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A PROOF OF PYBER’S BASE SIZE CONJECTURE

HÜLYA DUYAN, ZOLTÁN HALASI, AND ATTILA MARÓTI

Abstract. Building on earlier papers of several authors, we establish that there exists a
universal constant c > 0 such that the minimal base size b(G) of a primitive permutation
group G of degree n satisfies log |G|/ log n ≤ b(G) < 45(log |G|/ log n) + c. This finishes
the proof of Pyber’s base size conjecture. The main part of our paper is to prove this
statement for affine permutation groups G = V ⋊H where H ≤ GL(V ) is an imprimitive
linear group. An ingredient of the proof is that for the distinguishing number d(G) (in
the sense of Albertson and Collins) of a transitive permutation group G of degree n > 1

we have the estimates n

√

|G| < d(G) ≤ 48 n

√

|G|.

1. Introduction

Let G be a permutation group acting on a finite set Ω of size n. A subset Σ of Ω is called
a base for G if the intersection of the stabilizers in G of the elements of Σ is trivial. Bases
played a key role in the development of permutation group theoretic algorithms. For an
account of such algorithms see the book of Seress [41]. Since these algorithms are generally
faster and require less memory if the size of the base is small, it is fundamentally important
to find a base of small size.

The minimal size of a base for G on Ω is denoted by b(G). Blaha [8] showed that the
problem of finding b(G) for a permutation group G is NP-hard. One may approximate b(G)
by a greedy heuristic; always choose a point from Ω whose orbit is of largest possible size
under the action of the intersection of the stabilizers in G of the previous points chosen.
Blaha [8] proved that the size of such a base is O(b(G) log log n) and that this bound is
sharp. (Here and throughout the paper the base of the logarithms is 2 unless otherwise
stated.) On the other hand, Pyber [36] showed that there exists a universal constant c > 0
such that almost all (a proportion tending to 1 as n → ∞) subgroups G of Sym(n) satisfy
b(G) > cn.
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The minimal base size of a primitive permutation group G of degree n not containing
Alt(n) has been widely studied. Already in the nineteenth century Bochert [9] showed
that b(G) ≤ n/2 for such a group G. This bound was substantially improved by Babai to

b(G) < 4
√
n log n, for uniprimitive groups G, in [2], and to the estimate b(G) < 2c

√
logn for

a universal constant c > 0, for doubly transitive groups G, in [3]. The latter bound was

improved by Pyber [35] to b(G) < c(log n)2 where c is a universal constant. These estimates
are elementary in the sense that their proofs do not require the Classification of Finite
Simple Groups (CFSG). Using CFSG, Liebeck [29] classified all primitive permutation
groups G of degree n with b(G) ≥ 9 log n.

Let G be an almost simple primitive permutation group. We say that G is standard if ei-
ther G has alternating socle Alt(m) and the action is on subsets or partitions of {1, . . . ,m},
or G is a classical group acting on an orbit of subspaces (or pairs of subspaces of comple-
mentary dimension) of the natural module. Otherwise G is said to be non-standard. A
well-known conjecture of Cameron and Kantor [16] asserts that there exists an absolute
constant c such that b(G) ≤ c for all non-standard primitive permutation groups G. In case
G has an alternating socle, this was established by Cameron and Kantor [16]. Later in [15,
p. 122] Cameron writes that c can probably be taken to be 7, and the only extreme case is
the Mathieu group M24 in its natural action. The Cameron-Kantor conjecture was proved
by Liebeck and Shalev in [30], and Cameron’s bound of 7 was established in the series of
papers [32], [33], [10], [12], [13], [11]. The proofs are probabilistic and use bounds on fixed
point ratios.

Let d be a fixed positive integer. Let Γd be the class of finite groups G such that G
does not have a composition factor isomorphic to an alternating group of degree greater
than d and no classical composition factor of rank greater than d. Babai, Cameron, Pálfy
[4] showed that if G ∈ Γd is a primitive permutation group of degree n, then |G| < nf(d)

for some function f(d) of d. Babai conjectured that there is a function g(d) such that
b(G) < g(d) whenever G is a primitive permutation group in Γd. Seress [39] showed this
for G a solvable primitive group by establishing the bound b(G) ≤ 4. Babai’s conjecture
was proved by Gluck, Seress, Shalev [21] with a bound g(d) which is quadratic in d. Later,
Liebeck and Shalev [30] showed that in Babai’s conjecture the function g(d) can be taken
to be linear in d.

Since any element of a permutation group G is determined by its action on a base, we
clearly have |G| ≤ nb(G) where n = |Ω| is the degree of G. From this we get the estimate
log |G|/ log n ≤ b(G). An important question of Pyber [36, Page 207] from 1993 asks if this
latter bound is essentially sharp for primitive permutation groups G. Specifically, he asked
whether there exists a universal constant c > 0 such that

b(G) < c
log |G|
log n

.

Pyber’s conjecture is an essential generalization of the known upper bounds for b(G),
the Cameron-Kantor conjecture, and Babai’s conjecture.
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By the Aschbacher-O’Nan-Scott theorem, primitive permutation groups fall in several
types: almost simple type, diagonal type, product type, twisted wreath product type, and
affine type. Pyber’s conjecture has been verified for all non-affine primitive permutation
groups. For non-standard (almost simple) permutation groups Pyber’s conjecture follows
from the proof of the Cameron-Kantor conjecture, and for standard (almost simple) permu-
tation groups Pyber’s conjecture was settled by Benbenishty in [7]. Primitive permutation
groups of diagonal type were handled by Gluck, Seress, Shalev [21, Remark 4.3] and Fawcett
[18]. For primitive groups of product type and of twisted wreath product type the conjec-
ture was established by Burness and Seress [14]. From these results one can deduce the
general bound

b(G) < 45
log |G|
log n

for a non-affine primitive permutation group G of degree n.

An affine primitive permutation group G acting on a set Ω is defined to be a primitive
permutation group with a (unique) regular abelian normal subgroup V . The subgroup V is
elementary abelian. Identifying Ω with V , denote the stabilizer in G of the zero vector by
H. The group H can be viewed as a subgroup of GL(V ) and G = V ⋊H as a subgroup of
AGL(V ). Since G is a primitive permutation group, H is maximal in G and acts irreducibly
and faithfully on V . The action of H on V may or may not preserve a non-trivial direct
sum decomposition of the vector space V . In the first case V is said to be an imprimitive
H-module, and in the latter case V is called a primitive H-module. In this paper we will
simply call H an imprimitive linear group or a primitive linear group if V is imprimitive
or primitive, respectively.

The most general result on the base size of affine primitive permutation groups is due
to Liebeck and Shalev [31], [34] who established Pyber’s conjecture in the case where H
is a primitive linear group (see Theorem 3.1). In this paper we use a characterization of
primitive linear groups of unbounded base size given by Liebeck and Shalev [31], [34] (see
Theorem 3.17). There is a similar characterization of primitive linear groups of large orders
due to Jaikin-Zapirain and Pyber [27, Proposition 5.7].

In case (|H|, |V |) = 1 for an affine primitive permutation group G = V ⋊ H, Pyber’s
conjecture was first established by Gluck and Magaard in [20] by showing that b(G) ≤ 95.
In fact, in this case the best possible result is b(G) ≤ 3 proved by Halasi and Podoski in
[26]. Solvable or more generally, p-solvable affine primitive permutation groups also satisfy
Pyber’s conjecture (where p is the prime divisor of the degree). In these cases, Seress [39]
and Halasi and Maróti [25] established the best possible bound b(G) ≤ 4. Fawcett and
Praeger [19] proved Pyber’s conjecture for affine primitive permutation groups G = V ⋊H
in case H preserves a direct sum decomposition V = V1⊕ . . .⊕Vt where H is close to a full
wreath product GL(V1) ≀ L with L a permutation group of degree t satisfying any of four
given properties.

In this paper we complete the proof of Pyber’s conjecture by handling the case of affine
primitive permutation groups G = V ⋊H where V is an imprimitive H-module. A stronger
form of Pyber’s conjecture is the following.
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Theorem 1.1. There exists a universal constant c > 0 such that the minimal base size
b(G) of a primitive permutation group G of degree n satisfies

log |G|
log n

≤ b(G) < 45
log |G|
log n

+ c.

The minimal base size of a permutation group is related to several other invariants of
the group. For example, Robinson [37] showed that if G is a primitive permutation group
of degree n and rank r, then b(G) ≤ (n− 1)/(r − 1). The minimal degree m of a transitive
permutation group of degree n is also related to the minimal base size b by the inequality
mb ≥ n.

There are at least two concepts termed by the name “distinguishing number”. Both of
these are connected to the minimal base size of a group. In 1981 Babai [2] defined the dis-
tinguishing number of a coherent configuration and used it to establish the aforementioned
bound for the minimal base size. This notion was later also used in a recent paper by Sun
and Wilmes [42]. In the present paper we use a different concept with the same name.
This different definition was introduced for graphs in 1996 by Albertson and Collins [1] and
since then many authors have used it under the name “distinguishing number”. For more
information, see Sections 2.2 and 3.4 of the excellent survey article by Bailey and Cameron
[5].

For a permutation group G acting on a finite set Ω we write d(G) for the minimal number
of colors needed to color the elements of Ω in such a way that the stabilizer in G of this
coloring is trivial. This invariant is called the distinguishing number of the permutation
group. Seress [39] proved that d(G) ≤ 5 for a solvable permutation group G. By results
of Seress [40] and Dolfi [17], it follows that d(G) ≤ 4 for a primitive permutation group G
of degree n which does not contain Alt(n). Clearly, if G is a permutation group of degree

n > 1, then n
√

|G| < d(G). Burness and Seress [14] stated (with a different languague)

that there exists a universal constant c > 0 such that d(G) ≤ |G|c/n provided that G is a
transitive permutation group of degree n (see also Theorem 2.2 and the discussion preceding
it). The proof of this latter fact misses a case. In this paper we show the following stronger
result.

