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We have developed a very efficient numerical algorithm of the strong disorder renormalization
group method to study the critical behaviour of the random transverse-field Ising model, which is a
prototype of random quantum magnets. With this algorithm we can renormalize an N-site cluster
within a time N logN , independently of the topology of the graph and we went up to N ∼ 4× 106.
We have studied regular lattices with dimension D ≤ 4 as well as Erdős-Rényi random graphs,
which are infinite dimensional objects. In all cases the quantum critical behaviour is found to be
controlled by an infinite disorder fixed point, in which disorder plays a dominant rôle over quantum
fluctuations. As a consequence the renormalization procedure as well as the obtained critical prop-
erties are asymptotically exact for large systems. We have also studied Griffiths singularities in the
paramagnetic and the ferromagnetic phases and generalized the numerical algorithm for another
random quantum systems.

I. INTRODUCTION

Quantum phase transitions take place at T = 0 tem-
perature by varying a control parameter, which is in-
volved in the Hamiltonian of the system1. Experi-
mental examples in which quantum phase transitions
play an important role are among others rare-earth
magnetic insulators2, heavy-fermion compounds3,4, high-
temperature superconductors5,6 and two-dimensional
electron gases7,8. Generally, when quantum fluctuations
are weak the ground-state of these systems is ordered,
whereas for strong quantum fluctuations we are in the
quantum disordered region. In between there is a quan-
tum phase-transition point, the effect of which is mani-
fested also in finite temperature in the so called quantum
critical region.
A paradigmatic model having a quantum phase-

transition is the Ising model in the presence of a trans-
verse field of strength, h, where h plays the role of the
control parameter. For h < hc (h > hc) the system is fer-
romagnetic (paramagnetic) and at h = hc there is a quan-
tum critical point. Experimentally this system is real-
ized by the compound LiHoF4, which is a dipole coupled
Ising ferromagnet, and which is placed in a magnetic field
transverse to the Ising axis of strength, Ht. This mag-
netic field splits the ground-state doublet and therefore it
acts as an effective transverse field of strength h ∼ H2

t . In
the above compound one can introduce randomness, by
substituting the magnetic Ho by a nonmagnetic Y. Then
the obtained system LiHoxY1−xF4 is the experimental
realization of a random quantum magnet9. However,
the transverse field induces also a random longitudinal
field10 via the off-diagonal terms of the dipolar interac-
tion, therefore there are several open questions both the-
oretically and experimentally about the low-temperature
behavior of this compound.
Here we consider a theoretically simpler problem, the

random transverse-field Ising model (RTIM), which is de-

fined by the Hamiltonian:

H = −
∑

〈ij〉

Jijσ
x
i σ

x
j −

∑

i

hiσ
z
i . (1)

Here the σx,zi,j are Pauli-matrices at sites i (or j) of a
lattice and the nearest neighbour couplings, Jij , and the
transverse fields, hi, are independent random numbers,
which are taken from the distributions, p(J) and q(h),
respectively. In this paper we have used two different
disorder distributions in order to check universality of
the properties at the critical point. For both disorders
the couplings are uniformly distributed:

p(J) = Θ(J)Θ(1− J) , (2)

where Θ(x) denotes the Heaviside step-function.
For box-h disorder the distribution of the transverse-

fields is uniform:

q(h) =
1

hb
Θ(h)Θ(hb − h) , (3)

whereas for fixed-h disorder the initial values of the
transverse-fields are constant:

q(h) = δ(h− hf ) . (4)

The quantum control parameter is defined as θ = log(hb)
and θ = log(hf ), respectively.
Theoretical study of the critical behaviour of the RTIM

is a complicated issue, since one should treat the joint
effect of quantum and disorder fluctuations, as well as
non-trivial correlations. Most of the results in this field
are known in one dimension (1D), due to a renormaliza-
tion group (RG) treatment11, which has been introduced
by Ma, Dasgupta and Hu12 and further developed by
Fisher13. This RG procedure works in the energy space
and in each step the largest local parameter in the Hamil-
tonian, either a coupling or a transverse field is decimated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ELTE Digital Institutional Repository (EDIT)

https://core.ac.uk/display/333612042?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1109.4267v1


2

out and at the same time new effective parameters are
generated perturbatively. Repeating this procedure the
energy scale in the system, measured by the largest ef-
fective parameter goes to zero and one studies the dis-
tributions of the renormalized couplings and that of the
transverse fields at the fixed point.

