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Abstrat

We investigate boundary bound states of sine-Gordonmodel on the �nite-size strip with Dirihlet

boundary onditions. For the purpose we derive the nonlinear integral equation (NLIE) for the

boundary exited states from the Bethe ansatz equation of the inhomogeneous XXZ spin 1/2 hain

with boundary imaginary roots disovered by Saleur and Skorik. Taking a large volume (IR) limit

we alulate boundary energies, boundary re�etion fators and boundary Lüsher orretions and

ompare with the exited boundary states of the Dirihlet sine-Gordon model �rst onsidered by

Dorey and Mattsson. We also onsider the short distane limit and relate the IR sattering data

with that of the UV onformal �eld theory.

1 Introdution

Boundary integrable �eld theories in two dimensions have been investigated mainly by two approahes.

The boundary bootstrap approah determines the re�etion amplitudes in a fatorized S-matrix frame-

work whih is valid in the large volume (IR) limit [1℄. In a small volume, on the other hand, the

underlying quantum �eld theories an be desribed as perturbed boundary onformal �eld theories.

Complete understanding is possible only after the two approahes are linked in suh a way that the

states and operators in the alternative formulations are exatly mathed.

The nonlinear integral equation (NLIE) has been most e�etive in linking the two desriptions for

the sine-Gordon model. The NLIE for the bulk theory has been started several years ago by various

authors [2, 3℄. An evident advantage of this method is that it an deal with exited states relatively

easily as shown with great suess in the bulk sine-Gordon model [4, 5℄. The NLIE is a sort of ontinuum

limit of the Bethe Ansatz equation (BAE) of an inhomogeneous alternating spin 1/2 XXZ hain model

whih regularizes the sine-Gordon model while keeping integrability. This method has been extended

to the sine-Gordon model de�ned on a strip with two boundaries. The ground state NLIE for the

Dirihlet boundary onditions (BCs) has been studied in [6℄ and for general non-diagonal BCs in [7℄.

The bulk exited state NLIE for the Dirihlet BCs has been analyzed in [8℄ and the hole exited state

for a general non-diagonal BCs in [9℄. In the present paper we investigate how this method an be

extended to the boundary exited states for Dirihlet BCs.

The omplete spetrum of boundary exited states of the Dirihlet sine-Gordon (DSG) model on

a half line with one boundary has been onstruted by Dorey and Mattsson (DM) by inspeting the

analyti struture of the re�etion matrix in a bootstrap approah [10℄. They found a rih struture of

exited boundary states, the boundary bound states (BBS). These states are the sattering states whih

an be de�ned only in the IR limit of the �nite size setting. It is important to relate the IR states with

the UV onformal states appearing in the small volume desription for the omplete understanding of
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the DSG model. In this paper we analyze arefully the �imaginary roots� of the boundary XXZ BAE,

�rst disovered by Saleur and Skorik [11℄. From this we derive the NLIE inluding the imaginary roots

whih desribes the BBSs of the DSG in the whole sale. Taking the IR limit of the NLIE, we an

show that there is a one to one orrespondene between the purely imaginary roots and the DM BBSs.

The paper is organized as follows: In setion 2 we summarize the available results of the DSG model.

We start by analyzing the onditions for the existene of the imaginary roots of the inhomogeneous

spin 1/2 XXZ model. The NLIE, derived from the lattie BAE, ontains parameters originating from

the XXZ model whih should be ompared with the bootstrap solution [10℄. We analyze the large

volume limit of the NLIE in setion 3 and �nd agreement with the BAE lassi�ation. This leads to

full physial interpretation of the energy levels desribed by the NLIE without any soure and the one

with imaginary roots only. We do it in two steps, �rst with the simpler repulsive ase and then the

more ompliated attrative one. In both ases the proposed orrespondene between the various soure

terms and the DM spetrum of BBSs are derived from the soliton and breather re�etion amplitudes

and mathing of the boundary energies. As a �nal hek we ompare the �nite size energy orretion

derived from the NLIE to the boundary Lüsher orretion [12℄. Setion 4 deals with the alulation

of the onformal dimensions of underlying boundary onformal �eld theory by taking the UV limit of

the NLIE, whih gives another onvining support of our result. We onlude and give the outlook for

future investigations in setion 5.

2 Derivation of the NLIE

In this setion we summarize the results available in the literature tailor-made for future appliations.

2.1 Imaginary Roots of the Bethe Ansatz equation

To derive the NLIE for the DSG model, we onsider anti-ferromagneti XXZ spin 1/2 model in a hain

of N sites with lattie spaing a, oupled to parallel magneti �elds h− and h+ at the left and right

boundaries, respetively. Its Hamiltonian is written as

H(γ, h+, h−) = −J
N−1
∑

n=1

(

σx
nσ

x
n+1 + σy

nσ
y
n+1 + cos γσz

nσ
z
n+1

)

+ h+σ
z
1 + h−σ

z
N . (1)

Here σα
n , α = x, y, z are Pauli matries on the n-th site and the anisotropy is 0 ≤ γπ. Whenever

neessary, we will use another oupling onstant p de�ned by

p =
π

γ
− 1, 0 < p <∞.

The BAEs for the boundary XXZ hain (1) have been derived by Alaraz et al. [13℄ and Sklyanin

[14℄ using an algebrai Bethe ansatz approah. The BAEs are oupled equations for a set of M roots

whih have distint values θ1, . . . , θM with M ≤ N/2;

[s1(θj + Λ)s1(θj − Λ)]N sH+(θj)sH−(θj) =

M
∏

k=1,k 6=j

s2(θj − θk)s2(θj + θk)

where we introdued a short notation

sν(x) =
sinh γ

π

(

x+ iνπ
2

)

sinh γ
π

(

x− iνπ
2

) .

The boundary parameters H± in the BAEs are related to those in the Hamiltonian by

h± = sin
π

p+ 1
cot

2π(H± + 1)

p+ 1
.
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In addition to real and omplex roots, we are interested in the �imaginary� roots whih have vanishing

real parts. These objets, �rst observed by Saleur and Skorik [11℄, depend on the boundary parameters

of both sides independently. For simpliity, we set the value of h− so that it does not introdue any

imaginary root and reall from [11℄ how the existene and loations of the imaginary roots depend on

the values of h+ in the limits when Λ→∞ and N →∞. De�ning κj by

eκj = s1(θj + Λ)s1(θj − Λ),

one an see that an imaginary root with θj = iuj in the Λ→∞ limit satis�es

κj = 2A sin γ sin
2γuj
π

+O(e
−4γΛ

π ), with A =

[

cosh
2γΛ

π

]−1

.

Now we look for some �string� solution in the form of

θj = i(−πH+

2
+ jpπ + ǫj),

where ǫj 's are supposed to be exponentially small in the N →∞ limit. Following [11℄, we denote it as

�(n,m) string� if j an take integer values from −n to m. Then, the BAEs take the following form

eκmN ∝ ǫm − ǫm−1 ; eκm−1N ∝ ǫm−1 − ǫm−2

ǫm − ǫm−1
; . . . ; eκlN ∝ ǫl − ǫl−1

ǫl+1 − ǫl
; . . . ; eκ0N ǫ0 ∝

ǫ0 − ǫ−1

ǫ1 − ǫ0

eκ−1N ∝ ǫ−1 − ǫ−2

ǫ0 − ǫ−1
; . . . ; eκ−n+1N ∝ ǫ−n+1 − ǫ−n

ǫ−n+2 − ǫ−n+1
; eκ−nN ∝ 1

ǫ−n+1 − ǫ−n

where we have omitted �nite fators in the proportionality. Sine all the ǫj are small we an determine

them reursively starting from both −n and m. They are onsistent provided

κm < 0 , κm + κm−1 < 0 , . . . , κm + κm−1 + . . .+ κ1 < 0, (2)

κ−n > 0 , κ−n + κ−n+1 > 0 , . . . , κ−n + κ−n+1 + . . .+ κ−1 > 0, (3)

and

κ−n + κ−n+1 + . . .+ κ−1 + κ0 + κm + κm−1 + . . . + κ1 > 0.

