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Abstrat

A onjeture is presented for the thermal one-point funtion of boundary operators

in integrable boundary quantum �eld theories in terms of form fators. It is expeted to

have appliations in studying boundary ritial phenomena and boundary �ows, whih are

relevant in the ontext of ondensed matter and string theory. The onjetured formula

is veri�ed by a low-temperature expansion developed using �nite size tehniques, whih

an also be used to evaluate higher point funtions both in the bulk and on the boundary.

1 Introdution

The aim of the present work is to alulate the thermal one-point funtion of loal boundary

operators in integrable boundary quantum �eld theories. Suh a theory an be spei�ed with

a Eulidean ation of the form

A =

� ∞

−∞
dτ

(
� 0

−∞
dxL (Φα, ∂τΦ

α, ∂xΦ
α) + LB (Φα(x = 0), ∂τΦ

α(x = 0))

)

(1.1)

where the �eld variables are denoted Φα
. The bulk equations of motion follow from the Euler-

Lagrange equations spei�ed by L, while the boundary ondition is obtained by varying LB;
the possible hoies for the ation are restrited by requiring integrability [1℄.

For a �nite temperature T the Eulidean time τ must be ompati�ed to a volume

R =
1

T

Consider a loal operator O inserted at the boundary x = 0 as shown in �gure 1.1. The

quantity of interest is the thermal average

〈O〉R =
Tr

(

e−RHO
)

Tr (e−RH)
(1.2)

where H is the Hamiltonian orresponding to the ation (1.1) and the trae is taken on the

spae of states allowed by the boundary ondition.
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Figure 1.1: The �nite temperature boundary quantum �eld theory with a loal boundary

insertion O

The main motivation to study �nite temperature orrelators of boundary operators omes

from boundary renormalization group �ows, where the most useful quantity haraterizing

the spae of the �ows is the A�ek-Ludwig g-funtion or boundary entropy [2℄. The original

setting where this funtion was introdued already made use of �nite temperature. Further-

more, as shown by Friedan and Konehny [3℄, the variation of this funtion along the �ow

an be omputed via a sum rule that is expressed in terms of �nite temperature boundary

two-point funtions. The present paper an be onsidered as a step towards onstruting suh

orrelators from �eld theory data. In addition, quantities like the thermal average (1.2) may

have diret physial relevane to ondensed matter systems.

Our goal is to express the thermal average in terms of matrix elements (form fators) of the

operator O. Therefore in setion 2 the boundary form fator bootstrap is presented, slightly

extended from its original formulation in [4℄ to inlude theories with more than one partile

speies. In setion 3 we formulate a onjeture for the thermal average (1.2) based on the

earlier work by Lelair and Mussardo [5℄ in the bulk ase.

In order to provide evidene for the onjeture, the proposed formula is developed in

a low-temperature series, with the details desribed in appendix A. The low-temperature

expansion of (1.2) is then evaluated using an independent method developed in [6℄. This

approah requires the knowledge of boundary form fators in �nite volume (up to orretions

that deay exponentially with the volume). Setion 4 presents the relevant results from the

paper [7℄, and appendix B provides some further details on the evaluation of diagonal matrix

elements. The alulation itself is presented in setion 5, with a partiularly ompliated part

relegated to appendix C. Setion 6 is devoted to the onlusions.

2 The boundary form fator bootstrap

The relations satis�ed by the form fators of a loal boundary operator were derived in [4℄.

Compared to the equations in [4℄, the ones presented here are slightly generalized to allow for

more than one partile speies. Suh an extension was �rst given in [8℄; the derivation of these

equations is straightforward using the methods of [4℄.

Here the equations are listed without muh further explanation. Take an integrable bound-

ary quantum �eld theory in the (in�nite volume) domain x < 0, with N salar partiles of

masses ma (a = 1 . . . N). As usual in two-dimensional �eld theory, asymptoti partiles are

labeled with their rapidities θ, and their energy and momentum reads

Ea ± pa = mae
±θa
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Both the bulk and boundary sattering are assumed to be diagonal and given by the two-

partile S matries

Sa1a2(θ1 − θ2) = eiδa1a2 (θ1−θ2)
(2.1)

(where δa1a2(θ1 − θ2) are the two-partile phase-shifts) and the one-partile re�etion fators

Ra(θ)

satisfying the boundary re�etion fator bootstrap onditions of Ghoshal and Zamolodhikov

[1℄. For a loal operator O(t) loalized at the boundary (loated at x = 0, and parametrized

by the time oordinate t) the form fators are de�ned as

a′1...a
′

m
〈θ

′

1, . . . , θ
′

m|O(t)|θ1, . . . , θn〉a1...an =

FO
a′1...a

′

n;a1...an
(θ

′

1, . . . , θ
′

m; θ1, . . . , θn)e
−imt(

P

cosh θi−
P

cosh θ
′

j)

using the asymptoti states introdued in [9℄. They an be extended analytially to omplex

values of the rapidity variables. With the help of the rossing relations derived in [4℄ all form

fators an be expressed in terms of the elementary form fators

〈0|O(0)|θ1, . . . , θn〉in = FO
a1...an

(θ1, . . . , θn) (2.2)

whih an be shown to satisfy the following equations:

I. Permutation:

FO
a1...aiai+1...an

(θ1, . . . , θi, θi+1, . . . , θn) = (2.3)

Saiai+1(θi − θi+1)F
O
a1...ai+1ai...an

(θ1, . . . , θi+1, θi, . . . , θn)

II. Re�etion:

FO
a1...an

(θ1, . . . , θn−1, θn) = Ran(θn)F
O
a1...an

(θ1, . . . , θn−1,−θn) (2.4)

III. Crossing re�etion:

FO
a1...an

(θ1, θ2, . . . , θn) = Ra1(iπ − θ1)F
O
a1...an

(2iπ − θ1, θ2, . . . , θn) (2.5)

IV. Kinematial singularity

−iRes
θ=θ

′

FO
aa′a1...an

(θ + iπ, θ
′

, θ1, . . . , θn) = (2.6)

Caa′

(

1−

n
∏

i=1

Saai(θ − θi)Saai(θ + θi)

)

FO
a1...an

(θ1, . . . , θn)

where Caa′ = δāa′ is the harge onjugation matrix (ā denotes the antipartile of speies a).
V. Boundary kinematial singularity

− iRes
θ=0

FO
aa1...an

(θ +
iπ

2
, θ1, . . . , θn) =

ga
2

(

1−

n
∏

i=1

Saai
( iπ

2
− θi

)

)

FO
a1...an

(θ1, . . . , θn) (2.7)
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where ga is the one-partile oupling to the boundary

Ra(θ) ∼
ig2a

2θ − iπ
, θ ∼ i

π

2
(2.8)

There are also further equations orresponding to the bulk and boundary bootstrap stru-

ture (i.e. bound state singularities of the sattering amplitudes S and R), but they are not

needed in the sequel. The equations are supplemented by the assumption of maximum ana-

lytiity i.e. that the form fators only have the minimal singularity struture onsistent with

the bootstrap equations. We remark that it is a general property of non-trivially interating

diagonal fatorized sattering theories that their amplitudes are fermioni:

Saa(0) = −1

and as a result of eqn. (2.3) all form fator funtions satisfy an exlusion property (Pauli

priniple), i.e. they vanish when any two of their rapidity arguments oinide, together with

the orresponding speies indies.

It was shown in [10℄ that the spae of solutions of the above equations is onsistent with

the operator spetrum predited by boundary onformal �eld theory in the Lee-Yang and

sinh-Gordon model. More reently the author gave a general proedure to onstrut solutions

with a spei� saling dimension starting from an appropriate solution of the bulk form fator

axioms [11℄.

We remark that using the bulk form fator bootstrap (f. [12℄ for a review) as a guide it

is straightforward to extend these axioms for non-diagonal sattering, i.e. partiles with an

internal degree of freedom. Some results for suh theories (albeit only for diagonal boundary

sattering) an be found in [13, 14℄.