In 1D where the topology of the system is preserved
during renormalization Fisher13 has solved analytically
the RG equations and in this way precise information has
been obtained about the behavior of the RG flow in the
vicinity of the fixed point. One important result, that the
distribution of the renormalized parameters (couplings
and/or transverse fields) at the fixed point are logarith-
mically broad. This means that disorder fluctuations are
completely dominant over quantum fluctuations and the
perturbative treatment used in the calculation of the new
parameters is asymptotically exact. In this, so called infi-
nite disorder fixed point14 (IDFP) of the 1D model exact
results has been derived for the critical exponents, as well
as for several scaling functions.

In more complex geometries, even for a ladder with
w > 1 legs the topology is changing during the
RG process and therefore one relies on numerical im-
plementations of the RG procedure. For a ladder
with a finite width this procedure can be performed
straightforwardly15, during which the system is renor-
malized to an effective chain. As a result the critical
singularities of ladders are identical to those of a chain,
however, from the w-dependence of the amplitudes one
can deduce cross-over functions and estimate the singu-
larities of the 2D system through finite size scaling.

If the sample is isotropic, say an L × L part of a 2D
lattice one can not successfully renormalize it numeri-
cally with a naive application of the RG rules. It is due
to the fact that after h-decimation steps a large num-
ber of new effective couplings are generated and the sys-
tem will soon look like to a fully connected cluster, for
which the further decimations are very slow. To speed
up the process new ideas have been introduced, one of
those is the so called maximum rule16. This is applied
in a situation, when between two sites two or more cou-
plings are generated and the maximum of those is taken.
This procedure is certainly correct at an IDFP, where the
couplings have typically very different magnitudes. To-
gether with the maximum rule one can also use some fil-
tering condition17 to eliminate the latent, non-decimated
couplings of the Hamiltonian, which are at such a posi-
tion, where a larger parallel coupling will be generated.
Using these tricks one could numerically study the 2D
system16,18–21 up to a linear size L = 128 − 160. The
critical exponents calculated in this way are in agreement
with the finite-size scaling extrapolations obtained in the
strip geometry15 and with the results of quantum Monte
Carlo simulations22. The correctness of the method is
also checked by comparing results of Monte Carlo simu-
lations about the random contact process23, which is a
basic model of reaction-diffusion processes in a random
environment. According to an RG analysis the critical

behavior of this model (for strong enough disorder) is
identical to that of the RTIM24, which is indeed found in
1D and 2D calculations.

The model of real random quantum magnets, the
RTIM in 3D can not be studied even by the above re-
fined RG algorithm, since the available finite sizes of the
system are too small to obtain stable estimates about the
properties of the fixed point. In early studies the possi-
ble presence of an IDFP is expected16, but no evidence
in favour of this conjecture has been presented. Also no
studies are available about the random contact process
in 3D. In higher dimensions no results of any kind are
known, thus it is a completely open question, if there is
an upper critical dimension, Du, such that for D < Du

infinite disorder scaling works and for D ≥ Du we have
conventional random criticality. Furthermore, it is also
an open question, if for D ≥ 2 the fixed point is universal
and does not depend on the actual form of the disorder.

A possible way to answer to the questions presented
in the previous paragraph is to improve the numerical
algorithm of the RG procedure and make it capable to
study three- and higher dimensional systems. In this pa-
per we describe such an improved algorithm, which uses
the maximum rule but otherwise has no further approx-
imations. This means that the results of our algorithm
are identical to that of any naive implementation of the
RG method (having also the maximum rule) for any fi-
nite graphs, say with N sites and E edges. However, we
gain considerable time in performance: while the naive
method works in t ∼ O(N3) time, this is for the improved
algorithm t ∼ O(N logN +E). Having this performance
at hand we could treat finite clusters up to 4× 106 sites.

We have used this algorithm to study the properties of
the RTIM in different dimensions. Some preliminary re-
sults of these investigations have already been presented
elsewhere. The critical behaviour of the 3D and 4D sys-
tems is announced in25. Here we give details of the deter-
mination of the critical parameters as well as analyze the
scaling behavior of different quantities in the off-critical
region, too. The model in 2D has been studied by another
algorithm in17, which algorithm has basically the same
performance as the present one in 2D, however, which is
less effective in higher dimensions. Here the 2D results
are merely used to compare those with higher dimen-
sional results. We have also studied Erdős-Rényi ran-
dom graphs26 with a finite coordination number, which
are infinite dimensional objects. In this way we have got
information about the possible value of the upper critical
dimension, Du, in our system.