In solving these inequalities we are interested in the domain in H+ for a �xed p in whih the (n,m)
string an exists. Sine at some point we want to make onnetion with the BBSs we introdue the

parameter:

H+ = p(1− 2ξ+/π)

For small/large enough ξ+ the boundary state is absent and we are going to determine the value of

ξ+ at whih suh a string an enter/leave the physial strip. For this we plot sin(2γπ uj) whih is the

relevant part of κj together with the (n,m) string on Figure 1.

sin(2u/(p+1))

(p+1).... ....1 2

−1−2−n

m
π

(p+1)π
2

pπ

Figure 1: The boundary ondition dependent fator of κj in the (n,m) string
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From (2) we an see that suh a state appears when the average of u1 and um is exatly

pξ0 =
π

2
(1 + p).

So for the existene we need u1 + um > π(p+ 1) that is

ξ+ >
π

2p
− (m− 1)

π

2

From (3) we an see that u−n > 0 is also needed that is

ξ+ ≥ (2n + 1)
π

2

Finally from (3) we an see that the state disappears when u−n + um > π(p + 1) sine we have too

many points in the negative part of the sine funtion. So for the existene of the (n,m) string we also

need

ξ+ <
π

2p
+ (n+ 2−m)

π

2
.

2.2 NLIE: the ontinuum limit of the BAE

Based on the BAE, the NLIE equation determining the ounting funtion Z(θ) in the ontinuum limit

N →∞ an be written as [8℄

Z(θ) = 2ML sinh θ + g(θ|{θk}) + Pbdry(θ)

− 2iIm

∫

dxG(θ − x− iǫ) log
[

1− (−1)MSCeiZ(x+iǫ)
]

, (4)

where Pbdry(θ) is the boundary ontribution given by

Pbdry(θ) = 2π

∫ θ

0
dx[F (x,H+) + F (x,H−) +G(x) + J(x)] (5)

G(θ) =

∫ ∞

−∞

dk

2π

sinh π
2 (p − 1)k

2 sinh π
2pk cosh

π
2k

eikθ, for |Imθ| < πmin(1, p)

J(θ) =

∫ ∞

−∞

dk

2π

sinh π
4 (p− 1)k cosh π

4 (p + 1)k

sinh π
2 pk cosh

π
2k

eikθ, for |Imθ| < π

2
min(1, p)

F (θ,H) =

∫ ∞

−∞

dk

2π
sign(H)

sinh π
2 (p+ 1− |H|)k

2 sinh π
2 pk cosh

π
2k

eikθ, for |Imθ| < π

2
|H|.

We have introdued a mass sale M whih will be identi�ed with that of a soliton and the �nite size

L by

L = Na, M =
2

a
e−Λ.

The �soure� term is given by

g(θ|{θk}) =
∑

k

ck[χ(k)(θ − θk) + χ(k)(θ + θk)]

where

χ(θ) = 2π

∫ θ

0
dxG(x)

and {θk} is the set of position of the various objets (holes, lose and wide roots, speials) haraterizing
a ertain state. They satisfy the quantization rule

Z(θj) = 2πIj , Ij ∈ Z+
ρ

2
ρ = MSC mod 2 .
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The oe�ients ck are given by

ck =

{

+1 for holes
−1 for all other objects

and for any funtion f(ϑ) we de�ne

f(k)(θ) =







fII(θ) for wide roots
f(θ + iǫ) + f(θ − iǫ) for specials
f(θ) for all other objects

where the seond determination of f(θ) is de�ned by

fII(θ) =

{

f(θ) + f(θ − iπ sign Imθ) if p > 1
f(θ)− f(θ − iπp sign Imθ) if p < 1

for |Imθ| > πmin(1, p) .

For the vauum state ontaining real roots only, Eq.(4) oinides with the one found some years

ago in [6℄. One the equation is solved for Z(θ + iǫ) one an use this result to ompute the Z(θ)
funtion at any value in the analytiity strip |Imθ| < πmin(1, p), provided the funtion Pbdry(θ) is well
de�ned there. To extend the funtion outside this analytiity strip one has to resort to the following

modi�ation of the NLIE

Z(θ) = 2ML sinhII θ + gII(θ|{θk}) + PbdryII(θ)

− 2iIm

∫

dxGII(θ − x− iǫ) log
[

1− (−1)MSCeiZ(x+iǫ)
]

.

The ontinuum limit of the ounting equation whih restrit the allowed root on�guration is given by

NH − 2NS =
1

2
(sign(H+) + sign(H+))− 1 +MC + 2MW step(p− 1) +m. (6)

(The integer m appearing here is related to possible winding of the sine-Gordon �eld, see next setion).

One Z(θ) is known, it an be used to ompute the energy. It is omposed of bulk and boundary

terms whose expression an be found in [6℄ and a Casimir energy saling funtion given by

E = M
∑

k

ck cosh(k) θk −M

∫

dx

4π
sinhxQ(x). ; Q(x) = 2ℑm log

[

1− (−1)MSCeiZ(x+iǫ)
]

(7)

2.3 Relation to Boundary sine-Gordon model

The ontinuum limit of the inhomogeneous XXZ spin 1/2 hain desribes the sine-Gordon model. If

we introdue diagonal (σz only) boundary ondition on the spin hain, the ontinuum limit should

desribe the DSG model, whose ation an be written as

ADSG =
1

2

∫ ∞

−∞
dt

∫ L

0
dx

[

(∂µφ)
2 +

2m2
0

β2
cos βφ

]

with the Dirihlet boundary onditions

φ (0, t) ≡ φ− +
2π

β
m− ; φ(L, t) = φ+ +

2π

β
m+ , m± ∈ Z.

Notie that the bulk and boundary parameters of the DSG and spin hain models are related by [6℄

p−1 =
8π

β2
− 1, ; H± = p

(

1∓ 8

β
φ±

)

. (8)
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This model has several important appliations ranging from ondensed matter physis to string

theory. An important feature of the DSG model is the onservation of the topologial harge

Q ≡ β

2π

[
∫ L

0
dx

∂

∂x
φ(x, t)− φ+ + φ−

]

= m+ −m− ∈ Z .

The model enjoys the disrete symmetry of the �eld φ → φ + 2π
β m and simultaneously φ± → φ± +

2π
β m (m ∈ Z). The harge onjugation symmetry φ → −φ sending solitons into anti-solitons is also

guaranteed, provided φ± → −φ± simultaneously.

The well known bulk partile spetrum of sine-Gordon model is omposed of solitons and anti-

solitons with topologial harge 1 and −1 respetively, and their bound states known as breathers in

the attrative regime 0 < β ≤
√
4π and of ourse they are also part of the DSG spetrum. Another

important part of the spetrum of the DSG model in the half line theory - i.e. in the presene of

one boundary only - is the ompliated spetrum of the BBSs desribed in [10℄. In addition to the

bulk S-matries [15℄ and boundary re�etion matries for the soliton or anti-solitons [1℄, the omplete

exited boundary re�etion matries in the presene of the BBSs have been found in [10℄.

