
ar
X

iv
:h

ep
-t

h/
01

08
15

7v
3 

 1
2 

D
ec

 2
00

1

ITP�Budapest Report No. 573

Finite size e�ets in boundary sine-Gordon theory

Z. Bajnok, L. Palla and G. Takás

November 15, 2018

Institute for Theoretial Physis

Roland Eötvös University,

H-1117 Budapest, Pázmány P. sétány 1/A, Hungary

Abstrat

We examine the �nite volume spetrum and boundary energy in boundary sine-

Gordon theory, based on our reent results obtained by losing the boundary boot-

strap. The spetrum and the re�etion fators are heked against trunated onfor-

mal spae, together with a (still unpublished) predition by Al.B. Zamolodhikov for

the boundary energy and the relation between the parameters of the sattering ampli-

tudes and of the perturbed CFT Hamiltonian. In addition, a derivation of Zamolod-

hikov's formulae is given. We �nd an entirely onsistent piture and strong evidene

for the validity of the onjetured spetrum and sattering amplitudes, whih together

give a omplete desription of the boundary sine-Gordon theory on mass shell.

1 Introdution

Sine-Gordon �eld theory is one of the most important quantum �eld theoreti models

with numerous appliations ranging from partile theoreti problems to ondensed matter

systems, and one whih has played a entral role in our understanding of 1+1 dimensional

�eld theories. A ruial property of the model is integrability, whih permits an exat

analyti determination of many of its physial properties and harateristi quantities.

Integrability an also be preserved in the presene of a boundary if suitable boundary

onditions are imposed [1℄.

In this paper, ontinuing our work started in [2, 3℄, we investigate sine-Gordon �eld

theory on the half-line and on a �nite volume interval, with integrable boundary ondi-

tions. It was �rst pointed out by Ghoshal and Zamolodhikov [4℄ that the most general

integrable boundary potential depends on two parameters. They also introdued the notion

of `boundary rossing unitarity', and ombining it with the boundary version of the Yang
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Baxter equations they were able to determine soliton re�etion fators on the boundary;

later Ghoshal ompleted this work by determining the breather re�etion fators [5℄ using

a boundary bootstrap equation �rst proposed by Fring and Köberle [6℄.

The results of Ghoshal and Zamolodhikov onerned only the re�etion fators on

the ground state boundary, although they already notied that there are poles in the

amplitudes whih signal the existene of exited boundary states. The �rst (partial) results

on the spetrum of these boundary states were obtained by Saleur and Skorik for Dirihlet

boundary onditions [7℄. However, they did not take into aount the boundary analogue

of the Coleman-Thun mehanism, the importane of whih was �rst emphasized by Dorey

et. al. [8℄. Using this mehanism Mattsson and Dorey were able to lose the bootstrap in

the Dirihlet ase and determine the omplete spetrum and the re�etion fators on the

exited boundary states [9℄. Reently we used their ideas to obtain the spetrum of exited

boundary states and their re�etion fators for the Neumann boundary ondition [2℄ and

then for the general two-parameter family of integrable boundary onditions [3℄. For the

Neumann ase, extensive heks were performed using a boundary version of the so-alled

Trunated Conformal Spae Approah (TCSA) [10, 11℄; for the generi ase, however, these

heks were not arried out at that time.

Another interesting problem is that of the boundary energy. Namely, the boundary

ontributes a volume independent (onstant) term to the free energy, in addition to the

bulk energy density whih gives a term proportional to the spatial volume. Just as in the

ase of the bulk energy density, the boundary energy in general QFT is not a universal

quantity. However, in perturbed onformal �eld theories there is a preferred normalization

1

of the Hamiltonian whih gives a unique de�nition for both the bulk and the boundary

ontributions. Therefore, this boundary energy is an interesting quantity to ompute. For

Dirihlet boundary ondition it was obtained by Lelair et al. in [12℄. A few years ago Al.

B. Zamolodhikov presented a result for general integrable boundary onditions [13℄.

One ruial ingredient, that is needed e.g. for a TCSA hek of the spetrum and

re�etion fators for the general integrable boundary onditions, is a relation between the

ultraviolet (UV) parameters that appear in the perturbed CFT Hamiltonian and the in-

frared (IR) parameters in the re�etion fators. This relation was also obtained by Al.

B. Zamolodhikov [13℄. Using his result, we perform an extensive hek of the spetrum,

boundary energy and re�etion fators of boundary sine-Gordon theory. This provides

strong evidene that all the results mentioned above form a onsistent and omplete de-

sription of the boundary sine-Gordon theory on mass shell (i.e. spetrum and sattering

amplitudes).

The paper is organized as follows. In Setion 2 we reall the results on the boundary

bootstrap in boundary sine-Gordon theory. Setion 3 desribes Zamolodhikov's formulae

on the UV-IR relation and the boundary energy. These formulae were presented at some

seminars, but have not been published; however, we ould get some notes taken by the

1

In this preferred normalization, the perturbing bulk and boundary operators transform homogeneously

under sale transformations.
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audiene.

2

In these notes we found several misprints; in order to determine the orret form

of the formulae (whih is of utmost importane in order to make the omparison to TCSA),

we rederive here the boundary energy using the thermodynami Bethe Ansatz (TBA) and

then hek the UV-IR relation using the exat vauum expetation values of boundary

�elds onjetured by Fateev, Zamolodhikov and Zamolodhikov [14℄.

3

In Setion 4 we

desribe the results oming from TCSA for generi (non Dirihlet) boundary onditions,

while in Setion 5 we present the results for Dirihlet boundary onditions, whih are a

singular limit of the generi ase and so the TCSA must be set up di�erently. The paper

ends with some brief onlusions and an outlook in Setion 6.

2 Boundary bootstrap in sine-Gordon theory

Boundary sine-Gordon theory is de�ned by the ation

AsG =

∫ ∞

−∞

dt

(
∫ 0

−∞

dx

[

1

2
∂µΦ∂

µΦ+
m2

0

β2
cos βΦ

]

+M0 cos
β

2
(Φ(0, t)− φ0)

)

(2.1)

where Φ(x, t) is a real salar �eld and M0, φ0 are the two parameters haraterizing the

boundary ondition:

∂xΦ(x, t)|x=0 = −M0
β

2
sin

(

β

2
(Φ(0, t)− φ0)

)

. (2.2)

Ghoshal and Zamolodhikov showed that the above model is integrable [4℄ and that the

above boundary potential is the most general that permits the existene of higher spin

onserved harges.

2.1 Bulk sattering properties

In the bulk sine-Gordon model the partile spetrum onsists of the soliton s, the antisoliton
s̄ , and the breathers Bn

whih appear as bound states in the ss̄ sattering amplitude S−+
+− .

