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Abstrat

We desribe the volume dependene of matrix elements of loal boundary �elds

to all orders in inverse powers of the volume. Using the saling boundary Lee-Yang

model as testing ground, we ompare the matrix elements extrated from boundary

trunated onformal spae approah to exat form fators obtained using the boot-

strap method. We obtain solid on�rmation for the boundary form fator bootstrap,

whih is di�erent from all previously available tests in that it is a non-perturbative

and diret omparison of exat form fators to multi-partile matrix elements of loal

operators, omputed from the Hamiltonian formulation of the quantum �eld theory.

1 Introdution

The investigation of integrable boundary quantum �eld theories started with the seminal

work of Ghoshal and Zamolodhikov [1℄, who set up the boundary R-matrix bootstrap,

whih makes possible the determination of the re�etion matries and provides omplete

desription of the theory on the mass shell.

For the alulation of orrelation funtions, matrix elements of loal operators between

asymptoti states have to be omputed. In a boundary quantum �eld theory there are
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two types of operators, the bulk and the boundary operators, where their names indiate

their loalization point. The boundary form fator program for alulating the matrix

elements of loal boundary operators between asymptoti states was initiated in [2℄. The

validity of form fator solutions was heked in the ase of the boundary saling Lee-Yang

model by alulating the two-point funtion using a spetral sum and omparing it to

the predition of onformal perturbation theory. In [3℄ the spetrum of independent form

fator solutions in the saling Lee-Yang model and the sinh-Gordon model was ompared

to the boundary operator ontent of the ultraviolet boundary onformal �eld theory and a

omplete agreement was found. Further solutions of the boundary form fator axioms were

onstruted and their struture was analyzed for the sinh-Gordon theory at the self-dual

point in [4℄, and for the A2 a�ne Toda �eld theory in [5℄.

While the heks performed so far have on�rmed the validity of the boundary form

fator bootstrap proposed in [2℄, they an still be onsidered inomplete. The spetral sum

evaluated in that paper only reeives a very small ontribution from form fators with more

than two partiles, thus it annot be onsidered as a test of higher form fator funtions,

and therefore it does not onstitute a stringent veri�ation of the singularity axioms, whih

form the basis of the reursive onstrution of form fators. The solution ounting in [3℄

does involve form fators up to arbitrary number; however, the ounting proedure uses

only some rough features of the axioms suh as power ounting of the polynomials involved,

and the struture of the kernels of the reursion relations.

It is therefore desirable to have a diret omparison of form fators to matrix elements

of loal operators evaluated diretly from the boundary quantum �eld theory in a non-

perturbative framework. For periodi boundary onditions, it was shown reently in [6, 7℄

that suh a omparison an be ahieved by extrating the matrix elements in �nite volume,

for whih one an use the very e�ient trunated onformal spae approah. In this paper

we give the extension of this framework to the boundary ase, using the boundary saling

Lee-Yang model as our paradigmati example.

The paper is strutured as follows. In setion 2 we review the neessary ingredients

of the boundary form fator bootstrap and give the form fator solution in the boundary

saling Lee-Yang model for the boundary operator with the lowest saling dimension, up

to 6 partiles. In setion 3 we derive a framework whih makes it possible to alulate �-

nite volume matrix elements using the in�nite volume form fators, to all orders in inverse

powers of the volume L, i.e. negleting only orretions that deay exponentially fast with

L. In setion 4 we give the neessary bakground on the boundary trunated onformal

spae method, and also disuss the numerial preision and soures of errors. The atual

omparison between the preditions from the bootstrap solution and the numerially eval-

uated �nite volume matrix elements is performed in setion 5, and the onlusions are

drawn in setion 6.
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2 Boundary form fator bootstrap for the saling Lee-

Yang model

2.1 The boundary form fator axioms

The axioms satis�ed by the form fators of a loal boundary operator were derived in

[2℄. Here we only list them without muh further explanation. Let us suppose that we

treat an integrable boundary quantum �eld theory in the (in�nite volume) domain x < 0,
with a single salar partile of mass m, whih has a two-partile S matrix S(θ) (using

the standard rapidity parametrization) and a one-partile re�etion fator R(θ) o� the

boundary, satisfying the boundary re�etion fator bootstrap onditions of Ghoshal and

Zamolodhikov [1℄. For a loal operator O(t) loalized at the boundary (loated at x = 0,
and parametrized by the time oordinate t) the form fators are de�ned as

out〈θ
′

1, θ
′

2, . . . , θ
′

m|O(t)|θ1, θ2, . . . , θn〉in =

FO
mn(θ

′

1, θ
′

2, . . . , θ
′

m; θ1, θ2, . . . , θn)e
−imt(

P

cosh θi−
P

cosh θ
′

j)

for θ1 > θ2 > . . . > θn > 0 and θ
′

1 < θ
′

2 < . . . < θ
′

m < 0, using the asymptoti in/out state
formalism introdued in [8℄. They an be extended analytially to omplex values of the

rapidity variables. With the help of the rossing relations derived in [2℄ all form fators

an be expressed in terms of the elementary form fators

out〈0|O(0)|θ1, θ2, . . . , θn〉in = FO
n (θ1, θ2, . . . , θn) (2.1)

whih an be shown to satisfy the following axioms

1

:

I. Permutation:

FO
n (θ1, . . . , θi, θi+1, . . . , θn) = S(θi − θi+1)F

O
n (θ1, . . . , θi+1, θi, . . . , θn) (2.2)

II. Re�etion:

FO
n (θ1, . . . , θn−1, θn) = R(θn)F

O
n (θ1, . . . , θn−1,−θn) (2.3)

III. Crossing re�etion:

FO
n (θ1, θ2, . . . , θn) = R(iπ − θ1)F

O
n (2iπ − θ1, θ2, . . . , θn) (2.4)

IV. Kinematial singularity

−iRes
θ=θ′

FO
n+2(θ + iπ, θ

′

, θ1, . . . , θn) =

(

1−
n
∏

i=1

S(θ − θi)S(θ + θi)

)

FO
n (θ1, . . . , θn) (2.5)

1

There is a further axiom orresponding to boundary exited state poles, but it will not be needed in

the sequel.
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V. Boundary kinematial singularity