The DM result on the BBSs of the half line theory an be summarized as follows. First, de�ne two

sets of variables

νn = ξp− (2n + 1)πp

2
= ν0 − npπ ; n ≥ 0

wm = π − ξp− (2m− 1)πp

2
= π − ν−m.

where the bootstrap parameters p and ξ are related to those of the Lagrangian as

p+ 1

p
=

8π

β2
; ξ± =

4π

β
φ± (9)

Whenever a ondition

π

2
> νn1 > wm2 > νn2 > . . . > wmk

> νnk
> . . . > 0 (10)

is satis�ed, a BBS an exist. If the last variable is of ν type, then the BBS is denoted as

|1;n1,m1, . . . , nk−1,mk−1, nk〉

and if it is of w type, then the state is denoted as

|0;n1,m1, . . . , nk−1,mk−1, nk,mk〉.

The energy of suh a state relative to the ground state is given by

E|0/1;n1,m1,...,nk−1,mk−1,...〉 =
∑

j

M cos νnj
+

∑

j

M coswmj
.

The boundary re�etion matrix on exited boundaries an also be derived. We denote by P+
|0〉
(ξ, θ)

the boundary re�etion matrix element of a soliton on the ground state boundary. The boundary

parameter dependent part reads as [11℄

− i
d

dθ
log

P+
|0〉(θ, ξ)

R0(θ)
=

∫ ∞

−∞
dkeikθ

sinh
(

π
2 (1 +

2ξp
π )k

)

2 sinh π
2 pk cosh

π
2k

(11)

The re�etion fator of solitons on the |1; 0〉 exited boundary is given by

P+
|1;0〉(θ, ξ) = P+

|0〉(θ, ξ)a(θ − iν0)a(θ + iν0) ≡ P+
|1〉(θ, ξ) (12)

6



where a(θ) = eiχ(θ) desribes the soliton-soliton S-matrix element. The re�etion fator on the general

boundary is given by

P+
|0/1;n1,m1,...,nk−1,mk−1,...〉

= P+
|0/1〉

∏

k

a(θ − iνnk
)a(θ + iνnk

)

a(θ − iν0)a(θ + iν0)

∏

k

a(θ − iwmk
)a(θ + iwmk

)

a(θ − iw0)a(θ + iw0)
.

Using the identity

a(θ − iwmk
)a(θ + iwmk

)a(θ − i(π − wmk
))a(θ + i(π − wmk

))

a(θ − iν0)a(θ + iν0)a(θ − iw0)a(θ + iw0)
= 1. (13)

whih omes from the unitarity and rossing symmetry of the bulk S-matrix, the general re�etion

fator is equivalent to

P+
|0/1;n1,m1,...,nk−1,mk−1,...〉

= P+
|0/1〉

∏

k

a(θ − iνnk
)a(θ + iνnk

)

a(θ − i(π −wmk
))a(θ + i(π −wmk

))
.

On physial grounds one expets that the DSG model on the strip with two boundaries should

have in general pairs of the DM type BBS in the spetrum when L → ∞. In this paper we onsider

a somewhat simpler situation where the boundary parameters on one boundary do not allow any DM

bound state. In this ase, one expets that only one set of the DM BBSs are present in L → ∞
limit. In the following we show how the solutions of the NLIE with purely imaginary roots meet this

expetation.

3 Large volume behavior of the NLIE

In this setion we provide the interpretation of the boundary strings of the NLIE in the large vol-

ume limit by mapping them to the boundary bound states lassi�ed by DM. First we show that the

asymptoti analysis for the existene of a boundary string in NLIE is equivalent to the BAE analysis,

then we fous on their interpretation. For pedagogial reasons we present the results for the repulsive

regime �rst, where we have at most one BBS and then turn to the more ompliated problem of the

attrative regime. Finally we on�rm our �ndings by alulating the boundary Lüsher orretions for

the ground-states.

3.1 Large volume analysis of the boundary exited state NLIE

The aim of this subsetion is to replae the ǫ analysis for the (n,m) strings in the BAE by a soure

term analysis in the infrared (IR) limit of the NLIE (4). In this analysis the ounting funtion Z(θ) is
replaed by its asymptoti (large volume) form:

Z (θ) = 2ML sinh θ + Pbdry(θ)−
∑

k

(χ(θ − θk) + χ(θ + θk)), (14)

and the quantization ondition is obtained from

eiZ(θj) = 1. j = 1, . . . (15)

Using the relations (8) and (9) the boundary parameters H± are related to the DM ξ± parameters as

H± = p(1∓ 2ξ±
π

). (16)

Some are is required for Eqs.(14,15) sine one may have to use χwide(θ) instead of χ(θ) depending on

the loation of the roots and also the seond determination form of all the quantities. The expetation

is that from this asymptoti analysis one an obtain the same string like objets as from the ǫ analysis

7



in the BAE. This would on�rm the relevane of the results of the ǫ analysis, as here we work with the

(large volume limit of the) exat ground state(s) as opposed to the pseudo-vauum in the ǫ analysis.
In this analysis we keep H− in the domain where we expet no bound state on this boundary

(0 < H− < 2p) while we let H+ to move from a similar domain into −1 < H+ < 0 where bound states

are expeted. Consider �rst the zero string ase when in Eq.(14) there are just two soure terms with

±θ0 and assume H+ is positive 0 < H+ (i.e. ξ+ < π/2). Using the well known identity

eiPbdry(θ) = −
P+
|0〉(θ, ξ+)P

+
|0〉(θ, ξ−)

a(2θ)
(17)

where P+
|0〉(θ, ξ) is the Ghoshal-Zamolodhikov ground state soliton re�etion amplitude (11) and a(θ)

denotes the bulk soliton-soliton sattering the only equation in Eq.(15) beomes:

ei2ML sinh θ0
P+
|0〉(θ0, ξ+)P

+
|0〉(θ0, ξ−)

a(2θ0)a(2θ0)
= 1.

An imaginary root orresponding to a BBS would show up in the form of a solution θ0 = iv0 + ǫ with
v0 in the physial domain (0 < v0 <

π
2 ) and ǫ→ 0 for L→∞. This an happen only if iv0 is a pole of

one of the P+
's. However, they have no poles in the physial strip when both ξ± < π

2 . (Note that the

a's in the denominator anel also the boundary independent poles of the two P+
's). Thus for both

H± positive this asymptoti analysis gives no hint of a bound state. This is also onsistent with the

ounting equation (6) that for H± > 0 and NH = 0 allows only a solution with Mc = 0.
Now let H+ beome negative, but still onsider the zero string ase sine the ounting equation

now allows Mc = 1. The ruial observation is that the exponential of iPbdry(θ) ontains in this ase

the exited state soliton re�etion amplitude P+
|1;0〉(θ, ξ+):

eiPbdry(θ)|−1<H+<0 = −
P+
|1;0〉(θ, ξ+)P

+
|0〉(θ, ξ−)

a(2θ)
.

In DM [10℄ P+
|1;0〉(θ, ξ+) is expressed in two equivalent ways:

P+
|1;0〉(θ, ξ+) = P+

|0〉(θ, ξ+)a(θ − ν0)a(θ + ν0), P+
|1;0〉(θ, ξ+) = P−

|0〉(θ, ξ+) = P+
|0〉(θ, ξ+ −

π

p
− π).

