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Abstract

We describe the volume dependence of matrix elements of local boundary fields
to all orders in inverse powers of the volume. Using the scaling boundary Lee-Yang
model as testing ground, we compare the matrix elements extracted from boundary
truncated conformal space approach to exact form factors obtained using the boot-
strap method. We obtain solid confirmation for the boundary form factor bootstrap,
which is different from all previously available tests in that it is a non-perturbative
and direct comparison of exact form factors to multi-particle matrix elements of local
operators, computed from the Hamiltonian formulation of the quantum field theory.
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1 Introduction

The investigation of integrable boundary quantum field theories started with the seminal
work of Ghoshal and Zamolodchikov 1], who set up the boundary R-matrix bootstrap,
which makes possible the determination of the reflection matrices and provides complete
description of the theory on the mass shell.

For the calculation of correlation functions, matrix elements of local operators between
asymptotic states have to be computed. In a boundary quantum field theory there are
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two types of operators, the bulk and the boundary operators, where their names indicate
their localization point. The boundary form factor program for calculating the matrix
elements of local boundary operators between asymptotic states was initiated in [2]. The
validity of form factor solutions was checked in the case of the boundary scaling Lee-Yang
model by calculating the two-point function using a spectral sum and comparing it to
the prediction of conformal perturbation theory. In [3] the spectrum of independent form
factor solutions in the scaling Lee-Yang model and the sinh-Gordon model was compared
to the boundary operator content of the ultraviolet boundary conformal field theory and a
complete agreement was found. Further solutions of the boundary form factor axioms were
constructed and their structure was analyzed for the sinh-Gordon theory at the self-dual
point in [4], and for the A, affine Toda field theory in [5].

While the checks performed so far have confirmed the validity of the boundary form
factor bootstrap proposed in [2], they can still be considered incomplete. The spectral sum
evaluated in that paper only receives a very small contribution from form factors with more
than two particles, thus it cannot be considered as a test of higher form factor functions,
and therefore it does not constitute a stringent verification of the singularity axioms, which
form the basis of the recursive construction of form factors. The solution counting in [3]
does involve form factors up to arbitrary number; however, the counting procedure uses
only some rough features of the axioms such as power counting of the polynomials involved,
and the structure of the kernels of the recursion relations.

It is therefore desirable to have a direct comparison of form factors to matrix elements
of local operators evaluated directly from the boundary quantum field theory in a non-
perturbative framework. For periodic boundary conditions, it was shown recently in [6, 7]
that such a comparison can be achieved by extracting the matrix elements in finite volume,
for which one can use the very efficient truncated conformal space approach. In this paper
we give the extension of this framework to the boundary case, using the boundary scaling
Lee-Yang model as our paradigmatic example.

The paper is structured as follows. In section 2 we review the necessary ingredients
of the boundary form factor bootstrap and give the form factor solution in the boundary
scaling Lee-Yang model for the boundary operator with the lowest scaling dimension, up
to 6 particles. In section 3 we derive a framework which makes it possible to calculate fi-
nite volume matrix elements using the infinite volume form factors, to all orders in inverse
powers of the volume L, i.e. neglecting only corrections that decay exponentially fast with
L. In section 4 we give the necessary background on the boundary truncated conformal
space method, and also discuss the numerical precision and sources of errors. The actual
comparison between the predictions from the bootstrap solution and the numerically eval-
uated finite volume matrix elements is performed in section 5, and the conclusions are
drawn in section 6.



2 Boundary form factor bootstrap for the scaling Lee-
Yang model

2.1 The boundary form factor axioms

The axioms satisfied by the form factors of a local boundary operator were derived in
[2]. Here we only list them without much further explanation. Let us suppose that we
treat an integrable boundary quantum field theory in the (infinite volume) domain = < 0,
with a single scalar particle of mass m, which has a two-particle S matrix S(#) (using
the standard rapidity parametrization) and a one-particle reflection factor R(f) off the
boundary, satisfying the boundary reflection factor bootstrap conditions of Ghoshal and
Zamolodchikov [1]. For a local operator O(t) localized at the boundary (located at = = 0,
and parametrized by the time coordinate t) the form factors are defined as
out (01,05, ., 00, ]O1)|01, 05, ..., 0,)in =

S (01,8 0,301, 6n, , By) (2o i B cosh )

Y m)

for ) >0y >...>0,>0and 0] <0, <...<0, <0, using the asymptotic in/out state
formalism introduced in [8]. They can be extended analytically to complex values of the
rapidity variables. With the help of the crossing relations derived in [2] all form factors
can be expressed in terms of the elementary form factors

out<O|O(0)|91a 92, ey 9n>zn — Ff(@l, 92, ey Qn) (21)

which can be shown to satisfy the following axioms!:
[. Permutation:

FOOy,....0:,6i01,...,0,)=S5(0; —0,.1)F°(0:,...,041,6i,....,6,) (2.2)
II. Reflection:
FO(by,....0n_1,0,) = R(6,)EC(6:,...,0,_1,—0,) (2.3)
III. Crossing reflection:
FO(0,,0,,...,0,) = R(im — 61)F° (2im — 01,05, ...,6,) (2.4)

IV. Kinematical singularity

—iRes F2 (0 +im, 0 ,61,...,6,) = <1 o | ECECAN(ES eg) EC6,...,0,) (2.5)
6=0 5
=1

!There is a further axiom corresponding to boundary excited state poles, but it will not be needed in
the sequel.