Theorem 1.2. Let G be a transitive permutation group of degree n > 1. Then n
√

|G| <
d(G) ≤ 48 n

√
|G|.

This result (and its proof) plays a key role in handling the “top action” of an imprimitive
irreducible linear group. For a rough idea of this application, see Lemma 3.2.

This paper is organized as follows. In Section 2 we examine the distinguishing number of
transitive permutation groups and we prove Theorem 1.2. One of the intermediate results,
namely, Theorem 2.8, will also be used later in Section 3.3.

In Section 3 we prove Theorem 1.1 for affine permutation groups. The main difficulty
arising here is that there are linear groups G ≤ GL(V ) preserving a direct sum decompo-
sition V = V1 ⊕ . . . ⊕ Vt such that NG(V1)/CG(V1) ≤ GL(V1) is a large linear group, while
G still acts faithfully on {V1, . . . , Vt}. Therefore, in Section 3.1, we generalise the concept
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of an imprimitive linear group in order to be able to use a reduction argument. In Section
3.1 we also consider the case when the H-module V is induced from an H1-module V1 such
that the base size of H1 on V1 is bounded. In Sections 3.2 and 3.3 we consider two special
cases which we will call alternating-induced and classical-induced representations. Finally,
in Section 3.4 we complete the proof of Pyber’s conjecture for affine permutation groups by
using a structure theorem of Liebeck and Shalev for primitive linear groups of unbounded
base size and by reducing this problem to one of the previously handled cases in Sections
3.1-3.3. In the final section we indicate that Pyber’s conjecture holds for all non-affine
primitive permutation groups with multiplicative constant 45.

2. The distinguishing number of a transitive permutation group

Let G be a group acting (not necessarily faithfully) on a finite set Ω. A base for G is
a subset Σ of Ω such that the intersection of the stabilizers in G of all points in Σ is the
kernel of the action of G on Ω. We denote the minimal size of a base for G by b(G) or
by bΩ(G) if Ω is to be specified. More generally, for any normal subgroup N of G we set
bΩ(G/N) = min{k | ∃x1, . . . , xk ∈ Ω, ∩k

i=1Gxi ≤ N}. A trivial observation is that

max{b(N), b(G/N)} ≤ b(G) ≤ b(N) + b(G/N).

The purpose of this section is to study yet another invariant which is closely related to
the minimal base size (see Lemma 2.1).

A distinguishing partition for a finite group G acting (not necessarily faithfully) on a
finite set Ω is a coloring of the points of Ω in such a way that every element of G fixing
this coloring is contained in the kernel of the action of G on Ω. The minimal number of
parts (or colors) of a distinguishing partition is called the distinguishing number of G and is
denoted by d(G) or by dΩ(G). As for the minimal base size above, for any normal subgroup
N of G we define d(G/N) to be the minimal number of colors needed to color the points
of Ω in such a way that the stabilizer in G of this coloring is contained in N . Clearly, for
every subgroup H of G and for every normal subgroup N of G we have

max{d(H), d(G/N)} ≤ d(G) ≤ d(N)d(G/N).

The following lemma is of importance to us.

Lemma 2.1. Let G be a finite group acting on a finite set Ω. For an integer q ≥ 2 let P q(Ω)
denote the set of all partitions of Ω into at most q parts. Then bP q(Ω)(G) =

⌈
logq(d(G))

⌉
.

Proof. Put Ω = {1, . . . , n}. We view P q(Ω) as the direct product of n copies of the set
{0, . . . , q − 1}. Moreover we think of the elements of P q(Ω) as column vectors of length n.
For a subset P = {v1, . . . , vℓ} of P q(Ω) let X be the n-by-ℓ matrix whose ℓ columns are the
vectors v1, . . . , vℓ. Let D = {w1, . . . , wn} be the set of row vectors in X. For an arbitrary i
in {1, . . . , n} the vector wi can be thought of as the color of the element i in Ω.

Assume that D does not define a distinguishing partition for G on Ω. Then there exists
an element g ∈ G that does not act trivially on Ω and preserves the coloring D of Ω, that
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is, wi = wj whenever i is mapped to j(6= i) by g. It follows that g fixes every vector in P
and therefore P is not a base for the action of G on P q(Ω).

Assume now that P is not a base for the action of G on P q(Ω). Then there exists g ∈ G
fixing every element of P such that g does not act trivially on Ω. Since this element g
preserves the coloring D of Ω, we conclude that D is not a distinguishing partition for G
on Ω.

We have shown that the set P is a base for the action of G on P q(Ω) if and only if D
defines a distinguishing partition (with |D| colors) for G on Ω. The result follows. �

The main result (Theorem 1.2) of this section determines, up to an explicit constant
factor, the distinguishing number of a transitive permutation group.

By combining Lemma 2.1 and Theorem 1.2, we get the following (almost) equivalent
form, a slightly weaker version of which appears in [14, Theorem 3.1]. In the following
result, P (n) denotes the power set of {1, . . . , n}.
Theorem 2.2. For any transitive permutation group G of degree n > 1 we have

log |G|
n

< bP (n)(G) < 7 +
log |G|

n
.

In the following we aim to prove Theorem 1.2.

Let Ω be a finite set of size n > 1 and G ≤ Sym(Ω) be a (not necessarily transitive)
permutation group.

For the lower bound in the statement of the theorem, notice that the action of G on Ω
induces an action on the set of all colorings of Ω using d(G) colors and this action contains
a regular orbit. Thus |G| < d(G)n.

From now on we will prove the upper bound in the statement of Theorem 1.2.

Let us first introduce some notation which we will use throughout the paper. For a
finite group H acting on a set X and for a subset Y of X, we denote the setwise and the
pointwise stabilizer of Y in H by NH(Y ) and CH(Y ) respectively. In the latter case when
Y = {y1, . . . , ys} has size s ≥ 1 we write CH(y1, . . . , ys). Furthermore, for any natural
number k, let [k] denote the set {1, 2, . . . , k}.

For a system of blocks of imprimitivity for G, say Γ = {∆1, . . . ,∆k} with |∆1| = |∆2| =
. . . = |∆k| = m, let Hj = NG(∆j) for each j, and N = ∩k

j=1Hj. Then Hj acts naturally on

∆j with kernel CG(∆j), so Hj/CG(∆j) ≤ Sym(∆j). Furthermore, G acts on Γ with kernel
N , so K := G/N ≤ Sym(Γ).

Our goal is to give an upper bound for the distinguishing number d(G) = dΩ(G) of G in
terms of the distinguishing numbers d(K) = dΓ(K) of K and d(Hj) = d∆j (Hj) of Hj, and
the degrees k and m.

Lemma 2.3. If Hj acts trivially on ∆j (i.e. Hj = CG(∆j)) for every 1 ≤ j ≤ k, then

d(G) ≤ ⌈ m
√

d(K)⌉.
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Proof. The assumption of the lemma means that each orbit of G on Ω has at most one
common point with the block ∆j for every j ∈ [k] := {1, . . . , k}. Thus, we can define a
function f : Ω 7→ [m] such that the restriction of f to ∆j is bijective for every j and f is

constant on every orbit of G. Set c = ⌈ m
√

d(K)⌉.
We define a c-coloring λ of Ω in the following way. Let us choose a d(K)-coloring

α : Γ 7→ {0, 1, . . . , d(K)− 1} of Γ such that only the identity of K fixes α. For every j ∈ [k]
write α(∆j) in its base c-expansion, so

α(∆j) = a1(j)c
0 + a2(j)c

1 + . . . + as+1(j)c
s,

where a1(j), . . . , as+1(j) ∈ {0, . . . , c− 1}. Note that s ≤ m− 1 by the definition of c. If s <
m− 1, let us define as+2(j) = . . . = am(j) = 0. Now, for any x ∈ ∆j let λ(x) = af(x)(j) ∈
{0, . . . , c − 1}. We claim that only the identity element of G preserves λ. By assumption,
N = 1, so it is enough to show that if g ∈ G fixes λ, then g also fixes α. Let g ∈ G fixing λ
and g(∆j) = ∆j′ for some j, j′ ∈ [k]. Then we have af(x)(j) = λ(x) = λ(g(x)) = af(g(x))(j

′)
for every x ∈ ∆j. Using the properties of f , this means that ai(j) = ai(j

′) for every i ∈ [m],
i.e. α(∆j) and α(∆j′) have the same base c-expansion. �

From now on, let us assume that the action of G is transitive (soHj/CHj (∆j) ≤ Sym(∆j)
are permutation isomorphic for all j ∈ [k]), and H1 acts on ∆1 in a primitive way. For the
remainder of this section, we say that the action of H1 on ∆1 is large if m = |∆1| ≥ 5 and
Alt(∆1) ≤ H1/CH1

(∆1) ≤ Sym(∆1).

Lemma 2.4. With the above notation, if H1 is not large, then d(G) ≤ 4 · ⌈ m
√

d(K)⌉.

Proof. By the results of Seress [40, Theorem 2] and Dolfi [17, Lemma 1], d(H1) ≤ 4. This
means that each ∆j can be colored with colors {0, . . . , 3} such that any element of Hj

fixing this coloring acts trivially on ∆j. Let χ : Ω 7→ {0, . . . , 3} be the union of these
colorings. Then Lemma 2.3 can be applied to the stabilizer of χ in G, so there exist a
⌈ m
√

d(K)⌉-coloring λ : Ω 7→
{
0, . . . , ⌈ m

√
d(K)⌉ − 1

}
such that only the identity of G fixes

both colorings λ and χ. Finally, one can encode the pair (χ, λ) by a 4 · ⌈ m
√

d(K)⌉-coloring
µ of Ω by choosing a suitable bijective function, e.g. let µ(x) = 4 · λ(x) + χ(x). �

It is possible to slightly modify the proof of Lemma 2.4 (still using Lemma 2.3) to allow
the situation when the action of H1 on ∆1 is not primitive. The modified statement is the
following.