Our paper is organized as follows. The RG procedure,
the basic decimation rules and the essence of the im-
proved algorithm are presented in Sec.II. Results about
the critical behaviour of the system in different dimen-
sions are presented in Sec.III. The results are discussed in
Sec.IV and possible extension of the improved algorithm
for another models are given in the Appendix.
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II. THE RENORMALIZATION GROUP

METHOD AND THE IMPROVED ALGORITHM

The so called strong disorder RG (SDRG) method11

has been introduced by Ma and coo-workers12 to study
1D random antiferromagnetic Heisenberg chains. For the
RTIM it was Fisher13, who used first this method and
solved analytically the RG equations in 1D. Here we dis-
cuss the basic steps of the RG procedure for the RTIM
model.
The SDRG method works in the energy space: at each

step the largest parameter of the Hamiltonian in Eq.(1),
which is denoted by Ω = max{Jij , hi}, is eliminated.
Here we should consider two possibilities.
J-decimation: If the largest term is a coupling, say

Ω = Jij , than the two connected sites i and j are merged
into a spin cluster having an effective moment µ̃ = µi+µj
(in the original model µi = 1, ∀i), which is placed in an

effective transverse field of strength: h̃ = hihj/Jij . This
latter formula is obtained in second-order perturbation
calculation.
h-decimation: If the largest term is a transverse field,

say Ω = hi, than this site brings a negligible contribu-
tion to the (longitudinal) susceptibility of the system and
therefore decimated out. At the same time new cou-
plings are generated between all sites, say j and k, which
were nearest neighbours to i. In second-order perturba-
tion calculation these couplings are given by JjiJik/hi. If
there is already a coupling, Jjk > 0, between the two sites

we use the maximum rule: J̃jk = max{JjiJik/hi, Jjk}.
In the naive application of the SDRG rules for higher

dimensional clusters there is a problem with the h-
decimation steps, during which several new couplings are
generated. As a result our cluster will be transformed
soon into an almost fully connected graph, having O(N2)
edges. Consequently at any further decimation step one
needs to perform O(N2) operations, which leads to a
performance in time t ∼ O(N3).

A. Improved algorithm

Here and in the following we assume, without restrict-
ing generality, that Jij ≤ 1, ∀i, j. Then we define the
set of local maximum, which consists of such parameters,
which are larger (not smaller) than any of its neighbour-
ing terms. Considering a coupling Jij is a local maxi-
mum, provided Jij ≥ hi, Jij ≥ hj, and Jij ≥ Jik, ∀k,
as well as Jij ≥ Jlj , ∀l. Similarly a transverse field, hi,
is a local maximum, if hi ≥ Jij , ∀j. We have shown17

that the local maximum can be decimated independently,
the renormalization performed in any sequence gives the
same final result.
In the improved algorithm we concentrate on the trans-

verse fields, the decimation of which being the most dan-
gerous in respect of the performance of the algorithm.
Our strategy is to avoid any h-decimation during the
renormalization. For this purpose we divide the sites

into two classes. For ’inactive’ sites the transverse field
is a local maximum and the site has a weight, li = 1,
whereas all the remaining sites are termed as ’active’ hav-
ing weights, li = 0. In the log-energy space between sites
i and j we define a distance, dij ≥ 0, as:

dij = − ln Jij +
li
2
lnhi +

lj
2
lnhj . (5)

Having an inactive site, k, between i and j and decimat-
ing it out the RG rules lead to the additivity property:
d̃ij = dik+dkj , which - according to the maximum rule -
should be compared with dij in Eq.(5) and their minimal
value is taken. Generally, the true distance between i and
j, denoted by δij is given by the shortest path which goes
over the inactive sites. It is also easy to see, that deci-
mating out all or a subset of inactive sites is equivalent
to find in the original problem the shortest paths among
the non-decimated sites which go through the decimated
sites. This is a well known graph-theoretical problem27

for which efficients numerical algorithms are available.28

In general, however, one should also deal with the active
sites, and therefore J decimations should also be per-
formed.
In the following, we concentrate on the active sites,

and define to each in the log-energy space a range,

ri = − lnhi. (6)

In the improved algorithm we compare the ranges of the
active sites with the true distances measured between
them. In this respect two possibilities may happen.

