
ar
X

iv
:c

on
d-

m
at

/0
30

65
23

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  2

0 
Ju

n 
20

03

Andreev bound states for superconducting-ferromagnetic box
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Within the microscopic Bogoliubov–de Gennes (BdG) formalism an exact quantization condition
for Andreev bound states of the ferromagnetic-superconducting hybrid systems of box geometry is
derived and a semi-classical formula for the density of states is obtained. The semi-classical formula
is shown to agree with the exact result, even when the exchange field h, is much larger than the
superconductor order parameter, provided h is small compared with the Fermi energy.
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Mesoscopic hybrid systems formed from ferromagnets
(F) in contact with superconductors (S) exhibit inter-
esting transport properties resulting from the suppres-
sion of the electron-hole correlation in the ferromag-
nets1,2,3,4,5,6,7,8. These transport phenomena are inti-
mately related to the influence of an exchange field on
the density of states (DOS) of clean ferromagnetic films
in contact with superconductor, which has been investi-
gated both experimentally9 and theoretically10. In FS
systems, Andreev bound states below the bulk supercon-
ducting gap are spin split by the exchange field of the
ferromagnet. In a quasi-classical treatment of the dif-
fusive regime it was shown that sub-gap features in the
DOS of FS hybrids can be understood from the behavior
of the length distribution of the classical trajectories ex-
isting in the ferromagnetic region, which depends purely
on the geometry and the boundaries of the ferromagnetic
region.
In this work we calculate the Andreev levels of an FS

box consisting of a clean ferromagnetic region with a su-
perconductor attached to one side, as shown in Fig. 1.
This geometrical arrangement is a generalization of that
investigated in Ref. 10, where the size of the system along
the FS interface was infinite. The discrete energy spec-
trum of the FS box system is obtained by solving the
microscopic Bogoliubov-de Gennes (BdG) equation1,11.
We derive an exact quantization condition without using
the frequently applied Andreev’s approximation. Our ex-
act quantum description of the FS hybrid is an extension
of the commonly used model developed by Blonder et
al.12 and by Saint-James and de Gennes13 for normal-
superconducting systems. The mismatch in the effective
masses and Fermi energies of the ferromagnet and the su-
perconductor are taken into account in our calculations
and the tunnel barrier at the interface is modeled using
a Dirac delta potential. The treatment of the problem
is based on an adaptation of a method developed in our
previous work14 to the case of FS systems.
Starting from this exact quantization condition, we

give a semi-classical expression for the sub-gap density
of states (DOS) for exchange fields which are much less
than the Fermi energy. The semi-classical DOS is ex-
pressed in terms of the classical return probability of
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FIG. 1: A rectangular shape of ferromagnetic dot (F) in con-
tact with a superconductor (S).

the electrons which depends only on the geometry of
the F region and its boundaries. Besides the DOS,
from our derivation an explicit expression for this return
probability is also found. Based on the quasi-classical
Green’s function approach a similar expression has been
derived for the DOS of ferromagnetic layers in contact
with clean superconductor in Ref. 10. Our DOS expres-
sion for FS systems can be regarded as an extension
of the Bohr-Sommerfeld formula developed for normal-
superconducting hybrids15. In this work we compare the
DOS obtained from the exact quantum calculations with
that found from our semi-classical formula. We show
that a good agreement between the two calculations can
be expected only for small enough exchange fields (much
less than the Fermi energy).
The BdG equation for the FS systems can be written

as
(

H0 − σh(r) ∆
∆∗ −H0 − σh(r)

)

Ψσ = EΨσ, (1)

where H0 = p
2/2meff + V (r) − µ is the single-particle

Hamiltonian, µ = E
(F )
F , E

(S)
F are the Fermi energies,

meff = mF,mS are the effective masses in the F/S re-
gions, Ψσ is a two-component wave function, E is the
quasi-particle energy measured from the Fermi energy

E
(F )
F . Here σ = ±1 for spin up/down states and +/−

refer to the electron/hole like quasi-particle excitation.
The tunnel barrier V (r) at the FS interface and the
exchange energy h(r) are modeled in a usual way by
V (x, y) = U0 δ(x) and h(x, y) = hΘ(x), where Θ is the
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unit step function. We also adopt the usual step-function
model1,12 for the pair potential and take ∆(r) = ∆Θ(x).
It is easy to see that the Hamiltonian is separable and
the ansatz for the wave functions in the F region can be
written as

Ψm,σ(x, y) =





a+ sin
[

k
(+)
m,σ (x− d)

]

a− sin
[

k
(−)
m,σ (x− d)

]



