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Abstract

The 2 + 1 SU(3) Polyakov linear sigma model (PLSM) is used to investigate the respective

influence of a finite volume and a magnetic field on the quark-hadron phase boundary in the plane

of baryon chemical potential (µB) vs. temperature (T ) of the QCD phase diagram. The calculated

results indicate sizable shifts of the quark-hadron phase boundary to lower values of (µB and T )

for increasing magnetic field strength, and an opposite shift to higher values of (µB and T ) for

decreasing system volume. Such shifts could have important implications for extraction of the

thermodynamic properties of the QCD phase diagram from heavy ion data.
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I. INTRODUCTION

A major impetus for current heavy ion research is the prospect of obtaining profound

insights on the rich phase structure of strongly interacting matter at high temperature and

non-zero net baryon number density. Ongoing programs at RHIC [1], the SPS [2] and

the LHC [3], as well as future facilities at FAIR [4] and NICA [5] are at the forefront of

experimental efforts designed to map the thermodynamic and transport properties of this

strongly interacting QCD matter. Lattice QCD simulations suggests a smooth cross over

phase transition from hadronic matter to the quark gluon phase at low density and high

temperature [6, 7]. At high density and low temperature a first order phase transition is

expected [8–13]. Both transition domains, crossover and the first-order phase-transition,

are connected by the expected critical endpoint (CEP), at which the phase transition is

likely second order. The beam energy scan (BES) program at RHIC, have begun to show

striking non-monotoic signatures which could be an indication that the CEP is located at

high temperature and modest values of baryon chemical potential (µB) [14].

A preponderance of the theoretical studies assume an infinite volume devoid of magnetic

fields, for the QCD matter produced in heavy ion collisions. This is in stark contrast to the

finite volumes and sizable magnetic fields produced in these collisions (both depend on the

size of the colliding nuclei, the center of mass energy (
√
sNN) and the collision centrality).

Therefore, it is important to ask whether the combined influence of a finite volume and a

strong magnetic field leads to a modification of the apparent thermodynamic properties of

the produced QCD medium.

The influence of a finite-volume and the presence of a strong magnetic field (B) has been

widely discussed in the literature [15–38]. This includes the effects on the value of the critical

temperature, the location of the critical end point and other thermodynamic properties.

Initial studies of the magnetic field effect include lattice QCD (lQCD) studies [23], the

MIT bag model [15], the Nambu-Jona Lasinio (NJL) model [16, 17] and the Linear Sigma

Model (LSM), or Quark Meson model (QM) [18–20], as well as extensions of the NJL and

the LSM involving the Polyakov loop (PNJL and PLSM) [21, 22]. The results from these

studies, which indicate an increase of the transition temperature Tc with increasing magnetic

field [24], contrast with the results from recent lQCD calculations (with a physical pion mass

mπ = 140 MeV) which indicate that Tc decreases with increasing magnetic field. The PLSM
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and PNJL models have been recently used to study the latter trend for vanishing chemical

potential [37, 39]. The effects of a finite volume [25, 28] which include a strong influence on

the value of the transition temperature (Tc), the location of the critical end point and other

thermodynamic properties, have been extensively studied with the NJL [26], LSM [27, 38]

and PNJL [29] models. However, strikingly different trends for the influence of finite-size

effects on Tc have been reported for the LSM and PNJL models.

In this work, we use the 2+1 SU(3) Polyakov Linear Sigma Model (PLSM) [40–42] with

the Fukushima Polyakov loop effective potential [43] to investigate the combined effects of

finite volumes and magnetic fields at temperatures and chemical potentials akin to those

produced in heavy ion collisions over a broad range of beam collision energies. The present

work is organized as follows. In section II we give a brief overview of the PLSM [37, 40], as

well as the parameters of the model employed in this study. We then present the results of

our study on the influence of finite-volume and the magnetic field effects on the PLSM order

parameters (chiral condensates σx and σy and Polyakov loops φ and φ∗), thermodynamic

properties and the chiral phase transition in section III. We conclude with a summary and

an outlook in section IV.

II. THE POLYAKOV LINEAR SIGMA MODEL (PLSM)

The SU(3) Linear Sigma Model with Nf = 2+1 flavor quarks, can be coupled to Polyakov

loop dynamics to formulate the PLSM [40–42]. The associated Lagrangian is given as;

L = Lchiral − U(φ, φ∗, T ), (1)

where the chiral part [quark q and meson m ] of the Lagrangian, Lchiral = Lq + Lm, has
SU(3)L × SU(3)R symmetry [44, 45]; U(φ, φ∗, T ) represents the Polyakov loop effective

potential[43]. This effective potential leads to reasonable agreement with recent lQCD re-

sults [46]. Other Polyakov loop potentials [47, 48] were also considered. However, the

particular choice made for this work does not influence the main conclusions of our work.