V. Boundary kinematical singularity

—iRes 0,1 (6 + g,el, b)) = %(1 L5 - 90)1?,?(91, .0 (2.6)
=1

where ¢ is the one-particle coupling to the boundary

2

g T
R(0) ~ ~ i— 2.7
(6) 20 —im ! (2.7)
VI. Bulk dynamical singularity
—i gie; FO,(0 +iu,0 —iu,6,,...,0,) =TFS (0,6,...,0,) (2.8)

corresponding to a bound state pole of the S matrix
ir?
0 —2iu

S(0) ~ 0 ~ 2iu
(in a theory with a single particle, the only possible value is v = 7/3).

We further assume maximum analyticity i.e. that the form factors have only the min-
imal singularity structure consistent with the above axioms. The general form factor
solution can be written in the following form |2]

n

Fy(01,02, ... 00) = Gu(01,05,....0,) [ [ r(0:) T] £(0: — 0,)(0; + ;) (2.9)

i=1 1<J

where f is the minimal bulk two-particle form factor satisfying the conditions

f(0) = S(0)f(=0),  [flim+0) = f(ir —0)

and having the minimum possible number of singularities in the physical strip 0 < 6 < 7
together with the slowest possible growth at infinity [9], and r is the minimal boundary
one-particle form factor satisfying

r(0) = R(O)r(—0) ; r(ir+0)=R(-0)r(ir —0) (2.10)

plus analytic conditions similar to those of f, but in this case in the strip 0 < 0 < 7/2.
The functions G,, are totally symmetric and meromorphic in the rapidities ;. They
are also even and periodic in them with the period 27, so they can only be functions of
the variables
y; = e el

In a theory with only one particle (such as the scaling Lee-Yang model), the only possible
singularity of the S matrix in the physical strip is located at = 27i/3 corresponding to



the self-fusion of the particle (plus the crossed channel pole for the same process at mi/3)
and the relevant fusion coupling is defined as

[? = —i Res S(6)

0=27i

Assuming f is chosen such that it has a pole at 0 = 27i/3 so that it encodes this singularity
and that the boundary dynamical singularities (but not the kinematical ones!) are similarly
contained in the 1PFF function r, the functions GG,, can be written in the form

Pn(ylva’”uyn)
G (01,05, .. 0,) =
OO 0) = 1 T+ )

1<j

where the P, are entire functions symmetric in their arguments. Assuming that the correla-
tion functions involving the operators in consideration only have power-like short-distance
singularities, the asymptotic growth of the form factors is limited by

Fo(6h + M0+ A, ... 0, +A) ~e®

for some real number d, and therefore P, can only be polynomials of finite degree [2].

2.2 Scaling Lee-Yang model with boundary

The scaling Lee-Yang model with boundary is a combined bulk and boundary perturbation
of the boundary version of the Ms 5 Virasoro minimal model, which was investigated in
detail in [10]. The conformal field theory has central charge ¢ = —22/5 and the Virasoro
algebra has two irreducible representations Va with highest weight A = A;; = 0 and
A = Ay = —1/5. There is a unique nontrivial relevant bulk perturbation given by the
spinless field ¢ with scaling dimensions A = A = —1/5 which for an appropriate choice of
the sign of the coupling flows to a massive infrared fixed point.

Boundary conformal field theory was developed in [11, 12, 13] and the interested reader
is referred to them for details. Applying the formalism to the conformal Lee-Yang model
it can be seen that there are two conformally invariant boundary conditions. On one of
them, denoted 1 (i.e. identity) in [10], there is no possibility for a boundary perturbation.
In the other case, denoted ® in [10], there is a nontrivial relevant boundary field ¢ with
scaling dimension —1/5 and the general perturbed boundary conformal field theory action
can be written as

0o 0 0o
Axom) = As + A / dy / dxd(z,y) +h / dyp(y) (2.11)

where Ag denotes the action for M(2/5) with the ® boundary condition imposed at x = 0,
and A and h denote the bulk and boundary couplings respectively. The action of A, ; is
similar, but the last term on the right hand side is missing. For A > 0 the bulk behaviour
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is described by an integrable massive theory having only a single particle with mass m
with the following S matrix [14]:

so--(3)3)--[] + w-mEEE L w-w-o

The minimal bulk two-particle form factor only has a zero at # = 0 and a pole at § = =*
in the strip 0 < Im(f) < 7 and is of the form [15]:

3

3 o

N

-2
f(6) = Z; n 1v(z'7r —Ow(—ir+0) , y=¢e +e’ (2.12)
where . e
2(6) = exp {2/ @ei% sinh 5 s.mh; sinh ¢ }
o t sinh” ¢

For the perturbed ® boundary, the reflection amplitude of the particle depends on the
boundary coupling constant as [10]

mon=(3) ) ) )15

where the dimensionless parameter b is related to the dimensionful i as [16]

1
h(b) = —he mb/® sin [(b + 5) g} (2.13)
! sin 2% <F( )
rEre) \e)
and m is the mass of the particle giving the overall scale in the infrared description, which
is related to the bulk coupling A as [17, 18]

o
(S

255

hcm't =7

O={wino

5
) = (0.685289983991 . . .

m = rA\Y/12 (2.14)
(D(3/5)T(4/5)"*

) = 21912, /7 55/16T(2/3)0(5/6)

= 2.64294466304 . . .