3 A onjeture for the expetation values

Consider a theory with a spetrum that ontains a single massive partile speies of mass

m. Lelair and Mussardo proposed the following expression for the bulk �nite temperature

one-point funtions [5℄:

〈A〉R =

∞
∑

n=0

1

n!

n
∏

i=1

(

� ∞

−∞

dθi
2π

e−ǫ(θi)

1 + e−ǫ(θi)

)

f c2n(θ1, ..., θn) (3.1)

where f c2n is the onneted diagonal form fator of the loal bulk operator A, R = 1/T in

terms of the temperature T , and ǫ(θ) is the pseudo-energy funtion, whih is the solution of

the thermodynami Bethe Ansatz (TBA) equation

ǫ(θ) = mR cosh θ −

� ∞

−∞

dθ′

2π
ϕ(θ − θ′) log(1 + e−ǫ(θ′)) (3.2)

where

ϕ(θ) =
d

dθ
δ(θ)

is the derivative of the two-partile phase-shift introdued in (2.1). The fator 1/n! takes
into aount the fat that a omplete set of n-partile in-states is obtained with the ordering

4



θ1 ≥ θ2 ≥ · · · ≥ θn, but the integrals an be extended to the entire spae using the fat that

the funtions f c2n(θ1, ..., θn) are symmetri in all of their arguments.

The main idea behind the formula (3.1) omes from the TBA expression of the free energy

f(R) = −

� ∞

−∞

dθ

2π
m cosh(θ) log(1 + e−ǫ(θ))

whih shows that the �nite temperature vauum an be onsidered as a free Fermi gas of

quasi-partiles for whih the thermal weight is given by the pseudo-energy funtion ǫ(θ). The
essential ondition neessary for the validity of this piture is that the omplete set of states

used to derive (3.1) must be inserted at a position whih is asymptotially far from any loal

operator insertion, so that their distribution is governed by the unperturbed �nite temperature

ground state. This is the reason why the Lelair-Mussardo onjeture does not work for the

two-point funtions [15℄, beause the states inserted between the two loal operators annot

be asymptotially far from the positions of the operators whih are themselves loated at a

�nite distane from eah other.

From �gure 1.1 it is obvious that a omplete set of asymptoti states an be inserted at

x = −∞ where their distribution is una�eted by the presene of the boundary operator O.
The only di�erene to the bulk ase is that the omplete system of in-states is spanned by

multi-partile states with all their rapidities positive (i.e. with all partiles moving towards

the boundary), so the natural generalization of (3.1) is

〈O〉R =
∞
∑

n=0

1

n!

n
∏

i=1

(

� ∞

0

dθi
2π

e−ǫ(θi)

1 + e−ǫ(θi)

)

F c
2n(θ1, ..., θn) (3.3)

where F c
2n is the onneted part of the diagonal form fator of the loal boundary operator O:

F c
2n(θ1, ..., θn) = 〈θ1, θ2, . . . , θn|O(t = 0)|θ1, θ2, . . . , θn〉

connected
(3.4)

whih is again symmetri in all their variables as a result of equation (2.3). The preise

de�nition of the onneted matrix element (valid both for bulk and the boundary operators)

is spei�ed later in subsetion 4.2.

The onjetured expression (3.3) an be heked against a alulation of the low-temperature

expansion using the boundary form fators; this alulation is performed in the sequel. How-

ever, the kinematial residue equation (2.6) implies that diagonal matrix elements ontain

disonneted terms whih are in�nite, and therefore must be regularized. As shown in [6℄ a

natural regularization an be obtained by putting the system in a �nite volume, whih was

implemented for the bulk ase in [16, 6℄ and for the boundary ase in [7℄.

For ompleteness we note that the onjeture (3.3) an be extended to a theory with

multiple partile speies and diagonal sattering in the following form:

〈O〉R =

∞
∑

n=0

1

n!

∑

a1

· · ·
∑

an

n
∏

i=1

(

� ∞

0

dθi
2π

e−ǫai(θi)

1 + e−ǫai(θi)

)

F c
a1...an

(θ1, ..., θn) (3.5)

where

F c
a1...an

(θ1, ..., θn) = a1...an〈θ1, θ2, . . . , θn|O(t = 0)|θ1, θ2, . . . , θn〉
connected
a1...an

while the pseudo-energy funtions satisfy

ǫa(θ) = maR cosh θ −
∑

b

�

dθ′

2π
ϕab(θ − θ

′) log(1 + e−ǫab(θ
′))

5



where

ϕab(θ) =
d

dθ
δab(θ) (3.6)

are the derivatives of the two-partile phase-shifts introdued in (2.1). For the sake of simpli-

ity the speies labels will be omitted from now on, i.e. every formula will be written for the

ase of a single partile speies; the extension to multiple speies (with diagonal sattering) is

rather straightforward.

Eqn. (3.3) an be expanded systematially order by order in e−mR
whih yields a low

temperature expansion, following the proedure implemented for the Lelair-Mussardo formula

(3.1) in [6℄. The detailed alulation is performed in Appendix A with the following result:

〈O〉R = σ1 + σ2 + σ3 +O
(

e

−4mR
)

(3.7)

where

σ1 =

� ∞

0

dθ1
2π

(

e−mR cosh θ1 − e−2mR cosh θ1 + e−3mR cosh θ1
)

F c
2 (θ1)

+
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−mR(cosh θ1+cosh θ2)Φ12 (F
c
2 (θ1) + F c

2 (θ2))

+
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−mR(cosh θ1+cosh θ2+cosh θ3)
(

Φ12Φ13

+Φ12Φ23 +Φ13Φ23

)

F c
2 (θ3)

−

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−mR(2 cosh θ1+cosh θ2)

(

2F c
2 (θ1) +

1

2
F c
2 (θ2)

)

Φ12

σ2 =
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−mR(cosh θ1+cosh θ2)F c
4 (θ1, θ2)

−

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−mR(2 cosh θ1+cosh θ2)F c
4 (θ1, θ2)

+
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−mR(cosh θ1+cosh θ2+cosh θ3) (Φ12 +Φ13)F
c
4 (θ2, θ3)

σ3 =
1

6

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−mR(cosh θ1+cosh θ2+cosh θ3)F c
6 (θ1, θ2, θ3)

and

Φij = ϕ(θi − θj) + ϕ(θi + θj)

For later onveniene some terms were reordered by reshu�ing the integral variables.

In the sequel this result is ompared to the result obtained from expliit evaluation of the

�nite temperature Gibbs average. In order to perform this alulation it is neessary to use

�nite volume as a regulator, and so now we turn to the issue of boundary form fators in �nite

volume, based on the results of [7℄.

4 Boundary form fators in �nite volume

4.1 Bethe-Yang equations

Let us onsider an integrable boundary quantum �eld theory with partiles of speies a =
1, . . . , N and orresponding masses ma in �nite volume L as shown in �gure 4.1. As in setion

6
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Figure 4.1: The setting of Fig. 1.1 in �nite volume

2, the bulk and boundary sattering is assumed to be diagonal and given by the two-partile

S matries

Sa1a2 (θ1 − θ2) = e

iδa1a2(θ1−θ2)

and the one-partile re�etion fators

R(α)
a (θ) = e

iδ
(α)
a (θ) , R(β)

a (θ) = e

iδ
(β)
a (θ)

(4.1)

where α and β denote the left and right boundary onditions, respetively.

In the diagonal ase, the multi-partile energy levels in a �nite volume L are desribed by

the following Bethe-Yang equations [17℄:

Qj (θ1, . . . , θn)a1...an = 2πIj (4.2)

where the phases desribing the wave funtion monodromies are

Qj (θ1, . . . , θn)a1...an = 2majL sinh θj + δ(α)aj
(θj) + δ(β)aj

(θj)

+
∑

k 6=j

(

δajak (θj − θk) + δajak (θj + θk)
)

Here all rapidities θj (and aordingly all quantum numbers Ij) are taken to be positive

1

. The

orresponding multi-partile state is denoted by

|{I1, . . . , In}〉a1...an,L

and its energy (relative to the ground state) is

EI1...In(L) =

n
∑

j=1

maj cosh θ̃j

where

{

θ̃j

}

j=1,...,n
is the solution of eqns. (4.2) in volume L. The energy alulated from the

Bethe-Yang equations is exat to all order in 1/L; only �nite size e�ets deaying exponentially
with L are negleted.