U(φ, φ∗, T ) = −bT
{

54 exp
(

− a

T

)

φφ∗ + ln
[

1− 6(φφ∗)2 − 3(φφ∗)3 + 4(φ3 + φ∗3)
]

}

, (2)

with a = 0.664 GeV and b = 0.0075 GeV3 [43]. The mean field approximation is used to

obtain the grand potential [40] as;
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Ω(T, eB, µf) = U(σx, σy) + U(φ, φ∗, T ) + Ωψ̄ψ(T, µf ;φ, φ
∗, B) + δ0,B Ω0

ψ̄ψ(T, µf ;φ, φ
∗),(3)

where the first term in Eq. (3) is a purely mesonic potential expressed as,

U(σx, σy) =
m2

2
(σ2

x + σ2
y)− hxσx − hyσy −

c

2
√
2
σ2
xσy

+
λ1

2
σ2
xσ

2
y +

1

8
(2λ1 + λ2)σ

4
x +

1

4
(λ1 + λ2)σ

4
y . (4)

Here, m2, hx, hy, λ1, λ2 and c are model parameters as outlined in Ref. [44]. The values

for these parameters, used in the present study, are tabulated in Table I below. Recent

studies [49, 50] suggest that better consistency with recent lattice results can be achieved

in the T < Tc region, by extending the model within the vector meson sector. Such an

extension was not included in this work and is not expected to strongly affect the qualitative

conclusion.

The third term in Eq. (3) Ωψ̄ψ(T, µf ;φ, φ
∗, B) represents the contributions from quarks

and anti-quarks at a non-vanishing magnetic field strength. Using Landau quantization and

magnetic catalysis concepts, this potential can be expressed as [37];

Ωψ̄ψ(T, µf ;φ, φ
∗, B) = −2

∑

f

|qf |BT

2π

∞
∑

ν=0

∫

dp

2π
(2− 1δ0n) (5)

{

ln

[

1 + 3

(

φ+ φ∗e−
(Eν

f
−µf )

T

)

e−
(Eν

f
−µf )

T + e−3
(Eν

f
−µf )

T

]

+ ln

[

1 + 3

(

φ∗ + φe−
(Eν

f
+µf )

T

)

e−
(Eν

f
+µf )

T + e−3
(Eν

f
+µf )

T

]}

,

where Eν
f is the modified quark dispersion [37] and µf denotes the quark chemical potentials.

The subscript f runs over different quark flavors. The quark chemical potentials are related

to the baryon (µB), strange (µS) and charge (µQ) chemical potentials via the following

transformations [51];

µu =
µB
3

+
2µQ
3

,

µd =
µB
3

− µQ
3
,

µs =
µB
3

− µQ
3

− µS,
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Fig. 1. (Color online) Temperature dependence of the chiral condensates σx and σy , for several

volume selections with eB = 0 (left panels) and for several eB selections at infinite volume (right

panels). The results are shown for µB = 0 GeV (top panels) and µB = 0.2 GeV (bottom panels).

A fit function is used for eB > 0 results.

and Eν
f is given as [37]:

Eν
u =

√

p2z +m2
q + |qu|(2n+ 1− σ)B, (6)

Eν
d =

√

p2z +m2
q + |qd|(2n+ 1− σ)B, (7)

Eν
s =

√

p2z +m2
s + |qs|(2n+ 1− σ)B, (8)

where σ is related to the spin quantum number S (σ = ±S/2). Here, we have replaced

2n+ 1− σ by one quantum number ν, where ν = 0 is the Lowest Landau Level mf , and f

runs over the u, d and s quark masses,

mq = g
σx
2
, (9)

ms = g
σy√
2
. (10)

The fourth term in Eq. (3) Ω0
ψ̄ψ

(T, µf ;φ, φ
∗) gives the quark and anti-quark contributions
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for vanishing magnetic field. This potential can be expressed as [42],

Ω0
ψ̄ψ(T, µf ;φ, φ

∗) = −2T
∑

f

∫

d3p

(2π)3
(11)

{

ln

[

1 + 3

(

φ+ φ∗e−
(E0

f
−µf )

T

)

e−
(E0

f
−µf )

T + e−3
(E0

f
−µf )

T

]

+ ln

[

1 + 3

(

φ∗ + φe−
(E0

f
+µf )

T

)

e−
(E0

f
+µf )

T + e−3
(E0

f
+µf )

T

]}

.