In the case of the 1 boundary the reflection amplitude is the parameter independent ex-

pression
=) 6) ()



2.3 Recursion relations and form factor solution for the ® bound-
ary condition

The minimal boundary one-particle form factor is |2]

ra(0) = isinh () (2.15)

(sinh @ — isin ’T(bﬂ )(sinh 6 — i sin @)

where

< dt 1 t i t7 sinh 2 + sinh £ — sinh &
0) = - — 9cosh — AR/ 6 2 3
u(f) = exp {/0 ; {sinh% coS 5 cos {( 5 ) W] T } }

Taking the following Ansatz

(6; — 9 f(0; +6;
F.(01,...,0,) =N H,Qn(y1,---,Yn) H Hf + j) (2.16)
% 1<j Yi
where .
i31
H, = - (2.17)
220(0)

and N is a normalization constant to be fixed later, the (2.8) bulk dynamical (D), (2.5) bulk
kinematical (K) and (2.6) boundary kinematical (B) singularity axioms give the following
recursion relations for the polynomials @,, |2, 3]

D:  Quys+,y-) = (> —3+0)Q1(y)

Qni2(We, Y= 1, yn) = (U2 =3+ B) Duylyr, - yn) Quir (U, 41, - 4n) 1> 0;
K:  Qx-y,y)=0

Qne2 (=0, 0,01, - um) = (0 — B+ B8)y* + BHKnWlyrs - 9n)Qu(yr, - 4n) 0> 0
B: Q1(0) =

Qn1(0, 91, Yn) = BBa(y1, - Yn)@n(yrs - - ym) , 1> 0;

where we introduced the parameter
b
B =1+ 2cos %

and D,, K, and B,, are given by

Kn(ylys, - - yn) = [H Di+ye) = [Jwi+u- )(yi—y+)]

=1 i=1

Bn(yl,--.,yn = —F ﬁyl—l—\/_ H( \/§>
f
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Du(ylyr, - yn) = H(y + )

where

Yy = wz +wlz?

y. = wlz+wz? , w=es
with the auxiliary variable z defined as a solution of y = 2z + 27! (i.e. writing y = 2cosh 6
we obtain z = e’). The symmetry of the above expressions in y. ensures that the resulting
relations only depend on y and also that K, is a polynomial in all of its variables [3].
The polynomials @),, can be expanded using the elementary symmetric polynomials
defined by the generating function

The solution of the recursion relations D, K and B proceeds as follows. All the recursion
coefficients D,,, K,, and B,, can be expanded in products of symmetric polynomials of the
variables y1,...,y, and, for the first two, powers of the additional variable y. For the
minimal solution of these equations the polynomials @,, have degree n(n + 1)/2 [2], so we
can write an Ansatz as a general linear combination of products of elementary symmetric
polynomials not exceeding this degree. Using the relation

Uk(y>y1> s >yn) = Uk(yla s >yn) + yak—l(yla cee ayn)

we can expand both sides of the recursion relations in terms of products of o, and powers
of y. Equating the coefficients of independent terms on the two sides, we obtain a linear
system of equations for the coefficients of the Ansatz, which can then be solved. The
minimal solution turns out to be unique (apart from an overall normalization that can be
fixed by choosing the coefficient of (1), and up to 6 particles it is given by

Qf = 01
5 = o1(f+09)
Q5 = o1[o3(o9 +3) + Boi(o2 + )]
h o1(oz +3) [(301+03)U4+5(U2+3)03+5201(02+5)}
Qf = 01((3+ 02)(301 + 03) — 03)
x [04(3B01 + Bos + 05) + (B — 3)B(B%01 — 05) + (3 + 02) (01 + 5205 + 305)]
Qf = o1 [—0405 — 30106 + (09 + 3) (30104 + 0304 — 305 — 0106) + 3(09 + 3)%(30, + 03)}

X{ﬁ 0'2—|—3 ,830'1+,820'3+30'5) (901+3U3+0’5)(3O’4+0’6)
"—(ﬁ 3)[810’1 90’5 + 0405 +30’10’6
(8+3) (3104 + 73074 — 7106 + (B = 3) (91 + B — 75))] |

+
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The first three form factors in this sequence were originally computed in [2] where it was
demonstrated that this solution corresponds to the relevant boundary field ¢, which gives
the boundary perturbation according to (2.11). The complete form factors can be written
as 2]

T 91 HZ—QJ 92 GJ
Fuby.00) = ) HiQion, o) [ [T IO BER) g
where i
()= -2 %) (2.19)

" Gherst cos(Z(2b+ 1))

is the exact expectation value of the boundary operator ¢ |10].

3 Boundary form factors in finite volume

3.1 Bethe-Yang equations

Let us consider an integrable boundary quantum field theory with particles of species
a =1,..., N and corresponding masses m,. As usual in two-dimensional field theory, we
label asymptotic particles with their rapidities 8, which gives their energy and momentum

as

E,+p, = maeie"

We assume the bulk scattering is diagonal and is given by the two-particle S matrices
Suray (01 — 0s) = eieraz(01-02)

We further assume that the reflection on the boundaries is also diagonal and is given by
the reflection factors

R () =%V ® RV (g) = i 0) (3.1)

a a

where o and [ denote the left and right boundary conditions, respectively.
In the diagonal case, the multi-particle energy levels in a finite volume L are described
by the following Bethe-Yang equations [19]:

Qj (91, Ceey 9n)a1___an = 271'1]' (32)
where the phases describing the wave function monodromy are given by
Qi (01, 0n)y, a0 = 2ma, LD 0;+ ) (30,0, (05 = Ok) + Ga,a, (0 + 01))+352) (6,)+6(D (6;)
k#j

Here all rapidities 6; (and accordingly all quantum numbers I;) are taken to be positive?.
We can take the quantum numbers ordered as [; < ... < I;; in the scaling Lee-Yang model

2Boundary reflections change the sign of the momentum, so finite volume multi-particle states can be
characterized by the absolute value of the rapidities.



they must all be different due to the exclusion principle. We denote the corresponding
multi-particle state by

|{[1a ce ey [n}>a1...an,L

and its energy (relative to the ground state) is given by

Ep .1, (L) = Zm“j cosh éj
j=1

where {éj} is the solution of eqns. (3.2) at the given volume L. The Bethe-Yang
7j=1,...,n

equations gives the energy of the multi-particle states to all order in 1/L, neglecting only
finite size effects decaying exponentially with L.

3.2 Non-diagonal matrix elements

Following the ideas outlined in [6, 7] we begin with examining a two-point function of two
boundary operators

(O1(1)0:2(0)),

where 7 is Euclidean time. Let us suppose for definiteness that we consider operators
located on the right boundary.
We first need to establish that the finite size corrections to the two-point function will
then be of the form
(O1(1)02(0)) , = (O1(7) O2(0)) ~ 7" (3.3)

Unfortunately, for the boundary situation there is no analogue of Liischer’s systematic
finite volume expansion [20] that was used for periodic boundary conditions. Let us recall
that the essential input in the argument is the analytic structure of Green’s function, which
was worked out for the boundary case in [8]; just as in the bulk case, the singularities are
given by diagrams with all internal lines on-shell. It can be seen from Liischer’s derivation
that the correction results from the singularities of momentum space Green’s functions
which occur in the momentum integrals of the finite volume expansion, and the exponent
i (which is on the scale of the mass gap of the theory) is given by the singularity lying
closest to the physical domain. This argument cannot be considered a proper derivation;
it would go much beyond the scope of this paper and requires developing the finite volume
expansion for the boundary case. However, we still have a strong reason to accept that
(3.3) holds; in retrospect, this is also confirmed by the numerical results in section 5.

Using (3.3) we can then follow the arguments outlined in [6] without essential modi-
fications. Just as in the periodic case we find that the infinite volume and finite volume
matrix elements are just related by the square root of the ratio of normalization of the cor-
responding states (up to the corrections neglected in (3.3)). This results in the following
relation:

Fa(?...an(éh B aen)
L = ~ ~
\/pal...an (017 ceey 911)

10

OIOO){ 11, -, Lo} ar..an, +0(e™h) (3.4)




where F© (91, ..., 0y) is the form factor of the operator O (in the infinite volume theory,

ay...an

i.e. on the half-line z < 0),{@-} is the solution of eqns. (3.2) at the given volume
j:1,...,TL
L, and

palman(él’ o ’én) _ det {an(917 R 9n)a1...an } (35)
8‘9[ k,l=1,...n

is the finite volume density of states, which is the Jacobi determinant of the mapping
between the space of quantum numbers and the space of rapidities given by the Bethe-Yang
equations (3.2). Using the crossing relations derived in [2| and following the arguments of
[6], general matrix elements can be written as

bl---bm<{’[:{7 B ];nHO(O)H]lv ceey ]n}>a1~~~an7L =
FO @ +im,... 0 +im,0y,...,0,)

bpn...b1a1...an

\/pal...an (éla cee 7‘§n)pb1...bm (éiu sy HN;n)

+O(e ) (3.6)

as long as the sets of the rapidities corresponding to the two states, {9]} and
jzlv"'vn

{9;} , are disjoint i.e. when there are no disconnected contributions. Here b; benotes
7j=1,...m

the particle species conjugate to b;.

The exponent  in (3.4,3.6) can also be estimated using the Poisson summation formula.
The argument for the periodic case was written down in subsection 2.2 of ref. [6] and carries
over without essential modification. The result is that the deviation between the discrete
and continuous versions of the spectral sums is determined by the analytic singularity
structure of the form factors and the phase-shifts involved in (3.4,3.6) and the leading
correction is given by the one with the smallest imaginary part in rapidity variables, just as
the correction indicated in (3.3). Taking the two sources of exponential corrections together
the result is that it is the singularity closest to the physical domain which determines the
leading exponential correction in (3.4,3.6). In fact this was already tacitly assumed by using
the same exponent £ as in (3.3). This is essentially the same result that was obtained by
Liischer for mass corrections which periodic boundary conditions in finite volume |20]|. For
the case of periodic boundary conditions such corrections to finite volume scattering states
and form factors were recently investigated in [21].

Note that the determinant (3.5) has the following behaviour for large L:

Paroan (O, ..., 0,) = (H 2mg, L cosh @) (1+0(L™)

=1

The leading terms is just the density of states for non-interacting particles, and it is inde-
pendent of the bulk and boundary phase-shifts. The corrections are of the order of 1/(mL)
where m is the typical mass scale. In the numerical examples given in section 5 this means
that the interaction corrections are of relative size ~ 107! in the volume range considered
there.