As a onsequene of the integrable nature of the model any sattering amplitude fatorizes

into a produt of two partile sattering amplitudes, from whih the independent ones in

the purely solitoni setor are [16℄

a(u) = S++
++(u) = S−−

−−(u) = −
∞
∏

l=1

[

Γ(2(l − 1)λ− λu
π
)Γ(2lλ+ 1− λu

π
)

Γ((2l − 1)λ− λu
π
)Γ((2l − 1)λ+ 1− λu

π
)
/(u → −u)

]

b(u) = S+−
+−(u) = S−+

−+(u) =
sin(λu)

sin(λ(π − u))
a(u) ;

c(u) = S−+
+−(u) = S+−

−+(u) =
sin(λπ)

sin(λ(π − u))
a(u) ; (2.3)

2

We thank P. Dorey and G. Watts for making the notes available to us.
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The derivation presented here is very similar to the way Al.B. Zamolodhikov arrived to the formulae

(3.2-3.4) in Setion 3.1, aording to the hints he gave in his seminars.
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where the parameter λ is determined by the sine-Gordon oupling onstant

λ =
8π

β2
− 1 (2.4)

and u = −iθ denotes the purely imaginary rapidity. The other sattering amplitudes an

be desribed in terms of the funtions

{y} =

(

y+1
2λ

) (

y−1
2λ

)

(

y+1
2λ

− 1
) (

y−1
2λ

+ 1
) , (x) =

sin
(

u
2
+ xπ

2

)

sin
(

u
2
− xπ

2

) , {y}{−y} = 1 , {y + 2λ} = {−y}

as follows. For the sattering of the breathers Bn
and Bm

with n ≥ m and relative rapidity

u the amplitude takes the form

Snm(u) = Snm
nm(u) = {n+m− 1}{n+m− 3} . . . {n−m+ 3}{n−m+ 1} ,

while for the sattering of the soliton (antisoliton) and Bn

Sn(u) = S+n
+n(u) = S−n

−n(u) = {n− 1 + λ}{n− 3 + λ} . . .
{

{1 + λ} if n is even

−
√

{λ} if n is odd .

2.2 Ground state re�etion fators

The most general re�etion fator - modulo CDD-type fators - of the soliton antisoliton

multiplet |s, s̄〉 on the ground state boundary, denoted by | 〉, satisfying the boundary

versions of the Yang Baxter, unitarity and rossing equations was found by Ghoshal and

Zamolodhikov [4℄:

R(η, ϑ, u) =

(

P+(η, ϑ, u) Q(η, ϑ, u)
Q(η, ϑ, u) P−(η, ϑ, u)

)

=

(

P+
0 (η, ϑ, u) Q0(u)
Q0(u) P−

0 (η, ϑ, u)

)

R0(u)
σ(η, u)

cos(η)

σ(iϑ, u)

cosh(ϑ)
,

P±
0 (η, ϑ, u) = cos(λu) cos(η) cosh(ϑ)∓ sin(λu) sin(η) sinh(ϑ)

Q0(u) = − sin(λu) cos(λu) (2.5)

where η and ϑ are the two real parameters haraterizing the solution,

R0(u) =
∞
∏

l=1

[

Γ(4lλ− 2λu
π
)Γ(4λ(l − 1) + 1− 2λu

π
)

Γ((4l − 3)λ− 2λu
π
)Γ((4l − 1)λ+ 1− 2λu

π
)
/(u → −u)

]

is the boundary ondition independent part and

σ(x, u) =
cosx

cos(x+ λu)

∞
∏

l=1

[

Γ(1
2
+ x

π
+ (2l − 1)λ− λu

π
)Γ(1

2
− x

π
+ (2l − 1)λ− λu

π
)

Γ(1
2
− x

π
+ (2l − 2)λ− λu

π
)Γ(1

2
+ x

π
+ 2lλ− λu

π
)

/(u → −u)

]

4



desribes the boundary ondition dependene. Note that the topologial harge may be

hanged by two in these re�etions, thus the parity of the soliton number is onserved.

As a onsequene of the bootstrap equations [4℄ the breather re�etion fators share

the struture of the solitoni ones, [5℄:

R(n)(η, ϑ, u) = R
(n)
0 (u)S(n)(η, u)S(n)(iϑ, u) , (2.6)

where

R
(n)
0 (u) =

(

1
2

) (

n
2λ

+ 1
)

(

n
2λ

+ 3
2

)

n−1
∏

l=1

(

l
2λ

) (

l
2λ

+ 1
)

(

l
2λ

+ 3
2

)2 ; S(n)(x, u) =

n−1
∏

l=0

(

x
λπ

− 1
2
+ n−2l−1

2λ

)

(

x
λπ

+ 1
2
+ n−2l−1

2λ

) . (2.7)

In general R
(n)
0 desribes the boundary independent properties and the other fators give

the boundary dependent ones.

2.3 The spetrum of boundary bound states and the assoiated

re�etion fators

In the general ase, the spetrum of boundary bound states was derived in [3℄. It is a

straightforward generalization of the spetrum in the Dirihlet limit previously obtained by

Mattsson and Dorey [9℄. The states an be labeled by a sequene of integers |n1, n2, . . . , nk〉.
Suh a state exists whenever the

π

2
≥ νn1

> wn2
> νn3

> wn4
> . . . ≥ 0

ondition holds, where

νn =
η

λ
− (2n+ 1)π

2λ
and wn = π − η

λ
− (2n− 1)π

2λ

denote the loation of ertain poles in σ(η, u). The mass of suh a state (i.e. its energy

above the ground state) is

m|n1,n2,...,nk〉 = M
∑

i odd

cos(νni
) +M

∑

i even

cos(wni
) , (2.8)

where M is the soliton mass. The re�etion fators of the various partiles on these

boundary states depend on whether k is even or odd. When k is even, the re�etion

fators take the form

Q|n1,n2,...,nk〉(η, ϑ, u) = Q(η, ϑ, u)
∏

i odd

ani
(η, u)

∏

i even

ani
(η̄, u) ,

and

P±
|n1,n2,...,nk〉

(η, ϑ, u) = P±(η, ϑ, u)
∏

i odd

ani
(η, u)

∏

i even

ani
(η̄, u) ,

5



for the solitoni proesses, where

an(η, u) =

n
∏

l=1

{

2
(η

π
− l
)}

; η̄ = π(λ+ 1)− η .

For the breather re�etion fators the analogous formula is

R
(n)
|n1,n2,...,nk〉

(η, ϑ, u) = R(n)(η, ϑ, u)
∏

i odd

bnni
(η, u)

∏

i even

bnni
(η̄, u) (2.9)

where now

bnk(η, u) =

min(n,k)
∏

l=1

{

2η

π
− λ+ n− 2l

}{

2η

π
+ λ− n− 2(k + 1− l)

}

. (2.10)

In the ase when k is odd, the same formulae apply if in the P±
, Q and R(n)

ground state

re�etion fators the η ↔ η̄ and s ↔ s̄ hanges are made.

3 Boundary energy and UV-IR relation in sine-Gordon

theory

3.1 Zamolodhikov's formulae

As mentioned in the introdution, reently Al. B. Zamolodhikov presented (but not yet

published) [13℄ a formula for the relation between the UV and the IR parameters in the

sine-Gordon model. To set the onventions for this relation, onsider boundary sine-Gordon

theory as a joint bulk and boundary perturbation of the c = 1 free boson with Neumann

boundary onditions (perturbed onformal �eld theory, pCFT):

ApCFT = AN
c=1+µ

∫ ∞

−∞

dt

∫ 0

−∞

dx : cos βΦ(x, t) : +µ̃

∫ ∞

−∞

dt : cos
β

2
(Φ(0, t)− φ0) : (3.1)

where the olons denote the standard CFT normal ordering, whih de�nes the normaliza-

tion of the operators and of the oupling onstants. The ouplings µ and µ̃ have nontrivial

dimensions;

[µ] = [mass]2−2hβ , [µ̃] = [mass]1−hβ , hβ =
β2

8π
,

see the setion on TCSA for more details. With these onventions the UV-IR relation

4

is

cos

(

β2η

8π

)

cosh

(

β2ϑ

8π

)

=
µ̃

µ̃crit

cos

(

βφ0

2

)

,

sin

(

β2η

8π

)

sinh

(

β2ϑ

8π

)

=
µ̃

µ̃crit
sin

(

βφ0

2

)

, (3.2)

4

A similar relation was derived by Corrigan and Taormina [15℄ for sinh-Gordon theory, however, their

normalization of the oupling onstants is di�erent from the one natural in the perturbed CFT framework.
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where