χm(y), (2a)

while in the S region the wave functions have the form

Ψm,σ(x, y) =

(

c+γ+ e−iq(+)
m,σ

x + c−γ− eiq
(−)
m,σ

x

c+ e−iq(+)
m,σ

x + c− eiq
(−)
m,σ

x

)

χm(y),

(2b)
where

k(±)
m,σ = k

(F)
F

√

√

√

√1± E + σh

E
(F)
F

−
(

mπ

k
(F)
F W

)2

, (2c)

q(±)
m,σ = k

(S)
F

√

√

√

√1± i

√
E2 −∆2

E
(S)
F

−
(

mπ

k
(S)
F W

)2

,(2d)

χm(y) =
√

2/W sin(mπy/W ), (2e)

γ± = e±i arccos(E/∆). (2f)

Here m is a fixed integer and the Fermi wave numbers in

the F/S regions are given by k
(F)
F =

√

2mFE
(F)
F /h̄2 and

k
(S)
F =

√

2mSE
(S)
F /h̄2. The wave functions satisfy the

Dirichlet boundary conditions at the boundary of the
F region except for the FS interface where the match-
ing conditions14 should be applied. The four coefficients
a±, c± in Eqs. (2a) and (2b) are determined from these
matching conditions. One can find the following secular
equation for the eigenvalues E of the FS system for fixed
mode index m and spin state σ:

Im
{

γ+D
(+)
m,σ(E, h)D

(−)
m,σ(E, h)

}

= 0, (3a)

where Im{.} stands for the imaginary part and

D(+)
m,σ(E, h) =

(

Z − i
mF

mS
q(+)
m,σ

)

sink(+)
m,σd

+k(+)
m,σ cos k(+)

m,σd, (3b)

D(−)
m,σ(E, h) =

(

Z + i
mF

mS
q(−)
m,σ

)

sink(−)
m,σd

+k(−)
m,σ cos k(−)

m,σd, (3c)

and Z = 2mFU0/h̄
2 is the normalized barrier strength.

The number of propagating modes for the electron/hole

are the maximum of m for which k
(±)
m,σ is a real num-

ber, i.e., M
(±)
σ =

[

M

√

1± (E + σh) /E
(F)
F

]

, where M =

k
(F)
F W/π and [·] stands for the integer part. For non-

propagating modes k
(±)
m,σ have to be replaced with their

imaginary part and the functions sin and cos with the
functions sinh and cosh, respectively. For fixed m and σ
the solutions of Eq. (3a) for E give the discrete sub-gap
energy spectrum (E < ∆). These levels are numerically
exact, i.e., no Andreev’s approximation is used.
We now calculate density of states below the gap. In

what follows, we assume that there is no mismatch and

tunnel barrier at the FS interface (mF = mS, E
(F)
F = E

(S)
F

and Z = 0). For simplicity, we shall omit the superscript
F and S in the wave numbers and the Fermi energies.
In Andreev’s approximation, i.e., for |E + σh| ≪ EF

we have km,σ ≈ qm,σ and D
(+)
m,σ(E, h) ≈ k

(+)
m,σ e

−ik(+)
m,σ

d.
Therefore, the quantization condition (3a) can be simpli-
fied

Im,σ(E) ≡

(

k
(+)
m,σ − k

(−)
m,σ

)

d− arccos (E/∆)

π
= n. (4)

The density of states for energies below the gap (|E| ≤
∆ ) is

̺(E) =
∑

σ=±1

∞
∑

n=−∞

M0
∑

m=1

δ(E − Emn,σ), (5)

where Emn,σ are the solutions of Eq. (4). Using (4) the
DOS becomes

̺(E) =

∞
∑

n=−∞

σ=±1

M0
∑

m=1

∣

∣

∣

∣

dIm,σ(E)

dE

∣

∣

∣

∣

δ(Im,σ(E)− n), (6)

where M0 = M
(−)
σ=+1, the number of propagating modes

for spin-up-hole. Applying the Poisson summation
formula16 to the summation over m and keeping only
the non-oscillating term one finds

̺(E) =

∞
∑

n=−∞

σ=±1

∣

∣

∣

∣

dIm,σ(E)

dE

∣

∣

∣

∣m=m∗

Θ(M0 −m∗)Θ(m∗ − 1)
∣

∣

∣

∂Im,σ

∂m

∣

∣

∣

m=m∗

,

(7)
where the E-dependent m∗ satisfies Eq. (4) for a given

n and σ. To simplify Im,σ we Taylor expand k
(±)
m,σ in

terms of E + σh in first order (which is consistent with
the Andreev’s approximation) and find

Im,σ(E) = (E + σh)
2d/ (πh̄vF)