−iRes
θ=0

FO
n+1(θ +

iπ

2
, θ1, . . . , θn) =

g

2

(

1−
n
∏

i=1

S(
iπ

2
− θi)

)

FO
n (θ1, . . . , θn) (2.6)

where g is the one-partile oupling to the boundary

R(θ) ∼ ig2

2θ − iπ
, θ ∼ i

π

2
(2.7)

VI. Bulk dynamial singularity

−iRes
θ=θ′

FO
n+2(θ + iu, θ

′ − iu, θ1, . . . , θn) = ΓFO
n+1(θ, θ1, . . . , θn) (2.8)

orresponding to a bound state pole of the S matrix

S(θ) ∼ iΓ2

θ − 2iu
, θ ∼ 2iu

(in a theory with a single partile, the only possible value is u = π/3).
We further assume maximum analytiity i.e. that the form fators have only the min-

imal singularity struture onsistent with the above axioms. The general form fator

solution an be written in the following form [2℄

Fn(θ1, θ2, . . . , θn) = Gn(θ1, θ2, . . . , θn)

n
∏

i=1

r(θi)
∏

i<j

f(θi − θj)f(θi + θj) (2.9)

where f is the minimal bulk two-partile form fator satisfying the onditions

f(θ) = S(θ)f(−θ), f(iπ + θ) = f(iπ − θ)

and having the minimum possible number of singularities in the physial strip 0 ≤ θ < π
together with the slowest possible growth at in�nity [9℄, and r is the minimal boundary

one-partile form fator satisfying

r(θ) = R(θ)r(−θ) ; r(iπ + θ) = R(−θ)r(iπ − θ) (2.10)

plus analyti onditions similar to those of f , but in this ase in the strip 0 ≤ θ < π/2.
The funtions Gn are totally symmetri and meromorphi in the rapidities θi. They

are also even and periodi in them with the period 2πi, so they an only be funtions of

the variables

yi = eθi + e−θi

In a theory with only one partile (suh as the saling Lee-Yang model), the only possible

singularity of the S matrix in the physial strip is loated at θ = 2πi/3 orresponding to
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the self-fusion of the partile (plus the rossed hannel pole for the same proess at πi/3)
and the relevant fusion oupling is de�ned as

Γ2 = −i Res
θ= 2π

3
i
S(θ)

Assuming f is hosen suh that it has a pole at θ = 2πi/3 so that it enodes this singularity
and that the boundary dynamial singularities (but not the kinematial ones!) are similarly

ontained in the 1PFF funtion r, the funtions Gn an be written in the form

Gn(θ1, θ2, . . . , θn) =
Pn(y1, y2 . . . , yn)
∏

i yi
∏

i<j

(yi + yj)

where the Pn are entire funtions symmetri in their arguments. Assuming that the orrela-

tion funtions involving the operators in onsideration only have power-like short-distane

singularities, the asymptoti growth of the form fators is limited by

Fn(θ1 + Λ, θ2 + Λ, . . . , θn + Λ) ∼ edΛ

for some real number d, and therefore Pn an only be polynomials of �nite degree [2℄.

2.2 Saling Lee-Yang model with boundary

The saling Lee-Yang model with boundary is a ombined bulk and boundary perturbation

of the boundary version of the M2,5 Virasoro minimal model, whih was investigated in

detail in [10℄. The onformal �eld theory has entral harge c = −22/5 and the Virasoro

algebra has two irreduible representations V∆ with highest weight ∆ = ∆1,1 = 0 and

∆ = ∆1,2 = −1/5. There is a unique nontrivial relevant bulk perturbation given by the

spinless �eld φ with saling dimensions ∆ = ∆̄ = −1/5 whih for an appropriate hoie of

the sign of the oupling �ows to a massive infrared �xed point.

Boundary onformal �eld theory was developed in [11, 12, 13℄ and the interested reader

is referred to them for details. Applying the formalism to the onformal Lee-Yang model

it an be seen that there are two onformally invariant boundary onditions. On one of

them, denoted 1 (i.e. identity) in [10℄, there is no possibility for a boundary perturbation.

In the other ase, denoted Φ in [10℄, there is a nontrivial relevant boundary �eld ϕ with

saling dimension −1/5 and the general perturbed boundary onformal �eld theory ation

an be written as

Aλ,Φ(h) = AΦ + λ

∞
∫

−∞

dy

0
∫

−∞

dxφ(x, y) + h

∞
∫

−∞

dyϕ(y) (2.11)

where AΦ denotes the ation for M(2/5) with the Φ boundary ondition imposed at x = 0,
and λ and h denote the bulk and boundary ouplings respetively. The ation of Aλ,1 is

similar, but the last term on the right hand side is missing. For λ > 0 the bulk behaviour
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is desribed by an integrable massive theory having only a single partile with mass m
with the following S matrix [14℄:

S(θ) = −
(

1

3

)(

2

3

)

= −
[

1

3

]

; (x) =
sinh

(

θ
2
+ iπx

2

)

sinh
(

θ
2
− iπx

2

) , [x] = (x)(1− x)

The minimal bulk two-partile form fator only has a zero at θ = 0 and a pole at θ = 2πi
3

in the strip 0 ≤ ℑm(θ) < π and is of the form [15℄:

f(θ) =
y − 2

y + 1
v(iπ − θ)v(−iπ + θ) , y = eθ + e−θ

(2.12)

where

v(θ) = exp

{

2

∫ ∞

0

dt

t
ei

θt
π

sinh t
2
sinh t

3
sinh t

6

sinh2 t

}

For the perturbed Φ boundary, the re�etion amplitude of the partile depends on the

boundary oupling onstant as [10℄

R(θ)Φ =

(

1

2

)(

1

6

)(

−2

3

)[

b+ 1

6

] [

b− 1

6

]

where the dimensionless parameter b is related to the dimensionful h as [16℄

h(b) = −hcritm
6/5 sin

[(

b+
1

2

)

π

5

]

(2.13)

hcrit = π
3
52

4
55

1
4

sin 2π
5

√

Γ(3
5
)Γ(4

5
)

(

Γ(2
3
)

Γ(1
6
)

)

6
5

= 0.685289983991 . . .

and m is the mass of the partile giving the overall sale in the infrared desription, whih

is related to the bulk oupling λ as [17, 18℄

m = κλ5/12
(2.14)

κ = 219/12
√
π
(Γ(3/5)Γ(4/5))5/12

55/16Γ(2/3)Γ(5/6)
= 2.64294466304 . . .