µ̃crit =

√

√

√

√

2µ

sin
(

β2

8

) . (3.3)

Zamolodhikov also gave the boundary energy as

E(η, ϑ) = − M

2 cos π
2λ

(

cos
(η

λ

)

+ cosh

(

ϑ

λ

)

− 1

2
cos
( π

2λ

)

+
1

2
sin
( π

2λ

)

− 1

2

)

. (3.4)

3.2 Derivation of the boundary energy from TBA

In an integrable boundary theory with one salar partile of mass m only, one an write

down the TBA equation for the ground state energy on a strip with spatial volume L and

integrable boundary onditions a and b at the two ends. The equation is of the form [12℄:

ε (θ) = 2l cosh θ + kab (θ)−
∫ ∞

−∞

dθ′

2π
ϕ (θ − θ′) log

(

1 + e−ε(θ′)
)

(3.5)

where l = mL is the dimensionless volume parameter. The kernel is expressed in terms of

the two-body S-matrix S(θ) as

ϕ(θ) = −i
∂

∂θ
logS (θ) ,

while

kab(θ) = − log

[

Ra

(

iπ

2
− θ

)

Rb

(

iπ

2
+ θ

)]

,

where Ra (θ) and Rb (θ) are the re�etion fators for the two ends. From the solution ε (θ)
of the TBA equation the ground state energy an be alulated using the formula

E(L) = EbulkL+ Eboundary −
πc(mL)

24L
, c(l) =

6l

π2

∫ ∞

−∞

dθ L(θ) cosh θ , (3.6)

where L(θ) is the usual short hand notation L(θ) = log
(

1 + e−ε(θ)
)

. It is well-known

that no suh TBA equation (or, for that matter, a �nite system of TBA equations) an be

written for sine-Gordon theory as a result of the nondiagonal bulk and boundary sattering

of the solitons (exept for speial values of the parameters). Therefore, our approah is to

alulate the boundary energy for sinh-Gordon theory and then analytially ontinue bak

to the sine-Gordon ase. This is known to work e.g. for S-matries, form fators and many

other quantities, and so we simply assume it works for the boundary energy as well.

Consider therefore the boundary energy in boundary sinh-Gordon theory

AshG =

∫ ∞

−∞

dt

(
∫ 0

∞

dx

[

1

2
∂µΦ∂

µΦ− m2
0

b2
cosh bΦ

]

−M0 cosh
b

2
(Φ− φ0)

)

,

7



whih an be onsidered as the analyti ontinuation of the boundary sine-Gordon model

(2.1) by substituting b = iβ (and hanging the onvention for the sign of M0). Then from

(2.4)

λ = −8π

b2
− 1

and, as a result, λ is negative for the sinh-Gordon ase. Note that the analyti ontinuation

is through the point λ = ∞ (omplex in�nity), therefore for the purposes of relating

physial quantities between the two models the natural variable is λ−1
.

We now proeed to the alulation of the boundary energy. A similar alulation was

performed by Dorey at al. [11℄ for the saling Lee-Yang ase. They presented the general

idea with enough hints to reonstrut the method, but for the sake of ompleteness we

write down the details for the interested reader. It is based on Zamolodhikov's method

for obtaining the bulk energy from the TBA with periodi boundary onditions [17℄.

Suppose for simpliity that the boundary onditions a and b are idential and so k = kaa
is even. Then in general the funtions k and ϕ have the following asymptoti behaviour

k(θ) ∼ k0 + Ae−|θ| + . . .

ϕ (θ) ∼ Ce−|θ| + . . . (3.7)

for |θ| → ∞, where k0, A and C are real onstants.

The `kink' funtions, de�ned as

ε± (θ) = lim
l→ 0

ε

(

θ ± log
1

l

)

,

satisfy the `kink' equation

ε± (θ) = e±θ + k0 −
∫ ∞

−∞

dθ′

2π
ϕ (θ − θ′) log

(

1 + e−ε±(θ′)
)

and are related as

ε− (θ) = ε+ (−θ) .

Let us also introdue the following de�nitions

L± (θ) = log
(

1 + e−ε±(θ)
)

and de�ne the asymptoti values

ε0 = ε+(−∞) , L0 = L+(−∞) = log
(

1 + e−ε0
)

whih satisfy the standard `plateau' equation

ε0 = k0 −NL0 , N =

∫ ∞

−∞

dθ

2π
ϕ (θ) . (3.8)

8



Our aim is to expand c(l) around l = 0. To alulate the �rst few terms, it is onvenient

to de�ne the funtions δ and L̃ in the following way:

ε(θ) = ε+

(

θ − log
1

l

)

+ ε+

(

−θ − log
1

l

)

+ δ (θ)− ε0 ,

L(θ) = L+

(

θ − log
1

l

)

+ L+

(

−θ − log
1

l

)

+ L̃ (θ)− L0 . (3.9)

They satisfy

δ (θ) = k (θ)− k0 −
∫ ∞

−∞

dθ′

2π
ϕ (θ − θ′) L̃ (θ′) , (3.10)

δ (θ) , L̃ (θ) → 0 as l → 0.

We an then rewrite

c(l) =
6

π2

∫ ∞

−∞

dθ eθL+(θ) +
6l2

π2

∫ ∞

−∞

dθ e−θ ∂L+

∂θ
+

6l

π2

∫ ∞

−∞

dθ L̃ (θ) cosh θ

The �rst term gives the UV entral harge and an be alulated using the standard

dilogarithm sum rules. The seond term is the (anti) bulk energy density, that an be

alulated self-onsistently by examining the θ → −∞ asymptotis of the integrand [17℄:

∂L+

∂θ
= − 1

1 + eε+(θ)

∂ε+
∂θ

∼ − 1

1 + eε0
∂ε+
∂θ

for θ → −∞

The terms proportional to eθ must anel for the integral to onverge on its lower bound.

Using the kink equation and the asymptotis of ϕ, to leading order

∂ε+
∂θ

= eθ
(

1− C

2π

∫ ∞

−∞

dθ′ e−θ′ ∂L+

∂θ′

)

from whih

∫ ∞

−∞

dθ e−θ ∂L+

∂θ
=

2π

C
.

In the perturbed onformal �eld theory formalism, the ground state energy an be expanded

as

E(L) =
π

L

∞
∑

n=0

Cn (mL)n(1−∆)

so the terms linear in L must anel from (3.6). Therefore we obtain the bulk energy

density as

Ebulk =
1

2C
m2 .

The third term an be rewritten using that L̃ (θ) = L̃ (−θ):
∫ ∞

−∞

dθ L̃ (θ) cosh θ =

∫ ∞

−∞

dθ L̃ (θ) e−θ

9



After a partially integration, it an be seen that one again, the integral is onvergent

if terms proportional to eθ anel in

∂L̃
∂θ
. Using equations (3.9) this is equivalent to an-

ellation of all terms proportional eθ in δ, at least to leading order in l. From (3.10) we

obtain

δ (θ) = eθ
(

A− C

2π

∫ ∞

−∞

dθ′L̃ (θ′) e−θ′
)

from whih we obtain (to leading order)

∫ ∞

−∞

dθ L̃ (θ) e−θ =
2πA

C
.

None of the subleading terms ontains any ontribution whih are independent of the

volume and therefore in (3.6) Eboundary must anel against this partiular term, leading to

Eboundary =
A

2C
m .

