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Nearly conformal electroweak sector with chiral fermions Daniel Nogradi

1. Introduction

Model building of a strongly interacting electroweak secidth or without a Higgs resonance,
requires the knowledge of the phase diagram of non-abelageytheories for varying number of
colorsN¢, number of fermion flavords, and representatioR. For fixedN; andR the theory is
generically in the chiral symmetry broken phase for Myand the conformal phase for higy
as long as asymptotic freedom is maintained, Ngis not too high. Certain models requixg to
be just below the conformal window along the lines of the wajkechnicolor paradign{][1] and
the knowledge of the criticdll; separating the two phases is essential.

Mapping out the phase diagram in the spac&gfNs andR is an interesting problem on its
own and can be useful for model builders with different matiims such as unparticles. We are
first and foremost concerned with the Higgs mechanism though

In this context the parametdxs, N; andR are not only restricted by the phase diagram but also
by electroweak precision data and the symmetry breakirtgnpahecessary for generating masses
for theW andZ bosons. Consistency with electroweak precision data regjai smals-parameter
while the simplest symmetry breaking pattern is the one lwigienerates exactly 3 Goldstone
bosons with no (techni)pions left over after the massiveggaaosons acquired their masses. The
simplest model fulfilling these requirementsSt)(3) gauge group witiNs = 2 fermions in the
2-index symmetric (8 representation which is the topic of our study.

In a numerical simulation at finite volume, finite lattice sjpg and (usually) finite quark
masses it is a non-trivial task to determine whether thertheoconformal in the continuum,
massless quark and infinite volume limits, or chiral symmnigtibroken just as in QCD. In section
a method is introduced that is capable of distinguishimgttéo phases based on the behavior of
the low-lying Dirac eigenvalues. If the theory is QCD-liKgal symmetry is spontaneously broken
and random matrix theory (RMT) will predict the distributi@f low-lying eigenvalues in the-
regime [2], whereas in the conformal phase chiral symmetiynbroken and the spectral density
of the Dirac operator goes to zero aroune: 0. One particular advantage of RMT is that it works
for finite (but small of course) quark mass. This method dfiigiishing phases with the help of
the Dirac spectrum has been applied for dynamical stagderadons in [B] which complements
Schrodinger functional and finite temperature based iigeggtins of similar dynamical staggered

models [#[b].

2. Perturbative expectations

As is well-known the 2-loop perturbativ8-function [6] can be used to estimate the critical
N value above which the theory is conformal and below whichatlsymmetry is spontaneously
broken [J]. If the first two coefficients af@ andf,, asymptotic freedom requirgds < 0 otherwise
the theory is free in the continuum. B < 0 andf, > 0 a non-trivial zero of thgg-function exists
hinting at a non-trivial IR fixed point. However if the fixedipbvalue of the coupling is too large
chiral symmetry is spontaneously broken before the flow enlih can reach the would-be fixed
point. It is nevertheless expected that a critilkiﬁ'lit value exists above which the theory is really
conformal even non-perturbatively.
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The vaIueN}"'rit can be estimated in the ladder approximation by the reqenerthat the
anomalous dimension apy reachesy = 1 [g]. Using this bound, the conformal window for
SU(2) and representations= 1/2,1 and 32 is expected to be 8§ N; < 11, none (for integer)
andN; = 1 respectively, and no window far> 3/2. ForSU(3) and fundamental, adjoint =A2
and B representations the conformal window is expected to be Nt < 16, none (for integer
N¢) andN; = 3 respectively.

3. Dirac spectrum

To what extent the perturbative expectations of the prevgrction are justified is an open
guestion in general. Non-perturbative tests of these d¢apens have been performed for various
gauge groups, flavor number and representatidni$ [#.,[5} 81122 ,[1B] using various methods.

The low-lying spectrum of the Dirac operator is sensitivéhi® IR dynamics of the theory and
shows characteristically different behavior in the confatand QCD-like phases. Its measurement
is in principle straightforward in a lattice simulation leerit is a good candidate to distinguish the
two phases.

3.1 Chirally broken phase, e-regime, random matrix theory

If chiral symmetry is spontaneously broken, the Banks-€asblation connects the spectral
densityp(A) of the Dirac operator around zero to the chiral condengalk [1

_ i i T1P(0)
2=y @1

It also implies that the low-lying eigenvalues are densehingense that the average spacing is
inversely proportional to the volume,

TT
M= (3.2)

It has been suggested long ago that if the bare param@tensare tuned to the-regime, i.e.
such thaim,; < L=! < f,; the low-lying Dirac spectrum follows the predictions of adam matrix
theory [I5,[I6]. The corresponding random matrix model iy sensitive to the pattern of chiral
symmetry breaking, the topological charge and the resdatetion mass once the eigenvalues are
also rescaled by the same fackr.