In the ase of the 1 boundary the re�etion amplitude is the parameter independent ex-

pression

R(θ)1 =

(

1

2

)(

1

6

)(

−2

3

)
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2.3 Reursion relations and form fator solution for the Φ bound-

ary ondition

The minimal boundary one-partile form fator is [2℄

rΦ(θ) =
i sinh θ

(sinh θ − i sin π(b+1)
6

)(sinh θ − i sin π(b−1)
6

)
u(θ) (2.15)

where

u(θ) = exp

{
∫ ∞

0

dt

t

[

1

sinh t
2

− 2 cosh
t

2
cos

[(

iπ

2
− θ

)

t

π

]

sinh 5t
6
+ sinh t

2
− sinh t

3

sinh2 t

]}

Taking the following Ansatz

Fn(θ1, . . . , θn) = N HnQn(y1, . . . , yn)
∏

i

rΦ(θi)

yi

∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
(2.16)

where

Hn =

(

i3
1
4

2
1
2v(0)

)n

(2.17)

and N is a normalization onstant to be �xed later, the (2.8) bulk dynamial (D), (2.5) bulk

kinematial (K) and (2.6) boundary kinematial (B) singularity axioms give the following

reursion relations for the polynomials Qn [2, 3℄

D : Q2(y+, y−) = (y2 − 3 + β)Q1(y)

Qn+2(y+, y−, y1, . . . , yn) = (y2 − 3 + β)Dn(y|y1, . . . yn)Qn+1(y, y1, . . . , yn) , n > 0;

K : Q2(−y, y) = 0

Qn+2(−y, y, y1, . . . , yn) = (y4 − (3 + β)y2 + β2)Kn(y|y1, . . . yn)Qn(y1, . . . , yn) , n > 0;

B : Q1(0) = 0

Qn+1(0, y1, . . . yn) = βBn(y1, . . . yn)Qn(y1, . . . , yn) , n > 0;

where we introdued the parameter

β = 1 + 2 cos
πb

6

and Dn, Kn and Bn are given by

Kn(y|y1, . . . yn) =
1

2(y+ − y−)

[

n
∏

i=1

(yi − y−)(yi + y+)−
n
∏

i=1

(yi + y−)(yi − y+)

]

Bn(y1, . . . , yn) =
1

2
√
3

(

n
∏

i=1

(yi +
√
3)−

n
∏

i=1

(yi −
√
3)

)

7



Dn(y|y1, . . . yn) =
n
∏

i=1

(y + yi)

where

y+ = ωz + ω−1z−1

y− = ω−1z + ωz−1 , ω = e
iπ
3

with the auxiliary variable z de�ned as a solution of y = z + z−1
(i.e. writing y = 2 cosh θ

we obtain z = eθ). The symmetry of the above expressions in y± ensures that the resulting

relations only depend on y and also that Kn is a polynomial in all of its variables [3℄.

The polynomials Qn an be expanded using the elementary symmetri polynomials

de�ned by the generating funtion

n
∏

i=1

(z + yi) =
n
∑

k=0

zn−kσk(y1, . . . , yn)

The solution of the reursion relations D, K and B proeeds as follows. All the reursion

oe�ients Dn, Kn and Bn an be expanded in produts of symmetri polynomials of the

variables y1, . . . , yn and, for the �rst two, powers of the additional variable y. For the

minimal solution of these equations the polynomials Qn have degree n(n+ 1)/2 [2℄, so we

an write an Ansatz as a general linear ombination of produts of elementary symmetri

polynomials not exeeding this degree. Using the relation

σk(y, y1, . . . , yn) = σk(y1, . . . , yn) + yσk−1(y1, . . . , yn)

we an expand both sides of the reursion relations in terms of produts of σk and powers

of y. Equating the oe�ients of independent terms on the two sides, we obtain a linear

system of equations for the oe�ients of the Ansatz, whih an then be solved. The

minimal solution turns out to be unique (apart from an overall normalization that an be

�xed by hoosing the oe�ient of Q1), and up to 6 partiles it is given by

Qϕ
1 = σ1

Qϕ
2 = σ1(β + σ2)

Qϕ
3 = σ1 [σ3(σ2 + 3) + βσ1(σ2 + β)]

Qϕ
4 = σ1(σ2 + 3)

[

(3σ1 + σ3)σ4 + β(σ2 + 3)σ3 + β2σ1(σ2 + β)
]

Qϕ
5 = σ1((3 + σ2)(3σ1 + σ3)− σ5)

×
[

σ4(3βσ1 + βσ3 + σ5) + (β − 3)β(β2σ1 − σ5) + (3 + σ2)(β
3σ1 + β2σ3 + 3σ5)

]

Qϕ
6 = σ1

[

−σ4σ5 − 3σ1σ6 + (σ2 + 3)(3σ1σ4 + σ3σ4 − 3σ5 − σ1σ6) + 3(σ2 + 3)2(3σ1 + σ3)
]

×
{

β(σ2 + 3)(β3σ1 + β2σ3 + 3σ5) + (9σ1 + 3σ3 + σ5)(3σ4 + σ6)

+(β − 3)[81σ1 − 9σ5 + σ4σ5 + 3σ1σ6

+(β + 3)(3σ1σ4 + σ3σ4 − σ1σ6 + (β − 3)(9σ1 + β2σ1 − σ5))]
}
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The �rst three form fators in this sequene were originally omputed in [2℄ where it was

demonstrated that this solution orresponds to the relevant boundary �eld ϕ, whih gives

the boundary perturbation aording to (2.11). The omplete form fators an be written

as [2℄

Fn(θ1, . . . , θn) = 〈ϕ〉HnQ
ϕ
n(y1, . . . , yn)

∏

i

rΦ(θi)

yi

∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
(2.18)

where

〈ϕ〉 = − 5

6hcrit

cos(πb
6
)

cos( π
10
(2b+ 1))

m−1/5
(2.19)

is the exat expetation value of the boundary operator ϕ [10℄.