√

1− (m/M)
2
− arccosE/∆

π
, (8)

where vF is the Fermi velocity. In our approximation,
M0 ≈ M . From (4) and using (8) we obtain

m∗ = M

√

1−
(

2d

sn,σ(E)

)2

, where

sn,σ(E) =
nπ + arccos(E/∆)

(E + σh)/∆
ξ0, (9)
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and ξ0 = h̄vF/∆ is the coherence length in the bulk su-
perconductor.
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FIG. 2: Counting function N(E) as a functions of E/∆ ob-
tained from the exact (solid line) and the semi-classical cal-
culation (dashed line) for h/∆ = 0.1 (h/EF = 0.0025). The
other parameters are M = 217.7, d/W = 0.7, ∆/EF = 0.025.
The insets show the enlarged part of the main frame.
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FIG. 3: Counting function N(E) as a functions of E/∆ ob-
tained from the exact (solid line) and the semi-classical cal-
culation (dashed line) for h/∆ = 10.0 (h/EF = 0.25). The
other parameters are the same as in Fig. 2. The insets show
the enlarged part of the main frame.

Using (8) and performing the derivatives in (7) we find

̺(E) =
∑

σ=±1

M

|E + σh|

∞
∑

n=−∞

[sn,σ (E) + ξc (E)]P (sn,σ(E)),

(10a)
where

P (s) =
4d2

s3
√

1−
(

2d
s

)2
Θ(s− 2d), (10b)

is a purely geometry-dependent function, ξc (E) =

ξ0/
√

1− E2/∆2 and sn,σ(E) is given by Eq. (9). It can

be shown that P (s) is the classical probability that an
electron entering the billiard at the FS interface returns
to the interface after a path length s. The distribution
P (s) is normalized to one, i.e.,

∫∞

0
P (s) ds = 1. Note

that the result for the DOS, given in Eq. (10) differs from
that obtained in Ref. 10 by a factor multiplying P (s) in
the summation.
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FIG. 4: The density of states ̺(E) as a functions of E/∆
(in units of 2̺N) obtained from the exact (solid line) and the
semi-classical calculation (dashed line) for parameters given
in Fig. 2.
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FIG. 5: The density of states ̺(E) as a functions of E/∆
(in units of 2̺N) obtained from the exact (solid line) and the
semi-classical calculation (dashed line) for parameters given
in Fig. 3.

To compare the exact DOS obtained from the quanti-
zation condition (3a) with that calculated from the semi-
classical expression (10), we introduce the integrated
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FIG. 6: Counting function N(E) as a functions of E/∆ ob-
tained from the exact (solid line) and the semi-classical calcu-
lation (dashed line) for h/∆ = 40.0 (h/EF = 1.0). The other
parameters are the same as in Fig. 2.

DOS: N(E) =
∫ E

0 dE′̺(E′). From (10) we have

N(E) = M
+∞
∑

n=−∞

[

F (a)
n (E) + F (b)

n (E)
]

,where (11)

F (a)
n (E) = F (sn,+1(0))− F (sn,+1(E)) ,

F (b)
n (E) =

{

1− F (sn,−1(0))− F (sn,−1(E)) , if E > h

−F (sn,−1(0)) + F (sn,−1(E)) , otherwise,

and F (s) =
∫ s

0 P (s′)ds′ = Θ(s− 2d)
√

1− 4d2/s2 is the
integrated length distribution. Note that F (∞) = 1 since
P (s) is normalized to 1.
The small parameter used in reaching the semi-

classical result is h/EF . Figures 2 and 3 show a com-
parison between the semi-classical result Eq. (11) and
the exact result Eq. (3), when h/EF = 0.0025 and 0.25,
respectively. For better resolution, in the insets enlarged
parts of the main frames are shown. Figures 4 and 5
show the corresponding densities of states (in units of
2̺N, where ̺N = mFA/(πh̄

2) is the DOS of the ferromag-
netic region including spin up/down states and A = Wd
is the area of this region) with singularities given by the
semi-classical formula sn,σ(Esing) = 2d, where σ = ±1
and n is such that Esing < ∆. These figures show that
the semi-classical formula given by Eqs. (10)-(11) yield
good agreement with the exact result, even for large val-
ues of h/∆, provided h/EF is small. Figure 6 shows a
comparison with the exact result when the latter condi-
tion is violated. Clearly the agreement is poor in this
limit.

In summary we have shown that a semi-classical treat-
ment of the clean limit yields an expression for the DOS
in terms of the classical return probability P (s), which
in turn is known analytically. This formula is analogous
to the quasi-classical result of Ref. 10, where P (s) is not
known analytically and must be determined via a nu-
merical simulation. We have also shown that the semi-
classical formula agrees very well with the exact result for
small exchange field compared with the Fermi energy.
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