Remark 2.5. Suppose that d(H1) ≤ c for some constant c where H1 does not necessarily

act primitively on ∆1. Then d(G) ≤ c · ⌈ m
√

d(K)⌉.

Now we handle the case where the action of H1 is large and N 6= 1. Then the socle
of N is a subdirect product of alternating groups Alt(m). More precisely, by [38, p. 328,
Lemma], the socle of N is of the form

∏
j Dj where each Dj is isomorphic to Alt(m) and is

a diagonal subgroup of a subproduct
∏

ℓ∈Ij Cℓ where Cℓ
∼= Alt(m) and the subsets Ij form

a partition of Γ with parts of equal size. (Moreover, they form a system of blocks for the
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action of G on Γ.) Let us denote the size of each part Ij by t. In accordance with [14], we
will refer to this number as the linking factor of N . Thus, we have

(Eq. 1) Alt(m)k/t ≤ N ≤ Sym(m)k/t.

Lemma 2.6. Let us assume that H1 is large and N 6= 1 with linking factor t. Then
d(G) ≤ 3 · ⌈ t

√
m⌉ · ⌈ m

√
d(K)⌉.

Proof. If m = 6, then Remark 2.5 gives the result. So from now on assume that this is
not the case. In what follows we will prove a slightly stronger inequality in the remaining
cases, namely d(G) ≤ 2 · ⌈ t

√
m⌉ · ⌈ m

√
d(K)⌉.

Applying suitable bijections Γ 7→ [k] and ∆j 7→ [m] for every j ∈ [k] we can identify Ω
with [m]× [k] = {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ k} such that

N ≤ {(σ1, . . . , σk) |σi ∈ Sym([m]), σa = σb if ⌈a/t⌉ = ⌈b/t⌉},
soc(N) = {(σ1, . . . , σk) | σi ∈ Alt([m]), σa = σb if ⌈a/t⌉ = ⌈b/t⌉},

and the action of any n = (σ1, . . . , σk) ∈ N on [m] × [k] is given as n(i, j) = (σj(i), j).
Under this identification, ∆j = {(i, j) | i ∈ [m]} for every j ∈ [k].

Let h ∈ Hj for some j = ut + v ∈ [k] where v ∈ [t]. Since soc(N) ⊳ G, and
the set {∆ut+1, . . . ,∆ut+t} corresponds to a diagonal subgroup of soc(N), we get that
{∆ut+1, . . . ,∆ut+t} is a block of imprimitivity for the action of G on Γ. Since Hj is by
definition the stabiliser of ∆j for some ut+ 1 ≤ j ≤ ut+ t, it follows that h ∈ Hj fixes the
set

Ωu = ∆ut+1 ∪∆ut+2 ∪ . . . ∪∆ut+t

setwise. Moreover, since the restriction of soc(N) to Ωu acts on each of ∆ut+1, . . . ,∆ut+t

in the same way, and the action of h on Ωu must normalize this, we get that h acts on Ωu

coordinatewise i.e. there exist σh ∈ Sym([m]), πh ∈ Sym([t]) such that

h(i, ut + w) = (σh(i), ut + πh(w)) for every i ∈ [m], w ∈ [t].

First let us assume that t ≥ m.

We define a 2-coloring χ of Ω = [m]× [k] as

χ(i, j) =

{
1 if i ≤ j (mod t) ≤ m
0 if i > j (mod t) or j (mod t) > m

.

That is, each Ωu is colored in the same way; only the first w elements of ∆ut+w are colored
with 1, unless w > m when no element of ∆ut+w is colored with 1. (Notice that if j is a
multiple of t then here j (mod t) means t (not 0).)

Now, let h ∈ Hj for some j = ut+ v, v = j (mod t) preserving χ. If the action of h on
Ωu is given by (σh, πh) ∈ Sym([m])× Sym([t]), then σh must fix each set [w], w ∈ [m], i.e.
σh = id[m]. It follows that h ∈ Hj acts trivially on ∆j. So, Lemma 2.3 can be applied to the

stabilizer of χ in G to get a ⌈ m
√

d(K)⌉-coloring λ of Ω such that only the identity element
of G preserves both χ and λ. Finally, as in the last paragraph of the previous lemma, the
pair (χ, λ) can be encoded with the 2⌈ m

√
d(K)⌉-coloring µ(x) := 2 · λ(x) + χ(x).
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Now, let t < m. First we define a 2-coloring χ of Ω = [m] × [k] in a similar way as for
the previous case:

χ(i, j) =

{
1 if i ≤ j (mod t)
0 if i > j (mod t)

.

If h ∈ Hj for some j = ut + v, v ≡ j (mod t) preserving χ, then h ∈ ∩t
w=1Hut+w must

hold. Moreover, the action of h on each ∆ut+w must be the same.

Second, we can define a ⌈ t
√
m⌉-coloring βu : Ωu 7→ {0, . . . , ⌈ t

√
m⌉ − 1} for every u such

that if h ∈ Hut+v fixes both χ and βu, then it acts trivially on Ωu. This construction is
analogous to the construction of λ given in the proof of Lemma 2.3. In fact, one can use
Lemma 2.3 directly by observing that {Λi = {(i, ut+w) |w ∈ [t]}}i is a system of blocks of
imprimitivity of the stabilizer Tj of χ in Hj and the setwise stabilizer of each Λi in Tj acts
trivially on Λi. Let β : Ω 7→ {0, . . . , ⌈ t

√
m⌉ − 1} be the union of the βu. Thus, we get that

Lemma 2.3 can be applied for the intersections of the stabilizers of χ and β. Thus, there is
a ⌈ m

√
d(K)⌉-coloring λ : Ω 7→

{
0, . . . , ⌈ m

√
d(K)⌉ − 1

}
such that only the identity element

of G fixes all of the colorings χ, β, λ. Finally, we can encode the triple (χ, β, λ) with the

2 · ⌈ t
√
m⌉ · ⌈ m

√
d(K)⌉-coloring µ of Ω given as µ(x) := 2 · ⌈ t

√
m⌉λ(x) + 2 · β(x) + χ(x). �

A permutation group G ≤ Sym(Ω) is called quasi-primitive if every non-trivial normal
subgroup of G is transitive on Ω. Clearly, every primitive permutation group is quasi-
primitive.

Lemma 2.7. If G ≤ Sym(Ω) is a (finite) quasi-primitive permutation group, then d(G) ≤ 4
or Alt(Ω) ≤ G ≤ Sym(Ω).

Proof. Let us prove the lemma by induction on n = |Ω|. If G is a primitive permutation
group, then the claim follows by Seress [40, Theorem 2] and Dolfi [17, Lemma 1]. Suppose
that G is not primitive but quasi-primitive. Let Γ be a system of blocks for G with
k = |Γ| < n maximal. Let K ∼= G be the action of G on Γ. Since a distinguishing
partition of Γ for K gives rise naturally to a distinguishing partition of Ω for G, we have
dΩ(G) ≤ dΓ(K). By induction, d(G) ≤ d(K) ≤ 4 or Alt(Γ) ≤ K ≤ Sym(Γ). Thus we may
assume that Alt(k) ≤ G ≤ Sym(k) with k ≥ 5. Each element of Γ is a block of size at least
k − 1. For each i with 0 ≤ i ≤ k − 1 color i letters in block i + 1 with 1 and the rest 0.
This way we colored the elements of Ω with 2 colors in such a way that the stabilizer in G
of this coloring is trivial. Thus d(G) ≤ 2. �

A permutation group is defined to be innately transitive if there is a minimal normal
subgroup of the group which is transitive. Such groups were introduced and studied by
Bamberg and Praeger [6]. A quasi-primitive permutation group is innately transitive. The
next theorem is a generalization of Lemma 2.7. It considers a class of groups which contains
the class of innately transitive groups.

Theorem 2.8. Let M ⊳ G ≤ Sym(Ω) be transitive permutation groups where Ω is finite
and M is a direct product of isomorphic simple groups. Then d(G) ≤ 12 or Alt(Ω) ≤ G ≤
Sym(Ω).
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Proof. We prove the claim using induction on n = |Ω|. By Lemma 2.7 we may assume that
G is not a quasi-primitive permutation group.

As before, let Γ = {∆1, . . . ,∆k} be a system of imprimitivity consisting of minimal
blocks, each of size m, for the action of G. Let the kernel of the action of G on Γ be N and
set K = G/N , a subgroup of Sym(Γ).

We claim that we may assume that N 6= 1. SupposeN = 1. By the induction hypothesis,
d(G) = dΩ(G) ≤ dΓ(K) ≤ 12, or G ∼= Alt(Γ) or G ∼= Sym(Γ) with k ≥ 13. In the latter
case G is quasi-primitive, since M = soc(G) is transitive. The claim follows.

We claim that we may assume that the action of H1 on ∆1 is large. For assume that
the action of H1 on ∆1 is not large. By the induction hypothesis, we know that d(K) ≤ 12
or K is an alternating or symmetric group of degree at least 13 in its natural action on
Γ. In the previous case the bound d(G) ≤ 12 follows via Lemma 2.4 (for m ≥ 3) and
Remark 2.5 (for m = 2). Suppose that the latter case holds. If m ≥ k− 1, then Lemma 2.4
gives d(G) ≤ 8. Suppose that m < k − 1. Consider the image M of M under the natural
homomorphism from G to K = G/N . Since M ⊳G acts transitively on Γ, the group M is
a non-trivial normal subgroup of K. Thus M ∼= Alt(k) or M ∼= Sym(k) with k ≥ 13. Since
M is a quotient group of M and M is a direct product of isomorphic simple groups, M
must be a direct product of copies of Alt(k). Since m < k − 1, the stabilizer of ∆1 in M
acts trivially on ∆1, and this contradicts the transitivity of M .