3 Boundary form fators in �nite volume

3.1 Bethe-Yang equations

Let us onsider an integrable boundary quantum �eld theory with partiles of speies

a = 1, . . . , N and orresponding masses ma. As usual in two-dimensional �eld theory, we

label asymptoti partiles with their rapidities θ, whih gives their energy and momentum

as

Ea ± pa = mae
±θa

We assume the bulk sattering is diagonal and is given by the two-partile S matries

Sa1a2 (θ1 − θ2) = e

iδa1a2(θ1−θ2)

We further assume that the re�etion on the boundaries is also diagonal and is given by

the re�etion fators

R(α)
a (θ) = e

iδ
(α)
a (θ) , R(β)

a (θ) = e

iδ
(β)
a (θ)

(3.1)

where α and β denote the left and right boundary onditions, respetively.

In the diagonal ase, the multi-partile energy levels in a �nite volume L are desribed

by the following Bethe-Yang equations [19℄:

Qj (θ1, . . . , θn)a1...an = 2πIj (3.2)

where the phases desribing the wave funtion monodromy are given by

Qj (θ1, . . . , θn)a1...an = 2majL sinh θj+
∑

k 6=j

(

δajak (θj − θk) + δajak (θj + θk)
)

+δ(α)aj
(θj)+δ(β)aj

(θj)

Here all rapidities θj (and aordingly all quantum numbers Ij) are taken to be positive

2

.

We an take the quantum numbers ordered as I1 ≤ . . . ≤ In; in the saling Lee-Yang model

2

Boundary re�etions hange the sign of the momentum, so �nite volume multi-partile states an be

haraterized by the absolute value of the rapidities.
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they must all be di�erent due to the exlusion priniple. We denote the orresponding

multi-partile state by

|{I1, . . . , In}〉a1...an,L
and its energy (relative to the ground state) is given by

EI1...In(L) =

n
∑

j=1

maj cosh θ̃j

where

{

θ̃j

}

j=1,...,n
is the solution of eqns. (3.2) at the given volume L. The Bethe-Yang

equations gives the energy of the multi-partile states to all order in 1/L, negleting only

�nite size e�ets deaying exponentially with L.

3.2 Non-diagonal matrix elements

Following the ideas outlined in [6, 7℄ we begin with examining a two-point funtion of two

boundary operators

〈O1(τ)O2(0)〉L
where τ is Eulidean time. Let us suppose for de�niteness that we onsider operators

loated on the right boundary.

We �rst need to establish that the �nite size orretions to the two-point funtion will

then be of the form

〈O1(τ)O2(0)〉L − 〈O1(τ)O2(0)〉 ∼ e−µL
(3.3)

Unfortunately, for the boundary situation there is no analogue of Lüsher's systemati

�nite volume expansion [20℄ that was used for periodi boundary onditions. Let us reall

that the essential input in the argument is the analyti struture of Green's funtion, whih

was worked out for the boundary ase in [8℄; just as in the bulk ase, the singularities are

given by diagrams with all internal lines on-shell. It an be seen from Lüsher's derivation

that the orretion results from the singularities of momentum spae Green's funtions

whih our in the momentum integrals of the �nite volume expansion, and the exponent

µ (whih is on the sale of the mass gap of the theory) is given by the singularity lying

losest to the physial domain. This argument annot be onsidered a proper derivation;

it would go muh beyond the sope of this paper and requires developing the �nite volume

expansion for the boundary ase. However, we still have a strong reason to aept that

(3.3) holds; in retrospet, this is also on�rmed by the numerial results in setion 5.

Using (3.3) we an then follow the arguments outlined in [6℄ without essential modi-

�ations. Just as in the periodi ase we �nd that the in�nite volume and �nite volume

matrix elements are just related by the square root of the ratio of normalization of the or-

responding states (up to the orretions negleted in (3.3)). This results in the following

relation:

〈0|O(0)|{I1, . . . , In}〉a1...an,L =
FO
a1...an(θ̃1, . . . , θ̃n)

√

ρa1...an(θ̃1, . . . , θ̃n)
+O(e−µL) (3.4)

10



where FO
a1...an(θ̃1, . . . , θ̃n) is the form fator of the operator O (in the in�nite volume theory,

i.e. on the half-line x < 0),
{

θ̃j

}

j=1,...,n
is the solution of eqns. (3.2) at the given volume

L, and

ρa1...an(θ̃1, . . . , θ̃n) = det

{

∂Qk(θ1, . . . , θn)a1...an
∂θl

}

k,l=1,...,n

(3.5)

is the �nite volume density of states, whih is the Jaobi determinant of the mapping

between the spae of quantum numbers and the spae of rapidities given by the Bethe-Yang

equations (3.2). Using the rossing relations derived in [2℄ and following the arguments of

[6℄, general matrix elements an be written as

b1...bm〈{I ′1, . . . , I ′m}|O(0)|{I1, . . . , In}〉a1...an,L =

FO
b̄m...̄b1a1...an

(θ̃′m + iπ, . . . , θ̃′1 + iπ, θ̃1, . . . , θ̃n)
√

ρa1...an(θ̃1, . . . , θ̃n)ρb1...bm(θ̃
′
1, . . . , θ̃

′
m)

+O(e−µL) (3.6)

as long as the sets of the rapidities orresponding to the two states,

{

θ̃j

}

j=1,...,n
and

{

θ̃′j

}

j=1,...,m
, are disjoint i.e. when there are no disonneted ontributions. Here b̄j benotes

the partile speies onjugate to bj .
The exponent µ in (3.4,3.6) an also be estimated using the Poisson summation formula.

The argument for the periodi ase was written down in subsetion 2.2 of ref. [6℄ and arries

over without essential modi�ation. The result is that the deviation between the disrete

and ontinuous versions of the spetral sums is determined by the analyti singularity

struture of the form fators and the phase-shifts involved in (3.4,3.6) and the leading

orretion is given by the one with the smallest imaginary part in rapidity variables, just as

the orretion indiated in (3.3). Taking the two soures of exponential orretions together

the result is that it is the singularity losest to the physial domain whih determines the

leading exponential orretion in (3.4,3.6). In fat this was already taitly assumed by using

the same exponent µ as in (3.3). This is essentially the same result that was obtained by

Lüsher for mass orretions whih periodi boundary onditions in �nite volume [20℄. For

the ase of periodi boundary onditions suh orretions to �nite volume sattering states

and form fators were reently investigated in [21℄.