1

Boundary re�etions hange the sign of the momentum, so �nite volume multi-partile states an be

haraterized by the absolute value of the rapidities.
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4.2 Matrix elements in �nite volume

In general in�nite volume and �nite volume matrix elements are just related by the square root

of the ratio of normalization of the orresponding states [7, 16℄. This results in the following

relation:

b1...bm〈{I
′
1, . . . , I

′
m}|O(0)|{I1, . . . , In}〉a1...an,L =

FO
b̄m...̄b1a1...an

(θ̃′m + iπ, . . . , θ̃′1 + iπ, θ̃1, . . . , θ̃n)
√

ρa1...an(θ̃1, . . . , θ̃n)ρb1...bm(θ̃
′
1, . . . , θ̃

′
m)

+O(e−µL) (4.3)

where FO
a1...an

(θ̃1, . . . , θ̃n) is the form fator of the operator O (in the in�nite volume theory,

i.e. on the half-line x < 0),
{

θ̃j

}

j=1,...,n
is the solution of eqns. (4.2) in volume L for the set

of quantum numbers {I1, . . . , In} (similarly for

{

θ̃′j

}

j=1,...,m
and {I ′1, . . . , I

′
m}), and

ρa1...an(θ1, . . . , θn) = det

{

∂Qk(θ1, . . . , θn)a1...an
∂θl

}

k,l=1,...,n

(4.4)

is the �nite volume density of states, whih is the Jaobi determinant of the mapping between

the spae of quantum numbers and the spae of rapidities spei�ed by the Bethe-Yang equa-

tions (4.2). An expliit expression for the derivative matrix of the Bethe-Yang equations (4.2)

is

∂Qk

∂θk
= 2makL cosh θk + ψ(α)

ak
(θk) + ψ(β)

ak
(θk) +

∑

j 6=k

[ϕajak(θj − θk) + ϕajak(θj + θk)]

∂Qk

∂θj
= −ϕajak(θj − θk) + ϕajak(θj + θk) , j 6= k (4.5)

where

ψ(α)
a (θ) =

d

dθ
δ(α)a (θ) , ψ(β)(θ) =

d

dθ
δ(β)a (θ)

are the derivatives of the boundary phase-shifts de�ned in (4.1), while the ϕ are the derivatives

of the bulk ones as written in (3.6).

Eqn. (4.3) is valid as long as the sets of the rapidities orresponding to the two states,

{

θ̃j

}

j=1,...,n
and

{

θ̃′j

}

j=1,...,m
, are disjoint i.e. when there are no disonneted ontributions.

For diagonal matrix elements

a1...an〈{I1, . . . , In}|O(0)|{I1, . . . , In}〉a1...an,L

a more areful analysis is required [6, 7℄. Aording to (4.3) for this ase it is neessary to

onsider

Fān...ā1a1...an(θn + iπ, ..., θ1 + iπ, θ1, ..., θn)

Beause of the kinematial poles the above expression is not well-de�ned. The bulk kinematial

singularity axiom (2.6) implies that the regularized version

Fān...ā1a1...an(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn)

8



has a �nite limit when ǫi → 0 simultaneously. However, the end result depends on the diretion
of the limit, i.e. on the ratio of the ǫi parameters. The terms that are relevant in this limit

an be written in the following general form:

Fān...ā1a1...an(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn) = (4.6)

n
∏

i=1

1

ǫi
·

n
∑

i1=1

...

n
∑

in=1

Aa1...an
i1...in

(θ1, . . . , θn)ǫi1ǫi2 ...ǫin + . . .

where Aa1...an
i1...in

is a tensor of rank n in the indies i1, . . . , in whih is symmetri under the

exhange of indies that orrespond to partiles of the same speies, and the ellipsis denote

terms that vanish when taking ǫi → 0 simultaneously.

The onneted matrix element an be de�ned as the ǫi independent part of eqn. (4.6), i.e.
the part whih does not diverge whenever any of the ǫi is taken to zero:

F c
a1...an

(θ1, ..., θn) =
∑

(p1...pn)

Aa1...an
p1...pn

(θ1, . . . , θn) (4.7)

where the summation goes over all permutations (p1, . . . , pn) of the numbers 1, . . . , n. As

shown in appendix B, all other evaluations of the diagonal matrix elements (4.6) an be

readily expressed in terms of the onneted amplitudes.

It was shown in [7℄ that a natural generalization of an expression proposed earlier by Saleur

[15℄ for bulk diagonal matrix elements an be extended to the boundary ase in the following

way

2

:

a1...an〈{I1 . . . In}|O(0)|{I1 . . . In}〉a1...an,L = (4.8)

1

ρa1...an(θ̃1, . . . , θ̃n)

∑

A⊂{1,2,...n}

F c
a(A)({θ̃k}k∈A)ρ̃a1...an(θ̃1, . . . , θ̃n|A) +O(e−µL)

The summation runs over all subsets A of {1, 2, . . . n} and again

{

θ̃j

}

j=1,...,n
is the solution

of eqns. (4.2) in volume L for the set of quantum numbers {I1, . . . , In}. For any suh subset

the orresponding speies index list is de�ned as

a(A) = {ak}k∈A

and

ρ̃a1...an(θ1, . . . , θn|A) = detJ a1...an
A (θ1, . . . , θn) (4.9)

is the appropriate sub-determinant of the n× n Bethe-Yang Jaobi matrix

Ja1...an(θ1, . . . , θn)kl =
∂Qk(θ1, . . . , θn)a1...an

∂θl
(4.10)

obtained by deleting the rows and olumns orresponding to the subset of indies A. The

determinant of the empty sub-matrix (i.e. when A = {1, 2, . . . n}) is de�ned to equal 1 by

onvention. It is also shown in appendix B that the symmetri evaluation whih gave a very

onvenient alternative to (4.8) in the bulk [6℄, behaves rather di�erently in the boundary ase.

2

Note that here the original result of [7℄ is extended to the ase of several partile speies.
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5 Expansion of �nite temperature expetation values

5.1 Low-temperature expansion for one-point funtions

The proedure leading to a well-de�ned low-temperature expansion was outlined in setion

7 of [6℄; details about the validity of the method and the existene of the limits taken are

omitted (the interested reader is referred to the above paper for details). Let us evaluate the

�nite temperature expetation value of an operator O loated at x = 0 in a �nite but large

volume L, aording to the setting introdued in setion 4:

〈O〉RL =
TrL

(

e−RHLO
)

TrL (e−RHL)
, T = 1/R (5.1)

HL is the �nite volume Hamiltonian, and TrL means that the trae is now taken over the �nite

volume Hilbert spae. The expetation value 〈O〉R an be reovered in the limit L → ∞ whih

means that the left boundary ondition α in �gure 4.1 plays an auxiliary role, and the end

result an only depend on the x = 0 boundary ondition β; this issue will be taken up again

in subsetion 5.5.

In the alulation below partile speies labels are dropped for simpliity (they an be

easily reinstated if neessary) and we use the simpli�ed notation F2n for the n-partile diagonal
matrix element introdued in (3.4). It is also onvenient to introdue a new notation:

|θ1, . . . , θn〉L = |{I1, . . . , In}〉L

where θ1, . . . , θn solve the Bethe-Yang equations (4.2) for n partiles with quantum numbers

I1, . . . , In in volume L; as remarked in subsetion 2.1, all of the rapidities an be taken positive.