Since the action of H1 on ∆1 is non-empty (that is, N 6= 1) and large, R = soc(N) is
isomorphic to a direct product of, say r copies of Alt(m) where m ≥ 5 (see [38, p. 328,
Lemma]). Furthermore, since G acts transitively on Γ, the normal subgroup R of G is in
fact a minimal normal subgroup of G.

We claim that R ≤ M . Suppose otherwise. Then R∩M = 1 implies that R is contained
in the centralizer C ofM in Sym(Ω). SinceM is transitive, C must be semiregular. However
R is not semiregular. Thus R ≤ M .

In fact, R < M since M is transitive on Γ and R is not. Furthermore, since R, and thus
M , is a direct product of copies of Alt(m), we must have k ≥ m. By the fact that M acts
transitively on Γ, it also follows that M acts transitively on the set of r direct factors of R.
But every subnormal subgroup of M is also normal in M , which forces r = 1 and so the
linking factor of N (and also of R) is k.

By Lemma 2.6, d(G) ≤ 3·⌈ k
√
m⌉·⌈ m

√
d(K)⌉ = 6·⌈ m

√
d(K)⌉. By the induction hypothesis,

d(K) ≤ 12 (in which case d(G) ≤ 12 by the previous inequality) or K is an alternating or
a symmetric group of degree k ≥ 13. But in the latter case m = k (and d(K) ≤ m). Thus

⌈ m
√

d(K)⌉ = 2 and so d(G) ≤ 12 by Lemma 2.6. �

Proof of Theorem 1.2. First suppose that G ≤ Sym(Ω) is a quasi-primitive permutation
group. By Lemma 2.7, we may assume that n = |Ω| ≥ 48 and Alt(Ω) ≤ G ≤ Sym(Ω).

In this case we have d(G) ≤ n < 48 n
√

n!/2 where the second inequality follows from the

fact that 1
2(n/3)

n < n!/2. Thus we may assume that G ≤ Sym(Ω) is not a quasi-primitive
permutation group.
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Let M be a minimal normal subgroup in G which does not act transitively on Ω. Let
an orbit of M on Ω be Σ, and let Γ be the set of orbits of M on Ω. Let the size of Γ
be k and let H be the stabilizer in G of Σ. As before, denote the distinguishing number
of H acting on Σ by dΣ(H). Since M ⊳ H, Theorem 2.8 implies that dΣ(H) ≤ 12 or
Alt(Σ) ≤ H/CH(Σ) ≤ Sym(Σ).

Case 1. dΣ(H) ≤ 12.

By Remark 2.5, d(G) ≤ 12
⌈

m
√

d(K)
⌉
where K is the action of G on Γ and m = |Σ|.

Since K is a transitive group on k points, by induction we have d(K) ≤ 48 k
√

|K|. If m ≥ 6,
then

d(G) ≤ 12
⌈

m
√

d(K)
⌉
≤ 12

⌈
m

√
48 k

√
|K|

⌉
≤ 24 m

√
48 k

√
|K| ≤ 48 n

√
|K| ≤ 48 n

√
|G|.

If m ≤ 5 then we can use the previous estimate with 12 replaced by m and 24 replaced
by 2m.

Case 2. Alt(Σ) ≤ H/CH(Σ) ≤ Sym(Σ) with |Σ| = m ≥ 13.

In this case the action of H on Σ is large. Let the kernel of the action of G on Γ be N
and let t be the linking factor of N . Since M ≤ N , we know that N 6= 1. Set ǫ = 1 if t = 1
and ǫ = 2 if t 6= 1. Then Lemma 2.6 implies that

d(G) ≤ 3⌈ t
√
m⌉⌈ m

√
d(K)⌉ ≤ 6ǫ t

√
m m

√
d(K) = 6ǫ

mk
√

mmk/t m
√

d(K).

Set c = 6 · 21/mt · 31/t. By use of the inequality 1
2(m/3)m < m!/2 = |Alt(m)|, we have that

d(G) is at most

6ǫ
mk
√

mmk/t m
√

d(K) < 6ǫ
mk

√
((m!/2) · 2 · 3m)k/t m

√
d(K) ≤ c · ǫ n

√
(|Alt(m)|)k/t m

√
d(K).

As noted in (Eq. 1), we have that Alt(m)k/t ≤ N . This gives the inequality d(G) <

c · ǫ n
√

|N | m
√

d(K). By the induction hypothesis, we have d(K) ≤ 48 k
√

|K|. Thus

d(G) < c · ǫ m
√
48 n

√
|N | n

√
|K| ≤ 6 · ǫ · 21/13t31/t 13

√
48 n

√
|G| < 48 n

√
|G|.

�

3. The affine case

3.1. Some reductions and notation. We begin our study of Theorem 1.1 in the case of
affine primitive permutation groups.

Let G be an affine primitive permutation group acting on a finite set Ω. Then G contains
a unique minimal normal subgroup V acting regularly on Ω, so |Ω| = pd for some prime p
and it can be identified with the finite vector space V over Fp of dimension d. Furthermore,
G = V ⋊H for some H ≤ GL(V ) and H acts faithfully and irreducibly on the vector space
V . Clearly, b(G) = bV (G) = bV (H) + 1.
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In this section we will show that there exists a universal constant c > 0 such that for the
affine primitive permutation group G = V ⋊H, we have

bV (H) ≤ 45(log |H|/ log |V |) + c.

The following theorem shows that we may assume that H acts imprimitively (and irre-
ducibly) on V .

Theorem 3.1 (Liebeck, Shalev [31], [34]). There exists a universal constant c > 0 such
that if H acts primitively on V , then bV (H) ≤ max{18(log |H|/ log |V |) + 30 , c}.

Thus we may assume that V is an imprimitive irreducible FpH-module. Let V = ⊕t
i=1Vi

be a decomposition of V into a sum of subspaces Vi of V that is preserved by the action
of H. For every i with 1 ≤ i ≤ t, let Hi = NH(Vi) and let Ki = Hi/CHi(Vi) ≤ GL(Vi)
be the image of the restriction of Hi to Vi. The group H acts transitively on the set
Π = {V1, . . . , Vt}. Let N be the kernel of this action and let P be the image of H in
Sym(Π). So N = ∩t

i=1Hi and P = H/N .

As an easy application of the results of Section 2, we first prove Theorem 1.1 in the case
when each bVi(Ki) is bounded (see Theorem 3.4). Note that because the action of P on Π
is transitive, it is enough to assume this only for K1. First we handle the even more special
case when K1 is trivial.

Lemma 3.2. If K1 = 1, then bV (H) = ⌈log|V1| dΠ(P )⌉.

Proof. First note that the condition K1 = 1 implies that every orbit of H in ∪t
i=1Vi contains

exactly one element from every subspace Vi, which defines a one-to-one correspondence
αij : Vi 7→ Vj between any pair of subspaces Vi and Vj.

Let b be a positive integer. Let ws = v
(1)
s + v

(2)
s + . . .+ v

(t)
s be vectors in V for 1 ≤ s ≤ b

decomposed with respect to the direct sum decomposition V = ⊕iVi. We define an equiv-

alence relation on Π by Vi ∼ Vj if and only if (v
(i)
1 , . . . , v

(i)
b ) corresponds to (v

(j)
1 , . . . , v

(j)
b ),

i.e. αij(v
(i)
s ) = v

(j)
s for every 1 ≤ s ≤ b. Then the set {w1, . . . , wb} is a base for H on V if

and only if ∼ defines a distinguishing partition for P on Π. The number of different vectors

of the form (v
(i)
1 , . . . , v

(i)
b ) with entries from Vi (for any i) is |V1|b. It follows that bV (H) is

the smallest integer such that |V1|bV (H) is at least dΠ(P ). �

Remark 3.3. Note that this proof also works if P is not transitive on Π but Ki = 1 for
every i with 1 ≤ i ≤ t.

Theorem 3.4. Let us assume that bV1
(K1) ≤ b for some constant b. Then we have

bV (H) ≤ b+ 1 + log 48 +
log |P |
log |V | .

Proof. By our assumption, for each 1 ≤ i ≤ t we can choose a base {v(i)1 , v
(i)
2 , . . . , v

(i)
b } ⊂ Vi

for Ki ≃ Hi/CHi(Vi). Put ws =
∑t

i=1 v
(i)
s for every 1 ≤ s ≤ b and let L = ∩sCH(ws). Then
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L∩Hi = CL(Vi) for every i so we can apply Lemma 3.2 for L (see also Remark 3.3). Hence

bV (H) ≤ b+ ⌈log|V1| dΠ(P )⌉. Since dΠ(P ) ≤ 48 t
√

|P | by Theorem 1.2, we get

bV (H) ≤ b+ 1 + log|V1|(48
t
√

|P |) ≤ b+ 1 + log 48 +
log |P |
t log |V1|

= b+ 1 + log 48 +
log |P |
log |V | ,

as claimed. �

Note that Theorem 3.4 proves Theorem 1.1 in case b + 1 + log 48 is bounded. In other
words, we must now look at situations when bV1

(K1) is not bounded by any fixed constant.

For the remainder of this section, it will be more convenient for us to use the language of
group representations. So, instead of choosing H as a fixed linear subgroup of GL(V ), let
H be a fixed abstract group and X : H → GL(V ) a representation of H. Then we would
like to give an upper bound for bV (X(H)). (The reason for this is that in the proof, we
will reduce this problem to some other representations of H with simpler image structure.)
Moreover, in order to use a theorem of Liebeck and Shalev [34, Theorem 1], we may also
need to extend the base field to consider vector spaces over Fq for some p-power q. (Of
course, the base size bV (X(H)) is independent on whether we view V as an Fp-space or as
an Fq-space.) Occasionally, we want to view the vector space V over Fq as a vector space
over Fp, which we will emphasize by the notation V (p).

By using our previous notation, we assume that V = ⊕t
i=1Vi is a direct sum of Fq-spaces

and X : H → GL(V ) is a representation such that X(H) permutes the set Π = {V1, . . . , Vt}
in a transitive way. Thus, the representation X is equivalent to the induced representation
IndHH1

(X1), where X1 : H1 → GL(V1) is a linear representation of H1.