The �rst form is natural from the bootstrap point of view and makes it easy to see that P+
|1;0〉(θ, ξ+)

has poles at iν0 and at iν−N for N = 1, 2, . . ., while the seond form (where the over-line desribes the

transformation ξ+ → π(1 + p−1) − ξ+) is useful to verify the integral representation. To support the

laim we write here F (θ,H+) for H+ > 0:

F (θ,H+) =

∫ ∞

−∞

dk

2π
eikθ

sinh(kp(ξ+ + π
2p))

2 sinh pπ
2 k cosh π

2k
,

and for H+ < 0:

F (θ,H+) =

∫ ∞

−∞

dk

2π
eikθ

sinh(kp(ξ+ − π − π
2p))

2 sinh pπ
2 k cosh π

2k
,

showing that they are indeed onneted by the transformation in the seond DM form. Note that this

implies that in this domain of H± the integral equation desribes the exited state |1; 0〉.
Using this observation in Eq.(15) leads to the quantization ondition

ei2ML sinh θ0
P+
|1;0〉(θ0, ξ+)P

+
|0〉(θ0, ξ−)

a(2θ0)a(2θ0)
= 1. (18)

Sine P+
|1;0〉(θ, ξ+) has poles in the physial strip this equation admits a bound state solution

θ0 = i(ν0 + ǫ) with ǫ ∼ Re−2ML sin ν0 ,

8



(where iR is the residue of the pole at iν0) satisfying the requirements desribed earlier. Eq.(18) is

orret if θ0 is in the �rst determination; but this ondition is met in a domain where ξ+ just exeeds

π/2 (H+ is just below 0) both in the p > 1 (repulsive) and in the p < 1 (attrative) domains. Even

for these ξ+-s the poles of P+
|1;0〉

(θ, ξ+) at iν−N are in the seond determination thus annot be used

to �nd solutions to Eq.(18) sine the form of the equation hanges there. Furthermore in the repulsive

regime also the ounting equation would require to introdue something else (possibly moving objets)

to ompensate the presene of the wide roots.

If ξ+ exeeds 3π/2 then also iν0 gets into seond determination (ν0 > pπ) and we have to reonsider

the asymptoti analysis and the solution we found even for the zero string ase. (Sine ξ+ ≤ ξmax =
π
2 (1 + p−1), ξ+ = 3π/2 is in this allowed range only if p < 1/2 in the attrative domain). In the

quantization ondition, Eq.(15), now Z(θ0)II appears, where

Z (θ0)II = 2ML(sinh θ0 − sinh(θ0 − ipπ)) + Pbdry(θ0)− Pbdry(θ0 − ipπ)− soure

with

soure = (χ(2θ0) + χ(2θ0 − 2ipπ)− 2χ(2θ0 − ipπ)).

As a onsequene Eq.(15) now takes the form:

ei2ML(sinh θ0−sinh(θ0−ipπ))
P+
|1;0〉(θ0, ξ+)P

+
|0〉(θ0, ξ−)

a(2θ0)a(2θ0)

(a(2θ0 − ipπ))2

P+
|1;0〉(θ0 − ipπ, ξ+)P

+
|0〉(θ0 − ipπ, ξ−)

= 1. (19)

Note that the P+
|1;0〉 in the denominator anels all but the iν0 pole of P+

|1;0〉 in the numerator, thus

Eq.(19) admits only a bound state solution of the form

θ0 = i(ν0 + ǫ) with ǫ ∼ Re−2ML(sin ν0−sin(ν0−pπ)).

Thus the asymptoti analysis gives a possibility for a zero string bound state solution if H+ < 0
independently whether iν0 is in the �rst or in the seond determination. However, sine the soure

terms are di�erent in the two ases (χ→ χwide for iν0 in the seond determination), the interpretation

of the bound states is di�erent: while in the �rst ase it orresponds to the ground state, in the seond

it orresponds to the state |1; 1〉 as desribed in subsetion 3.2.

Let's now turn to longer strings that may appear only in the attrative regime, where wide roots

an be added freely to the NLIE sine their number anels from the ounting equation (6). To desribe

how these string like strutures appear form Eq.(15) note that most of the imaginary roots of the string

are in the seond determination thus Eq.(15) takes the form

Z(θ) = 2ML sinh θ + Pbdry(θ)−
−m
∑

j=n

(

χ−
II(θ − θj) + χ+

II(θ + θj)
)

The loation of the roots are θj = iνj + iǫj(L), where we suppose that ǫj(L) → 0 as L → ∞. If

ℑm(θn) < pπ then the term orresponding to j = n in the sum is replaed with χ(θ− θn)+χ(θ+ θn).
The other terms are de�ned as f±

II(θ) = f(θ)− f(θ ∓ iπp). We also suppose that ℑm(θ−m) < π sine

we need a BBS state with non-vanishing energy.

The position of the roots is determined by the quantization ondition eiZ
+
II

(θk) = 1 for wide roots

and eiZ(θn) = 1 for the lose root if there is one. The ondition an be written as

e2iML sinh+
II
(θk)

eiP
+
bdry II(θk)

a(2θk)

a(2θk − iπp)2

a(2θk − 2iπp)

∏

j 6=k

1

a+II(θk + θj)
+
II a

−
II(θk − θj)

+
II

= 1 (20)

Sine e−2ML sin νk → 0 in the limit L→∞ we have to analyze the singularity struture of the funtion

appearing in Eq.(20). The analysis of the zero string ase showed that

e
iP

+
bdry II

(θk)

a(2θk)
has a pole at θ = iν0.

Furthermore

a−II(θ)
+
II =

a2(θ)

a(θ + iπp)a(θ − iπp)
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has a pole at θ = iπp and a zero at θ = −iπp. Fousing on the divergent terms in Eq.(20) one obtains

the equations:

e(λn+1−λn)L ∝ ǫn − ǫn−1 ; e(λn−λn−1)L ∝ ǫn−1−ǫn−2

ǫn−ǫn−1
; . . . ; e(λk−λk−1)L ∝ ǫk−1−ǫk−2

ǫk−ǫk−1
; . . .

e(λ2−λ1)L ∝ ǫ1−ǫ0
ǫ2−ǫ1

; e(λ1−λ0)L ∝ ǫ0
ǫ0−ǫ−1

ǫ1−ǫ0
; e(λ0−λ−1)L ∝ ǫ−1−ǫ−2

ǫ0−ǫ−1
. . . ; e(λ−m+1−λ−m)L ∝ 1

(ǫ−m+1−ǫ−m)

where λk = 2M sin νk and whenever θn is a lose root then in the �rst equation we have to put

λn+1 = 0.
Sine all the ǫ-s have to go to zero as L→∞ these equations lead to the following requirements:

λn+1 < λn ; λn+1 < λn−1 ; . . . ; λn+1 < λ1

λ−m > λn+1

λ−m < λ−m+1 ; λ−m < λ−m+2 ; . . . ; λ−m < λ0

The strongest ondition from the �rst line is λn+1 < λ1 whih means ν1 − π
2 < π

2 − νn+1. The seond

requirement an be translated to ν−m − π
2 < π

2 − νn+1 whih is equivalent to νn+1 < π − ν−m = wm.