The low temperature expansion of (5.1) an be developed in orders of e−mR
using

TrL

(

e−RHLO
)

= 〈O〉L +
∑

θ(1)

e−mR cosh θ(1)〈θ(1)|O|θ(1)〉L

+
1

2

∑

θ
(2)
1 ,θ

(2)
2

′

e−mR(cosh θ
(2)
1 +cosh θ

(2)
2 )〈θ

(2)
1 , θ

(2)
2 |O|θ

(2)
1 , θ

(2)
2 〉L +

+
1

6

∑

θ
(3)
1 ,θ

(3)
2 ,θ

(3)
3

′

e−mR(cosh θ
(3)
1 +cosh θ

(3)
2 +cosh θ

(3)
3 )〈θ

(3)
1 , θ

(3)
2 , θ

(3)
3 |O|θ

(3)
1 , θ

(3)
2 , θ

(3)
3 〉L

+O(e−4mR) (5.2)

and

TrL

(

e−RHL
)

= 1 +
∑

θ(1)

e−mR cosh(θ(1)) +
1

2

∑

θ
(2)
1 ,θ

(2)
2

′

e−mR(cosh(θ
(2)
1 )+cosh(θ

(2)
2 ))

+
1

6

∑

θ
(3)
1 ,θ

(3)
2 ,θ

(3)
3

′

e−mR(cosh θ
(3)
1 +cosh θ

(3)
2 +cosh θ

(3)
3 ) +O(e−4mR) (5.3)
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The denominator of (5.1) an then be easily expanded:

1

TrL (e−RHL)
= 1−

∑

θ(1)

e−mR cosh θ(1) +





∑

θ(1)

e−mR cosh θ(1)





2

−
1

2

∑

θ
(2)
1 ,θ

(2)
2

′

e−mR(cosh θ
(2)
1 +cosh θ

(2)
2 )

−





∑

θ(1)

e−mR cosh θ(1)





3

+





∑

θ(1)

e−mR cosh θ(1)





∑

θ
(2)
1 ,θ

(2)
2

′

e−mR(cosh θ
(2)
1 +cosh θ

(2)
2 )

−
1

6

∑

θ
(3)
1 ,θ

(3)
2 ,θ

(3)
3

′

e−mR(cosh θ
(3)
1 +cosh θ

(3)
2 +cosh θ

(3)
3 ) +O(e−4mR) (5.4)

The primes in the multi-partile sums serve as a reminder that there exist only states for whih

all quantum numbers are distint. Sine it was assumed that there is a single partile speies,

this means that terms in whih any two of the rapidities oinide are exluded. All n-partile
terms in (5.2) and (5.3) have a 1/n! prefator whih takes into aount that di�erent ordering

of the same rapidities give the same state; as the expansion ontains only diagonal matrix

elements, phases resulting from reordering the partiles anel. It is also ruial to remember

that in the boundary ase the summations only run over positive values of the rapidities (f.

setion 3). The upper indies of the rapidity variables indiate the number of partiles in the

original �nite volume states whih helps to keep trak whih multi-partile state density is

relevant.

It is also neessary to extend the �nite volume matrix elements to rapidities that are

not neessarily solutions of the appropriate Bethe-Yang equations. The required analyti

ontinuation an be written down using eqn. (4.8):

〈θ1, . . . , θn|O|θ1, . . . , θn〉L =
1

ρn(θ1, . . . , θn)L

∑

A⊂{1,2,...n}

F c
2|A|({θi}i∈A)ρ̃(θ1, . . . , θn|A)L+O(e−µL)

(5.5)

where the volume dependene of the n-partile density fators was made expliit and the form

fators are omputed from solutions of the bootstrap equations in setion 2 with the boundary

ondition β. It is apparent that the ontinuation is spei�ed only up to terms deaying

exponentially with the volume L but this is su�ient for the evaluation of the L → ∞ limit

of (5.1).

It is useful to notie that unitarity and real analytiity imply that all the phase-shift

derivatives

ϕ(θ) =
d

dθ
δ(θ) , ψ(α)(θ) =

d

dθ
δ(α)(θ) , ψ(β)(θ) =

d

dθ
δ(β)(θ) (5.6)

are real and even funtions. Another important observation is that the exlusion priniple

(f. setion 2) implies that the amplitudes F c
2n(θ1, . . . , θn) vanish whenever any two of their

rapidity arguments oinide. In addition, the onneted form fator funtions are symmetri

under permutations of their arguments aording to their de�nition (4.7) and (in ontrast to

the bulk ase) they are even funtions in all of their rapidity arguments separately i.e.

F c
2n(θ1, θ2, . . . , θn) = F c

2n(−θ1, θ2, . . . , θn)

whih is a result of the re�etion equation (2.4) satis�ed by the form fators.
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5.2 Lowest order terms

The leading orretion is

〈O〉RL = 〈O〉L +
∑

θ(1)

e−mR cosh θ(1)
(

〈θ(1)|O|θ(1)〉L − 〈O〉L

)

+O(e−2mR)

From (5.5)

〈θ|O|θ〉L − 〈O〉 =
1

ρ1(θ)
F c
2 (θ) +O

(

e−µL
)

Note also that the di�erene between the �nite volume vauum expetation value and the

in�nite volume one deays exponentially with L

〈O〉L − 〈O〉 ∼ O
(

e−µL
)

From now on suh exponential orretions will simply be omitted. In the large L limit the

summation an be replaed by the integral

∑

θ(1)

→

�

dθ

2π
ρ1(θ)

and therefore

〈O〉R = 〈O〉+

� ∞

0

dθ

2π
F c
2 (θ)e

−mR cosh θ +O(e−2mR) (5.7)

5.3 Corretions of order e
−2mR

To this order one has

〈O〉RL = 〈O〉L +
∑

θ(1)

e−mR cosh θ(1)
(

〈θ(1)|O|θ(1)〉L − 〈O〉L

)

−







∑

θ
(1)
1

e−mR cosh θ
(1)
1













∑

θ
(1)
2

e−mR cosh θ
(1)
2

(

〈θ
(1)
2 |O|θ

(1)
2 〉L − 〈O〉L

)







+
1

2

∑

θ
(2)
1 ,θ

(2)
2

′

e−mR(cosh θ
(2)
1 +cosh θ

(2)
2 )
(

〈θ
(2)
1 , θ

(2)
2 |O|θ

(2)
1 , θ

(2)
2 〉L − 〈O〉L

)

+O(e−3mR)

Using the symmetry of the �rst term in the rapidities and separating the diagonal ontribution

from the double summation on the last line leads to

−
1

2







∑

θ
(1)
1

e−mR cosh θ
(1)
1













∑

θ
(1)
2

e−mR cosh θ
(1)
2

(

〈θ
(1)
1 |O|θ

(1)
1 〉L + 〈θ

(1)
2 |O|θ

(1)
2 〉L − 2〈O〉L

)







+
1

2

∑

θ
(2)
1 ,θ

(2)
2

e−mR(cosh θ
(2)
1 +cosh θ

(2)
2 )
(

〈θ
(2)
1 , θ

(2)
2 |O|θ

(2)
1 , θ

(2)
2 〉L − 〈O〉L

)

−
1

2

∑

θ
(2)
1 =θ

(2)
2

e−2mR cosh θ
(2)
1

(

〈θ
(2)
1 , θ

(2)
1 |O|θ

(2)
1 , θ

(2)
1 〉L − 〈O〉L

)
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The terms ontaining two independent rapidity sums an be written as

Σ
(2)
2 =

1

2

�

dθ1
2π

dθ2
2π

e−mR(cosh θ1+cosh θ2)

(

− ρ1(θ1)ρ1(θ2)

(

1

ρ1(θ1)
F c
2 (θ1) +

1

ρ1(θ2)
F c
2 (θ2)

)

+F c
4 (θ1, θ2) + ρ̃(θ1, θ2|{1})F

c
2 (θ1) + ρ̃(θ1, θ2|{2})F

c
2 (θ2)

)

where

ρ1(θ) = 2mL cosh θ + ψ(α)(θ) + ψ(β)(θ)

is the one-partile state density, while

ρ̃(θ1, θ2|{2}) = 2mL cosh θ1 + ψ(α)(θ1) + ψ(β)(θ1) + ϕ(θ1 − θ2) + ϕ(θ1 + θ2)

ρ̃(θ1, θ2|{1}) = 2mL cosh θ2 + ψ(α)(θ2) + ψ(β)(θ2) + ϕ(θ2 − θ1) + ϕ(θ2 + θ1) (5.8)

are the orresponding sub-determinants of the two-partile Bethe-Yang Jaobian, evaluated

aording to (4.9). Taking L → ∞

Σ
(2)
2 =

1

2

�

dθ1
2π

dθ2
2π

e−mR(cosh θ1+cosh θ2) [F c
4 (θ1, θ2) + (ϕ(θ1 − θ2) + ϕ(θ1 + θ2)) (F

c
2 (θ1) + F c

2 (θ2))]