Note that the determinant (3.5) has the following behaviour for large L:

ρa1...an(θ̃1, . . . , θ̃n) =

(

n
∏

l=1

2malL cosh θ̃l

)

(

1 +O
(

L−1
))

The leading terms is just the density of states for non-interating partiles, and it is inde-

pendent of the bulk and boundary phase-shifts. The orretions are of the order of 1/(mL)
where m is the typial mass sale. In the numerial examples given in setion 5 this means

that the interation orretions are of relative size ∼ 10−1
in the volume range onsidered

there.
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3.3 Diagonal matrix elements

When disonneted ontributions are present, a more areful analysis is required. As in

[7℄ we must start by �nding out the onditions under whih there an be equal rapidities

in the two states. It is easy to see that due to the �nite size orretions oming from the

Bethe-Yang equations (3.2) and the positivity of all the quantum numbers Ij this an only

happen when the quantum number sets happen to be idential, i.e. for the ase of diagonal

matrix elements

a1...an〈{I1, . . . , In}|O(0)|{I1, . . . , In}〉a1...an,L
Aording to (3.6) for this ase we have to onsider

Fān...ā1a1...an(θn + iπ, ..., θ1 + iπ, θ1, ..., θn)

Due to the existene of kinematial poles (2.5) the above expression is not well-de�ned.

Let us onsider the regularized version

Fān...ā1a1...an(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn)

Just as for bulk form fators, the singular parts of this expression drop when taking the

limits ǫi → 0 simultaneously

3

; however, the end result depends on the diretion of the

limit, i.e. on the ratio of the ǫi parameters. The terms that are relevant in the limit an

be written in the following general form:

Fān...ā1a1...an(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn) = (3.7)

n
∏

i=1

1

ǫi
·

n
∑

i1=1

...

n
∑

in=1

Aa1...an
i1...in

(θ1, . . . , θn)ǫi1ǫi2 ...ǫin + . . .

where Aa1...an
i1...in

is a ompletely symmetri tensor of rank n in the indies i1, . . . , in, and the

ellipsis denote terms that vanish when taking ǫi → 0 simultaneously. This tensor an in

priniple be alulated using an appropriate version the graphial methods developed in

[7℄, but we do not go into details here as it is not needed in the sequel (the interested

reader is referred to [22℄).

The onneted matrix element an be de�ned as the ǫi independent part of eqn. (3.7),
i.e. the part whih does not diverge whenever any of the ǫi is taken to zero:

F c
a1...an(θ1, θ2, ..., θn) = n!Aa1...an

1...n (θ1, . . . , θn) (3.8)

where the appearane of the fator n! is simply due to the permutations of the ǫi.
For the ase of periodi boundary onditions Saleur proposed a way of expressing a

diagonal matrix element in terms of onneted form fators [23℄, on the basis of earlier ideas

by Balog [24℄ and the Gaudin determinant formula for the inner produt of Bethe states

3

This an be proved by elementary manipulations involving the bulk kinematial singularity axiom

(2.5).
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[25℄. This proposal was tested in [7℄ for periodi boundary onditions against trunated

onformal spae, and a spetaular agreement was found.

Saleur's argument atually seems to be quite general, and so the appropriate version of

his formula for the boundary ase an easily be written, yielding the following onjeture:

a1...an〈{I1 . . . In}|O(0)|{I1 . . . In}〉a1...an,L = (3.9)

1

ρa1...an(θ̃1, . . . , θ̃n)

∑

A⊂{1,2,...n}

F c
a(A)({θ̃k}k∈A)ρ̃a1...an(θ̃1, . . . , θ̃n|A) +O(e−µL)

The summation runs over all subsets A of {1, 2, . . . n}. For any suh subset, we de�ne the

orresponding speies index set

a(A) = {ak}k∈A
and the appropriate sub-determinant

ρ̃a1...an(θ̃1, . . . , θ̃n|A) = detJ a1...an
A (θ̃1, . . . , θ̃n)

of the n× n Bethe-Yang Jaobi matrix

Ja1...an(θ̃1, . . . , θ̃n)kl =
∂Qk(θ1, . . . , θn)a1...an

∂θl
(3.10)

obtained by deleting the rows and olumns orresponding to the subset of indies A. The
determinant of the empty sub-matrix (i.e. when A = {1, 2, . . . n}) is de�ned to equal 1 by

onvention.

There is a simple way to assign an intuitive meaning to all the terms in (3.9). One needs

to onsider all possible ways to partition the partiles into two sets, one of whih (A) is
onneted to the loal boundary operator O, while the partiles in the omplementary set

(A†
) are just ontrated with eah other using the inner produt. For the latter ontration

we obtain the inner produt

a(A†)〈{Ik}k∈A†|{Ik}k∈A†〉a(A†),L , A† = {1, . . . , n} \ A

whih is given by the appropriate density of states. As before, this density of states is

given by the Jaobian of the quantum number � rapidity mapping. However, this must be

onsidered in the presene of the other partiles (those in A) whih ontribute to the quan-

tization relations for the partiles in the set A†
, and is therefore given by the orresponding

sub-determinant of the Jaobian matrix (3.10).

Finally we remark that the result (3.9) an also be expressed with the so-alled sym-

metri evaluation of diagonal matrix elements instead of the onneted one as it was done

for the bulk ase disussed in [7℄; however it turns out that in the boundary ase it does

not lead to the same simpli�ations as in the bulk (f. [22℄) and therefore we omit these

details in the present work.
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4 Numerial determination of matrix elements

4.1 The boundary trunated onformal spae approah

Trunated onformal spae approah (TCSA) was developed by Yurov and Zamolodhikov

[26℄, who used it to desribe the saling Lee-Yang model in �nite volume with periodi

boundary onditions. The boundary extension of TCSA (dubbed BTCSA) was developed

by G. Watts and ollaborators and �rst used in [10℄. A detailed desription of the method

an be found in Runkel's PhD thesis [27℄, whih provides a good starting point for develop-

ing a numerial algorithm. We implemented the omputations using the symboli algebra

software Mathematia.

