sionless volume parameter, while f is the magnitude of the matrix element in units of

m−1/5
.
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data and the theoreti
al predi
tion (3.6) is around 10−3
in the s
aling regime. We omitted

the 
ase of 1-parti
le�1-parti
le matrix elements, be
ause they test the two-parti
le form

fa
tor already 
he
ked above; they show similarly good agreement. We also omitted the


ase of 1-parti
le�3-parti
le matrix elements as they are again too small to be extra
ted

with high enough pre
ision.

We remark that there is an easily visible, quite large deviation in �gure 5.3 (
) at

l = 13. The reason is that the 
orresponding matrix element involves the se
ond three-

parti
le level |{1, 2, 4}〉, whi
h 
rosses another level in the vi
inity. As we already dis
ussed

at the beginning of subse
tion 4.2, in the vi
inity of su
h level 
rossings the pair of levels


an bifur
ate into a pair of 
omplex 
onjugate eigenvalues, whi
h in
reases the numeri
al

deviation due to trun
ation errors.

This parti
ular level 
rossing is shown in �gure 5.4, and it 
an be easily seen that

the bifur
ation is indeed due to trun
ation errors. At su
h a large volume the Bethe-Yang

equations (3.2) give a very a

urate des
ription of energy levels, sin
e the residual �nite size


orre
tions are very small, of order e

−l ∼ 10−6
. Therefore imaginary parts of levels whi
h

are larger than this order of magnitude 
an only be due to trun
ation errors. Indeed the

imaginary parts at the middle of the level 
rossing are of order 10−4
whi
h is also 
onsistent

with the magnitude of trun
ation errors that 
an be estimated from the deviation between

the Bethe-Yang and BTCSA levels around this point.

Turning to an exa
t des
ription of the �nite size spe
trum, for periodi
 boundary 
on-

ditions it 
an be proved that the full exa
t �nite volume spe
trum of the s
aling Lee-

Yang model is stri
tly real [29℄, and therefore the similar la
unae observed by Yurov and

Zamolod
hikov [26℄ 
an only be due to trun
ation. We expe
t that a similar result holds

for the s
aling Lee-Yang model with boundaries when b is real i.e. when |h| < hcrit
5

, and a

proof 
an probably be given based on the boundary TBA des
ription of the �nite volume

spe
trum established in [10℄, but we do not pursue this issue further here.

5.3 Diagonal matrix elements

The 
omparisons in the previous two subse
tions 
an be 
onsidered as a dire
t veri�
ation

of the form fa
tor fun
tions given in subse
tion 2.3. On
e we are 
ertain that the elementary

form fa
tor fun
tions are 
orre
t, we 
an view the 
omparison of diagonal matrix elements

as testing the stru
ture of the dis
onne
ted terms involved in (3.9). The data are presented

in �gure 5.5 and again show ex
ellent agreement (with deviations of order 10−3
in the s
aling

regime) apart from the presen
e of the deviation due to the level 
rossing dis
ussed in the

previous subse
tion.

5

For larger values of the boundary 
oupling h the ground state is destabilized and the spe
trum turns


omplex [10℄.
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Figure 5.3: Non-diagonal matrix elements. l = mL is the dimensionless volume parameter,

while f is the magnitude of the matrix element in units of m−1/5
.
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6 Con
lusions

In this paper we have su

eeded to extend the des
ription of �nite volume matrix elements

of lo
al operators [6, 7℄ to the 
ase of boundary operators in a boundary quantum �eld

theory. We have 
ompared the predi
tions of this framework to data extra
ted from the

boundary trun
ated 
onformal spa
e approa
h, and found ex
ellent agreement. This pro-

vides a very strong eviden
e both for the validity of the boundary form fa
tor bootstrap

introdu
ed in [2℄, and to the des
ription of �nite volume matrix elements in terms of the

in�nite volume form fa
tors given by eqns. (3.6,3.9).

As pointed out in [7℄, understanding �nite size 
orre
tions to form fa
tors is not only

valuable as a tool to 
he
k the form fa
tor bootstrap, but also for the 
al
ulation of �nite

temperature 
orrelators. The introdu
tion of �nite volume regularizes the singular terms

that 
ome from dis
onne
ted pie
es, and makes it possible to develop a systemati
 low-

energy expansion for �nite temperature 
orrelators, as demonstrated on the example of

one-point fun
tions in [7℄. A form fa
tor expansion for the �nite temperature expe
tation

values of boundary operators has already been developed in [22℄; we also plan to extend

these results to two-point 
orrelation fun
tions. It was already demonstrated in the seminal

paper by A�e
k and Ludwig [30℄ that the �nite temperature setting is essential in studying

boundary renormalization group �ows, and therefore we expe
t that su
h an expansion 
an

be useful in this 
ontext.
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