The diagonal ontribution ontains a single rapidity sum

Σ
(1)
2 = −

1

2

∑

θ
(2)
1 =θ

(2)
2

e−2mR cosh θ
(2)
1

(

〈θ
(2)
1 , θ

(2)
1 |O|θ

(2)
1 , θ

(2)
1 〉L − 〈O〉L

)

for whih one needs to evaluate the density of states for a degenerate two-partile state. The

appropriate Bethe-Yang equation reads

2mL sinh θ
(2)
1 + δ(0) + δ

(

2θ
(2)
1

)

+ δ(α)
(

θ
(2)
1

)

+ δ(β)
(

θ
(2)
1

)

= 2πI1 (5.9)

and so the summation an be replaed by

∑

θ
(2)
1 =θ

(2)
2

→

�

dθ

2π
ρ̄12(θ)

ρ̄12(θ) = 2mL cosh θ + 2ϕ(2θ) + ψ(α)(θ1) + ψ(β)(θ1) (5.10)

On the other hand from (5.5) it follows that

〈θ, θ|O|θ, θ〉L − 〈O〉L =
1

ρ2(θ, θ)

[

F c
4 (θ1, θ2) + ρ̃(θ1, θ2|{1})F

c
2 (θ1)

+ρ̃(θ1, θ2|{2})F
c
2 (θ2)

]

θ1=θ2=θ
+O

(

e−µL
)

where the ρ̃ are given in (5.8) and the fator at the front an be alulated from (4.4)

ρ2(θ, θ) = 4m2L2 cosh2 θ +O(L)
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In addition, the exlusion property an be used to substitute F 4
c (θ, θ) = 0. Taking the limit

L→∞ results in

Σ
(1)
2 = −

1

2

�

dθ

2π
e−2mR cosh θ2F c

2 (θ)

and so the total ontribution at this order reads

Σ2 = Σ
(1)
2 +Σ

(2)
2

= −

� ∞

0

dθ

2π
e−2mR cosh θF c

2 (θ)

+
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−mR(cosh θ1+cosh θ2)
[

F c
4 (θ1, θ2)

+ (ϕ(θ1 − θ2) + ϕ(θ1 + θ2)) (F
c
2 (θ1) + F c

2 (θ2))
]

(5.11)

5.4 Corretions of order e
−3mR

This alulation proeeds in a similar way but it is rather long and so it is relegated to appendix

C. The net result is

Σ3 =
1

6

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−mR(cosh θ1+cosh θ2+cosh θ3)[F c
6 (θ1, θ2, θ3)

+3F c
4 (θ2, θ3)(Φ12 +Φ13) + 3F c

2 (θ3)(Φ12Φ13 +Φ12Φ23 +Φ13Φ23)]

−

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−mR(2 cosh θ1+cosh θ2)
[

F c
4 (θ1, θ2)

+

(

2F c
2 (θ1) +

1

2
F c
2 (θ2)

)

Φ12

]

+

� ∞

0

dθ1
2π

e−3mR cosh θ1F c
2 (θ1) (5.12)

where Φij = ϕ(θi − θj) + ϕ(θi + θj).

5.5 Disussion of the results

It is very important to note that in the order by order orretions (5.7), (5.11) and (5.12),

the dependene on the boundary ondition β at x = 0 is only arried by the form fators

F c
2n. However, in the intermediate alulations the Bethe-Yang determinants enter, whih

depend on the boundary onditions α and β in a symmetrial way: aording to eqn. (4.5),

the boundary phase-shift derivatives always appear in the ombination

ψ(α)(θ) + ψ(β)(θ)

The fat that all suh terms drop in the L → ∞ limit is neessary for onsisteny sine the

end result an only depend on the boundary ondition β imposed at x = 0, but not on the

auxiliary (and indeed arbitrary) boundary ondition α imposed at x = −L (f. �gure 4.1).

Summarizing the results, the expansion of the one-point funtion reads

〈O〉R = 〈O〉+Σ1 +Σ2 +Σ3 +O
(

e−4mR
)

where

Σ1 =

� ∞

0

dθ

2π
F c
2 (θ)e

−mR cosh θ
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while Σ2 and Σ3 are given in eqns. (5.11) and (5.12), respetively. Note that this result

exatly oinides with the expansion (3.7) of the onjetured formula (3.3), whih is a strong

reason to believe that the onjeture is indeed orret to all orders (espeially in view of the

very nontrivial struture of the third-order orretion terms).

There is a rather obvious strutural similarity between the bulk formula (3.1) and the

boundary one (3.3). Taking into aount the symmetry of the pseudo-energy funtion exploited

in appendix A, it is possible to bring the bulk and boundary ases into orrespondene by

interhanging the following ingredients:

bulk boundary

�∞
−∞

dθi
2π

�∞
0

dθi
2π

f c2n(θ1, . . . θn) F c
2n(θ1, . . . θn)

ϕ(θj − θk) ϕ(θj − θk) + ϕ(θj + θk)

(some are must be taken on the seond line to follow properly the partile labels of f c2 , sine
the bulk onneted two-partile form fator is atually independent of the rapidity and thus the

argument is usually omitted). Sine Theorem 1 of appendix B is related to the orresponding

bulk theorem of [6℄ via the orrespondene implied by the last two lines in the above table, it

is also possible to express the expansion (3.7) in terms of symmetri form fators analogously

to the result obtained in [6℄:

〈O〉R = 〈O〉+

� ∞

0

dθ

2π
F s
2 (θ)

[

e−mR cosh θ − e−2mR cosh θ + e−3mR cosh θ
]

+
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

F s
4 (θ1, θ2)

[

e

−mR(cosh θ1+cosh θ2) − 2e−mR(2 cosh θ1+cosh θ2)
]

+
1

6

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

F s
6 (θ1, θ2, θ3)e

−mR(cosh θ1+cosh θ2+cosh θ3)

−

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

[

F s
2 (θ1)−

1

2
F s
2 (θ2)

]

Φ12e
−mR(2 cosh θ1+cosh θ2) +O

(

e−4mR
)

where eqns. (B.5,B.6,B.7) were used, together with the freedom to relabel some integration

variables. However, note that this is not automatially guaranteed in the �nite volume formal-

ism used in the present setion, sine the omputation makes use of the various Bethe-Yang

determinants whih depend expliitly on the ombination ϕ(θj − θk)− ϕ(θj + θk) as pointed
out in appendix B. The agreement between (3.7) and the orretions in eqns. (5.7,5.11,5.12)

shows that this dependene drops out after the limit L → ∞, whih is far from trivial, albeit

required for overall onsisteny.

6 Conlusions and outlook

The main result of this paper is eqn. (3.3) (or its generalization (3.5)) whih provides a way to

evaluate �nite temperature expetation values of boundary operators in terms of form fators.

At �rst sight all the rest of the argument (i.e. the low-temperature expansion using the

�nite volume regularization) is only developed in order to verify this onjeture. However, as

already pointed out for the bulk ase disussed in [6℄, the �nite volume regulator an be used

to evaluate two-point (or even higher) orrelation funtions at �nite temperature. There has

been some development in the bulk ase [5, 15, 18, 19, 20℄, but there is a general problem that
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the regulator imposed to deal with the disonneted ontributions is rather ad ho. The failure

of Del�no's proposal for the bulk �nite temperature expetation values [22, 23℄ shows that

the ambiguity inherent in the regularization proedure (whih is manifested in the diretional

dependene of the diagonal limit disussed in subsetion 4.2 and appendix B) must be taken

seriously.

However, as pointed out already in [6℄, �nite volume as a regulator is guaranteed to give

a orret answer as a matter of priniple, sine it provides a physial way to regularize the

form fators entering the expansion. Therefore it would be very interesting to apply the ideas

presented in [6℄ and here to ompute bulk and boundary two-point funtions, respetively.

Another interesting issue is to obtain an extension of the �nite volume desription of form

fators to non-diagonal sattering theories, both in the bulk and on the boundary. Sine the

desription of �nite volume energy levels is known and is not very ompliated (one obtains

salar Bethe-Yang equations after suitably diagonalizing a family of ommuting transfer ma-

tries, f. [21℄ and referenes therein), it an be expeted that the neessary desription of

form fators is not too di�ult to �nd. One an then use these results to evaluate �nite

temperature averages and orrelators in the non-diagonal ase as well.