Finally the strongest ondition from the last line is λ−m < λ0 whih is equivalent to wm < ν0. These
last two onditions are ompletely equivalent to the ones Saleur-Skorik obtained for the (n,m) strings
from the BAE on the one hand, while they are also onsistent with the DM bounds (10) on the other.

3.2 Bound-state NLIE in the repulsive regime

In this subsetion the interpretation of the BBS in the repulsive regime is elaborated. The validity

range of the pure NLIE � Eq.(4) without soure terms � as it is derived from the BAE using Fourier

transformation, is −2p−2 < H± < 2p+2. We give its interpretation in this full range. The symmetry

H± → H±+2p+2 of the BAE survives at the NLIE level (an be heked also by expliit omparison),

thus the [0, 2p + 2] domain is equivalent to the [−2p − 2, 0] domain. One possibility to ompare with

the DM spetrum is to put a partile between the two boundaries and analyze its re�etion fators by

omparing the large volume limit of the NLIE with the Bethe-Yang quantization ondition. We reall

this analysis from [8℄ here.

In the repulsive regime in the half line theory we have at most one BBS and its energy an be

plotted as funtion of the boundary parameter ξ as shown on Figure 2.

ξ

2
π ξξξ ξ

0 0
0 022 −−− 2ξ

0
−π
20

ξ2−π
2

π
2

00

1;0 *

*

1;0

Figure 2: Shemati �gure of the boundary ondition dependent part of the energies of the various

ground-states

Figure 2 is shemati and shows only the ξ dependent part of the boundary energies of the ground-

state, E|0〉(ξ) = −M cos pξ
2 cos πp

2
[6℄, and the BBS, E|1;0〉 = E|0〉 + cos ν0. The disrete symmetries ξ → −ξ

and ξ → 2ξ0 − ξ indue maps between the states |0〉 → |0〉∗ and |0〉 → |1; 0〉 but in the same time the

soliton has to be exhanged with the anti-soliton. The two theories ξ and −ξ are not equivalent so we

distinguish their states by star. The transformation ξ → ξ + 2ξ0 maps |1; 0〉∗ → |0〉 and |0〉∗ → |1; 0〉
without hanging the speies. These transformations orrespond to the φ → −φ, φ → 2π

β − φ and
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φ → φ + 2π
β transformations of the Lagrangian and, by means of them, the parameter range of the

theory an be restrited to φ ∈ [0, πβ ] or equivalently to ξ ∈ [0, ξ0].
The boundary ondition dependent part of the re�etion fator of the soliton on the ground-state

boundary an be written as (11) whih is valid in the domain 0 < ξ < π
2 . The bound at

π
2 signals the

pole of the re�etion fator whih orresponds to the boundary state |1; 0〉. The integral representation
is valid also for −π

2 (1 + 2p−1) < ξ < 0 but here it orresponds to the state |0〉∗. The validity range of

the integral representation is marked with the arrow on the �gure.

Now putting one hole into the pure NLIE for 2p > H± > 0, and omparing the large volume limit

of the quantization ondition to the Bethe-Yang equation

eiZ(θ1) = 1 ←→ e2iML sinh θ1eiP|0〉(ξ+,θ1)eiP|0〉(ξ−,θ1) = 1

one arrives at the identi�ations of the parameters (16). Let us �x H− in the domain [2p, 0] suh that

this boundary does not allow any bound-state and san the whole −2p − 2 < H+ < 2p + 2 range on

the other boundary. The previous �ndings show that the integral equation in the domain H+ ∈ [0, p]
desribes the ground state |0〉. They also show that in the range H+ ∈ [p, 2p + 2] it desribes the |0〉∗
state instead. This is interesting sine for H+ ∈ [2p, 2p + 1] there exists a BBS in the spetrum but

the pure NLIE orresponds to the ground-state. The same NLIE in the H+ ∈ [2p + 1, 2p + 2] domain

desribes the BBS, and using the symmetry H → H +2p+2 we an onlude that it orresponds also

to the exited boundary state |1; 0〉 in the H+ ∈ [−1, 0] range. For H+ ∈ [−2− p,−1] it desribes the
|1; 0〉 ground-state. This an also be on�rmed by omparing the re�etion fator of the soliton on the

state |1; 0〉 to the result oming from the NLIE for H+ < 0.
In summarizing using the re�etion fators of the solitoni states we onlude that the pure NLIE

desribes the state marked with + for H+ > 0 and the one marked with − for H+ < 0 in Figure 3.

H
0p2p2p+12p+2 −1

+ −

Figure 3: The pure NLIE desribes the state marked with +

The boundary energies annot be alulated either from the NLIE or from the bootstrap sine in

both approahes the ground-state energy is normalized to 0 and energy di�erenes an be determined

only.

Let us introdue a boundary imaginary root in the NLIE (4). The BAE and the asymptoti analysis

of the NLIE predit the position of the root to be

θ = iu ≈ i
π

2
(n(2p + 2)−H+) , n ∈ Z

whih we plot on Figure 4.

On Figure 4 the �rst determination is below iπ marked with a dashed line while the self-onjugate line

indiated by a dotted line is at iπ2 (1 + p). Exatly when H+ = 2p the n = 1 imaginary root appears

at iπ. Adding it to the NLIE via the soure term −χ(θ− iu)− χ(θ+ iu) modi�es the re�etion fator

and inreases the energy by −M cos u. Clearly this is positive for H+ < 2p + 1 zero for H+ = 2p+ 1,
negative between 2p + 1 < H+ < 2p + 2 and leaves the imaginary axis at H = 2p + 2. So from

omparing the energy di�erenes between the pure NLIE and the NLIE with the imaginary root added

we suspet that the later one desribes the state denoted by the dotted line on Figure 5.

11



H
0p2p2p+12p+2 −1 −2

π

π
2

π
2

(1+p)

Figure 4: The straight lines show the loation of the imaginary root as a funtion of H

H
0p2p2p+12p+2 −1

+ −

Figure 5: The NLIE with the imaginary root added desribes the state marked with the dotted line

This an be on�rmed also by putting one additional hole and analyzing the re�etion fators, whih

we show below.

Sine all these states an be desribed in the p > H+ > −1 or equivalently in the 0 < ξ+p < π
2 (1+p)

domain we fous on this from now on and summarize the previous �ndings. The pure NLIE desribes

the ground-state |0〉 for the range p > H+ > 0, while for the range 0 > H+ > −1 it desribes the state

|1; 0〉. If we, in this range, add an imaginary root loated at iu0 (where u0 = ν0 = pξ − πp
2 ) we hange

the energy by −M cos ν0 and the logarithm of the re�etion fator by −χ(u− iν0)− χ(u+ iν0). The
energy of this state is then

E = E|1;0〉 −M cos ν0

while the re�etion fator is

P+(θ) = P+
|1;0〉(θ)

1

a(θ − iν0)a(θ + iν0)

from these two expressions we an read o� (12) that the state with the imaginary roots at ±iν0 added
is the ground state |0〉.

We an argue another independent way that the state with the root added in the H+ ∈ [0,−1]
range desribes the ground-state. We an perform an analyti ontinuation of the pure NLIE from the

H+ > 0 domain. This method is standard and was used frequently to obtain the exited states in the

TBA equations [16, 17, 18℄. By hanging the sign of H+ two singularities of log(1− eiZ) are rossing
the ontours and by enirling them and piking up the residue terms the NLIE with one root pair

added an be obtained from the pure NLIE.