3.3 The sinh-Gordon ase

In sinh-Gordon theory the two partile S-matrix an be written as (remember, that in our

onvention λ is negative in its physial range):

S (θ) =
sinh θ + i sin π

λ

sinh θ − i sin π
λ

. (3.11)

As a result, the TBA kernel is

ϕ(θ) = − 2 cosh θ sin π
λ

sinh2 θ + sin2 π
λ

∼ −4 sin
π

λ
e−|θ| +O

(

e−2|θ|
)

,

and so we get

C = −4 sin
π

λ
.

The integral N takes the value

N =

∫ ∞

−∞

dθ

2π
ϕ (θ) =

{

1 for ℜeλ < 0
−1 for ℜeλ > 0

whih means that the plateau equation (3.8) has the solution

e−ε0 =
e−k0

1 + e−k0 signℜeλ .

Note that there is no real solution for λ < 0, k0 ≤ 0. This peuliarity of the sinh-Gordon

TBA equation was already noted by Al.B. Zamolodhikov in the ase of periodi boundary

ondition [18℄. We simply assume that we are working for parameter values for whih suh

10



a solution exists, so the onsiderations of the previous subsetion apply. This is always the

ase for ℜeλ > 0, whih is however not a physial range of the parameter λ in sinh-Gordon

theory. Therefore we treat the sinh-Gordon TBA in this range as a mathematial problem

only, without a orresponding physial �eld theory (exept for the ase λ = 3/2, see later).
We further assume that all physial quantities that we wish to alulate are meromorphi

funtions of λ−1
and so they have a unique analyti ontinuation to the values of λ−1

that

we are interested in

5

. Note that this argument is not a proper derivation; however, for

the time being this is the only way we an arrive at the desired result, and we show that

the results �t with the bootstrap spetrum, TCSA data and known results from previous

literature.

E.g. for the bulk energy density we obtain

EshG
bulk = − m2

8 sin π
λ

.

This is meromorphi in λ−1
and so we trust that it is the true bulk energy onstant of the

sinh-Gordon theory in the regime λ < 0. Furthermore, it is equal to the known result [19℄.

Now we an try and ontinue this result to the sine-Gordon regime λ > 0. Under this

ontinuation the sinh-Gordon partile is identi�ed with the �rst breather of sine-Gordon

theory and so we have

m = 2M sin
π

2λ
,

where M is the soliton mass. We then obtain

EsG
bulk = −M2

4
tan

π

2λ
,

whih is the orret bulk energy density of sine-Gordon theory [24℄. Hene the above

method of ontinuation works for the bulk energy onstant.

Now let us alulate the boundary energy. From eqns. (2.6,2.7), the re�etion fator

of the �rst breather in sine-Gordon theory an be written as

R(1)(θ) =

(

1
2

)

θ

(

1
2λ

+ 1
)

θ
(

1
2λ

+ 3
2

)

θ

(

η
πλ

− 1
2

)

θ

(

iϑ
πλ

− 1
2

)

θ
(

η
πλ

+ 1
2

)

θ

(

iϑ
πλ

+ 1
2

)

θ

, (x)θ ≡ (x) =
sinh

(

θ
2
+ iπx

2

)

sinh
(

θ
2
− iπx

2

) , (3.12)

where η and ϑ parametrize the boundary onditions. The sinh-Gordon re�etion fator an

be obtained by ontinuing the re�etion fator to negative values of λ−1
(for sinh-Gordon

theory, η is real and ϑ is purely imaginary, while for sine-Gordon theory both parameters

are real). Putting the same boundary ondition on the two boundaries of the strip (with

the same values of ϑ and η) we obtain

EshG
boundary = 2EshG(η, ϑ)

5

It is lear that the relevant variable to onsider is λ−1
beause the ontinuation in the oupling goes

through the value β = 0 whih orresponds to λ = ∞

11



where E(η, ϑ) is the energy of a single boundary. The term k (θ) in the TBA equation

(3.5) is

k (θ) = − log [K (θ)K (−θ)] , K (θ) = R(1)
(

i
π

2
− θ
)

.

Using the identity

(x)iπ
2
+θ(x)iπ

2
−θ =

cosh θ + sin πx

cosh θ − sin πx
,

we get

− log
[

(x)iπ
2
+θ(x)iπ

2
−θ

]

∼ −4 sin πx e−|θ| +O
(

e−2|θ|
)

.

Note that k0 and A in (3.7) an be alulated additively from the asymptotis of the

ontribution of a single (x) blok above. As a result, k0 = 0 and so the plateau eqn.

(3.8) has no solution in the sinh-Gordon regime λ < 0, thus the analyti ontinuation

desribed above annot be avoided. Putting the ingredients together, the boundary energy

in sinh-Gordon theory takes the form

EshG(η, ϑ) = − m

2 sin π
λ

(

cos
(η

λ

)

+ cosh

(

ϑ

λ

)

− 1

2
cos
( π

2λ

)

+
1

2
sin
( π

2λ

)

− 1

2

)

. (3.13)

It is now easy to reover Zamolodhikov's formula (3.4) for the boundary energy in sine-

Gordon theory.

As an immediate hek on this alulation, we wish to note that for λ = 3
2
the S-matrix

(3.11) is idential to that of the saling Lee-Yang model, and the re�etion fators of the

saling Lee-Yang model orresponding to integrable boundary onditions are reprodued

by speifying some omplex values for η and ϑ. It an be easily heked that the formula

(3.13) reprodues orretly the results of Dorey et al. [11℄.

3.4 Speial ases

Sine we obtained the boundary energy of sine-Gordon/sinh-Gordon theory under some

non trivial assumptions we hek the results in some known ases.

3.4.1 Dirihlet boundary onditions

Dirihlet boundary onditions orrespond to the limit µ → ∞ in (3.1), whih leads to

Φ(0, t) = φ0 mod
2π

β
.

The re�etion fator of the �rst breather an be obtained as the ϑ → ∞ limit of (3.12):

R(1)(θ) =

(

1
2

)

θ

(

1
2λ

+ 1
)

θ
(

1
2λ

+ 3
2

)

θ

(

η
πλ

− 1
2

)

θ
(

η
πλ

+ 1
2

)

θ

.

12



The derivation of the previous subsetion then gives the boundary energy

ED(η) = − M

2 cos π
2λ

(

cos
(η

λ

)

− 1

2
cos
( π

2λ

)

+
1

2
sin
( π

2λ

)

− 1

2

)

, (3.14)

whih is exatly idential to the formula obtained by Lelair et al. in [12℄. The parameter

η is related to φ0 in the following way

η = π (λ+ 1)
βφ0

2π
,

whih was onjetured by Ghoshal and Zamolodhikov [4℄, and is a straightforward onse-

quene of eqns. (3.2) as well.

Note that ED(η) annot be obtained as the ϑ → ∞ limit of the general boundary

energy eqn. (3.4). The reason is lear: the boundary potential is normalized in di�erent

ways in the two ases: lassially to obtain �nite energy in the Dirihlet limit one has to

add M0 to the general −M0 cos
(

β
2
(Φ− φ0)

)

boundary potential. Clearly in the quantum

ase, when the boundary vertex operator has a non trivial dimension, we an not simply

subtrat µ̃ from E(η, ϑ). Sine the quantity we subtrat must have the dimension of mass

and should depend on µ̃, it must be proportional to µ̃1/(1−hβ) = µ̃λ/(λ+1)
. The question

is whether we an make this subtration suh that in the ϑ → ∞ limit the leading term

anels and the onstant terms just reprodue ED(η). The UV-IR relations, eqn. (3.2-3.3)

guarantee, that

µ̃ → µcrit

2
exp

(

ϑ

λ+ 1

)(

1 + exp

(

− 2ϑ

λ+ 1

)

cos(
2η

λ+ 1
) +O exp

(

− 4ϑ

λ + 1

))

as ϑ → ∞ .