In Sections 3.2 and 3.3 we first consider two special cases, which we will respectively
call alternating-induced and classical-induced classes. Here alternating-induced means that
K1 is isomorphic to an alternating or symmetric group, and V1 as an FqK1-module is the
deleted permutation module forK1. Similarly, classical-induced means thatK1 is a classical
group (maybe over some subfield Fq0 ≤ Fq) with its natural action on V1. Then we show
in Section 3.4 how the general case can be reduced to one of these modules.

In fact, in order to be able to use a reduction argument in Section 3.4, we need to work
with the following natural generalization of projective representations.

Definition 3.5. Let V be a finite vector space over Fq and T ≤ GL(V ) any subgroup. We
say that a map X : H → GL(V ) is a (mod T )-representation of H if the following two
properties hold:

(1) X(g) normalizes T for every g ∈ H;
(2) X(gh)T = X(g)X(h)T for every g, h ∈ H.

Definition 3.6. Let T ≤ GL(V ) and X1,X2 : H → GL(V ) be two (mod T )-representa-
tions of H. We say that X1 and X2 are (mod T )-equivalent if there is an f ∈ NGL(V )(T )

such that X1(g)T = fX2(g)f
−1T for all g ∈ G.
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For a (mod T )-representation X : H → GL(V ), we define the corresponding base size
of H as

(Eq. 2) bX(H) := bV (X(H)T )

(note that X(H)T is a subgroup of GL(V )). It is easy to see that equivalent (mod T )-
representations have the same base size. Note that bV (H) ≤ bX(H) in case H ≤ GL(V )
and X = id.

For T = 1 a (mod T )-representation is the same as a linear representation.

In this paragraph let T = Z(GL(V )) ≃ F×
q be the group of all scalar transformations on

V . Then a (mod T )-representation of H is the same as a projective representation of H.
Furthermore, in this case T -equivalence of two T -representations of H means exactly that
they are projectively equivalent. Slightly more generally, if X : H → GL(V (p)) is any map
satisfying (1) of Definition 3.5 (still with the assumption that V is an Fq-space and T ≃ F×

q ),
then X(h) acts on T by a field automorphism σ(h) ∈ Aut(Fq) for any h ∈ H, so X(H)
is contained in the semilinear group ΓL(V ) = GL(V ) ⋊Aut(Fq). In the following, we will
also call such a (mod T )-representation X : H → ΓL(V (p)) a projective representation.
Furthermore, for any projective representation X : H → ΓL(V ), we will denote by X the
associated homomorphism H → PΓL(V ) (which we again call a projective representation).

For the remainder, we consider the special case where V = ⊕t
i=1Vi is a direct sum of

Fq-spaces, and

(Eq. 3) TV = {g ∈ GL(V ) | g(Vi) = Vi and g|Vi ∈ Z(GL(Vi)) ∀1 ≤ i ≤ t} ≃ (F×
q )

t.

If a direct sum decomposition of a vector space U is given, then TU will always denote
the appropriate subgroup defined by the above displayed formula.

If q > 2 and X : H → GL(V ) is an arbitrary map, then X satisfies (1) of Definition
3.5 (with T = TV ) if and only if the direct sum decomposition V = ⊕t

i=1Vi is preserved by
X(H). In particular, if X happens to be a linear representation of H preserving the direct
sum decomposition V = ⊕t

i=1Vi, then X is also a (mod TV )-representation of H.

A further observation is that if X : H → GL(V (p)) is a (mod TV )-representation, then
the restricted map Xi : Hi → GL(Vi) is a projective representation of Hi. (Here Xi is
defined so that first we take the restriction of X to Hi, then we restrict the action of X(Hi)
to Vi.) Conversely, if X1 : H1 → ΓL(V1) is any projective representation, then the induced
representation X = IndHH1

(X1) : H → GL(V (p)) will be a (mod TV )-representation of H
transitively permuting the Vi, and it is easy to see that every (mod TV )-representation ofH
transitively permuting the Vi can be obtained in this way. Here the induced representation
X = IndHH1

(X1) can be defined with the help of a transversal in H to H1, so it is not
uniquely defined. However, it is uniquely defined up to (mod TV )-equivalence, so this will
not be a problem for us.

So, for the remainder, we assume that the groups H1 ≤ H are fixed, and we consider
representations of the form X = IndHH1

(X1), where X1 : H1 → ΓL(V1) is a projective
representation of H1.
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3.2. Alternating-induced representations. In this subsection we will only consider lin-
ear representations X : H → GL(V ) and Xi : Hi → GL(Vi) such that X = IndHHi

(Xi) for
all i. We also assume that for all i with 1 ≤ i ≤ t, the groups Ki = Xi(Hi) ≤ GL(Vi)
are isomorphic to some alternating or symmetric group of degree k at least 7, and Ki acts
on Vi such that Vi as an FqKi-module (q is a power of p) is isomorphic to the non-trivial
irreducible component of the permutation module obtained from the natural permutation
action of Ki on a fixed basis of a vector space of dimension k over Fq. In this situation we

say that V ≃ IndHH1
(V1) is an alternating-induced FqH-module, and X : H → GL(V ) is an

alternating-induced representation.

In the following proposition we describe the construction of the module Vi.

Proposition 3.7. Let K ≃ Alt(k) or Sym(k) and consider its action on an Fq vector space
U of dimension k ≥ 5, defined by permuting the elements of a fixed basis {e1, . . . , ek} of U .
Let us define the subspaces

U0 =
{∑

i

αiei |αi ∈ Fq,
∑

i

αi = 0
}

and W =
{
α(

∑

i

ei) |α ∈ Fq

}
.

(1) If p ∤ k, then U = U0 ⊕W , W is isomorphic to the trivial FqK-module and U0 is
the unique non-trivial irreducible component of the FqK-module U .

(2) If p | k, then U ≥ U0 ≥ W , both U/U0 and W are isomorphic to the trivial
FqK-module and U0/W is the unique non-trivial irreducible component of the FqK-
module U .

Proof. This is well known (see [28, Page 185], for example). �

We can apply Proposition 3.7 to each pair Ki, Vi to define FqKi-modules Ui and their
submodules Ui,0, Wi ≤ Ui such that either Vi ≃ Ui,0 (for p ∤ k) or Vi ≃ Ui,0/Wi (for p | k).
Then the original action of H on V may be defined using the action of H on U := ⊕iUi.

Moreover, if we choose a basis {e(i)1 , . . . , e
(i)
k } ⊂ Ui for every i as in Proposition 3.7 in a

suitable way, then {e(i)j | 1 ≤ i ≤ t, 1 ≤ j ≤ k} will be a basis of U such that H acts on U
by permuting the elements of this basis.

The next lemma says that bV (H) is bounded by a linear function of bU (H).

Lemma 3.8. With the above notation bV (H) ≤ 2bU (H) + 3 for k ≥ 7.

Proof. First, we define three vectors w1, w2, w3 ∈ U1,0 ⊕U2,0 ⊕ . . .⊕Ut,0 as linear combina-

tions of the basis vectors {e(i)j | 1 ≤ i ≤ t, 1 ≤ j ≤ k} as follows.

w1 =

t∑

i=1

(e
(i)
1 − e

(i)
2 ), w2 =

t∑

i=1

(e
(i)
2 − e

(i)
3 ), w3 =

t∑

i=1

(e
(i)
3 − e

(i)
4 ).

Let L = CH(w1, w2, w3), so {e(i)j | 1 ≤ i ≤ t} are L-invariant subsets for 1 ≤ j ≤ 4.
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Let {u1, . . . , ub} ⊂ U be a base for H of size b = bU (H). Now, for any u ∈ {u1, . . . , ub} we

define two further vectors ue, uf ∈ U1,0 ⊕U2,0 ⊕ . . .⊕Ut,0 as follows. Write u =
∑

i,j aije
(i)
j

and define

ue =
∑

i

∑

j>2

aije
(i)
j +

∑

i

βie
(i)
1 , for βi = −

∑

j>2

aij ,

uf =
∑

i

∑

j≤2

aije
(i)
j +

∑

i

γie
(i)
3 , for γi = −(ai1 + ai2).

The above definition of the βi and γi ensures that the projection of ue and uf to any Ui

is really in Ui,0. Furthermore, if l ∈ L fixes ue, then because of the above mentioned L-

invariant subsets of basis vectors we get that l must fix both
∑

i βie
(i)
1 and

∑
i

∑
j>2 aije

(i)
j .

Similarly, if l ∈ L fixes uf then it must fix both
∑

i γie
(i)
3 and

∑
i

∑
j≤2 aije

(i)
j . As a

consequence every element of CL(u
e, uf ) must also fix

∑
i

∑
j>2 aije

(i)
j +

∑
i

∑
j≤2 aije

(i)
j = u.

Applying this construction to u1, . . . , ub we get that

{w1, w2, w3, u
e
1, u

f
1 , u

e
2, u

f
2 , . . . , u

e
b, u

f
b }

is a base of size 2b+ 3 for H acting on U1,0 ⊕ . . .⊕ Ut,0.

If p ∤ k, then there is nothing more to do, since in this case V ≃ U1,0 ⊕ . . . ⊕ Ut,0 as
FqH-modules.

For the remainder, let p | k and W = W1 ⊕ . . . ⊕ Wt where Wi is the 1-dimensional
submodule of Ui,0 for all i with 1 ≤ i ≤ t. For any x ∈ U , let x̄ = x +W ∈ U/W be the
associated element in the factor space. Now, we claim that

{w̄1, w̄2, w̄3, ū
e
1, ū

f
1 , ū

e
2, ū

f
2 , . . . , ū

e
b, ū

f
b }

is a base for H acting on (⊕iUi,0)/W ≃ V .