3.3 Bound-state NLIE in the attrative regime

In this subsetion we map the large volume limit of the boundary strings to the BBSs of DM in the

attrative regime. Sine all states an be desribed in the p > H+ > −1 domain we onentrate only

on this range. First we �gure out the orrespondene from the boundary energies and then on�rm

our �ndings by omparing the solitoni re�etion fators, too.

12



From the bootstrap point of view the properties of the �rst exited boundary state |1; 0〉, suh as

energy and re�etion fator, are the same as in the repulsive regime and the interpretation of the pure

NLIE is ompletely analogous: for H+ > 0 it desribes the ground-state |0〉, while for −1 < H+ < 0
it orresponds to the BBS |1; 0〉. In the attrative regime, however, where breathers are also in the

spetrum we an on�rm this assignment independently by analyzing the large volume behavior of the

�rst breather.

In doing so we insert a self-onjugate root into the large volume limit of the pure NLIE (4)

Z (θ) = 2ML sinh θ + Pbdry(θ)− (χII(θ − α) + χII(θ + α)) ; α = θ0 + i
π

2
(p+ 1)

and ompare the eiZ(α)II = 1 quantization ondition to the �rst breather's Bethe-Yang equation

ei2m1L sinh θ0R
(1)
H+

(θ0)R
(1)
H−

(θ0) = 1 (21)

Here m1 = 2M sin πp
2 is the mass of the �rst breather and

R
(1)
H (θ) =

(2 + p)θ (1)θ
(3 + p)θ

[

(p− |H| − 1)θ
(p− |H|+ 1)θ

]sign(H)

, (x)θ =
sinh(θ2 + iπx4 )

sinh(θ2 − iπx4 )

denotes its re�etion fator [19℄. Using the integral representation of the ombination

(x)θ+iπ
2
(x)−θ+iπ

2
= exp

[
∫ ∞

−∞

dt

t
e

itθ
π
sinh t(1− x

2 )

cosh(t/2)

]

together with the identity (1 + p)iπ
2
∓θ = (1 − p)iπ

2
±θ one an indeed map the quantization ondition

(15) to the Bethe-Yang equation (21). Furthermore, from the �rst breather's re�etion amplitude

emerging from this omparison one an see that the pure NLIE desribes the ground-state |0〉 for
H+ > 0, while for H+ < 0 it gives the BBS |1; 0〉.

One we know the interpretation of the pure NLIE we turn to the analysis of the (n,m) string

allowed by both the BAE and the asymptoti analysis of the NLIE. We inlude the following soure

term in the NLIE

soure = −
m
∑

j=−n+1

(χII(θ − iuj) + χII(θ + iuj))−
{

χII(θ − iu−n) + χII(θ + iu−n) if u−n > πp
χ(θ − iu−n) + χ(θ + iu−n) if u−n < πp

and at the same time make the orresponding modi�ation of the energy

E = −M
m
∑

j=−n+1

cosII(uj)−
{

cosII(u−n) if u−n > πp
cos(u−n) if u−n < πp

The ontribution of the wide and lose roots reads expliitly

soure = −χ(θ − ium)− χ(θ + ium) ; E = −M cos um

if u−n < pπ and

soure = −χ(θ−ium)−χ(θ+ium)+χ(θ−iu−n−1)+χ(θ+iu−n−1) ; E = −M cos um+M cos u−n−1

if u−n > pπ. The NLIE and the BAE is periodi with period iπ(1 + p). From now on we use the

imaginary strip between 0 and π(1 + p) as the fundamental range in ontrast to the usual [−π
2 (p +

1), π2 (p + 1)]. Roots with negative imaginary parts are mapped to the upper half plane by the u →
u+ π(1 + p) transformation as is demonstrated on Figure 6.
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−pπ

(p+1)π
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Figure 6: The two fundamental strips used to desribe imaginary roots

Taking any allowed root −πp > ū > −π
2 (p+ 1) we replae it with the root u = ū+ π(p+ 1) whih

is now in the strip

π
2 (p + 1) < u < π. In the energy formula the orresponding hange is to replae

cosII(ū) by cosII(u), but they are equal sine

cosII(ū) = cos(ū)− cos(ū+ πp) = cos(u− πp− π)− cos(u− π) = cos u− cos(u− πp) = cosII(u)

Similarly in the soure term we replae χII(θ − iū) + χII(θ + iū) by χII(θ − iu) + χII(θ + iu). Their
equality follows from the fat that χII(θ − iu) + χII(θ + iu) is symmetri for u = π

2 (p + 1),whih is a

onsequene of the identity (13).

Let's analyze now the boundary energy as well as the re�etion fators of the solitons in ase of

the (n,m) string added. To make orrespondene with the BAE we remark that ν0 = u0 = ξp − πp
2 .

As a onsequene

u−n = νn ; um = π − wm

We start the analysis with the simplest m = 0 string. We have to distinguish two ases as shown

on Figure 7.

0

πp

π

π (p+1)
2

u

u

−n

−n

u u
0 0

I

II

II

1;n+10

Figure 7: The �gure of the two possible (n, 0) strings

In the �rst ase (left) u−n < πp. The energy ompared to the state |1; 0〉 (desribed by the pure

NLIE) is

E = E|1;0〉 −M
0

∑

j=n

cosII νj −M cos νn = E|1;0〉 −M cos ν0

while for the re�etion fator we obtain the fators

P+(θ) = P+
|1;0〉a(θ − iν0)

−1a(θ + iν0)
−1
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This is the same result we obtained in the repulsive regime when added one root at iν0 thus we onlude
that it desribes the ground-state |0〉. So the ground-state orresponds to the longest string and this is

true as far as 0 < ν0 < π
2 whih is equivalent to 0 > H+ > −1. This result was obtained also by [11℄.

Let us note that we an desribe the ground-state by analyti ontinuation in H+ as we did in the

repulsive ase. The di�erene being, that one H+ reahes the value when νn(H+) enters the physial
strip we have to move it through the integration ontour whih results in its soure term. That is why

the longest possible (0, n) string gives the vauum.

Suppose now that u−n > πp (right on the �gure) so the bottom root is in the seond determination,

too. Using the seond determination of the osine funtion we obtain the energy as

E = E|1;0〉 − cos ν0 + cos νn+1

while the re�etion fator turns out to be

P+(θ) = P+
|1;0〉

a(θ − iνn+1)a(θ + iνn+1)

a(θ − iν0)a(θ + iν0)

This is all onsistent with the proposal that this string orresponds to the state |1;n + 1〉. From the

DM analysis we know that this state exists when νn+1 > 0 whih is just the statement u−n > πp we

obtained from the asymptoti analysis.

Consider now the most general (n,m) string with m > 0. Distinguish again two ases depending

on whether u−n < πp or u−n > πp as shown on Figure 8.