The effects of a finite volume are introduced in the PLSM via a lower momentum cut-off

pmin[GeV ] = π/R[GeV ] = λ, where R is the length of a cubic volume [52].

III. RESULTS AND DISCUSSION

In the following, several results are presented to illustrate the effects of finite volumes

and magnetic field strengths on the PLSM order parameters, thermodynamic properties and

the chiral phase transition. These results were all obtained with the values for the model

parameters summarized in Table I.

mσ (MeV) c (MeV) λ1 m2 (MeV 2) λ2 hx (MeV 3) hy (MeV 3)

800 4807.84 13.49 −(306.26)2 46.48 (120.73)3 (336.41)3

Tab. I. Summary of the values of the PLSM parameters employed in the calculations. A detailed

description of these parameters is given in Ref. [53].

A. Order parameters

Figure 1 shows the temperature dependence of the two chiral condensates (σy and σx)

for different volume and magnetic field selections for two values of µB. The left panels show

that both chiral condensates increase as the system volume is decreased, albeit with much

larger sensitivity for the non-strange chiral condensates (σx). The right panels indicate an

opposite trend for increasing magnetic field strength, again with with a larger sensitivity for

σx. Fig. 2 shows the corresponding temperature dependence of the two Polyakov loops (φ

and φ∗) for the same volume, magnetic field and µB selections. For µB = 0 GeV we observe

that φ = φ∗ and both order parametes show very little, if any, dependence on the volume
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Fig. 2. (Color online) The same as in Fig.(1) but for the two Polyakov loops.

and the magnetic field strength. For µB = 0.2 GeV, a weak dependence, with trends similar

to those in the bottom panels of Fig. 1, can be observed.

B. Thermodynamics properties

The pressure P is easily obtained from the grand potential as,

P = −Ω(T, eB, µf ), (12)

where Eq. (12) expresses the [explicit] dependence of the pressure on the temperature,

chemical potential, system volume and the magnetic field strength. Coupled with the energy

density ǫ, this pressure can also be used to obtain the trace anomaly ∆ = ǫ − 3P and the

equation of state P/ǫ, and to study the influence of finite volume and magnetic field effects on

them. Before discussing these effects, it is instructive to compare the values for P , ∆ and P/ǫ

obtained from our PLSM calculations (for µB = 0 and eB = 0 GeV2), to similar results from

LQCD calculations [46, 54]. Such comparisons are shown in Fig. 3; they indicate reasonable

agreement between the PLSM and LQCD results for the model parameters summarized in

Table I.

Figure 4 shows the temperature dependence of the normalized pressure for different vol-
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Fig. 3. (Color online) Comparison of the PLSM pressure density (left panel), trace anomaly (middle

panel) and P/ǫ (right panel) to results from LQCD. The comparisons are made for µB = 0; the

solid lines indicate PLSM results and the open and closed symbols indicate LQCD results from

Refs. [46] and [54] respectively.

ume and magnetic field selections for two values of µB. The left panels indicate an increase

of the normalized pressure with volume which quickly trends towards the infinite volume

value. The right panels show that the normalized pressure also increase with magnetic field

strength, but do not trend toward a saturation value for the range of magnetic field strengths

studied.

Figure 5 shows the thermal behavior of the normalized trace anomaly for several volume

and magnetic field selections for the previously used values of µB. The left panels indicate

that the normalized trace anomaly is insensitive to volume changes for T <∼ 0.2 GeV. For

larger temperatures, the normalized trace anomaly decrease with increasing volume and

quickly saturates to the infinite volume value. The right panels indicate a similar dependence

of the normalized trace anomaly as a function of magnetic field strength for the full range of

temperatures studied. That is, they show a decrease in magnitude with increasing magnetic

field strength over the full temperature range.

The left panels of Fig. 6 show that P/ǫ is relatively insensitive to the volume at low

temperatures. For higher temperatures, it shows an increase (P/ǫ gets softer) with volume

which quickly saturates to the infinite volume value especially for the highest temperatures.
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Fig. 4. (Color online) Temperature dependence of the normalized pressure , for several volume

selections with eB = 0 (left panels) and for several eB selections at infinite volume (right panels).

Results are shown for µB = 0 GeV (top panels) and µB = 0.2 GeV (bottom panels). .

The right panels of Fig. 6 also indicate an increase of P/ǫ with magnetic field strength,

especially at low temperatures. Here, the magnitudes and trends are in stark contrast to

those for the volume dependencies shown in the left panels.