Let zi =
∑

j e
(i)
j for every 1 ≤ i ≤ t, so {z1, . . . , zt} is a basis for W . An element g ∈ H

fixes w̄s (where s ∈ {1, 2, 3}) if and only if there are field elements λ1, . . . , λt such that

g(ws) = ws +
∑

i λizi. But g permutes the basis vectors in {e(i)j | 1 ≤ i ≤ t, 1 ≤ j ≤ k}
and also the subspaces {Ui,0 | 1 ≤ i ≤ t}. A consequence of this is that the projection of
g(ws) to any Ui,0 must be a non-zero linear combination of exactly two basis vectors from

{e(i)j | 1 ≤ j ≤ k}. Since k ≥ 7, this can happen only if λi = 0 for every 1 ≤ i ≤ t, i.e. when

g fixes ws. So CH(w̄s) = CH(ws) for every s with 1 ≤ s ≤ 3. The same argument can be

applied to prove that CH(ūfs ) = CH(ufs ) for every 1 ≤ s ≤ b.

Finally, let us assume that g ∈ CH(w̄1, w̄2, w̄3) = L and g(ūes) = ūes for some 1 ≤ s ≤ b.
Again this means that g(ues) = ues +

∑
i λizi for some field elements λ1, . . . , λt. But the

linear combination we used to define ues contains no e
(i)
2 with non-zero coefficient. In other

words ues is contained in the L-invariant subspace generated by {e(i)j | j 6= 2, 1 ≤ i ≤ t},
so this must also hold for g(ues) = ues +

∑
i λizi, which implies that λi = 0 for every i, i.e.
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CL(ū
e
s) = CL(u

e
s) holds. We proved that

CH(w̄1, w̄2, w̄3, ū
e
1, ū

f
1 , . . . , ū

e
b, ū

f
b ) = CH(w1, w2, w3, u

e
1, u

f
1 , . . . , u

e
b, u

f
b ) = 1,

as claimed. �

We can now establish Theorem 1.1 for alternating-induced groups.

Theorem 3.9. If H ≤ GL(V ) is an alternating-induced linear group, then

bV (H) ≤ 17 + 2
log |H|
log |V | .

Proof. By definition, k ≥ 7. By using the same notation as above let H act on U by

permuting the basis B = {e(i)j | 1 ≤ i ≤ t, 1 ≤ j ≤ k}. This action is clearly transitive, so
we can use Theorem 1.2 to conclude that we can color the basis vectors by using at most
48 kt

√
|H| colors such that only the identity of H fixes this coloring, i.e. dB(H) ≤ 48 kt

√
|H|.

Now any vector u ∈ U can be seen as a coloring of this basis by using at most |Fq| = q
colors. By Lemma 2.1, it follows that

bU (H) ≤ ⌈logq(dB(H))⌉ ≤ ⌈logq(48 kt
√

|H|)⌉ < 7 +
log |H|
kt log q

= 7 +
log |H|
log |U | .

By Lemma 3.8, bV (H) ≤ 2bU (H) + 3 ≤ 17 + 2(log |H|/ log |V |), as claimed. �

3.3. Classical-induced representations without multiplicities. In this subsection let
q be a power of the prime p, V = ⊕t

i=1Vi be a direct sum of Fq vector spaces, and define
TV as in (Eq. 3). Let k denote the Fq-dimension of each Vi. Throughout this subsection
we will assume that k ≥ 9 holds. We also use the notation Hi,Π, N defined in Section 3.1.

Let X : H → GL(V (p)) be a (mod TV )-representation of H such that X(H)TV acts on
Π = {V1, . . . , Vt} in a transitive way. By our discussion at the end of Section 3.1, this means
that X = IndHHi

(Xi), where Xi : Hi → ΓL(Vi) is a projective representation of Hi for every
1 ≤ i ≤ t. Then there is an associated homomorphism X : H → NGL(V (p))(TV )/TV defined
by X(h) := X(h)TV /TV . For the remainder of this subsection let L = X(H) be the image
of this homomorphism. Note that the action of H on Π induces an action of L on Π.

In this subsection we additionally assume that X is classical-induced, i.e. for each i,
the image Ki of the homomorphism Xi : Hi → PΓL(Vi) is some classical group i.e. Si =
soc(Ki) ≤ PΓL(Vi) is isomorphic to some simple classical group S over some subfield Fq0

of Fq. Because of our assumption k ≥ 9, the group generated by all inner, diagonal and
field automorphisms of S (for the remainder, we denote this group by IDF(S)) has index
at most 2 in Aut(S).

We introduce some further notation. For an H-block ∆ ⊆ Π let V∆ := ⊕Vi∈∆Vi,
and X∆ : NH(∆) → GL(V∆(p)) be the (mod TV∆

)-representation of NH(∆) defined by
taking the restriction of X(h) to V∆ for all h ∈ NH(∆). In particular, XΠ = X and
X{Vi} = Xi holds for each Vi ∈ Π. Furthermore, let the associated homomorphism X∆ be
X∆(h) := X∆(h)TV∆

/TV∆
. Define L∆ = X∆(NH(∆)) and S∆ := soc(X∆(CH(∆))) ⊳ L∆.
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If X∆(CH(∆)) = 1, then we set S∆ = 1. Finally, let S̃∆ ≤ NH(∆) be the inverse image

of S∆ under the function X∆. Then Xi is defined on S̃∆ for each Vi ∈ ∆ and it induces a
homomorphism on S∆, which we also denote by Xi : S∆ → PΓL(Vi).

We next introduce a condition which we will additionally assume in this subsection.

Definition 3.10 (Multiplicity-free condition). If ∆ ⊆ Π is an H-block such that S∆ ≃ S
and all Xi : S∆ → PΓL(Vi) for Vi ∈ ∆ are projectively equivalent, then |∆| = 1.

A consequence of this assumption is the following.

Proposition 3.11. Suppose X is classically-induced and let ∆ ⊆ Π be an H-block such
that S∆ ≃ S. If the multiplicity-free condition holds, then |∆| ≤ 2.

Proof. First note that if ∆′ ⊂ ∆ is any H-block, then the assumption S∆ ≃ S implies that
S∆′ ≃ S. For simpler notation, we can assume that ∆ = {V1, . . . , Vd} for d = |∆|. By
assumption, S∆ is a diagonal subgroup of S1 × . . . × Sd ≃ Sd. So, S∆ can be identified
with {(s, sz2 , . . . , szd) | s ∈ S}, where z2, . . . , zd ∈ Aut(S) are fixed elements. Now, if
z−1
i zj ∈ IDF(S), then Xi : S∆ → PΓL(Vi) and Xj : S∆ → PΓL(Vj) are projectively

equivalent. The relation Vi ∼ Vj ⇐⇒ z−1
i zj ∈ IDF(S) defines an NH(∆)-congruence

on ∆. Using that |Aut(S) : IDF(S)| ≤ 2 and the first sentence of the proof, we get that
there is an H-block ∆′ ⊂ ∆ such that |∆′| ≥ |∆|/2, S∆′ ≃ S and all Xi : S∆′ → PΓL(Vi)
for Vi ∈ ∆′ are projectively equivalent. Thus, the result follows from the multiplicity-free
condition. �

For the rest of this subsection let ∆ ⊆ Π be an H-block. The group S∆ is either trivial
or is a subdirect product of isomorphic simple classical groups. As for subdirect products
of alternating groups in Section 2, this means that S∆ is a direct product of diagonal
subgroups corresponding to a partition ∆ = ∪i∆i of ∆ into equal-size parts. Again, we call
the size of the parts of this partition the linking factor of S∆. Note that the ∆i themselves
are H-blocks and S∆i ≃ S for each i. Hence, by Proposition 3.11, the linking factor of S∆

is at most 2. As before, let N = CH(Π) be the kernel of the action of H on Π.

Recall the definitions of X1 and K1 from the second and third paragraphs of Section 3.3.
The base size bX1

(K1) is defined as in (Eq. 2). With this notation the following result is a
consequence of Theorem 3.1.

Theorem 3.12. With the above assumptions, there exists a universal constant c > 0 such
that bX1

(K1) ≤ 18(log |K1|)/(log |V1|) + c.

We can now prove Theorem 1.1 for such classical-induced representations which have the
multiplicity-free condition.

Theorem 3.13. There exists a universal constant c > 0 such that if X : H → GL(V ) is a
(mod TV )-representation of H (with respect to some direct sum decomposition V = ⊕t

i=1Vi),
which is a classical-induced representation possessing the multiplicity-free condition, then
bX(H) ≤ 45(log |H|)/(log |V |) + c.
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Proof. Assume that X(N) 6= 1. Then soc(X(N)) = SΠ for the H-block Π, so soc(X(N)) is
a subdirect product of the simple classical groups Si with linking factor at most 2. Thus

|N | ≥ |S1|t/2 ≥ |K1|2t/5 (see [23, Page 18]). Therefore, by applying Theorem 3.12, we
deduce that

bX1
(H1) = bX1

(K1) ≤ 45(log |N |)/(log |V |) + c.

A slightly modified version of Theorem 3.4 gives bX(H) ≤ 45(log |H|)/(log |V |) + c for
another universal constant c > 0.

From now on assume that X(N) = 1. This means that L = X(H) acts faithfully on Π.
Let M be a normal subgroup of H strictly containing ker(X) such that X(M) is a minimal
normal subgroup of L and let ∆ be an orbit of M on Π. Furthermore, let M∆ := X∆(M) ⊳
L∆. Notice that ∆ ⊆ Π is an H-block of size at least 2 and M∆ is a direct product of
isomorphic simple groups.

Assume first that S∆ 6= 1. Then S∆ is a subdirect product of the isomorphic (non-
abelian) simple classical groups from the set {Si |Vi ∈ ∆}.