Here we restrit ourselves to speify our onventions. Following [10℄ we used a basis

for the operator algebra in whih all the struture onstants are real. To simplify matters

we spei�ed the left boundary ondition as the identity one (1) and put the Φ boundary

ondition to the right end, whih is also the position where our boundary �eld ϕ is loated.

In suh a ase the Hilbert spae onsists of a single V−1/5 module whose basis vetors

we denote by |i〉. We trunated this spae at various levels, the highest trunation taken

at level 25. On this �nite dimensional spae we omputed the matrix elements of the

Hamiltonian

H = H0 + λ

∫ L

0

Φ (τ = 0, x) dx+ hϕR(τ = 0)

We an measure all quantities in units of the bulk partile mass m, and introdue the

dimensionless volume variable l = mL. The dimensionless Hamiltonian matrix an then

be written in the form

hij =
π

l

[

(

∆i −
c

24

)

δij + κ′

(

l

π

)12/5
(

G−1B
)

ij
+ χ(b)

(

l

π

)6/5
(

G−1BR

)

ij

]

(4.1)

where ∆i is the onformal weight of the basis vetor |i〉, c = −22/5 is the entral harge,

the mass gap onstant

κ′ = κ−12/5 = 0.097048456298 . . .

is alulated from (2.14),

χ(b) = hcrit sin

(

(b+
1

2
)
π

5

)

is the boundary oupling h(b) (2.13) in dimensionless form, Gij = 〈i|j〉 is the usual onfor-
mal metri on the state spae, and the matrix elements of the perturbing operators

Bij = 〈i|
∫ ϑ

0

dϑΦ
(

eiϑ
)

|j〉 , (BR)ij = 〈i|ϕ(1)|j〉 (4.2)

are alulated on the upper half plane after the usual exponential mapping from the strip

as in [10℄.
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Figure 4.1: BTCSA levels (at trunation level 25) and Bethe-Yang preditions for b = −0.8.
Energy and volume are measured in units of the bulk partile mass m (i.e. e = E/m and

l = mL). The disrete points are the BTCSA levels (with the ground state subtrated),

while the ontinuous lines are the Bethe-Yang preditions.

4.2 State identi�ation and evaluation of matrix elements

One the BTCSA spetrum is obtained it is just a set of energy levels represented as a

bunh of numerial eigenvalues for a series of disreet values of the volume parameter

l = mL. We need to sort these levels into lines parametrized by the volumes, labeled

by their multi-partile ontents. This is best ahieved by numerial omparison to levels

predited by the Bethe-Yang equations (3.2), whih is illustrated in �gure 4.1. The �gure

shows a very good agreement between the two sets of data, however, the lowest state does

not �t any of the Bethe-Yang lines. The reason is that it orresponds to a boundary exited

state with energy

E∗ = m cos
π(b+ 1)

6
= 0.99452 . . .×m

Some states orresponding to multi-partile states with the right boundary in this exited

state an be seen further up in the spetrum as further points not �tting the Bethe-Yang

lines. They an be desribed if the re�etion fator appearing in the Bethe-Yang equations

(3.2) is replaed by the one valid for the exited state boundary, but we omit the details

here, sine the agreement between the BTCSA spetrum and the boundary sattering

theory desribed in setion 2.2 was already thoroughly established in [10℄.

Note that ontrary to the ase of the periodi TCSA where the Hilbert spae an

be split into setors aording to total momentum, in BTCSA there is a single setor.
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As a result, the dense part of the spetrum (the �ontinuum�) already starts at the one-

partile threshold, whih makes the identi�ation of individual levels harder than it was in

the periodi ase. We found a number of one-partile and two-partile states, and ould

also identify the �rst two three-partile levels over a volume range extending to around

l ∼ 14 . . . 17, in marked ontrast with the periodi ase where it was possible to perform a

systemati identi�ation of levels with up to 4 partiles [6℄ and even the lowest 5-partile
level was found [7℄. Even so we ould generate a massive amount of useful data for eah

value of the dimensionless parameter b.
One we identi�ed the levels, we extrated the orresponding eigenvetors and evaluated

the matrix elements of the boundary operator ϕ using the method desribed in [6℄. Suppose

that we omputed two Hamiltonian eigenvetors as funtions of the volume L:

|{I1, . . . , In}〉L =
∑

i

Ψi(I1, . . . , In;L)|i〉

|{I ′1, . . . , I ′k}〉L =
∑

j

Ψj(I
′
1, . . . , I

′
k;L)|j〉

Let the inner produts of these vetors with themselves be given by

N =
∑

i,j

Ψi(I1, . . . , In;L)GijΨj(I1, . . . , In;L)

N ′ =
∑

i,j

Ψi(I
′
1, . . . , I

′
k;L)GijΨj(I

′
1, . . . , I

′
k;L)

where Gij = 〈i|j〉 is the metri on the spae of the onformal state vetors |i〉 as before.
Then the matrix elements of the �eld ϕ an be omputed as

m1/5〈{I ′1, . . . , I ′k}|ϕ(0)|{I1, . . . , In}〉L =
(π

l

)−1/5 1√
N

1√
N ′

∑

j,l

Ψj(I
′
1, . . . , I

′
k;L)(BR)jlΨl(I1, . . . , In;L) (4.3)

where BR is the boundary perturbation matrix entering the boundary Hamiltonian (4.1),

and the volume dependent prefator omes from the transformation of the primary �eld ϕ
under the exponential map. The results will be reported in setion 5, but before that we

turn to the estimation of the auray of the BTCSA method.

4.3 Numerial auray of BTCSA and error soures

In order to understand what onstitutes a satisfatory agreement between the theoret-

ial preditions and the numerial data, we need to understand the possible soures of

deviations.