Aknowledgments

The author is grateful to L. Palla for omments on the manusript. This researh was partially

supported by the Hungarian researh fund OTKA K60040. The author was also supported

by a Bolyai János researh sholarship.

A Low-temperature expansion of the onjetured formula (3.1)

First the pseudo-energy funtion ǫ(θ) must be expanded to the neessary order. Using the

fat that ǫ(θ) is an even funtion, the TBA equation an be written in the form

ǫ(θ) = mR cosh(θ)−

� ∞

0

dθ′

2π

[

ϕ(θ − θ′) + ϕ(θ + θ′)
]

log(1 + e−ǫ(θ′))

Iterating this equation twie with the starting value ǫ(0)(θ) = mR cosh(θ) and taking are to

expand the logarithm one obtains

ǫ(θ1) = RE1 −

� ∞

0

dθ2
2π

Φ12e
−RE2 −

1

2

� ∞

0

dθ2
2π

Φ12e
−2RE2

−

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

Φ12Φ23e
−R(E2+E3) +O

(

e−3mR
)

where

Ei = m cosh θi , Φij = ϕ(θi − θj) + ϕ(θi + θj)

whih leads to

e−ǫ(θ1) = e−RE1 + e−RE1

� ∞

0

dθ2
2π

Φ12e
−RE2

+
1

2
e−RE1

(
� ∞

0

dθ2
2π

Φ12e
−RE2

)2

−
1

2
e−RE1

� ∞

0

dθ2
2π

Φ12e
−2RE2

+e−RE1

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

Φ12Φ23e
−R(E2+E3) +O

(

e−4mR
)

(A.1)
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Reall that (3.3) reads

〈O〉R =

∞
∑

n=0

1

n!

n
∏

i=1

(

� ∞

0

dθi
2π

e−ǫ(θi)

1 + e−ǫ(θi)

)

F c
2n(θ1, ..., θn)

Using (A.1) and the geometri series

e−ǫ

1 + e−ǫ
= e−ǫ − e−2ǫ + e−3ǫ + . . .

this an be expanded in orders of e

−mR
. One obtains

〈O〉R = σ1 + σ2 + σ3 +O
(

e

−4mR
)

(A.2)

where

σ1 =

� ∞

0

dθ1
2π

(

e−RE1 − e−2RE1 + e−3RE1
)

F c
2 (θ1) +

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−R(E1+E2)Φ12F
c
2 (θ1)

+
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−R(E1+E2+E3) (Φ12Φ13 +Φ12Φ23 +Φ13Φ23)F
c
2 (θ1)

−

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

(

2e−R(2E1+E2) +
1

2
e−R(E1+2E2)

)

Φ12F
c
2 (θ1)

σ2 =
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−R(E1+E2)F c
4 (θ1, θ2)

−

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−R(2E1+E2)F c
4 (θ1, θ2)

+
1

2

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−R(E1+E2+E3) (Φ13 +Φ23)F
c
4 (θ1, θ2)

σ3 =
1

6

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−R(E1+E2+E3)F c
6 (θ1, θ2, θ3) (A.3)

are the one/two/three-partile ontributions expanded to O(e−4mR).

B Relation between di�erent evaluations of the diagonal matrix

element

Here the arguments of [6℄ are generalized to the ase of boundary form fators. The goal is to

ompute the general expression

Fa1...an(θ1, . . . , θn|ǫ1, . . . , ǫn) = Fān...ā1a1...an(θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn) (B.1)

for in�nitesimal values of the ǫi. It is also interesting to onsider the symmetri evaluation

F s
a1...an

(θ1, . . . , θn) = lim
ǫ→0

Fān...ā1a1...an(θn + iπ + ǫ, ..., θ1 + iπ + ǫ, θ1, ..., θn) (B.2)

Let us take n verties labeled by the numbers 1, 2, . . . , n and let G be the set of the direted

graphs Gi with the following properties:

• Gi is tree-like.

• For eah vertex there is at most one outgoing edge.

For an edge going from i to j we use the notation Eij .
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Theorem 1 (B.1) an be evaluated as a sum over all graphs in G, where the ontribution

of a graph Gi is given by the following two rules:

• Let Ai = {α1, α2, . . . , αm} be the set of verties from whih there are no outgoing edges

in Gi. The form fator assoiated to Gi is

F c
aα1 ...aαm

(θa1 , θa2 , . . . , θam) (B.3)

• For eah edge Ejk the form fator above has to be multiplied by

ǫj
ǫk
Φjk

where

Φjk = ϕajak(θj − θk) + ϕajak(θj + θk) = Φkj

Proof The proof goes by indution in n. For n = 1 there is only a single way to take the

limit and so

Fa(θ1|ǫ1) = F c
a(θ1) = Fāa(iπ + θ1, θ1)

This is in aordane with the theorem, beause for n = 1 there is only the trivial graph whih

ontains no edges and a single node.

Now assume that the theorem is true for n − 1 and let us take the ase of n partiles.

Consider the residue of the matrix element (B.1) at ǫn = 0 while keeping all the ǫi �nite

R = Res
ǫn=0

Fa1...an(θ1..θn|ǫ1..ǫn)

Aording to the theorem the graphs ontributing to this residue are exatly those for whih

the vertex n has an outgoing edge and no inoming edges. Let Rj be sum of the diagrams

where the outgoing edge is Enj for some j = 1, . . . , n − 1, and so

R =

n−1
∑

j=1

Rj

The form fators appearing in Rj do not depend on θn. Therefore one gets exatly the diagrams

that are needed to evaluate F2(n−1)(θ1..θn−1|ǫ1..ǫn−1), apart from the proportionality fator

assoiated to the link Enj and so

Rj = ǫjΦjnFa1...an−1(θ1..θn−1|ǫ1..ǫn−1)

and summing over j yields

R = (ǫ1Φ1n + ǫ2Φ2n + · · · + ǫn−1Φn−1n)Fa1...an−1(θ1..θn−1|ǫ1..ǫn−1) (B.4)

In order to prove the theorem, one only needs to show that the residue indeed takes this form.

On the other hand, using the kinematial residue axiom (2.6)

R = i



1−

n−1
∏

j=1

Sanaj (θn − θj)Sanaj (θn − θj − iπ − ǫj)Sanaj (θn + θi)Sanaj (θn + θj + iπ + ǫj)





×Fa1...an−1(θ1..θn−1|ǫ1..ǫn−1)
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Figure B.1: The graphs relevant for n = 2
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Figure B.2: The graphs relevant for n = 3

whih is exatly the same as eqn. (B.4) when expanded to �rst order in ǫj .
Therefore the proedure desribed in the theorem gives the orret result for the terms

that inlude a 1/ǫn singularity. Using symmetry in the rapidity variables this is true for all the

terms that inlude at least one 1/ǫi for an arbitrary i. There is only one diagram that annot

be generated by the indutive proedure, namely the empty graph. However, there are no

singularities (1/ǫi fators) assoiated to it, and it is idential to F c
2n(θ1, . . . , θn) by de�nition.

Qed.