π

II

I

II

u−n

u−n

u 0
u 0

p

0

π

(p+1)π
2

u um m

0;0,m 1;0,m,n+1

Figure 8: The �gure of the two possible (n,m) strings

In the �rst ase (left) u−n < πp the energy of an (n,m) string is

E = E|1;0〉 − cos um = E|1;0〉 + coswm

while the re�etion fator is

P+(θ) = P+
|1;0〉

1

a(θ + i(π − wm))a(θ − i(π − wm))

= P+
|0〉

a(θ − iν0)a(θ + iν0)

a(θ + i(π − wm))a(θ − i(π − wm))

Both the energy and the re�etion fator is onsistent with the identi�ation of the string with the

|0; 0,m〉 BBS. From the DM bootstrap analysis we know that this bound-state exists whenever

π
2 >

ν0 > wm > 0. The ν0 > wm ondition is equivalent to ondition u1 + um > π(p + 1) as obtained

from the asymptoti analysis. The wm > 0 ondition is equivalent to um < π whih follows from the

ontinuum ounting equation (6).
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For u−n > πp the energy of the (n,m) string is

E = E|1;0〉 + coswm + cos νn+1

while the re�etion fator is

P+(θ) = P+
|1;0〉

a(θ + iνn+1)a(θ − iνn+1)

a(θ + i(π − wm))a(θ − i(π − wm))

From whih we an onlude that the orresponding state is |1; 0,m, n+1〉. This state exists whenever
ν0 > wm > νn+1 > 0. The new ondition ompared to the previous disussions is wm > νn+1 but this

is equivalent to u−n+um < π(p+1). So this state exists exatly the same time when the orresponding

(n,m) string in the BAE.

Suppose now that to the (n1,m1) string we have already desribed we add another (n2, 0) string
with n2 < n1. Sine u−n2 > πp the seond string inreases the energy by −M cos ν0 +M cos νn2+1 so

hanges the zero label to n2 + 1. Expliitly if the original state was |0; 0,m1〉 then the new state is

|0;n2 + 1,m1〉 if, however, the original was |1; 0,m1, n1 + 1〉 then the new state is |1;n2 + 1,m1, n1〉.
If additionally to the (n1,m1) string we add another (n2,m2) string with n2 < n1 and m2 < m1,then,

sine u−n2 > πp, the seond string inreases the energy by coswm2 + cos νn2+1 so adds two labels.

Conretely if the original state was |0; 0,m1〉 then the new state is |0; 0,m2, n2+1,m1〉, if , however, it
was |1; 0,m1, n1+1〉 then the new state is |1; 0,m2, n2 +1,m1, n1+1〉.We have heked expliitly that

the energy formulas and the re�etion fators are onsistent with these assumptions. For the existene

of this state the bootstrap gives the relation νn2+1 > wm1but we were not able to �nd its analogue on

the BAE side.

3.4 Finite size orretion of the ground-state energy: boundary Lüsher orre-

tion

In this subsetion the large volume asymptoti of the ground-state NLIE is analyzed and ompared

to the Lüsher type orretion [12℄. The general form of this orretion, valid in any two dimensional

boundary quantum �eld theory, was determined in [12℄ and �rst we onretize the results for the

sine-Gordon model with Dirihlet boundary ondition.

In the repulsive regime (p > 1), where there is no breather in the spetrum, the �nite size energy

orretion in leading order is governed by the soliton/anti-soliton re�etion ontribution as

E0(L) = E0(∞)−M

∫ ∞

−∞

dθ

4π

[

K−+
α (−θ)K+−

β (θ) +K+−
α (−θ)K−+

β (θ)
]

e−2ML cosh θ + . . .

where, the boundary fugaities an be expressed in terms of the soliton/anti-soliton re�etion fators:

K+−
α (θ) = R+

+(i
π
2 − θ)α and K−+

α (θ) = R−
−(i

π
2 − θ)α.

If, however, we are in the attrative domain then the leading �nite size orretion is given by the

one partile boundary oupling terms of the breathers:

E0(L) = E0(∞)−mn

gnαg
n
β

4
e−mnL + . . . ; mn = 2M sin

(npπ

2

)

If the one partile terms of the lightest partile, (the �rst breather), are non-vanishing g1αg
1
β 6= 0 then

the orresponding term provides the leading �nite size orretion. If any of them is zero (symmetri

boundary with φ0 = 0) then the leading �nite size orretion is determined by the seond breather's

term sine g2α is never vanishing.

We are going to reover this behavior from the ground-state NLIE separately for the attrative

and in the repulsive regimes. In the repulsive ase the ground state energy an be desribed either by

the pure NLIE for H+ > 0 or by inluding the soure term orresponding to an imaginary root for

H+ < 0. Sine the analysis was already done in the �rst ase in [12℄ we fous on the seond possibility.

The asymptoti form of the NLIE for large volume an be written as
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Z (θ) = 2ML sinh θ + Pbdry (θ)− χ(θ − θ0)− χ(θ + θ0) ; eiZ(θ0) = 1

where we negleted the exponentially small orretions oming from the onvolution term. We plug

this expression into the energy formula

E = −M cosh θ0 −Mℑm
∫ ∞

−∞

dθ

2π
sinh(x+ iη) log(1− eiZ(θ+iη))

and shift the integration ontour to η = π
2 . In doing so we need to know the analyti struture

of Pbdry(θ). Using the relation oming from the soliton quantization ondition [8℄ we an rewrite

the boundary fugaity in terms of the soliton re�etion fators on the two boundaries and the soliton-

soliton sattering as in (17). This provides the analyti ontinuation into the domain where the original

integral representation is not valid. For H+ < 0 the appearing (exited state) re�etion fator has a

pole at iν0. This pole is exponentially losely aompanied with a logarithm of zero singularity at θ0.
In shifting the ontour we take are of these singularities by enirling them with the ontour. We use

that

∮

dθ
2π

dg(θ)
dθ log(f(θ)) = ±ig(iu±), (where ± applies whenever at u± the funtion f has a pole/zero)

and obtain the ontribution of the singular terms:

−M cos ν0 +M cosh θ0

The volume (θ0) dependent terms anel, the term −M cos ν0 gives ontribution to the boundary

energy (E0(∞)) while the integral term with its ontour shifted to iπ2 gives the same integral term

it gave in the H+ > 0 ase and reprodues the expeted orretion. The anellation of the volume

dependent terms is the onsequene of the fat, that the ground state NLIE with the soure term

(H+ < 0) an onsidered as the analyti ontinuation of the ground state (and pure) NLIE from the

H+ > 0 domain in H+.

In the attrative regime things are more ompliated even for the H+ > 0 ase, where there is now

BBS in the spetrum. Even if eiPbdry(θ)
does not ontain boundary dependent poles in the physial strip

it has poles whih orrespond to boundary Coleman-Thun mehanisms [20℄. Both the re�etion fators

and the bulk sattering matrix ontain Coleman-Thun type poles at un+ = iπnp/2 orresponding to

on-shell diagrams presented on Figure 9.�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

f +−
n

gn

B
n

s

s

s

s

+−
n

B
n

f f +−
n

s

s

Figure 9: Coleman-Thun diagrams for the re�etion and sattering matries

Sine the residues are

R+
+(θ)α ∝ −

i

2

f+−
n gnα

θ − iun+
; a(2θ) ∝ −i f

+−
n f+−

n

2θ − 2iun+

we onlude that eiPbdry(θ)
has single poles at θ = iun+ with residues

eiPbdry(θ) ∝ i

2

gnαg
n
β

θ − iun+

In the exponentially small neighborhood of these poles there are also logarithm of zero singularities in

the energy integral at

(1− eiPbdry(iu
n
−)+2iML sinh(iun

−)) = 0 ; un− ≈ un+ +
gnαg

n
β

2
e−mnL
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We alulate the ontributions from the poles and zeros as before and obtain the terms

−M
∑

n

[

cos(θ + iun+)− cos(θ + iun−)
]

= −
∑

n

mn

gnαg
n
β

4
e−mnL

whih exatly reprodues the breather's one partile ontributions in the range H+ > 0, sine the

ontribution of the shifted integral is of order e−2ML
.