Thus, upon using the bulk mass gap relation (f. eqn. (4.2)), µ̃λ/(λ+1)
beomes proportional

to Meϑ/λ up to exponentially small terms for ϑ → ∞. Therefore, if we subtrat this term

with an appropriate oe�ient then in the Dirihlet limit the surviving onstant terms

exatly reprodue (3.14).

3.4.2 The �rst exited state

It was noted in [9℄ (for Dirihlet boundary ondition) and in [3℄ (for the general ase) that

ontinuing analytially

η → π(λ+ 1)− η

the role of the boundary ground state |〉 and the boundary �rst exited state |0〉 are

interhanged. Therefore we an alulate the energy di�erene between these two states

from the formula for the boundary energy, eqn. (3.4). The result is

E(π(λ+ 1)− η, ϑ)− E(η, ϑ) = M cos
(η

λ
− π

2λ

)

whih exatly equals the predition of the bootstrap, i.e.

E|0〉 −E|〉 = M cos ν0

that follows from eqn. (2.8).
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3.5 UV-IR relations and vauum expetation values (VEVs)

As it is well known in the bulk sine-Gordon theory there is a relation among the following

three exatly alulable quantities: the ground state energy density, the dimensionless

onstant entering the mass gap relation onneting the UV and IR parameters, and the

VEV of the exponential �eld 〈eiβΦ(x)〉 [20℄. This relation is suh that knowing any two

of these quantities determines the third one. It generalizes to sine-Gordon theory with

boundaries, where it onnets the boundary energy, the UV-IR relations (3.2-3.3), and

the VEV of the boundary �eld 〈eiβ2Φ(0)〉 in a similar way. As the VEV of the boundary

operators has been determined by Fateev, Zamolodhikov and Zamolodhikov (FZZ), we

an use it to show that the UV-IR relations, (3.2-3.3) and the boundary energy, (3.4), are

indeed onsistent with the VEVs given in [14℄. For simpliity we onsider only the speial

ase when φ0 = 0, as this ase already illustrates the point. (More preisely the ondition

φ0 = 0 an be satis�ed in two di�erent ways [3℄: either by ϑ = 0 or by η = 0, and we

onsider the former possibility).

Writing the funtional integral representation of the partition funtion Zab = Tre−RHab(L)

on a ylinder of length R and irumferene L with boundary states a and b on the bound-

ary irles and onsidering the R → ∞ limit (when Zab ∼ e−REab(L)
) one readily derives

that in this limit the ground state energy Eaa satis�es

∂Eaa

∂µ̃
= −〈eiβ2Φ(0)〉 ≡ −G(β, µ̃). (3.15)

(In writing this equation we assumed that G(β, µ̃) = G(−β, µ̃)). Sine for ϑ = 0 the ground
state energy depends on µ̃ only through the η parameter appearing in the boundary energy,

eqn. (3.15) atually determines the dependene of η on µ̃. Furthermore, both sides of (3.15)

an be integrated to obtain the following expression for the boundary energy

E(η) = −
∫

dµ̃G(β, µ̃) . (3.16)

What we show below is that using the FZZ expression for G(β, µ̃) on the r.h.s. gives (3.4)

for the boundary energy only if (3.2-3.3) hold.

The expression given in [14℄ for G(β, µ̃) depends on µ̃ through a parameter z, whih,
for φ0 = 0, we take to be pure imaginary z = iZ (Z real):

cos2(πZ) =
µ̃2

2µ
sin

(

β2

8

)

. (3.17)

Then

G(β, µ̃) =

(

πµΓ( λ
λ+1

)

2Γ( 1
λ+1

)

)
1

2λ

g0(β)gS(β, Z) ,
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where g0 and gS are given by the integral representations

6

:

log g0(β) =

∞
∫

0

dt

t

[

2 sinh(t/(λ+ 1)

sinh(t) sinh(tλ/(λ+ 1))

(

etλ/(2λ+2) cosh

(

t

2

)

cosh

(

t

2λ+ 2

)

− 1

)

− e−t

λ+ 1

]

,

log gS(β, Z) = −
∞
∫

0

dt

t

2 sinh(t/(λ+ 1) sinh2(Zt)

sinh(t) sinh(tλ/(λ+ 1))
.

The integrals appearing here an be omputed analytially after some e�orts. Finally,

expressing µ in terms of the soliton mass M via (4.2), and onverting the integral over µ̃
to an integral over πZ by using (3.17), after some algebra one �nds

−
∫

dµ̃G(β, µ̃) = − M

2 cos
(

π
2λ

) cos

(

Zπ(λ+ 1)

λ

)

+ f(λ) .

This agrees with the boundary energy, (3.4), if Zπ = η
λ+1

, i.e. when eqn. (3.17) beomes

idential to (the ϑ = 0 ase of) (3.2-3.3).

4 TCSA: general integrable boundary ondition

4.1 TCSA for the boundary sine-Gordon model

First we desribe the Hamiltonian of boundary sine-Gordon model (BSG) living on the

line segment 0 ≤ x ≤ L as that of a bulk and boundary perturbed free boson with suitable

boundary onditions. This is the starting point of the TCSA analysis.

The basi idea of TCSA is to desribe ertain 2d models in �nite volume as relevant

perturbations of their ultraviolet limiting CFT-s [10℄. If we onsider boundary �eld theo-

ries, then the CFT-s in the ultraviolet are in fat boundary CFT-s. The use of TCSA to

investigate boundary theories was advoated in [11, 21℄.

As the bulk SG model an be suessfully desribed in TCSA as a perturbation of the

c = 1 free boson [22℄, it is natural to expet that the various BSG models are appropriate

perturbations of c = 1 theories with Neumann or Dirihlet boundary onditions. Therefore

we take the strip 0 ≤ x ≤ L and onsider the following perturbations of the free boson, as

desribed in detail in [2℄:

S =

∫ ∞

−∞

∫ L

0

(

1

2
∂µΦ∂

µΦ+ µ cos(βΦ)

)

dxdt+

+

∫ ∞

−∞

(

µ̃0 cos

(

β

2
(ΦB − φ0)

)

+ µ̃L cos

(

β

2
(ΦB − φL)

))

dt .

6

Note that the integral for log gS ontains a fator of 1/2 ompared to the expression in [14℄ even after

aounting for the di�erene between the parameters of this paper and of [14℄. Without the inlusion of

this fator it would be impossible to obtain the orret η dependene of the boundary energy as in eqn.

(3.4). The fat that this fator should be present was later on�rmed to us by Al.B. Zamolodhikov in a

private disussion.
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Here, for �nite µ̃'s, Neumann boundary onditions are imposed in the underlying c = 1
theory on the boundaries, while if any of the µ̃ -s is in�nite then the orresponding term is

absent and the boundary ondition in the underlying onformal theory on that boundary

is Dirihlet. The Hamiltonian of the system an be rewritten in terms of the variables

assoiated to the plane using the map (x, it) = ξ → z = ei
π
L
ξ
:

H = HCFT − µ

2

(π

L

)2hβ−1
∫ π

0

(

Vβ(e
iθ, e−iθ) + V−β(e

iθ, e−iθ)
)

dθ−

µ̃0

2

(π

L

)hβ
(

e−iβ
2
φ0Ψβ

2

(1) + ei
β

2
φ0Ψ−β

2

(1)
)

−
µ̃L

2

(π

L

)hβ
(

e−iβ
2
φLΨβ

2

(−1) + ei
β

2
φLΨ−β

2

(−1)
)

. (4.1)

Here Vβ(z, z̄) = n(z, z̄) : eiβΦ(z,z̄) : and Ψβ

2

(y) =: ei
β

2
Φ(y,y) : are the bulk and boundary

vertex operators and the normal ordering oe�ient n(z, z̄) depends on the boundary

onditions hosen [2℄.