More precisely, random matrix theory provides analytieriatae for the microscopic spectral
density

pS(0) = s (%) _ ki p(d) . (3.3)

and the individual eigenvalue distributiopg({) where{ = AZV. The distributionspy({) only
depend oru = mxV, N; and the topological charge The value o can be obtained by using
as the fitting parameter to have
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where the left hand side is calculated in random matrix thebm fixed charge while the right
hand side is measured in the simulation in the given sactoWhich eigenvalue\y and which
sectorv is used is arbitrary in principle (as long lag not too large, sak = 1, 2,3) and the quality
of the whole procedure may be characterized by the (in)stersiy of the obtainedl = u/(mV)
values for variouk and/orv.

A more stringent test is the comparisonm{ ) between the random matrix theory predictions
and the simulation once a consistenand correspondingt have been obtained from the above
fitting procedure. The agreement is only expected for theférg eigenvalues.

In order to see the effects of dynamical quarks the lowesirw@ue should be larger than the
fermion massn. Otherwise the simulation is effectively quenched and eamahatrix theory will
only agree alN; = 0.

Out of the two requirements of theeregime,m;L < 1 can be satisfied by tuning the fermion
mass to a small value at ahy However the second requiremeifitL > 1, is largely independent
of m provided it is small enough and puts a lower bound_oAs the lower edge of the conformal
window is approached from below;; is expected to decrease and eventually will vanish as the
theory becomes conformal. Hence thg > 1 condition will be more and more difficult to satisfy
and larger and larger lattices will be needed the closerhtbery is to the conformal window. As
a result the study of nearly conformal (or walking) techiécanodels is very challenging in the
e-regime.

It should be noted that the requiremdrt > 1 is valid up to numerical constants only. From
the behavior of the rotator and Goldstone spectrum of thelkcbhagrangian it can be made more
precise as,L > 1/v/2mwhich is the requirement of these two spectra to separate éach other.
In fact we will see that in some cases RMT gives a good desmniven if f;L < 1 which is
probably due to the above numerical constahy2m = 0.3989.. being smaller than 1.

3.2 Conformal phase

In the conformal phase no scale is generated 2rd0. The spectral density of the Dirac
operator around ~ 0 behaves as

P(A) ~AZHY (3.5)

for massless quarks in the continuum and at infinite volunereMis the anomalous dimension of
gy.

The exact dependence pfon the conformal fixed point coupling, is in principle calcula-
ble in perturbation theory sinag. is presumably not large (otherwise chiral symmetry would be
spontaneously broken). Certainly~ g2. Of course only a non-perturbative treatment can decide
whether there is room for a fixed point coupling which is laeg@ugh to be significantly different
from perturbation theory and small enough so that chiralregtny is not broken.

How the (3.b) behavior is modified by finite volume and finitedumass is an open question
that we hope to address in the future. Certainly, in the §ree: O case the average eigenvalue
spacing is inversely proportional to the linear sizef the box. The characteristic feature that is
expected to hold even for a finitg > 0 is that the average eigenvalue spacing for small eigeesalu
is much less dense than in the chirally broken case whermitessely proportional to the 4-volume

V; see [3]2).



Nearly conformal electroweak sector with chiral fermions Daniel Nogradi

If the volume is too small, the chiral condensate is squeezgdf the box and the theory
behaves perturbatively even in the case when chiral symnitoroken in an infinite volume.
Hence great care is needed not to confuse a small volumé shiranetry breaking and a (small
or large volume) conformal theory which is also behaving enor-less perturbatively.

4. Our model, SU(3) with N = 2in 2Srepresentation

The simplest example of a model that — according to the fative expectations — is just
below the conformal window, has a relatively Iow value so that th&-parameter is relatively
small, and has precisely 3 Goldstone bosors:is- 3, Ny = 2 andR = 2S. This model has been
studied in [1L[ 12} 13] using Wilson fermions on rather srztices and it was found to be already
in the conformal window although it was indicated that mooenplicated possibilites are also
allowed by the data.