11



3.3 Diagonal matrix elements

When disconnected contributions are present, a more careful analysis is required. As in
[7] we must start by finding out the conditions under which there can be equal rapidities
in the two states. It is easy to see that due to the finite size corrections coming from the
Bethe-Yang equations (3.2) and the positivity of all the quantum numbers /; this can only
happen when the quantum number sets happen to be identical, i.e. for the case of diagonal
matrix elements

a1---an<{Il> R In}|O(0)|{[l> R In}>a1---an7L

According to (3.6) for this case we have to consider
Fanmalaln_an (9n + 7;77-, ceey 91 + 7;77-, 91, ceey en)

Due to the existence of kinematical poles (2.5) the above expression is not well-defined.
Let us consider the regularized version

F&n...ﬁlal...an (en + v + €ny ey 01 + v + €1, 917 ceey 911)

Just as for bulk form factors, the singular parts of this expression drop when taking the
limits ¢; — 0 simultaneously®; however, the end result depends on the direction of the
limit, i.e. on the ratio of the ¢; parameters. The terms that are relevant in the limit can
be written in the following general form:

Fs aiara,(On +im+ €, 01 +im + €1, 04, ...,0,) = (3.7)
n 1 n n
1T DR D Ay ey i,
i=1 0 ip=1 ip=1
where A7 """ is a completely symmetric tensor of rank n in the indices i1, ...,7,, and the

ellipsis denote terms that vanish when taking ¢, — 0 simultaneously. This tensor can in
principle be calculated using an appropriate version the graphical methods developed in
[7], but we do not go into details here as it is not needed in the sequel (the interested
reader is referred to [22]).

The connected matrix element can be defined as the ¢; independent part of equ. (3.7),
i.e. the part which does not diverge whenever any of the ¢; is taken to zero:

Facl an(91, 92, ey On) =nl A(ll.l.:'ﬁan(el, ce Qn) (38)

where the appearance of the factor n! is simply due to the permutations of the e;.

For the case of periodic boundary conditions Saleur proposed a way of expressing a
diagonal matrix element in terms of connected form factors [23], on the basis of earlier ideas
by Balog [24] and the Gaudin determinant formula for the inner product of Bethe states

3This can be proved by elementary manipulations involving the bulk kinematical singularity axiom

(2.5).
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[25]. This proposal was tested in [7] for periodic boundary conditions against truncated
conformal space, and a spectacular agreement was found.

Saleur’s argument actually seems to be quite general, and so the appropriate version of
his formula for the boundary case can easily be written, yielding the following conjecture:

arean ({1 OO Lo} ey an.n = (3.9)

1 ~ - ~ -~ —_
0 6 > Fiay({0ktkea)aran (1, ., 0u] A) + O(e7F)
pa1---an( Iyeees ") Ac{1,2,..n}

The summation runs over all subsets A of {1,2,...n}. For any such subset, we define the
corresponding species index set

a(A) = {ak}keA

and the appropriate sub-determinant
Par.an (01, ., 0n| A) = det T5" (04, ..., 0,)

of the n x n Bethe-Yang Jacobi matrix

_0Qu(0r, - 0)ur
20,

jal...an(éla ceey én)kl (3]‘0)

obtained by deleting the rows and columns corresponding to the subset of indices A. The
determinant of the empty sub-matrix (i.e. when A ={1,2,...n}) is defined to equal 1 by
convention.

There is a simple way to assign an intuitive meaning to all the terms in (3.9). One needs
to consider all possible ways to partition the particles into two sets, one of which (A) is
connected to the local boundary operator O, while the particles in the complementary set
(AT) are just contracted with each other using the inner product. For the latter contraction
we obtain the inner product

oy {Iitkeat {Iebveat Jaan, > AT={1,...,n}\ A

which is given by the appropriate density of states. As before, this density of states is
given by the Jacobian of the quantum number — rapidity mapping. However, this must be
considered in the presence of the other particles (those in A) which contribute to the quan-
tization relations for the particles in the set Af, and is therefore given by the corresponding
sub-determinant of the Jacobian matrix (3.10).

Finally we remark that the result (3.9) can also be expressed with the so-called sym-
metric evaluation of diagonal matrix elements instead of the connected one as it was done
for the bulk case discussed in [7]; however it turns out that in the boundary case it does
not lead to the same simplifications as in the bulk (cf. [22]) and therefore we omit these
details in the present work.
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4 Numerical determination of matrix elements

4.1 The boundary truncated conformal space approach

Truncated conformal space approach (TCSA) was developed by Yurov and Zamolodchikov
[26], who used it to describe the scaling Lee-Yang model in finite volume with periodic
boundary conditions. The boundary extension of TCSA (dubbed BTCSA) was developed
by G. Watts and collaborators and first used in [10]. A detailed description of the method
can be found in Runkel’s PhD thesis [27], which provides a good starting point for develop-
ing a numerical algorithm. We implemented the computations using the symbolic algebra
software Mathematica.