If M∆ centralizes S∆, then all Xi : S∆ → PΓL(Vi) for i ∈ ∆ are projectively equivalent
since M is transitive on ∆. This contradicts our multiplicity-free assumption. So we assume
that M∆ does not centralize S∆. Since both M∆ and S∆ are normal subgroups in L∆, this
implies that M∆ ∩S∆ 6= 1. In particular M∆ and M∆ ∩S∆ are isomorphic to some powers
of the (non-abelian) simple classical group S. Since M∆ is transitive on ∆, we have that
|∆| ≥ 5 and S∆ cannot contain a nontrivial, proper M∆-invariant normal subgroup. But
M∆ ∩ S∆ 6= 1 is normal in both M∆ and S∆, so S∆ ≤ M∆. Since any subnormal subgroup
of M∆ is normal in M∆, we get that S∆ is simple, so S∆ ≃ S has linking factor |∆| ≥ 5,
which is in contradiction with the discussion following the proof of Proposition 3.11.

It remains to handle the case where S∆ = 1. Then L∆ and M∆ act faithfully and
transitively on ∆ and M∆ is a normal subgroup of L∆ isomorphic to a direct product of
isomorphic simple groups. By Theorem 2.8, d∆(L∆) ≤ 12 or Alt(∆) ≤ L∆ ≤ Sym(∆).

If d∆(L∆) ≤ 12, then bP (∆)(L∆) ≤ 4, by Lemma 2.1, and so bV∆
(L∆) ≤ 4 (any subset

of ∆ can be represented by a vector in V∆ whose projection to Vi ∈ ∆ is non-zero if and
only if Vi is an element of the subset). Thus, bX∆

(NH(∆)) ≤ bV∆
(L∆) + bV∆

(TV∆
) ≤ 5.

Applying Theorem 3.4 for V∆ instead of V1 we get

bX(H) ≤ bX∆
(NH(∆)) + 1 + log 48 +

log |P |
log |V | ≤

log |H|
log |V | + 12.

Finally, if d∆(L∆) > 12, then m := |∆| ≥ 13 and Alt(∆) ≤ L∆ ≤ Sym(∆). In this
case for any Vi ∈ ∆, we have that X∆(Hi) ∼= Alt([m − 1]) or X∆(Hi) ∼= Sym([m − 1])
must hold. But Si is a composition factor of X∆(Hi) and it is a simple classical group. A
contradiction. �

3.4. Eliminating small tensor product factors from the Ki. Let us continue to use
the notation of this section.
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The purpose of this subsection is to reduce the affine case of Theorem 1.1 to the case
when each Ki acts on Vi either as a “big” classical group (possibly over a field extension Fq

of Fp) or as an alternating or symmetric group on the non-trivial irreducible component of
its natural permutation module. More precisely, we will reduce the affine case of Theorem
1.1 to the case where the action of H is alternating-induced or multiplicity-free classical-
induced. Since these types were dealt with in the previous two subsections, this reduction
will complete the proof of Theorem 1.1 in the affine case.

Lemma 3.14. Let L be a finite group and W be a faithful, finite-dimensional L-module.
For a positive integer l let V be the direct sum of l copies of the L-module W . Then
bV (L) = ⌈bW (L)/l⌉.

Proof. Let b′ := bW (L) and {x1, x2, . . . , xb′} ⊂ W be a minimal base for L with respect to
its action on Λ. Set b := ⌈b′/l⌉. Let us define the vectors

y1 = (x1, x2, . . . , xl), y2 = (xl+1, xl+2, . . . , x2l), . . . , yb = (x(b−1)l+1, . . . , xb′ , 0, . . . , 0) ∈ V.

It is easy to see that {y1, . . . , yb} ⊂ V is a minimal base for L on V . �

We now consider the case where the projective representation X1 : H1 → ΓL(V1) pre-
serves a proper tensor product decomposition V1 = U1 ⊗W1 over Fq where U1 and W1 are
Fq vector spaces and 2 ≤ l := dimFq(U1) ≤ dimFq(W1). Using that H transitively permutes
the subspaces V1, . . . , Vt, it follows that each Xi : Hi → ΓL(Vi) preserves a corresponding
tensor product decomposition Vi = Ui ⊗Wi.

By taking the composition of Xi with the projection map to Wi, one can define new
projective representations Yi : Hi → ΓL(Wi). Let Y : H → GL(W (p)) be the induced
representation Y = IndHH1

(Y1), where W can be identified with W1 ⊕ . . .⊕Wt. The key to
our reduction argument is the following lemma, which gives an upper bound for bX(H) in
terms of bY (H).

Lemma 3.15. With the above notation we have bX(H) ≤ ⌈bY (H)/l⌉ + 4.

Proof. By using a construction of Liebeck and Shalev (see the proof of [31, Lemma 3.3]),

for each 1 ≤ i ≤ t there exist three vectors v
(i)
1 , v

(i)
2 , v

(i)
3 ∈ Vi such that

CGL(Ui)⊗GL(Wi)(v
(i)
1 , v

(i)
2 , v

(i)
3 ) ≤ idUi ⊗GL(Wi).

Additionally, let v
(i)
4 = αv

(i)
1 for each 1 ≤ i ≤ t, where α is some generator of F×

q . Define

vj =
∑t

i=1 v
(i)
j for j = 1, 2, 3 and let L := CH(v1, v2, v3). The choice of v

(i)
1 and v

(i)
4

guarantees that Xi(L) ⊂ GL(Ui) ⊗ GL(Wi) for each i, so Xi(L) ⊂ idUi ⊗ GL(Wi) by the
displayed formula above. It follows that the restriction map Xi : L ∩ Hi → ΓL(Vi) is
projectively equivalent to an l = dimFq Ui multiple of Yi : L ∩Hi → ΓL(Wi).

Let ∆1, . . . ,∆s ⊂ Π be the orbits of L on Π, V∆j = ⊕Vi∈∆jVi and W∆j = ⊕Vi∈∆jWi

for every 1 ≤ j ≤ s. Then each V∆j is X(L)-invariant which means that X = ⊕s
j=1X∆j

on L, where the (mod TV∆j
)-representation X∆j : L → GL(V∆j (p)) is defined by taking
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the restriction of X(L) to V∆j . One can similarly define the (mod TW∆j
)-representations

Y∆j : L → GL(W∆j (p)) and establish the decomposition Y = ⊕s
j=1Y∆j on L. This means

that if Va ∈ ∆j is arbitrary, then X∆j = IndLL∩Ha
(Xa) and Y∆j = IndLL∩Ha

(Ya). Since Xa

on L is projectively equivalent to the l multiple of Ya on L, and induction of representations
preserves multiplicity, we get that X∆j is (mod TV∆j

)-equivalent to the l multiple of Y∆j

on L for every 1 ≤ j ≤ s. So, X = ⊕s
j=1X∆j is (mod TV )-equivalent to the l multiple of

Y on L. By using Lemma 3.14, we get that bX(L) = ⌈bY (L)/l⌉. Since bX(H) ≤ bX(L) + 4
and bY (L) ≤ bY (H) hold trivially, the result follows. �

Corollary 3.16. With the above notation, if bY (H) ≤ c1 · log |H|
log |W | + c2 for some constants

c1 and c2 ≥ 10, then bX(H) ≤ c1 · log |H|
log |V | + c2.

Proof. By Lemma 3.15 and by assumption,

bX(H) ≤
⌈bY (H)

l

⌉
+ 4 ≤ c1

log |H|
l log |W | +

c2
l
+ 5 ≤ c1

log |H|
log |V | + c2.

�

From now on we will assume that K1 ≤ GL(V1) ≃ GL(k, p) is a primitive irreducible
linear group with unbounded base size. We may make this assumption by Theorem 3.4.

Primitive groups of unbounded base size were characterized in [31, Theorem 2] and in
[34, Theorem 1, Proposition 2]. In the following we collect some of their properties in a
form which will be most convenient for us. Note that in [31, 34] the authors state their
theorem in terms of a tensor product of several linear groups, but for our purpose it is
better to “pack” together all but the one with the largest dimension.

First we fix some further notation, mostly borrowed from [22]. Let U = Uk(p) be a
vector space of dimension k over Fp. Let H ≤ GL(Uk(p)) be a primitive linear group. Let

q = pf be the largest power of p such that one can extend scalar multiplication on U to be
an Fq-vector space U = Uk/f (q) such that H ≤ ΓL(Uk/f (q)) ≤ GL(Uk(p)).

If Fq0 is a subfield of Fq, then Cl(r, q0) ≤ GL(r, q) denotes a classical linear group over
Fq0 for some subfield Fq0 ≤ Fq and for some r ≥ 9. (This lower bound on r is assumed
because we want to apply the result of Section 3.3.)

Theorem 3.17 (Liebeck, Shalev [31], [34]). Let H ≤ GL(Uk(p)) be a primitive linear group
of unbounded base size and q = pf be maximal such that H ≤ ΓL(Uk/f (q)). Then there is a
tensor product decomposition U = U1⊗U2 over Fq such that 1 ≤ dim(U1) < dim(U2) and H
preserves this tensor product decomposition, that is, H ≤ NΓL(Uk/f (q))(GL(U1)⊗GL(U2)).

Let H0 = GL(Uk/f (q)) ∩ H and let H0
2 be the image of the projection of H0 to GL(U2),

that is, H0
2 := {b ∈ GL(U2) |∃a ∈ GL(U1) : a⊗ b ∈ H0}. Then one of the following holds.

(1) H0
2 ≃ Sym(m)×F×

q or Alt(m)×F×
q for some m such that U2 is the unique non-trivial

irreducible component of the natural m-dimensional permutation representation of
Sym(m). In that case dimFq(U2) = m− 1 unless p | m, when dimFq(U2) = m− 2.
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(2) H0
2 is a classical group Cl(r, q0) ≤ GL(r, q) over some subfield Fq0 ≤ Fq, where

r = dimFq (U2).

Proof. This follows by combining parts of [34, Theorem 1] and [34, Proposition 2]. �

Note that there is a similar characterization of primitive linear groups of large orders
due to Jaikin-Zapirain and Pyber [27, Proposition 5.7].