The trunation inherent in BTCSA introdues a spei� soure of error, alled the

trunation error. It grows with the volume L and also it beomes larger when higher
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levels are onsidered. It is very hard to ontrol and estimate this error very preisely. It

an be made smaller by extrapolation proedures suh as the one used in [6, 7℄. Reently

a very e�ient approah was introdued in the form of a renormalization group under

the variation of the trunation level [28℄. To avoid exessive numerial omputations, we

do not use any extrapolation in the trunation level here; it turns out that the highest

trunation level we used (25, whih gives a 434 dimensional Hilbert spae) is enough to

ahieve su�ient preision provided we hoose the parameter b in a suitable range. We

remark that inreasing the trunation level to the values used in the periodi ase [6, 7℄

(i.e. up to 30) is not very pratial beause the evaluation of the matrix elements of the

bulk perturbation is very time onsuming and the required CPU time grows very fast.

Another soure of error omes from the fat that numerial diagonalization beomes

unstable where levels are nearly degenerate

4

; an example of this phenomenon is shown in

subsetion 5.2.

A further reason for deviation is that every theoretial predition that we test against

BTCSA is exat only up to residual �nite size orretions, i.e. ontributions that deay

exponentially with the volume. As disussed in [6℄ for any measured quantity there exists

a volume range where the trunation errors and the residual �nite size orretions are

of the same order; this is the so-alled saling regime where the agreement between the

theoretial preditions and the numerial results is optimal.

To see what preision an be expeted in the saling regime, we evaluated three quan-

tities harateristi of the ground state. The energy of the ground state in �nite volume

has the large volume asymptotis

E0(L) = Bm2L+ Ebm+O
(

e−µL
)

where the exat value of the bulk energy onstant is [17℄

B = −
√
3

12

and the boundary energy onstant is given by [10℄

Eb =
√
3− 1

2
+ sin

πb

6

In addition, the �nite volume vauum expetation value has the asymptotis

〈0|ϕ|0〉L = 〈ϕ〉+O
(

e−µL
)

where the exat asymptoti value 〈ϕ〉 is given by (2.19).

One an extrat estimates for these quantities from the saling regime of BTCSA, whih

are ompared with the predited values in table 4.1. Besides noting the very good agree-

ment it is useful to pay partiular attention to the vauum expetation value, beause it

4

Eigenvetors orresponding to degenerate or nearly degenerate levels are very sensitive to any small

perturbation, and thus even a small trunation error an have a disproportionately large e�et.
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b B (BTCSA) Eb (exat) Eb (BTCSA) m1/5 〈ϕ〉 (exat) m1/5 〈ϕ〉 (BTCSA)
−2.3 −0.144750 −0.567555 −0.568208 −1.023503 −1.043671
−2.0 −0.144736 −0.500000 −0.499934 −1.034417 −1.052965
−1.7 −0.144588 −0.411121 −0.411366 −1.049802 −1.066242
−1.4 −0.144472 −0.303105 −0.303446 −1.070303 −1.083938
−1.1 −0.144376 −0.178614 −0.178994 −1.096875 −1.106887
−1.0 −0.144351 −0.133975 −0.134351 −1.107309 −1.115903
−0.8 −0.144305 −0.040711 −0.041154 −1.136265 −1.130931
−0.5 −0.144286 0.107206 0.106815 −1.174595 −1.174435
−0.2 −0.144315 0.261497 0.261078 −1.231176 −1.226541
0.0 −0.144372 0.366025 0.365596 −1.278610 −1.270723
0.3 −0.144523 0.522460 0.522032 −1.370592 −1.356133

Table 4.1: Boundary energy and vauum expetation of ϕ: exat preditions ompared to

BTCSA. The exat value of B is −0.144338 . . . .

is in fat the simplest (zero-partile) form fator that an be measured. In fat we found

that the deviation of the BTCSA determination of the matrix elements from the theo-

retial preditions (3.6,3.9) follows well the preision of the determination of the vauum

expetation value. We an therefore see that the highest preision an be ahieved when

−1.1 . b . 0.0, and so it is in this range that the numerial tests are the most reliable.

5 Comparing theoretial preditions with BTCSA data

In this setion we present examples of the omparison between the theoretial preditions

(3.6,3.9) and BTCSA data. All the results presented below are for b = −0.8, the same

value of the model's parameter as in �gure 4.1, whih is in the optimum range for numerial

preision. We atually performed the alulations for fourteen di�erent values of b between
−2.3 and +0.3. We isolated the vauum state, four one-partile, four two-partile and two

three-partile states for eah value of b, alulated matrix elements for all possible pairwise

ombinations of these states, and found similarly good agreement as presented below. The

numerial deviations gradually inrease when moving away from the optimum range of b.
In the optimum range, we found deviations of the order 10−3

in the saling regime; for the

extremal values, the deviations inreased to a few perent for higher levels. There was not

a single matrix element in this huge set of data for whih any unexpetedly large deviation

ourred; therefore we an state that the numerial data are in full agreement with the

theoretial preditions.

We also reall (f. [6℄) that the relative phases of di�erent multi-partile states resulting

from numerial diagonalization are in general di�erent from the onventions that follow

from the form fator axioms in subsetion 2.1. Therefore the relations (3.4,3.6) must be

understood to hold up to some phase fators, and in the numerial omparisons in �gures

5.1 and 5.3 we use the absolute values of the matrix elements. This issue does not arise
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for the diagonal ase as any suh phase fator drops out from (3.9); in �gure 5.5 we only

removed a minus sign that appears on both side of this relation after evaluation.

5.1 Elementary form fators

Elementary form fators are de�ned in eqn. (2.1); these are the ones whih enter the form

fator equations given in subsetion 2.1, and all other form fators an be obtained from

them by rossing. Comparing suh matrix elements against BTCSA provide a test for

form fator funtions with all their arguments real, aording to eqn. (3.4). However, the

numerial magnitude of the orresponding �nite volume matrix elements dereases very

fast with the number of partiles. The three-partile matrix elements are already too small

to be measured meaningfully from BTCSA (they are of the order of trunation errors),

and therefore we limited ourselves to the one- and two-partile ases, shown in �gure 5.1.