Here we restrict ourselves to specify our conventions. Following [10] we used a basis
for the operator algebra in which all the structure constants are real. To simplify matters
we specified the left boundary condition as the identity one (1) and put the ® boundary
condition to the right end, which is also the position where our boundary field ¢ is located.
In such a case the Hilbert space consists of a single V_;/5 module whose basis vectors
we denote by |i). We truncated this space at various levels, the highest truncation taken
at level 25. On this finite dimensional space we computed the matrix elements of the
Hamiltonian

L
H:H0+)\/ O (7 =0,2)dx + hpr(T =0)
0

We can measure all quantities in units of the bulk particle mass m, and introduce the
dimensionless volume variable | = m/L. The dimensionless Hamiltonian matrix can then
be written in the form

6/5

(8= ) b+ (%) e (G™'B),, +x(b) G) (G™'Br),,

s
h,’j:—

: (4.1)

where A; is the conformal weight of the basis vector |i), ¢ = —22/5 is the central charge,

the mass gap constant
K = k125 = 0.097048456298 . . .

is calculated from (2.14),

275

is the boundary coupling h(b) (2.13) in dimensionless form, G;; = (i|j) is the usual confor-
mal metric on the state space, and the matrix elements of the perturbing operators

X(b) = hepir sin <(b + E)Z)

B, = i / 9% () |5) . (Br)y = {ilp(1)7) (42)

are calculated on the upper half plane after the usual exponential mapping from the strip
as in [10].
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1

D 10 15 20
Figure 4.1: BTCSA levels (at truncation level 25) and Bethe-Yang predictions for b = —0.8.
Energy and volume are measured in units of the bulk particle mass m (i.e. e = E/m and

[ = mL). The discrete points are the BTCSA levels (with the ground state subtracted),
while the continuous lines are the Bethe-Yang predictions.

4.2 State identification and evaluation of matrix elements

Once the BTCSA spectrum is obtained it is just a set of energy levels represented as a
bunch of numerical eigenvalues for a series of discreet values of the volume parameter
I = mL. We need to sort these levels into lines parametrized by the volumes, labeled
by their multi-particle contents. This is best achieved by numerical comparison to levels
predicted by the Bethe-Yang equations (3.2), which is illustrated in figure 4.1. The figure
shows a very good agreement between the two sets of data, however, the lowest state does
not fit any of the Bethe-Yang lines. The reason is that it corresponds to a boundary excited
state with energy
m(b+1

E, :mcosT) =0.99452... xm

Some states corresponding to multi-particle states with the right boundary in this excited
state can be seen further up in the spectrum as further points not fitting the Bethe-Yang
lines. They can be described if the reflection factor appearing in the Bethe-Yang equations
(3.2) is replaced by the one valid for the excited state boundary, but we omit the details
here, since the agreement between the BTCSA spectrum and the boundary scattering
theory described in section 2.2 was already thoroughly established in [10].

Note that contrary to the case of the periodic TCSA where the Hilbert space can
be split into sectors according to total momentum, in BTCSA there is a single sector.
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As a result, the dense part of the spectrum (the “continuum”) already starts at the one-
particle threshold, which makes the identification of individual levels harder than it was in
the periodic case. We found a number of one-particle and two-particle states, and could
also identify the first two three-particle levels over a volume range extending to around
[l ~14...17, in marked contrast with the periodic case where it was possible to perform a
systematic identification of levels with up to 4 particles [6] and even the lowest 5-particle
level was found [7]. Even so we could generate a massive amount of useful data for each
value of the dimensionless parameter b.

Once we identified the levels, we extracted the corresponding eigenvectors and evaluated
the matrix elements of the boundary operator ¢ using the method described in |6]. Suppose
that we computed two Hamiltonian eigenvectors as functions of the volume L:

{I,.... L}, = Z (I, ..., Iy; L))

{L e Ihe = Y (0, D))
j

Let the inner products of these vectors with themselves be given by

N = > Wil L;L)GyV,(1, ... I,; L)
,J

N = 3 (... L )Gy VI, .. I L)
'7]’

where G;; = (i|j) is the metric on the space of the conformal state vectors |i) as before.
Then the matrix elements of the field ¢ can be computed as

m1/5<{liv R ]I/c}|90(0)‘{]17 R ]n}>L =

™\ ~-1/5 1 1
n ——=——= > V(I},.... Ii; L)(Br)pVi(l1, .. ., In; L) (4.3)
<l> \/NW% I\l k J

where Bpg is the boundary perturbation matrix entering the boundary Hamiltonian (4.1),
and the volume dependent prefactor comes from the transformation of the primary field ¢

under the exponential map. The results will be reported in section 5, but before that we
turn to the estimation of the accuracy of the BTCSA method.

4.3 Numerical accuracy of BTCSA and error sources

In order to understand what constitutes a satisfactory agreement between the theoret-
ical predictions and the numerical data, we need to understand the possible sources of
deviations.

The truncation inherent in BTCSA introduces a specific source of error, called the
truncation error. It grows with the volume L and also it becomes larger when higher
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levels are considered. It is very hard to control and estimate this error very precisely. It
can be made smaller by extrapolation procedures such as the one used in [6, 7]. Recently
a very efficient approach was introduced in the form of a renormalization group under
the variation of the truncation level [28]. To avoid excessive numerical computations, we
do not use any extrapolation in the truncation level here; it turns out that the highest
truncation level we used (25, which gives a 434 dimensional Hilbert space) is enough to
achieve sufficient precision provided we choose the parameter b in a suitable range. We
remark that increasing the truncation level to the values used in the periodic case [6, 7|
(i.e. up to 30) is not very practical because the evaluation of the matrix elements of the
bulk perturbation is very time consuming and the required CPU time grows very fast.

Another source of error comes from the fact that numerical diagonalization becomes
unstable where levels are nearly degenerate!; an example of this phenomenon is shown in
subsection 5.2.