In the following we will apply Theorem 3.17 to Ki ≤ GL(Vi) where 1 ≤ i ≤ t. We can
extend scalar multiplication on each Vi to become an Fq-vector space for some q = pf to
get a tensor product decomposition Vi = Vi,1 ⊗ Vi,2 satisfying the statements of Theorem
3.17. In this way, V = Vs(q) becomes a vector space over Fq (where sf = dimFp(V )) and
X : H → GL(V (p)) is a (mod TV )-representation of H with TV ≃ F×

q .

We are now in a position to complete the proof of Theorem 1.1 for affine groups. In fact,
we prove the following more general statement for (mod TV )-representations. To recover
the original statement, take an irreducible imprimitive linear group H ≤ GL(V ) with the
identity.

Theorem 3.18. There exists an absolute constant c ≥ 10 such that if X : H → GL(V (p))
is a (mod TV )-representation of H (with respect to some direct sum decomposition V =
⊕t

i=1Vi) induced from a primitive projective representation X1 : H1 → ΓL(V1), then

bX(H) ≤ 45
log |H|
log |V | + c.

Proof. By Theorem 3.1, we may assume that V is an imprimitive X(H)TV -module, i.e.
t > 1.

We proceed by induction on the dimension of V1. Note that if dimV1 is bounded (or,
more generally, if bX1

(H1) is bounded), the theorem follows from Theorem 3.4.

By our assumption, X1(H1)Z(GL(V1)) ≤ ΓL(V1) is a primitive semilinear group, so
Theorem 3.17 can be applied. Thus, an Fq vector space structure can be defined on each Vi

(where Fq is a (maybe non-proper) field extension of the base field of Vi) such that there is
a tensor product decomposition Vi = Ui ⊗Wi over Fq preserved by Xi(Hi). Furthermore,
l := dimFq(Ui) < dimFq(Wi).

First, let us assume that the tensor product decomposition Vi = Ui ⊗Wi is proper, i.e.
l ≥ 2. Let Yi : Hi → ΓL(Wi) be the projective representation and Y : H → GL(W (p))
be the (mod TW )-representation for W = ⊕t

i=1Wi defined in the paragraph before Lemma

3.15, so Y = IndHH1
(Y1). By induction, bY (H) ≤ 45 log |H|

log |W | + c for some constant c ≥ 10, so

the result follows by Corollary 3.16.

So we can assume that l = 1. We can also assume that dimFq Vi ≥ 9 by the second
paragraph of this proof.

If X1(H1)Z(GL(V1)) satisfies part (1) of Theorem 3.17, then there is a (trivial) tensor
product decomposition V1 = U1 ⊗ W1 with dimFq U1 = 1 fixed by X1(H1) and maps
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λ1 : H1 → GL(U1) ≃ F×
q and X ′

1 : H1 → GL(W1) such that X ′
1 is a linear representation

of H1 and X ′
1(H1) ≃ Sym(m) or Alt(m). This means X ′ = IndHH1

(X ′
1) : H → GL(W ) is an

alternating-induced representation (whereW = ⊕t
i=1Wi), so bX′(H) ≤ 2(log |H|/ log |W |)+

17 by Theorem 3.9. Finally, bX(H) ≤ bX′(H) + 4 by Lemma 3.15 and |W | = |V |, so
bX(H) ≤ 2(log |H|/ log |V |) + 21 and we are done.

For the remainder, we may assume that X1(H1)Z(GL(V1)) satisfies part (2) of Theorem
3.17, in which case X is classical-induced. In order to use Theorem 3.13 in this case,
we need to further reduce it to satisfy the multiplicity-free condition. (For a reminder
of this condition and the notation used in the rest of the proof, see Definition 3.10 and
the preceding discussion at the start of Section 3.3.) For this purpose let ∆ ⊆ Π be a
maximal H-block violating the multiplicity-free condition, i.e. |∆| ≥ 2, S∆ ≃ S and the

representations Xi : S̃∆ → ΓL(Vi) for Vi ∈ ∆ are all projectively equivalent. To simplify the
notation, we may assume that ∆ = {V1, V2, . . . , Vs} with s = |∆| > 1 and k = dimV1. Let
X∆ : NH(∆) → GL(V∆(p)) be the (mod TV∆

)-representation defined by the restriction of

X (where TV∆
is defined by the decomposition V∆ = ⊕Vi∈∆Vi). Then X = IndHNH (∆)(X∆).

Let U∆ be an s-dimensional vector space over Fq with fixed basis f1, . . . , fs and let
W∆ be a k-dimensional vector space over Fq with fixed basis e1, . . . , ek. Furthermore, let
{b1, . . . , bk} be a basis of V1. By assumption, for each 2 ≤ i ≤ s there are isomorphisms

ϕi : V1 → Vi and scalar maps λi : S̃∆ → F×
q such that Xi(h) = λi(h)ϕiX1(h)ϕ

−1
i for every

h ∈ S̃∆. We also define ϕ1 := idV1
and λ1 : S̃∆ → {1}. Now, {ϕi(bj) | 1 ≤ i ≤ s, 1 ≤ j ≤ k}

is a basis of V∆. Let Φ : V∆ → U∆⊗W∆ be the isomorphism defined by Φ(ϕi(bj)) := fi⊗ej.

By identifying V∆ and U∆ ⊗ W∆ via Φ, we get that for any h ∈ S̃∆, the matrix form of
X∆(h) with respect to the basis {f1 ⊗ e1, f1 ⊗ e2, . . . , fs ⊗ ek} is the Kronecker product of
matrices D(h) ⊗ A(h) where A(h) is the matrix form of X1(h) with respect to the basis
{b1, . . . , bk} while D(h) is the diagonal matrix with entries λ1(h), . . . , λs(h) in its main

diagonal. Since X∆(S̃∆) is normalised by X∆(NH(∆)), we can apply [28, Lemma 4.4.3(ii)]
to see that X∆(NH(∆)) is contained in the Kronecker product of a group of monomial
matrices and a group of matrices isomorphic to some classical group.

This means that we have a tensor product decomposition V∆ = U∆ ⊗W∆ preserved by
X∆(NH(∆)). Taking the composition of X∆ with the projections to the factors of this
tensor product decomposition, we can define the maps Y∆ : NH(∆) → GL(U∆) and Z∆ :
NH(∆) → ΓL(W∆) such that Y∆(NH(∆)) consists of monomial matrices, while Z∆(NH(∆))
is some classical group (modulo the group of scalar transformations). Then we can induce
these representations to H to get the monomial representation (with transitive permutation
part) Y = IndHNH (∆)(Y∆) and classical-induced representation Z = IndHNH(∆)(Z∆). Note

that Z satisfies the multiplicity-free condition by the maximality of ∆. Furthermore, let
U := ⊕iU∆i , W := ⊕iW∆i , where {∆ = ∆1, . . . ,∆t/|∆|} is the orbit of ∆ under the action
of H on the power set of Π. Thus, Y : H → GL(U(p)) and Z : H → GL(W (p)).

If dimU∆1
≥ dimW∆1

, then bY (H) ≤ log |H|
log |U | + 10 by use of Theorem 3.4 with b = 1, so

we get bX(H) ≤ log |H|
log |V | + 10 by Corollary 3.16.
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Similarly, if dimU∆1
≤ dimW∆1

then Z : H → GL(W (p)) is multiplicity-free classical in-

duced representation, so Theorem 3.13 can be applied to conclude that bZ(H) ≤ 45 log |H|
log |W |+c

for a suitable constant c ≥ 10. Using Corollary 3.16 again, we get that bX(H) ≤ 45 log |H|
log |V | +c

holds, which completes our argument. �

4. Non-affine primitive permutation groups

Pyber’s conjecture is known to be true for all non-affine primitive permutation groups.
Since the explicit constants have not always been specified, we collect here the information
needed to complete the proof of Pyber’s conjecture with multiplicative constant 45.

Let G be a non-affine primitive permutation group acting on a finite set Ω of size n. The
first result deals with almost simple groups.

Theorem 4.1 (Liebeck, Shalev [30]; Burness et al [10], [11], [12], [13]; Benbenishty [7]). If G
is an almost simple primitive permutation group of degree n, then b(G) < 15(log |G|/ log n).

When G is a primitive group of diagonal type, an almost exact formula for b(G) is
determined by Fawcett [18] (her upper bound differs from b(G) by at most 1 in every such
case). Here we only need an upper bound.

Theorem 4.2 (Gluck, Seress, Shalev [21]; Fawcett [18]). If G is a primitive permutation
group of diagonal type and of degree n, then b(G) < (log |G|/ log n) + 3 < 4(log |G|/ log n).

It remains to establish Theorem 1.1 when G is a primitive permutation group of product
type or of twisted wreath product type. For these types Pyber’s conjecture has been proved
by Burness and Seress [14].

By the proof of [14, Theorem 4.1] it is sufficient to prove that if G is of product type,
then b(G) < (45/2)(log |G|/ log n).

Let Γ be a finite set and let H ≤ Sym(Γ) be a primitive permutation group of almost
simple type or of diagonal type. Let Ω be the direct product of k copies of Γ for some
integer k ≥ 2. For a transitive permutation group P of degree k, the group H ≀ P acts in
product action on Ω in a natural way. Let G ≤ Sym(Ω) be a primitive permutation group
contained in H ≀ P . Assume that soc(G) = T k where T = soc(H) and that the action of G
on the set of the k direct factors of soc(G) is P . It remains to establish Pyber’s conjecture
with multiplicative constant 45 for such groups G.

If H is of almost simple type, then [14, Proposition 3.9] and its proof yield b(G) <
(45/2)(log |G|/ log n). Thus we may assume that H is of diagonal type. In this case, by an
argument different from the one in [14, Proposition 3.10], it is possible to obtain a bound
with multiplicative constant less than 22. For the details, see [24, Section 4.3.2] by Liebeck
and the second and third authors.
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[40] Seress, Á. Primitive groups with no regular orbits on the set of subsets. Bull. London Math. Soc. 29
(1997), 697–704.
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