Now the omputation of the matrix elements of the bulk and boundary vertex operators

V±β and Ψ±β/2 (with onformal dimension hβ = β2

8π
) between the vetors of the appropriate

onform Hilbert spaes is straightforward and the integrals an also be alulated expliitly.

The TCSA method onsists of trunating the Hilbert spae at a ertain onformal energy

level Ecut (whih is nothing but the eigenvalue of the zeroth Virasoro generator) and

diagonalizing the Hamiltonian numerially.

It is important to realize that one has to write separate TCSA programs for heking

the Dirihlet limit and the general two parameter ase. In the Dirihlet ase there are no

relevant operators on the boundary, thus both µ̃0 and µ̃L must be set to zero, and we an

have µ̃-s di�erent from zero only if we perturb a CFT with Neumann boundary ondition.

Therefore we investigate the general two parameter boundary sine-Gordon theory by de-

sribing it as an appropriately perturbed c = 1 CFT with Neumann boundary onditions

at both ends. The Hilbert spaes of the c = 1 CFT-s with Dirihlet or Neumann boundary

onditions at the two ends are rather di�erent: while in the former ase it basially onsists

of the vauum module only, in the latter it is the diret sum of modules built on the highest

weight vetors arrying the allowed values of the �eld momentum.

Let us investigate the general two parameter BSG �rst. Then the simplest hoie

(i.e. the one resulting in the least omplex spetrum whih is enough to ompare to the

preditions) is to swith on the boundary perturbation only at one end of the strip. The

TCSA Hamiltonian for BSG with Neumann boundary ondition at one end and perturbed

Neumann ondition, (2.2), at the other, is obtained from (4.1) by setting µ̃L = 0, µ̃0 ≡
µ̃ 6= 0 . The spetrum of vertex operators in this ase is Vn

r
(z, z̄) and Ψm

r
(y), where r

is the ompati�ation radius of the free boson of the c = 1 theory in the UV, and n,

m are integers. These �elds are primary under the hiral algebra Û(1) (i.e. U(1) a�ne

Lie algebra). However the ompati�ation radius must be hosen so that both V±β and

Ψ±β

2

be in the spetrum:

7 r = 2
√
4π/β = 2r0. Then V±β are represented as V± 2

r
while Ψ±β

2

7

The

√
4π has its origin in the di�erent normalizations of the SG salar �eld Φ and the c = 1 CFT one.
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as Ψ± 1

r
. In other words we have to onsider the boundary perturbation of the 2-folded

sine-Gordon model in the sense of [23℄.

We hoose our units in terms of the soliton mass M . The bulk oupling µ is related to

M by

µ = κ(β)M2−2hβ , hβ =
β2

8π
, (4.2)

where κ(β) is a dimensionless onstant. In the bulk SG, from TBA onsiderations, the

exat form of κ(β) was obtained in [24℄, and we use the same form also here in BSG. One

we expressed µ and used the UV-IR relation (3.2,3.3) to rewrite µ̃ exp
(

±iβ
2
φ0

)

in terms

of the IR parameters, the Hamiltonian an be made dimensionless h = H/M , depending

only on the dimensionless volume l = ML, the oupling onstant β and η, ϑ. We ompare

the preditions on the spetrum, ground state energy et. of the general two parameter

BSG model to the trunated spetrum of this Hamiltonian.

4.2 Finite size orretions from sattering theory

Here we brie�y reall the method to alulate the �nite size orretions for large volumes

(l ≫ 1) from the knowledge of the bulk S-matries and boundary re�etion fators. To

simplify the presentation, let us onsider a single salar partile of mass m with re�etion

fators Ra (θ) and Rb(θ) on the boundaries at x = 0 and x = L respetively. Then the

energy as a funtion of the volume an be obtained by solving the Bethe-Yang equation

mL sinh θ − i logRa (θ)− i logRb (θ) = 2πI (4.3)

for θ, where I is an integer (half integer) quantum number (orresponding to quantization

of momentum in �nite volume). From the solution θ(L) of (4.3) the energy with respet

to the state with no partiles is obtained as

E (L)− Eab
0 (L) = m cosh θ (L) . (4.4)

Eqn. (4.3-4.4) an also be used to give the (E(L), L) `Bethe-Yang line' in a parametri

form. When I = 0, eqn. (4.3) may have solutions orresponding to purely imaginary

θ, whih may (in turn) orrespond to boundary exited states obtained from the partile

binding to one of the walls, f. [2℄ for details.

4.3 Results

In the TCSA for the general two parameter ase the number of states with onformal

energies below Ecut depends very sensitively on the oupling onstant β (ompati�ation

radius r), sine the Hilbert spae of the onformal free boson with Neumann boundary

onditions is the diret sum of modules orresponding to the various momenta, whih are

integer multiple of 1/r. Therefore it is not a surprise that in the range r0 ≥ 3/2, where
TCSA is expeted to onverge, there are so many states even for moderate Ecut-s, that the

time needed for diagonalizing H pratially makes it impossible to proeed.
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We overome this di�ulty partly by onsidering �rst only models on a �speial line�

in the parameter spae desribed by φ0 = 0 or ϑ = 0. As pointed out in [3℄, the models

on this line admit the Φ 7→ −Φ `harge onjugation' symmetry as a result of the equality

P+ = P− ≡ P . As a onsequene in these models there are two setors, namely the

even and the odd ones. It is straightforward to implement the projetion onto the even

and odd setors in the onformal Hilbert spaes used in TCSA. This projetion has two

bene�ial e�ets: on the one hand it e�etively halves the number of states below Ecut
8

,

thus it drastially redues the time needed to obtain the omplete TCSA spetrum, and on

the other the separate spetra of the even and odd setors are less omplex and therefore

easier to study than the ombined one. Furthermore, the spetrum of boundary states in

the most general ase depends only on η [3℄, and so our onsiderations an be restrited to

ϑ = 0 without any loss of generality in this respet.

4.3.1 Boundary energy

First we investigate the ground state energy of these models to hek the preditions of

the BSG model. Sine at one end of the strip we imposed ordinary Neumann boundary

ondition and swithed on the boundary perturbation only at the other end, the ground

state energy (in units of the soliton mass) for large enough L-s should depend on the

dimensionless volume l = ML as

E

M
(l) = − l

4
tan(

π

2λ
) +

E(ηN , 0)

M
+

E(η, 0)

M
+O

(

e−l
)

, (4.5)

where E(η, ϑ) is the boundary energy, eqn. (3.4), and ηN = π
2
(1+ λ) is the η parameter of

the Neumann boundary [4℄. This predition is ompared to the TCSA data on Fig.s(4.1-

4.2), where the dashed lines are given by eqn. (4.5). The agreement between the preditions

and the data is so good that in the interval 5 ≤ l ≤ 15 the bulk energy onstant and the

sum of boundary energies an be measured with a reasonable auray.

In our earlier paper [2℄ when numerially investigating the ground state energy of the

BSG model with Neumann boundary ondition at both ends we made a onjeture that

E(ηN , 0) = −ED(0)

holds. (ED is the boundary energy of the BSG model with Dirihlet boundary ondition,

eqn. (3.14)). Clearly the exat expressions eqn. (3.4) and eqn. (3.14) do not satisfy this,

but the violation of this relation is pratially undetetable (using numerial methods) in

the λ range investigated in [2℄.