C. QCD phase diagram

The PLSM has two chiral order-parameters (the strange and non strange chiral conden-

sates) which reflect the chiral phase transitions. To investigate finite volume and magnetic

field effects on the SU(3)2 + 1 PLSM chiral phase transition, we use the normalized net-

difference condensate ∆q,s(T ) as,

∆q,s(T ) =
σx −

mq

ms

σy

σx0 −
mq

ms

σy0
, (13)

where mq (ms) are non-strange (strange) quark masses. ∆q,s(T ) reflect the PLSM chiral

phase transition. Fig. 7 shows that the chiral phase transition is influenced by the effects
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panels). Results are shown for µB = 0 GeV (top panels) and µB = 0.2 GeV (bottom panels).

of a finite volume and the magnetic field. The left panels indicate an increase in ∆q,s(T )

as the system volume is decreased. This trend contrasts with the influence of the magnetic

field which results in a decrease of ∆q,s(T ) with increasing magnetic field strength. Thus,

the effects of finite size have an opposing influence to those for the magnetic field.

The PLSM phase diagram (for a fixed volume and magnetic field strength) can be ex-

tracted with the aid of ∆q,s(T ). For fixed values of R, eB and µB, the d∆l,s/dT is deduced

as a function of temperature (cf. Fig. 8). For the same baryon chemical potential, d∆l,s/dT

will peak up at a characteristic point indicating the phase transition. Thus, the phase

diagram can be generated by mapping such points for a broad range of baryon chemical

potentials. Fig. 9 illustrates the effects of finite volume and the magnetic field on the phase

diagram. The left panel shows that the phase boundary in the (µB, T )-plane of the PLSM

phase-diagram, increases with decreasing system volume, i.e., both T and µB increase as

we decrease the system volume. A similar volume dependence has been reported Ref. [38].

The right panel shows that the effects of the magnetic field contrasts with the finite vol-

10



 0

 0.1

 0.2

 0.3

 0.2  0.25  0.3

P/
ε

T[GeV]

µB = 0.0 GeV

eB = 0.0 GeV2

R = 2 fm
R = 3 fm
R = 4 fm
R= ∞ fm

 0

 0.1

 0.2

 0.3

 0.2  0.25  0.3

P/
ε

T[GeV]

µB = 0.0 GeV

R= ∞ fm

eB = 0.3 GeV2

eB = 0.2 GeV2

eB = 0.1 GeV2

eB = 0.0 GeV2

 0

 0.1

 0.2

 0.3

 0.2  0.25  0.3

P/
ε

T[GeV]

µB = 0.2 GeV

eB = 0.0 GeV2

R = 2 fm
R = 3 fm
R = 4 fm
R= ∞ fm

 0

 0.1

 0.2

 0.3

 0.2  0.25  0.3

P/
ε

T[GeV]

µB = 0.0 GeV

R= ∞ fm

eB = 0.3 GeV2

eB = 0.2 GeV2

eB = 0.1 GeV2

eB = 0.0 GeV2

Fig. 6. (Color online) P/ǫ vs. T for several volume selections with eB = 0 GeV2 (left panels) and

for several eB selections at infinite volume (right panels). Results are shown for µB = 0 GeV (top

panels) and µB = 0.2 GeV (bottom panels).

ume effects. That is, the phase boundary shifts to lower values in the (µB, T )-plane as the

magnetic field strength is increased.

IV. CONCLUSIONS

In this work we have used the 2+1 SU(3) PLSM framework to investigate the properties of

the QCD medium produced at finite volume and finite magnetic fields in heavy ion collisions.

This model framework gives several thermodynamic quantities which compare well with

those obtained in LQCD calculations for vanishing eB and µB. The PLSM calculations

indicate that the confinement order parameters or Polyakov loops (φ and φ∗) are relatively

insensitive to changes in the volume and the magnetic field strength. This contrasts with the

chiral condensates which show a much larger sensitivity, albeit with much larger sensitivity

for the non-strange chiral order parameter. Both chiral condensates are found to increase

with decreasing system volume, but decrease with increasing magnetic field strength.
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The PLSM calculations also indicate that several thermodynamic quantities (P , ∆ and

P/ǫ) are significantly influenced by finite volume and finite magnetic field effects. Our

combined study of PLSM thermodynamics and the chiral order parameters, suggests that

the quark-hadron phase boundary is shifted to higher values of µB and T with decreasing

system volume, and to lower values of µB and T with increasing magnetic field strength.

Thus, the effect of a finite volume on the phase boundary is opposite to that for a finite

magnetic field. Additional studies geared at the influence of a finite volume and a finite

magnetic field on the location of the critical end point will be discussed in a future work.
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