Note that the two-partile matrix elements are already smaller than the one-partile ones

by more than an order of magnitude; aordingly, the relative preision in their ase is

around one perent, while for the one-partile matrix elements we ould ahieve around

10−3
(or even slightly better) in the saling regime. Aording to the disussion at the end

of subsetion 3.2 this is enough to test that the inlusion of the phase-shifts in (3.5) whih

desribe the interation between the partiles and also with the boundary is neessary to

ahieve agreement between the theoretial preditions (3.4) and trunated onformal spae

data. This is illustrated in �gure 5.2 where besides plotting the orret predition (3.4)

involving the full one-partile density of states

ρ1(θ) = 2mL cosh θ +
∂δ(α)(θ)

∂θ
+

∂δ(β)(θ)

∂θ

whih takes into aount interations as de�ned in (3.5), we also plot a version where the

density of states is substituted by

ρnaive1 (θ) = 2mL cosh θ

Here δ(α) and δ(β) are the boundary phase-shifts de�ne in (3.1). Note that for small L the

di�erene between the naive and the full phase-shift goes to 0. This may seem surprising

at �rst, but it is due to the fat that θ inreases with dereasing L and the phase-shift

derivatives derease exponentally for θ away from 0. Although �gure 5.2 only shows the

ase of the �rst one-partile state, similar results are obtained for all the form fators

disussed in this paper.

5.2 Non-diagonal matrix elements

Form fator funtions with more than two partiles an only be measured with su�ient

auray from more general (non-diagonal) matrix elements, for whih the theoretial pre-

dition is given by eqn. (3.6). We present suh data in �gure 5.3, whih provide a hek for

form fator funtions involving up to 6 partiles; the relative deviation between the BTCSA
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Figure 5.1: One-partile and two-partile elementary form fators. l = mL is the dimen-

sionless volume parameter, while f is the magnitude of the matrix element in units of

m−1/5
.
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Figure 5.2: The relevane of interation orretions to the density of states. The disrete

points are TCSA data for the one-partile matrix element shown, ontinous line is the

predition (3.4), while the dashed line shows the same with the naive density of states.
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data and the theoretial predition (3.6) is around 10−3
in the saling regime. We omitted

the ase of 1-partile�1-partile matrix elements, beause they test the two-partile form

fator already heked above; they show similarly good agreement. We also omitted the

ase of 1-partile�3-partile matrix elements as they are again too small to be extrated

with high enough preision.

We remark that there is an easily visible, quite large deviation in �gure 5.3 () at

l = 13. The reason is that the orresponding matrix element involves the seond three-

partile level |{1, 2, 4}〉, whih rosses another level in the viinity. As we already disussed

at the beginning of subsetion 4.2, in the viinity of suh level rossings the pair of levels

an bifurate into a pair of omplex onjugate eigenvalues, whih inreases the numerial

deviation due to trunation errors.

This partiular level rossing is shown in �gure 5.4, and it an be easily seen that

the bifuration is indeed due to trunation errors. At suh a large volume the Bethe-Yang

equations (3.2) give a very aurate desription of energy levels, sine the residual �nite size

orretions are very small, of order e

−l ∼ 10−6
. Therefore imaginary parts of levels whih

are larger than this order of magnitude an only be due to trunation errors. Indeed the

imaginary parts at the middle of the level rossing are of order 10−4
whih is also onsistent

with the magnitude of trunation errors that an be estimated from the deviation between

the Bethe-Yang and BTCSA levels around this point.

Turning to an exat desription of the �nite size spetrum, for periodi boundary on-

ditions it an be proved that the full exat �nite volume spetrum of the saling Lee-

Yang model is stritly real [29℄, and therefore the similar launae observed by Yurov and

Zamolodhikov [26℄ an only be due to trunation. We expet that a similar result holds

for the saling Lee-Yang model with boundaries when b is real i.e. when |h| < hcrit
5

, and a

proof an probably be given based on the boundary TBA desription of the �nite volume

spetrum established in [10℄, but we do not pursue this issue further here.

5.3 Diagonal matrix elements

The omparisons in the previous two subsetions an be onsidered as a diret veri�ation

of the form fator funtions given in subsetion 2.3. One we are ertain that the elementary

form fator funtions are orret, we an view the omparison of diagonal matrix elements

as testing the struture of the disonneted terms involved in (3.9). The data are presented

in �gure 5.5 and again show exellent agreement (with deviations of order 10−3
in the saling

regime) apart from the presene of the deviation due to the level rossing disussed in the

previous subsetion.

5

For larger values of the boundary oupling h the ground state is destabilized and the spetrum turns

omplex [10℄.
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Figure 5.3: Non-diagonal matrix elements. l = mL is the dimensionless volume parameter,

while f is the magnitude of the matrix element in units of m−1/5
.

22



12.992 12.996 13
4.254

4.2545

4.255

4.2555

4.256

4.2565

PSfrag replaements

ℜe e

l

12.992 12.996 13

-0.0001

-0.00005

0.00005

0.0001

PSfrag replaements

ℜe e
l

ℑme

l

Figure 5.4: Level rossing around l = 13. Energy (e) is measured in units of m, relative to

the ground state. The two �gures show the real and the imaginary parts of the two levels,

respetively.

6 Conlusions

In this paper we have sueeded to extend the desription of �nite volume matrix elements

of loal operators [6, 7℄ to the ase of boundary operators in a boundary quantum �eld

theory. We have ompared the preditions of this framework to data extrated from the

boundary trunated onformal spae approah, and found exellent agreement. This pro-

vides a very strong evidene both for the validity of the boundary form fator bootstrap

introdued in [2℄, and to the desription of �nite volume matrix elements in terms of the

in�nite volume form fators given by eqns. (3.6,3.9).

As pointed out in [7℄, understanding �nite size orretions to form fators is not only

valuable as a tool to hek the form fator bootstrap, but also for the alulation of �nite

temperature orrelators. The introdution of �nite volume regularizes the singular terms

that ome from disonneted piees, and makes it possible to develop a systemati low-

energy expansion for �nite temperature orrelators, as demonstrated on the example of

one-point funtions in [7℄. A form fator expansion for the �nite temperature expetation

values of boundary operators has already been developed in [22℄; we also plan to extend

these results to two-point orrelation funtions. It was already demonstrated in the seminal

paper by A�ek and Ludwig [30℄ that the �nite temperature setting is essential in studying

boundary renormalization group �ows, and therefore we expet that suh an expansion an

be useful in this ontext.
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