A further reason for deviation is that every theoretical prediction that we test against
BTCSA is exact only up to residual finite size corrections, i.e. contributions that decay
exponentially with the volume. As discussed in [6] for any measured quantity there exists
a volume range where the truncation errors and the residual finite size corrections are
of the same order; this is the so-called scaling regime where the agreement between the
theoretical predictions and the numerical results is optimal.

To see what precision can be expected in the scaling regime, we evaluated three quan-
tities characteristic of the ground state. The energy of the ground state in finite volume
has the large volume asymptotics

Ey(L) = Bm*L+ &m + O (e ™)
where the exact value of the bulk energy constant is |17

V3

B:—ﬁ

and the boundary energy constant is given by [10]

V3-—1 . 7mb

E = 5 —l—smg

In addition, the finite volume vacuum expectation value has the asymptotics

(0]]0), = () + O (e7)

where the exact asymptotic value (p) is given by (2.19).

One can extract estimates for these quantities from the scaling regime of BTCSA, which
are compared with the predicted values in table 4.1. Besides noting the very good agree-
ment it is useful to pay particular attention to the vacuum expectation value, because it

4Eigenvectors corresponding to degenerate or nearly degenerate levels are very sensitive to any small
perturbation, and thus even a small truncation error can have a disproportionately large effect.
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| b | B(BTCSA) || & (exact) | & (BTCSA) || m'/ (p) (exact) | m*/® (¢) (BTCSA) |
—2.3 | —0.144750 || —0.567555 | —0.568208 —1.023503 —1.043671
—2.0 | —0.144736 | —0.500000 | —0.499934 —1.034417 —1.052965
—1.7 | —0.144588 | —0.411121 | —0.411366 —1.049802 —1.066242
—1.4 | —0.144472 || —0.303105 | —0.303446 —1.070303 —1.083938
—1.1 | —0.144376 | —0.178614 | —0.178994 —1.096875 —1.106887
—1.0 | —0.144351 | —0.133975 | —0.134351 —1.107309 —1.115903
—0.8 | —0.144305 | —0.040711 | —0.041154 —1.136265 —1.130931
—0.5 | —0.144286 0.107206 0.106815 —1.174595 —1.174435
—0.2 | —0.144315 0.261497 0.261078 —1.231176 —1.226541
0.0 —0.144372 0.366025 0.365596 —1.278610 —1.270723
0.3 —0.144523 0.522460 0.522032 —1.370592 —1.356133

Table 4.1: Boundary energy and vacuum expectation of ¢: exact predictions compared to
BTCSA. The exact value of B is —0.144338. .. .

is in fact the simplest (zero-particle) form factor that can be measured. In fact we found
that the deviation of the BTCSA determination of the matrix elements from the theo-
retical predictions (3.6,3.9) follows well the precision of the determination of the vacuum
expectation value. We can therefore see that the highest precision can be achieved when
—1.1 £ b < 0.0, and so it is in this range that the numerical tests are the most reliable.

5 Comparing theoretical predictions with BTCSA data

In this section we present examples of the comparison between the theoretical predictions
(3.6,3.9) and BTCSA data. All the results presented below are for b = —0.8, the same
value of the model’s parameter as in figure 4.1, which is in the optimum range for numerical
precision. We actually performed the calculations for fourteen different values of b between
—2.3 and 40.3. We isolated the vacuum state, four one-particle, four two-particle and two
three-particle states for each value of b, calculated matrix elements for all possible pairwise
combinations of these states, and found similarly good agreement as presented below. The
numerical deviations gradually increase when moving away from the optimum range of b.
In the optimum range, we found deviations of the order 1073 in the scaling regime; for the
extremal values, the deviations increased to a few percent for higher levels. There was not
a single matrix element in this huge set of data for which any unexpectedly large deviation
occurred; therefore we can state that the numerical data are in full agreement with the
theoretical predictions.

We also recall (cf. |6]) that the relative phases of different multi-particle states resulting
from numerical diagonalization are in general different from the conventions that follow
from the form factor axioms in subsection 2.1. Therefore the relations (3.4,3.6) must be
understood to hold up to some phase factors, and in the numerical comparisons in figures
5.1 and 5.3 we use the absolute values of the matrix elements. This issue does not arise
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for the diagonal case as any such phase factor drops out from (3.9); in figure 5.5 we only
removed a minus sign that appears on both side of this relation after evaluation.

5.1 Elementary form factors

Elementary form factors are defined in eqn. (2.1); these are the ones which enter the form
factor equations given in subsection 2.1, and all other form factors can be obtained from
them by crossing. Comparing such matrix elements against BTCSA provide a test for
form factor functions with all their arguments real, according to eqn. (3.4). However, the
numerical magnitude of the corresponding finite volume matrix elements decreases very
fast with the number of particles. The three-particle matrix elements are already too small
to be measured meaningfully from BTCSA (they are of the order of truncation errors),
and therefore we limited ourselves to the one- and two-particle cases, shown in figure 5.1.
Note that the two-particle matrix elements are already smaller than the one-particle ones
by more than an order of magnitude; accordingly, the relative precision in their case is
around one percent, while for the one-particle matrix elements we could achieve around
1073 (or even slightly better) in the scaling regime. According to the discussion at the end
of subsection 3.2 this is enough to test that the inclusion of the phase-shifts in (3.5) which
describe the interaction between the particles and also with the boundary is necessary to
achieve agreement between the theoretical predictions (3.4) and truncated conformal space
data. This is illustrated in figure 5.2 where besides plotting the correct prediction (3.4)
involving the full one-particle density of states

6@ (0)  95P (6
©) , 95°)

p1(0) = 2mL cosh 6 + 50 50

which takes into account interactions as defined in (3.5), we also plot a version where the
density of states is substituted by

Pive(9) = 2mL cosh 0

Here 0™ and §®) are the boundary phase-shifts define in (3.1). Note that for small L the
difference between the naive and the full phase-shift goes to 0. This may seem surprising
at first, but it is due to the fact that 6 increases with decreasing L and the phase-shift
derivatives decrease exponentally for 8 away from 0. Although figure 5.2 only shows the
case of the first one-particle state, similar results are obtained for all the form factors
discussed in this paper.