In the H+ < 0 domain we have to inlude the longest allowed boundary string to desribe the

ground state and additionally to take into aount the boundary dependent singularities of (1 −
eiPbdry(θ)+2iML sinh(θ)) when we shift the ontour. Sine the NLIE with the soure terms an be on-

sidered as the analyti ontinuation of the pure NLIE from the H+ > 0 domain we an see that the

terms oming from the aompanying zeros of the boundary dependent singularities of eiPbdry
anel

with the volume dependent string energies as it was the ase in the repulsive regime.

4 UV Behavior

In this setion we ompute the ultraviolet (UV) behavior of the various energy levels.

As l := ML → 0, one an alulate the Casimir energy analytially by using the asymptoti

solution of the NLIE (4). From this it is possible to extrat the e�etive entral harge de�ned by

ceff(l) = −
24L

π
E(L)

where E(L) is given by Eq.(7). In the UV limit, one an show that only roots and holes growing as

− log l an ontribute to ceff . Resaling the roots and rapidities as

θ → θ − log l

and introduing the kink ounting funtion Z+(θ) = Z(θ − log l) together with

Q+(θ) = 2ℑm log
(

1− eiZ+(θ)
)

, (22)

one an express the e�etive entral harge as

ceff (0) =
12

π

[

−
∑

k

cke
θk +

∫ ∞

−∞

dθ

2π
eθQ+(θ)

]

.

In addition, the NLIE an be rewritten for the kink ounting funtion Z+(θ) as

Z+(θ) = eθ + g+(θ|{θk}) + σ − 2iIm

∫

dxG(θ − x− iǫ) log
[

1− eiZ+(x+iǫ)
]

,

where

g+(θ|{θk}) =
∑

k

ckχ(k)(θ − θk)

and

σ = Pbdry(∞) + 2(2S0 + S+)χ(∞).

Here we de�ned two integers by

Sa = Na
H − 2Na

S −Ma
C − 2Ma

W step(p− 1), a = 0,+, (23)

where N0
H is the number of holes whih do not grow in the l→ 0 limit, et.
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By following the standard NLIE method [6℄, one an derive an expression for ∆0, de�ned by

ceff = 1− 24∆0. It is given by

∆0 =
1

8π2

2p

p+ 1

[

Pbdry(∞) + π + 2π(K + S0) + 2π
p+ 1

2p
S

]2

. (24)

Here the integer K is introdued to relate Q+(−∞) to Z+(−∞) by

Q+(−∞) = Z+(−∞) + π + 2πK,

using the de�nition of Q+ in Eq.(22). Also S ≡ S0 + S+
an be expressed from Eq.(23) by

S = NH − 2NS −MC − 2MW step(p− 1). (25)

Sine Q+(−∞) should be given in the fundamental domain of the log funtion, the integer K should

be �xed in suh a way that

− π < Q+(−∞) ≤ π. (26)

One an relate (24) to that of the c = 1 onformal �eld theory with Dirihlet boundary ondition

with ompatifying radius R given by

R =

√
4π

β
=

√

p+ 1

2p
.

whih desribes the UV limit of the Dirihlet sine-Gordon model. One an easily alulate the boundary

term from Eq.(5)

Pbdry(∞) = π + π
2p

p+ 1

[

sign(H+) + sign(H−)−
H+ +H− + 2

p+ 1

]

.

Using this and Eq.(8), in Eq.(24) the onformal dimension beomes

∆0 =
1

2

[

φ+ − φ−√
π

+mR+
1

R
(K + S0 + 1)

]2

, (27)

where the winding number m is de�ned by

m =
1

2
(sign(H+) + sign(H+))− 1− S.

Writing here S in terms of the holes and imaginary roots as in Eq.(25) one an see that this is the

ontinuum ounting equation introdued in Eq.(6).

For the Dirihlet boundary ondition, the momentum mode (i.e. the term proportional to 1/R) in
the onformal dimension (27) must vanish. This gives a ondition

K + S0 + 1 = 0

whih �xes the integer K. If this ondition is met, Eq.(26) an be written as

δ − 3

2
+

p

p+ 1
< S0 < δ − 1

2
+

p

p+ 1
, (28)

where δ de�ned by

δ =
s+ + s−

2
− γ

2π
(H+ +H−)

takes values in the domain −1 < δ < 1. With this bound, Eq.(28) restrits possible values of S0

strongly. For the repulsive ase p > 1, the allowed values are S0 = −1, 0, 1 while they are S0 = −2,−1, 0
for the attrative ase p < 1. As a speial example, let us onsider a ase where only imaginary roots

exist. Sine these roots an not have large real parts in the UV limit, the number of these roots should

be identi�ed with −S0
. This means a possible number of imaginary roots in the repulsive ase is either

0 or 1, whih is onsistent with the IR analysis in set. 3.
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5 Conlusions

In this paper we investigated the NLIE involving purely imaginary roots for the DSG model on a �nite

interval L. We were interested in desribing the DM BBSs thus we investigated the ase when the

boundary parameters at one end of L were �trivial� (i.e. exluded the existene of DM type bound

states) but on the other end admitted suh a state. We found an exat math between the set of

DM type bound states and bound state solutions of the NLIE albeit sometimes the orrespondene

was surprising: it turned out that in ertain parameter domains the pure NLIE (i.e. the one without

imaginary roots) desribes an exited state and one has to add ertain appropriate root(s) to get the

ground state. We established the equivalene by studying the large L solutions of the NLIE from whih

we extrated not only the energies but also the re�etion fators. In this proess we exploited heavily

the fat that sometimes the orret NLIE depends on the seond determination of ertain quantities.

We on�rmed our �ndings by alulating the boundary Lüsher orretions for the ground states and

by demonstrating that the UV limit of our NLIE reprodues orretly the onformal dimensions of the

expeted c = 1 BCFT.

With these ahievements in hand one an ertainly think of the following problems for future

researh: �rst the numerial investigation of these NLIEs to get information about the �nite volume

behavior of the bound states that asymptotially orrespond to DM. Seond the extension of the

NLIE to the ase of two non trivial boundary onditions at the ends of the interval L may also prove

interesting: in this ase one expets that, for large L at least, ertain pairs of DM bound states

appear in the spetrum. Reently, using semi-lassial quantization for the DSG model, an interesting

restrition (`mathing rule') was derived for the allowed pairs in [21℄. The semi-lassial proedure in

the theory with the more general perturbed Neumann type boundary ondition revealed the existene

of some ritial volumes Lcrit beyond whih the bound states eased to exist. It would be interesting

to see whether these statements are valid in the full quantum theory, i.e. whether they are valid for

the solutions of the new NLIE. The �rst step in this diretion is to generalize the present disussion

to the ase when a onstraint is satis�ed between the two boundary onditions allowing a BAE type

solution of the model [22, 23, 24℄. The ground-state NLIE in this ase was formulated in [7℄ while

the hole exited states were analyzed in [9℄. Thus there is an evident need for proeeding with the

desription of the BBS whih shows the same pattern as the Dirihlet one, see [25℄ for losing the

boundary bootstrap in this ase.

The boundary sine-Gordon theory is not the only one exhibiting a omplex pattern of boundary ex-

ited states. Its supersymmetri generalization has an even more omplex BBS spetrum [26℄ and their

desription based on the generalization of the ground-state NLIE derived in [27℄ is also an interesting

problem.
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