We also heked the ϑ dependene of the boundary energy E(η, ϑ), eqn. (3.4): the

rapid growth in the number of states, aused by the absene of the two setors, an be

ompensated by going to a su�iently attrative value of λ (λ = 17) where TCSA is known

to onverge faster. In this ase the hoie Ecut = 13 resulted in 4147 onformal states and

8

In our numerial studies of these models Ecut varied between 15 and 18 and this resulted in 3× 103 -

5× 103 onformal states per setors.
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Figure 4.1: Ground state energy versus l in three BSG models with r0 =
√
4π/β = 2 and

ϑ = 0.
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Figure 4.2: Ground state energy versus l in four BSG models with η = 0.7ηN and ϑ = 0.
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ϑ E(ηN , 0) + E(η, ϑ) (predited) E(ηN , 0) + E(η, ϑ) (TCSA)
5 −0.22259 −0.226959
10 −0.29012 −0.29986

Table 4.1: Boundary energies (in units of soliton mass) of two BSG models with λ = 17
and η = 0.7ηN as measured from TCSA

we ould measure the sum of the two boundary energies �tting the volume dependene of

the ground state energy by a straight line in the range 6 ≤ l ≤ 17, the results are olleted
in table 4.1.

To sum up, we showed that the predition eqn. (3.4) for the boundary energy of the

general two parameter boundary sine-Gordon model is in perfet agreement with the TCSA

data. This agreement indiretly on�rms also the UV-IR relations, eqn. (3.2-3.3), sine

they were built into the TCSA program. The ase of Dirihlet boundary onditions is

investigated in the next setion.

4.3.2 Re�etion fators and the spetrum of exited states

We ompare the re�etion fators and the spetrum of exited states to the TCSA data

in the ase of models with φ0 = 0 (whih is realized here as ϑ = 0). The bulk breathers

naturally belong to one of the setors, as the C parity of the n-th breather is (−1)n.
However, sine solitons and anti solitons an re�et into themselves as well as into their

harge onjugate partners, solitoni one partile states (i.e. states, whose energy and

momentum are related by E =
√
P 2 +M2

where M is the soliton mass) are present in

both setors.

To assoiate the various boundary bound states to the two setors we have to determine

the C parity of the poles νn and wm in the soliton/antisoliton re�etion fators. As in the

even/odd setors the re�etion fators are given by P±Q (where P ≡ P+ = P−
for ϑ = 0),

the possible anellation between the zeroes of P0 ±Q0 and the poles of σ(η, u) have to be
investigated. The outome is that the poles at ν2k and w2k (k = 0, 1, 2, ..) appear in P +Q
(i.e. the orresponding bound states are in the even setor), while the poles ν2k+1, w2k+1

appear in P −Q (i.e. the orresponding bound states are in the odd setor).

We analyzed the appearane of boundary bound states in the TCSA spetra of a number

of BSG models. The results are illustrated on the example of a model when λ = 7 and

η = 0.9 ηN . For these values of the parameters the sequene of νn-s and wm-s in the

physial strip is

ν0 > w1 > ν1 > w2 > ν2 > w3 > ν3 . (4.6)

Therefore in the even setor we expet the following low lying bound states (i.e. ones with

not more then three labels

9

):

|0〉, |2〉, |0, 2〉, |1, 3〉, |0, 1, 1〉, |0, 1, 3〉, |1, 2, 3〉, |2, 3, 3〉, (4.7)

9

States having more labels are heavier thus they orrespond to higher TCSA lines.
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while in the odd setor

|1〉, |3〉, |1, 2〉, |2, 3〉, |0, 1, 2〉, |1, 2, 2〉. (4.8)

Sine at one end of the strip the unperturbed Neumann boundary ondition is imposed,

the orresponding bound states are also expeted to appear in the TCSA spetrum. As

desribed in [2℄-[3℄ for η = ηN the νn-s and the wm-s oinide and the bound states an be

labeled by an inreasing sequene of positive integers |n1, ..., nk〉N with nk ≤ λ/2. Therefore
in the even setor there should be TCSA lines orresponding to the

|2〉N , |1, 3〉N , |1, 2, 3〉N , (4.9)

`Neumann bound states', while in the odd one to

|1〉N , |3〉N , |1, 2〉N , |2, 3〉N . (4.10)

Finally there should be TCSA lines desribing the situation when both boundaries are in

exited states with no partile(s) moving between them, thus e.g. one expets a line in the

even (odd) setor that orresponds to |0〉 ⊗ |2〉N (|0〉 ⊗ |1〉N).
We ompare the preditions about these bound states to the TCSA data on Fig.(4.3)

where the dimensionless energy levels above the ground state are plotted against l. On

both plots the ontinuous lines are the interpolated TCSA data and the various symbols

mark the data orresponding to the various boundary bound states and Bethe-Yang lines

10

.

The two plots on Fig.(4.3) show in a onvining way that the low lying boundary

states indeed appear as predited by the bootstrap solution. (We show only those really

low lying ones whose identi�ation is beyond any doubt; the higher lying ones may be

lost among the multitude of other TCSA lines). The reader's attention is alled to two

relevant points: �rst there is no TCSA line that would orrespond to a |1, 1〉 bound state.

The absene of this state is explained in the bootstrap solution [3℄ by a Coleman-Thun

diagram, that exists only if w1 > ν1. Seond, both in the even and in the odd setors, there

is evidene for the existene of the lowest bound states with three labels. These states are

predited in the bootstrap solution by the absene of any Coleman-Thun diagrams when

νn1
> wn2

> νn3
holds. These two �ndings together give an indiret argument for the

orretness of the boundary Coleman-Thun mehanism. This is most welome, as the

theoretial foundations of the boundary version of this mehanism are less solid than that

of the bulk one.

On the plots on Fig.(4.3) we also show in ase of the lightest breathers B1
, B2

the

exellent agreement between the TCSA data and the energy levels as predited by the

Bethe-Yang equations (4.3,4.4), using either the ground state re�etion fators (2.6, 2.7)

or the ones on the |0〉 exited boundary (2.9, 2.10). (In the latter ase one has to take

into aount that now k is odd, bn0 (η, u) = 1, and the energy above the ground state also

ontains the energy of |0〉).
10

Some of the higher TCSA lines appear to have been broken, the apparent turning points are in fat

level rossings with the other line not shown. This happens beause our numerial routine, instead of

giving the eigenvalues of the Hamiltonian in inreasing order at eah value of l, �xes their order at a

partiular small l and follows them � keeping their order � aording to some riteria as l is hanging to

higher values.
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The even setor: x denote the energy of |0〉 and |2〉, + that of |2〉N , ◦ of |0, 2〉,
•, the empty/full squares stand for |1〉N ⊗ |1〉, |2〉N ⊗ |0〉 and |1〉N ⊗ |3〉, ∗ for |0, 1, 1〉,

the full/empty triangles are B2
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The odd setor: x stand for the energy of |1〉, |3〉 , + for |1〉N , |3〉N , • for |1〉N ⊗ |0〉,
◦ stand for |0, 1〉, |0, 3〉 and |1, 2〉, ∗ for |0, 1, 2〉,

the full/empty triangles are B1
lines on ground state/|0〉 boundary.