Let us now illustrate how the theorem works for the ase of a theory with a single partile

speies. In this ase one an use the simpli�ed notation introdued in (3.4) and similarly

denote

F2n(θ1, . . . , θn|ǫ1, . . . , ǫn) = F (θn + iπ + ǫn, ..., θ1 + iπ + ǫ1, θ1, ..., θn)

The ase n = 1 is trivial:

F c
2 (θ) = F s

2 (θ) (B.5)

For n = 2, there are only three graphs, depited in �gure B.1. Applying the rules yields

F4(θ1, θ2|ǫ1, ǫ2) = F c
4 (θ1, θ2) + Φ12

(

ǫ1
ǫ2
F c
2 (θ2) +

ǫ2
ǫ1
F c
2 (θ1)

)

whih yields

F s
4 (θ1, θ2) = F c

4 (θ1, θ2) + Φ12 (F
c
2 (θ2) + F c

2 (θ1)) (B.6)

upon putting ǫ1 = ǫ2. For n = 3 there are 4 di�erent kinds of graphs, the representatives of

whih are shown in �gure B.2; all other graphs an be obtained by permuting the node labels

1, 2, 3. The ontributions of these graphs are
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(a) : F c
6 (θ1, θ2, θ3)

(b) :
ǫ2
ǫ1
Φ12F

c
4 (θ2, θ3)

(c) :
ǫ2
ǫ1

ǫ3
ǫ2
Φ12Φ23F

c
2 (θ3) =

ǫ3
ǫ1
Φ12Φ23F

c
2 (θ3)

(d) :
ǫ2
ǫ1

ǫ2
ǫ3
Φ12Φ23F

c
2 (θ2)

Adding up all the ontributions and putting ǫ1 = ǫ2 = ǫ3:

F s
6 (θ1, θ2, θ3) = F c

6 (θ1, θ2, θ3)

+ (Φ12 +Φ13)F
c
4 (θ2, θ3) + (Φ12 +Φ23)F

c
4 (θ1, θ3) + (Φ13 +Φ23)F

c
4 (θ1, θ2)

+ (F c
2 (θ1) + F c

2 (θ2) + F c
2 (θ3))(Φ12Φ13 +Φ12Φ23 +Φ13Φ23) (B.7)

It an be seen that these results are a natural generalization of the bulk ones obtained in [6℄

with ϕ replaed by Φ. It is also important to keep in mind that ontrary to the bulk situation

F c
2 depends on the rapidity (in the bulk it is a onstant sine Lorentz invariane entails that

all form fators depend only on rapidity di�erenes).

Now the �nite volume diagonal matrix elements (4.8) an also be re-expressed in terms of

the symmetri evaluation. The �rst nontrivial ase is n = 2 for whih

〈{I1, I2}|O(0)|{I1, I2}〉 =
1

ρ2(θ̃1, θ̃2)

(

F c
4 (θ̃1, θ̃2) + ρ̃(θ̃1, θ̃2|{1})F

c
2 (θ̃1)

+ρ̃(θ̃1, θ̃2|{2})F
c
2 (θ̃2)

)

+ 〈O〉+O(e−µL)

where θ̃1, θ̃2 are the solutions of the 2-partile Bethe-Yang equations with quantum numbers

I1, I2. ρ̃ denotes the appropriate sub-determinants (4.10) of the two-partile Jaobian matrix,

while ρn is the full n-partile Jaobi determinant (4.4). It is straightforward to verify that

F c
4 (θ1, θ2) + ρ̃(θ1, θ2|{1})F

c
2 (θ1) + ρ̃(θ1, θ2|{2})F

c
2 (θ2) =

F s
4 (θ1, θ2) + ρ1(θ1)F

s
2 (θ1) + ρ1(θ2)F

s
2 (θ2)

+2ϕ(θ1 + θ2) (F
s
2 (θ1) + F s

2 (θ2)) (B.8)

The term on the last line shows that the analogue of Theorem 2 in [6℄ (whih would make the

expressions on the �rst two lines idential) fails in the boundary ase. This results from the

fat that the derivative matrix (4.5) of the Bethe-Yang equations (4.2) arries a dependene

not only on the ombination ϕ(θj − θk) + ϕ(θj + θk), but also on ϕ(θj − θk)− ϕ(θj + θk).
The relations (B.6), (B.7) and (B.8) were also veri�ed numerially using the expliit form

fator solutions presented in [7℄.
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C e
−3mR

orretions to the �nite temperature one-point fun-

tion

In order to keep the alulation manageable, let us introdue the following shortened notations:

Ei = m cosh θi

〈θ1, . . . , θn|O|θ1, . . . , θn〉L = 〈1 . . . n|O|1 . . . n〉L

ρ(θ1, . . . , θn) = ρ(1 . . . n)

ρ̃(θ1, . . . , θn|{a1, . . . , ak}) = ρ̃(1 . . . n|{a1, . . . , ak})

Summations will be shortened to

∑

θ1...θn

→
∑

1...n
∑

θ1...θn

′

→
∑

1...n

′

and for later onveniene also denote

Φij = ϕ(θi − θj) + ϕ(θi + θj)

whih satis�es Φij = Φji.

Multiplying (5.2) with (5.4) and olleting the third order orretion terms:

1

6

∑

123

′

e−R(E1+E2+E3) (〈123|O|123〉L − 〈O〉L)

−

(

∑

1

e−RE1

)

1

2

∑

23

′

e−R(E2+E3) (〈23|O|23〉L − 〈O〉L)

+

{(

∑

1

e−RE1

)(

∑

2

e−RE2

)

−
1

2

∑

12

′

e−R(E1+E2)

}(

∑

3

e−RE3

)

(〈3|O|3〉L − 〈O〉L)

To keep trae of the state densities it is important to avoid ombining rapidity sums. The

onstrained summations an be replaed by free sums with the diagonal ontributions sub-

trated:

∑

12

′

=
∑

12

−
∑

1=2

∑

123

′

=
∑

123

−





∑

1=2,3

+
∑

2=3,1

+
∑

1=3,2



+ 2
∑

1=2=3

where the diagonal ontributions are labeled aording to whih diagonal the summation

orresponds to, but otherwise the given sum is free, e.g.

∑

1=2,3
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shows a summation over all triplets θ
(3)
1 , θ

(3)
2 , θ

(3)
3 where θ

(3)
1 = θ

(3)
2 and θ

(3)
3 runs free (it an

also be equal with the other two). Finally denote

F (12 . . . n) = F c
2n(θ1, . . . , θn)

so from (5.5) the neessary matrix elements an be written in the form

ρ(123) (〈123|O|123〉L − 〈O〉L) = F (123) + ρ̃(123|{1, 2})F (12)

+ρ̃(123|{1, 3})F (13) + ρ̃(123|{2, 3})F (23)

+ρ̃(123|{1})F (1) + ρ̃(123|{2})F (2) + ρ̃(123|{3})F (3)

ρ(122) (〈122|O|122〉L − 〈O〉L) = 2ρ̃(122|{1, 2})F (12) + ρ̃(122|{1})F (1) + 2ρ̃(122|{2})F (2)

ρ(111) (〈111|O|111〉L − 〈O〉L) = 3ρ̃(111|{1})F (1)

ρ(12) (〈12|O|12〉L − 〈O〉L) = F (12) + ρ̃(12|{1})F (1) + ρ̃(12|{2})F (2)

ρ(11) (〈11|O|11〉L − 〈O〉L) = 2ρ̃(11|{1})F (1)

ρ(1) (〈1|O|1〉L − 〈O〉L) = F (1) (C.1)

where the exlusion property was already used to eliminate form fators with equal rapidity

arguments.

One an now proeed by olleting terms aording to the number of free rapidity variables.

The terms ontaining threefold summation are

Σ
(3)
3 =

1

6

∑

123

e−R(E1+E2+E3) (〈123|O|123〉L − 〈O〉L)−
1

2

∑

1

∑

2,3

(〈23|O|23〉L − 〈O〉L)

+





∑

1

∑

2

∑

3

−
1

2

∑

1,2

∑

3



 (〈3|O|3〉L − 〈O〉L)

Replaing the sums with integrals

∑

1

→

�

dθ1
2π

ρ(1)

∑

1,2

→

�

dθ1
2π

dθ2
2π

ρ(12)

∑

1,2,3

→

�

dθ1
2π

dθ2
2π

dθ3
2π

ρ(123)

and using (C.1)

Σ
(3)
3 =

1

6

�

dθ1
2π

dθ2
2π

dθ3
2π

e−R(E1+E2+E3) (F (123) + 3ρ̃(123|{2, 3})F (23) + 3ρ̃(123|{3})F (3))

−
1

2

�

dθ1
2π

dθ2
2π

dθ3
2π

e−R(E1+E2+E3)ρ(1) (F (23) + 2ρ(23|{3})F (3))

+

�

dθ1
2π

dθ2
2π

dθ3
2π

e−R(E1+E2+E3)

(

ρ(1)ρ(2) −
1

2
ρ(12)

)

F (3)
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where some of the integration variables were reshu�ed. The result is

Σ
(3)
3 =

1

6

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−mR(cosh θ1+cosh θ2+cosh θ3)
[

F c
6 (θ1, θ2, θ3)

+3F c
4 (θ2, θ3)(Φ12 +Φ13) + 3F c

2 (θ3)(Φ12Φ13 +Φ12Φ23 +Φ13Φ23)
]

(C.2)

(to derive the term on the seond line note that the F (3) terms in the integrand of Σ
(3)
3 an

be symmetrized in θ1 and θ2 without hanging the value of the integral).