Since exact chiral symmetry is important both for QCD-likel @onformal theories we chose
to use overlap fermiong [IL7]. The simulation has to be cdroiet at a fixed topological charge.
There are two methods available for simulating dynamicarieyp fermions at fixed topology.
One is the reflection/refraction algorithrn J18] but alwagélecting on the topological boundary.
The other is employing a pair of extra Wilson fermions to segp exact zero modes thereby
suppressing tunnelling between sectfr$ [19]. We used ttendemethod, which is much faster, in
this study.

5. Preliminary results

5.1 Quenched smulations

In order to see how well actual simulations agree or disagi#ethe predictions of random
matrix theory (RMT) we have tested the RMT predictionsMgr= 0 and overlap valence quarks in
the fundamental representation since in the quencheddpmtion chiral symmetry is guaranteed
to be broken. This setup is identical fo][20] but actual eigére distributions were not presented
there. Since valuable information can be gained from thesdagided to redo this analysis orf12
lattices at3 = 5.8458 which corresponds to a lattice sizd .ot 1.49 fm. All our parameters were
the same as ifJ20]. In particular we used the Wilson gaugeraahd an unsmeared overlap oper-
ator. Our ensemble consists of 1500 configurations. ThétsesfPQ] for expectation value ratios
(Ai)/(Aj) have been reproduced within 1-sigma precision with ocoasib.2-sigma deviations.

The distribution of thekth eigenvalue in various topological sect¢@ are shown in figurg] 1
together with the RMT predictions onéehas been fitted frork = 1 andQ = 0 as described by
(B-4). Clearly, not only the expectation valugs) follow the RMT predictions but also their width.
This level of agreement with RMT was not expected sifige < 1 for this ensemble, however as
indicated in sectioh 3.1 a more accurate requirement of ttegime isf,L > 1/+/2m which this
ensemble does fulfill.

A similar comparison for the 2-index symmetric represeortain the quenched approximation
is ongoing. Since RMT is only sensitive to the topologicahrcie,N¢, ¢ and the pattern of chiral
symmetry breaking, the same random matrix model is expeotedéscribe this representation as
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Figure 1: Rescaled quenched eigenvalue distributipg€) in the fundamental representation axd= 0
RMT predictions forlQ| = 0,1,2 andk = 1,2

the one used for the fundamental. Agreement with the same BN a different representation
than fundamental will be a non-trivial check of its univeitya

5.2 Dynamical simulations

In the 2-index symmetric representation three dynamicséerbles were generated chiét-
tices using the tree-level improved Symanzik gauge actiofi & 4.850, 4.975 and 5100 and
N; = 2 flavors of massive quarks with= 0.05. The negative Wilson mass in the overlap operator
wasmy = —1.3 and 2 levels of stout smearing with smearing parameter0.15 have been ap-
plied. The topology change suppressing actior] df [19] wasl wgith massvl = 0.2 for the ghost
Wilson fermions and only the topological secfQr= 0 was sampled. Since chiral symmetry is
preserved by overlap fermions at finite lattice spadiig= 2 RMT is applicable. Fitting from
the average first eigenvalue as[in3.4) one obtait83)4), 0.084(4) and 0080(4) in lattice units
for the threeB values respectively.

The eigenvalue distributions look qualitatively the samiethe threeB values and the first 3
eigenvalues are plotted in figufe 2 fBr= 4.850 together with thél; = 2 RMT predictions after
rescaling both the eigenvalues and the quark mass.

Clearly, the RMT predictions are very far from the simulatresults, neither the averages nor
the widths follow the RMT curves. This may be due to severasoas the most likely of which is
small volume. We have not measured eithmgror f; so it is not clear if the simulation was in the
e-regime at all. Simulations on larger volumes as well as mregsents ofm; and f; are ongoing.

If the larger volume simulations agree with the above caioluthe 2-index symmetric rep-
resentation for gauge grogiJ(3) andN; = 2 is already in the conformal window.

6. Conclusions and outlook

Needless to say that the results on the 2-index symmetriegeptation are preliminary. The
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Figure 2: Rescaled dynamical eigenvalue distributigné() in the 2-index symmetric representation and
N; = 2 RMT predictions folQ =0 andk=1,2,3

guenched fundamental representation simulations shawttd RMT predictions are very precise
for the first few eigenvalues once the volume is large enowglsimilar conclusion is expected
for the quenched Rrepresentation which will in addition test the universatf RMT. Presently,
the result of the §dynamical Brepresentation simulation are preliminary and the deiafiom
RMT is thought to be due to small volume. Larger volume sirioies are ongoing for both the
guenched and fully dynamical cases.
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