Figure 4.3: TCSA data, boundary bound states and breather Bethe Yang lines in the BSG

model with λ = 7 and η = 0.9 ηN .
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λ βφ0

2π
Ebulk (exat) Ebulk (TCSA) Eboundary (exat) Eboundary (TCSA)

31 0 −0.01267857 −0.01267(2) −0.0259997 −0.026(17)
31 0.2 −0.01267857 −0.0126(14) 0.1773231 0.17(30)
31 0.495 −0.01267857 −0.012(25) 1.009779 0.97(75)
17 0 −0.02316291 −0.0231(22) −0.0484739 −0.049(06)
17 0.485 −0.02316291 −0.022(67) 0.998483 0.97(78)
17 0.5 −0.02316291 −0.022(69) 1.048474 1.02(84)
7 0.25 −0.05706087 −0.056(25) 0.259213 0.24(88)
7 0.48 −0.05706087 −0.055(62) 1.054646 1.03(23)

41/8 0.25 −0.07911730 −0.077(36) 0.2464426 0.23(14)
41/8 0.36 −0.07911730 −0.076(92) 0.6381842 0.61(72)
41/8 0.44 −0.07911730 −0.076(56) 0.9513045 0.92(52)
7/2 0 −0.1203937 −0.118(22) −0.2957454 −0.30(11)
7/2 0.3 −0.1203937 −0.114(69) 0.4241742 0.39(37)
7/2 0.42 −0.1203937 −0.11(34) 0.9532802 0.91(12)
7/2 0.5 −0.1203937 −0.11(18) 1.295745 1.23(60)

Table 5.1: Boundary energy for Dirihlet boundary onditions: omparison to the TCSA

data. The values for the boundary energy are for two idential boundary onditions at

both ends of the strip. Energies are given in units of the soliton mass.

5 TCSA: Dirihlet boundary onditions

For Dirihlet boundary onditions, the formula (4.1) has to be hanged: the terms on-

taining boundary perturbations must be omitted, sine there are no relevant boundary

operators on a Dirihlet boundary. Furthermore, one must quantize the c = 1 free boson

with Dirihlet boundary ondition, whih preserves boundary onformal invariane as well

as the Neumann one. The Hilbert spae is also hanged, beause there is a single vertex

operator (the identity) living on the boundary, therefore it is essentially the same as the

vauum module of the hiral algebra (whih in this ase is the Û(1) a�ne Lie algebra). In

all numerial omputations the trunation level was Ecut = 22, whih orresponds to 4508
vetors.

5.1 Boundary energy

Here we summarize the agreement between the formula (3.14), �rst derived in [12℄ and

TCSA with Dirihlet boundary onditions. At both ends of the strip, idential boundary

onditions are imposed. In this ase, it is easier to vary the �eld value φ0: the interation

needs to be alulated for eah given value of the sine-Gordon oupling parameter λ only

one. The agreement between the predited values of the bulk and boundary energy and

the TCSA vauum energy levels is illustrated on Figure 5.1, while numerial results are

summarized in table 5.1.
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λ =41/8, f0 =0.44
λ =41/8, f0 =0.36
λ =41/8, f0 =0.25
λ =7, f0 =0.48
λ =7, f0 =0.25
λ =17, f0 =0.485
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Figure 5.1: Comparing the predited bulk and boundary energies to the TCSA data for

Dirihlet boundary onditions. The dots are the TCSA data for various values of λ and

f0 =
βφ0

2π
, while the lines are their predited asymptoti behaviour for large volume.
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Figure 5.2: Cheking the re�etion fators of B1, B2 and B3 for λ = 31 and

βφ0

2π
= 0.2.

The dots show the one-partile energies predited from the Bethe-Yang equations, while

the ontinuous lines are the TCSA results. All energies are relative to the ground state

and are in units of the soliton mass.

5.2 Re�etion fators

Using the Bethe-Yang equations (4.3,4.4), we heked that the preditions for the energy

levels from the ground state re�etion fators are in exellent agreement with the TCSA

data. Figure 5.2 is just an illustrative example; for all the other values of λ and φ0 in Table

5.1 we had similar results. The deviations are partly due to trunation e�ets, but partly

signal the fat that the Bethe-Yang equation only gives an approximate desription of the

�nite size orretions.

On Figure 5.3, we illustrate how to obtain exited boundary states by analyti ontin-

uation of one-partile lines.

5.3 Spetrum of boundary exited states

We also performed an analysis of boundary exited states for Dirihlet boundary ondi-

tions. As there are two idential boundaries, the states ome in doublets with symmet-

ri/antisymmetri wave funtions if the two boundaries are in a di�erent state, and are

singlets if the two boundaries are in the same state. There is also a seletion rule due to
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Figure 5.3: Boundary exited states at λ = 17 and

βφ0

2π
= 0.485. The upper line is the

I = 0 one-partile B1 line, inluding its ontinuation to imaginary rapidities, while the

lower line is another portion of the imaginary rapidity ontinuation oming from another

solution of the Bethe-Yang equations. The two lines together �t very well to the energy

level doublet orresponding to the ombination of a boundary in its ground state |〉 and the

other in the exited state |0, 1〉, at least for su�iently large values of the volume parameter

l.
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λ βφ0

2π
E1 − E0 (predited) E1 − E0 (TCSA)

31 0.495 0.032428 0.0323(62)
17 0.485 0.099750 0.0997(68)
7 0.48 0.14349 0.143(82)
7 0.45 0.35711 0.357(94)

41/8 0.44 0.44675 0.447(62)
41/8 0.36 1.0035 1.00(64)
17/8 0.4 0.89148 0.89(73)

Table 5.2: Energy of the �rst boundary exited state as measured from TCSA

a parity introdued by Mattsson and Dorey; namely, whenever the exited state of the

left boundary has an even/odd number of indies, the right boundary also has even/odd

number of indies, respetively.

For the ases when φ0 = π
β
, the �rst exited state is expeted to be degenerate with

the ground state and this is indeed what we found within numerial preision. For the

other ases, the energies of the �rst exited state are summarized in table 5.2. This state

orresponds to both boundaries being in the same exited state, so it must be a singlet

and its energy with respet to the ground state (in in�nite volume) is predited to equal

E1 − E0 = 2M cos
1

λ

(

η − π

2

)

= 2M cosπ

(

λ+ 1

λ

βφ0

2π
− 1

2λ

)

We an measure this energy di�erene using the TCSA data. The results are illustrated

in table 5.2.

For higher exited states one an introdue the notion of level. For a state labeled

as |n1, . . . , nk〉 it an be de�ned as the sum of the integers labels

∑

ni. It turns out

that the energies are more or less hierarhially ordered and inrease with the level. We

onsidered exited states up to and inluding level 2 (the �rst exited state is at level 0) and
found exellent agreement with the predited spetrum apart from ases when the TCSA

spetrum was too dense to ome up with a meaningful identi�ation of the TCSA data

points with individual states. We also �tted them with analyti ontinuation of breather

lines where this was possible, whih also agreed very well with the TCSA data (see e.g.

�gure 5.3).

6 Conlusions

In this paper we desribed an extensive veri�ation of some results on boundary sine-

Gordon theory, omparing numerial TCSA alulations to preditions onerning the

spetrum, sattering amplitudes, boundary energy and the identi�ation of Lagrangian and

bootstrap parameters of the theory. We found an exellent agreement and on�rmed the

general piture that was formed of boundary sine-Gordon theory in the previous literature.
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The main open problems are the alulation of o�-shell quantities (e.g. orrelation

funtions) and exat �nite size spetra. While orrelation funtions in general present a

very hard problem even in theories without boundaries, in integrable theories signi�ant

progress was made using form fators. One-point funtions of bulk operators have already

been omputed using form fator expansions in some simple boundary quantum �eld the-

ories [25℄ and one ould hope to extend these results further. In addition, the vauum

expetation values of boundary operators in sine-Gordon theory are also known exatly

[14℄. It would be interesting to make further progress in this diretion.

Conerning �nite size spetra, there is already a version of the so-alled nonlinear

integral equation for the vauum (Casimir) energy with Dirihlet boundary onditions

[12℄, but it is not yet lear how to extend it to desribe exited states and more general

boundary onditions, whih also seems to be a fasinating problem.
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