It is also easy to deal with terms ontaining a single integral. The only term of this form

is

Σ
(1)
3 =

1

3

∑

1=2=3

e−R(E1+E2+E3) (〈123|O|123〉L − 〈O〉L)

When all rapidities θ
(3)
1 , θ

(3)
2 , θ

(3)
3 are equal, the three-partile Bethe-Yang equations redue

to

3

2mL sinh θ
(3)
1 + 2δ

(

2θ
(3)
1

)

+ δ(α)
(

θ
(3)
1

)

+ δ(β)
(

θ
(3)
1

)

= 2πI1

Therefore the relevant state density is

ρ̄123(θ) = 2mL cosh θ + 4ϕ(2θ) + ψ(α)(θ) + ψ(β)(θ)

and

Σ
(1)
3 =

1

3

�

dθ1
2π

e−3RE1 ρ̄123(θ1) (〈111|O|111〉L − 〈O〉L)

=

�

dθ1
2π

e−3RE1ρ(1)
ρ̃(111|{1})

ρ(111)
F (1) →

L→∞

�

dθ1
2π

e−3mR cosh θ1F c
2 (θ1) (C.3)

where it was used that

ρ(1)
ρ̃(111|{1})

ρ(111)
→ 1

when L→∞.

The alulation of double integral terms is muh more involved. The ontributions on-

taining two rapidity summations are

Σ
(2)
3 = −

1

6





∑

1=2,3

+
∑

1=3,2

+
∑

2=3,1



 e−R(E1+E2+E3) (〈123|O|123〉L − 〈O〉L)

+
1

2

∑

1

∑

2=3

e−R(E1+E2+E3) (〈23|O|23〉L − 〈O〉L)

+
1

2

∑

1=2

∑

3

e−R(E1+E2+E3) (〈3|O|3〉L − 〈O〉L) (C.4)

The density of partially degenerate two-partile states was already omputed in (5.10), but the

density of partially degenerate three-partile states is also needed. The relevant Bethe-Yang

3

Just as in (5.9) there are also ontributions of the form δ(0), but these an be absorbed into a rede�nition

of I1.
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equations are

4

2mL sinh θ1 + δ(θ1 − θ2) + δ(θ1 + θ2) + δ(2θ1) + δ(α) (θ1) + δ(β) (θ1) = 2πI1

2mL sinh θ2 + 2δ(θ2 − θ1) + 2δ(θ2 + θ1) + δ(α) (θ2) + δ(β) (θ2) = 2πI2

where the �rst and the third partiles are put as degenerate (i.e. I3 = I1). The density of

these degenerate states is then

ρ̄13,2(12) = det

(

r11 r12
r21 r22

)

(C.5)

r11 = 2LE1 + ϕ(θ1 − θ2) + ϕ(θ1 + θ2) + 2ϕ(2θ1) + ψ(α)(θ) + ψ(β)(θ)

r22 = 2LE2 + 2ϕ(θ1 − θ2) + 2ϕ(θ1 + θ2) + ψ(α)(θ) + ψ(β)(θ)

r12 = −ϕ(θ1 − θ2) + ϕ(θ1 + θ2) , r21 = −2ϕ(θ1 − θ2) + 2ϕ(θ1 + θ2)

where it was used that ϕ(θ) = ϕ(−θ). Using the above result and substituting integrals for

the sums, eqn. (C.4) an be rewritten in the form

−
1

6

�

dθ1
2π

dθ2
2π

e−R(2E1+E2) ρ̄13,2(12)

ρ(112)

[

2ρ̃(112|{2, 3})F (12)

+2ρ̃(112|{1})F (1) + ρ̃(112|{3})F (2) + . . .
]

+
1

2

�

dθ1
2π

dθ2
2π

e−R(E1+2E2)ρ(1)ρ̄12(2)
2ρ̃(22|{1})

ρ(22)
F (2)

+
1

2

�

dθ1
2π

dθ3
2π

e−R(2E1+E3)ρ̄12(1)ρ(3)
1

ρ(3)
F (3)

where the ellipsis denote additional ontributions that an be obtained by ylial permutation

of the indies 1, 2, 3 from those expliitly displayed inside the square braket. These three sets

of ontributions an be shown to be equal to eah other by relabeling the integration variables:

−
1

2

�

dθ1
2π

dθ2
2π

e−R(2E1+E2)
ρ̄13,2(12)

ρ(112)

[

2ρ̃(112|{2, 3})F (12)

+2ρ̃(112|{1})F (1) + ρ̃(112|{3})F (2)
]

+
1

2

�

dθ1
2π

dθ2
2π

e−R(2E1+E2)ρ(2)ρ̄12(1)
2ρ̃(11|{1})

ρ(11)
F (1)

+
1

2

�

dθ1
2π

dθ2
2π

e−R(2E1+E2)ρ̄12(1)F (2) (C.6)

The terms ontaining F (12) ontribute

−

�

dθ1
2π

dθ2
2π

F c
4 (θ1, θ2)e

−mR(cosh θ1+2 cosh θ2)
(C.7)

where it was used that

ρ̄13,2(12)

ρ(112)
ρ̃(112|{2, 3}) = 1 +O(L−1)

4

Just as in (5.9) there are also ontributions of the form δ(0), but these an be absorbed into a rede�nition

of I1.
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whih results from (C.5) and

ρ̃(112|{2, 3}) = 2mL cosh θ1 + 2ϕ(0) + 2ϕ(2θ1) + +ψ(α)(θ) + ψ(β)(θ)

The terms ontaining F (1) and F (2) ombine to

�

dθ1
2π

dθ2
2π

e−R(2E1+E2)

(

−
ρ̄13,2(12)

ρ(112)
ρ̃(112|{1}) + ρ(2)ρ̄12(1)

ρ̃(11|{1})

ρ(11)

)

F (1) +

1

2

�

dθ1
2π

dθ2
2π

e−R(2E1+E2)

(

−
ρ̄13,2(12)

ρ(112)
ρ̃(112|{3}) + ρ̄12(1)

)

F (2)

A straightforward (albeit tedious) alulation leads to

−
ρ̄13,2(12)

ρ(112)
ρ̃(112|{1}) + ρ(2)ρ̄12(1)

ρ̃(11|{1})

ρ(11)
= −2(ϕ(θ1 − θ2) + ϕ(θ1 + θ2)) +O

(

L−1
)

−
ρ̄13,2(12)

ρ(112)
ρ̃(112|{3}) + ρ̄12(1) = −ϕ(θ1 − θ2)− ϕ(θ1 + θ2) +O

(

L−1
)

Note that the individual terms in these sums are proportional to L but their ontributions

drops out. For a more detailed disussion of suh �anomalous� density ontributions the reader

is referred to [6℄.

The total ontribution in the L→∞ limit turns out to be just

−

�

dθ1
2π

dθ2
2π

e−mR(cosh θ1+2 cosh θ2)(2F c
2 (θ1) +

1

2
F c
2 (θ2))(ϕ(θ1 − θ2) + ϕ(θ1 + θ2)) (C.8)

Summing up the ontributions (C.2), (C.3), (C.7) and (C.8) the end result is

Σ3 =
1

6

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

� ∞

0

dθ3
2π

e−mR(cosh θ1+cosh θ2+cosh θ3)[F c
6 (θ1, θ2, θ3)

+3F c
4 (θ2, θ3)(Φ12 +Φ13) + 3F c

2 (θ3)(Φ12Φ13 +Φ12Φ23 +Φ13Φ23)]

−

� ∞

0

dθ1
2π

� ∞

0

dθ2
2π

e−mR(2 cosh θ1+cosh θ2)[F c
4 (θ1, θ2) + (2F c

2 (θ1) +
1

2
F c
2 (θ2))Φ12]

+

� ∞

0

dθ1
2π

e−3mR cosh θ1F c
2 (θ1) (C.9)
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