5.2 Non-diagonal matrix elements

Form factor functions with more than two particles can only be measured with sufficient
accuracy from more general (non-diagonal) matrix elements, for which the theoretical pre-
diction is given by eqn. (3.6). We present such data in figure 5.3, which provide a check for
form factor functions involving up to 6 particles; the relative deviation between the BTCSA
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Figure 5.1: One-particle and two-particle elementary form factors. [ = mL is the dimen-

sionless volume parameter, while f is the magnitude of the matrix element in units of
~1/5
m”—/°.

/ . {Olpl{1})
—— interacting d.o.s.
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Figure 5.2: The relevance of interaction corrections to the density of states. The discrete
points are TCSA data for the one-particle matrix element shown, continous line is the
prediction (3.4), while the dashed line shows the same with the naive density of states.
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data and the theoretical prediction (3.6) is around 1072 in the scaling regime. We omitted
the case of 1-particle-1-particle matrix elements, because they test the two-particle form
factor already checked above; they show similarly good agreement. We also omitted the
case of 1-particle-3-particle matrix elements as they are again too small to be extracted
with high enough precision.

We remark that there is an easily visible, quite large deviation in figure 5.3 (c) at
[ = 13. The reason is that the corresponding matrix element involves the second three-
particle level |[{1,2,4}), which crosses another level in the vicinity. As we already discussed
at the beginning of subsection 4.2, in the vicinity of such level crossings the pair of levels
can bifurcate into a pair of complex conjugate eigenvalues, which increases the numerical
deviation due to truncation errors.

This particular level crossing is shown in figure 5.4, and it can be easily seen that
the bifurcation is indeed due to truncation errors. At such a large volume the Bethe-Yang
equations (3.2) give a very accurate description of energy levels, since the residual finite size
corrections are very small, of order e~ ~ 107%. Therefore imaginary parts of levels which
are larger than this order of magnitude can only be due to truncation errors. Indeed the
imaginary parts at the middle of the level crossing are of order 10~ which is also consistent
with the magnitude of truncation errors that can be estimated from the deviation between
the Bethe-Yang and BTCSA levels around this point.

Turning to an exact description of the finite size spectrum, for periodic boundary con-
ditions it can be proved that the full exact finite volume spectrum of the scaling Lee-
Yang model is strictly real [29], and therefore the similar lacunae observed by Yurov and
Zamolodchikov [26] can only be due to truncation. We expect that a similar result holds
for the scaling Lee-Yang model with boundaries when b is real i.e. when |h| < he.;°, and a
proof can probably be given based on the boundary TBA description of the finite volume
spectrum established in [10], but we do not pursue this issue further here.

5.3 Diagonal matrix elements

The comparisons in the previous two subsections can be considered as a direct verification
of the form factor functions given in subsection 2.3. Once we are certain that the elementary
form factor functions are correct, we can view the comparison of diagonal matrix elements
as testing the structure of the disconnected terms involved in (3.9). The data are presented
in figure 5.5 and again show excellent agreement (with deviations of order 1073 in the scaling
regime) apart from the presence of the deviation due to the level crossing discussed in the
previous subsection.

SFor larger values of the boundary coupling h the ground state is destabilized and the spectrum turns
complex [10].
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Figure 5.3: Non-diagonal matrix elements. [ = mL is the dimensionless volume parameter,

while f is the magnitude of the matrix element in units of m
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Figure 5.4: Level crossing around [ = 13. Energy (e) is measured in units of m, relative to
the ground state. The two figures show the real and the imaginary parts of the two levels,
respectively.

6 Conclusions

In this paper we have succeeded to extend the description of finite volume matrix elements
of local operators |6, 7| to the case of boundary operators in a boundary quantum field
theory. We have compared the predictions of this framework to data extracted from the
boundary truncated conformal space approach, and found excellent agreement. This pro-
vides a very strong evidence both for the validity of the boundary form factor bootstrap
introduced in [2], and to the description of finite volume matrix elements in terms of the
infinite volume form factors given by eqns. (3.6,3.9).

As pointed out in [7], understanding finite size corrections to form factors is not only
valuable as a tool to check the form factor bootstrap, but also for the calculation of finite
temperature correlators. The introduction of finite volume regularizes the singular terms
that come from disconnected pieces, and makes it possible to develop a systematic low-
energy expansion for finite temperature correlators, as demonstrated on the example of
one-point functions in |7]. A form factor expansion for the finite temperature expectation
values of boundary operators has already been developed in [22]; we also plan to extend
these results to two-point correlation functions. It was already demonstrated in the seminal
paper by Affleck and Ludwig [30] that the finite temperature setting is essential in studying
boundary renormalization group flows, and therefore we expect that such an expansion can
be useful in this context.
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