• If the true distance between two active sites (i and
j) is not greater than any of their ranges, i.e. δij ≤
ri and δij ≤ rj , then i and j are fused together into
an effective active site, which has a range

r̃ = ri + rj − δij . (7)

Also the distance measured from this effective site
to another site, say k, is given by min(dik, djk).

• If the range, ri, of an active site, i is shorter
than any of its true distances from active sites,
ri < δi,j , ∀j, then this site can not be fused to-
gether with any other active sites, therefore it is
turned to ’inactive’. Then we set its weight li = 1
and update the distances, dij , ∀j, in Eq.(5).

In the above renormalization steps, which can be used
in arbitrary order, the number of active sites in the sys-
tem is reduced by one. Repeating these decimation rules
we arrive to a system having only inactive sites and no
further fusion steps take place. The complete cluster-
structure including the excitation energies are readily
encoded in this configuration, which can be extracted
without further renormalization steps. In any case the
final result of the improved algorithm is identical to that
obtained by the näıve SDRG algorithm.
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FIG. 1: (Color online) Snapshots of the näıve (left) and im-
proved (right) SDRG algorithms for the same critical 20× 20
sample with box-h disorder and open boundary conditions,
where 40% of the spins is decimated out. While in the näıve
algorithm numerous new couplings are generated in the im-
proved algorithm we merely delete sites.

In practice one should measure the true distances be-
tween the active sites. This can be done from a selected
reference site from which we measure the distances by
Dijkstra’s method27 including one nearby site after the
other until the range, ri, is reached. While repeating the
exploration of the shortest paths from all active sites, a
given site could be crossed from several directions. How-
ever, it can be shown, that it is always sufficient to cross
it from one direction only25. As a consequence, we can
delete those sites, which have already been explored, from
the system, because these are no longer needed for the
calculation. Therefore in a more efficient algorithm ini-
tially we consider all active sites and perform the mea-
surements simultaneously and successively delete the ex-
plored sites. The implementation of this algorithm has a
time complexity of O(N logN + E) on any graphs with
N sites and E edges. A further speed gain is achieved
by recognizing, that in this parallel implementation the
paths only need to be explored until reaching a length of
ri/2 instead of the full ri range. In Fig.1 we compare the
topology of the renormalized systems in the näıve and
improved SDRG algorithms.

We have checked the computational time of the algo-
rithm, t, for 2D, 3D and 4D hypercubic clusters consist-
ing of N sites. The results are shown in Fig.2 for the two
types of randomness. For a given N and for a given type
of disorder the computation time is practically indepen-
dent of the topology of the cluster and t is well described
by the theoretical bound: ∼ N logN . (In the studied
cases the number of edges are proportional to N .) Gen-
erally, for a given N the renormalization for the box-h
randomness is faster.

10-1

100

101

102

103

104 105 106 107

t

N

2D 
3D 
4D 

FIG. 2: (Color online) Computational time of the algorithm,
t, as a function of the size of the hypercubic clusters, N , in
a log-log scale for 2D, 3D and 4D and for the two different
disorders (fixed-h +, box-h ⊡). The theoretical prediction,
t ∼ N logN , is indicated by a dashed line.

III. CRITICAL BEHAVIOUR IN DIFFERENT

DIMENSIONS

A. Analytical results in 1D - a reminder

In 1D the position of the critical point is given by the
condition29: δ = [lnh]av − [ln J ]av = 0, where [. . . ]av
stands for averaging over quenched disorder. At the crit-
ical point the energy-scale, Ω, and the length-scale, L,
which is the linear size of the system are related as:
log(Ω0/Ω) ∼ Lψ, with ψ = 1/2. This type of unusual
dynamical scaling relation is a clear signal of infinite
disorder scaling. In the paramagnetic phase, δ > 0,
the spin clusters have a finite extent, ξ, which in the
vicinity of the critical point diverges as ξ ∼ δ−ν , with
ν = 2. At the critical point the largest cluster is a frac-
tal, having a moment: µ ∼ Ldf , with a fractal dimen-
sion: df = (1 +

√
5)/4. From this the magnetization

exponent is expressed by β = xν, with x = d − df and
d = 1. These SDRG results13, which have been extended
to the dynamical properties in the Griffiths phases30 have
been tested by independent analytical31,32 and numerical
calculations33–35.

B. Numerical results for D = 3 and 4

We have studied finite systems of hypercubic lattices
in dimensions D = 3 and 4, the largest linear sizes of the
samples were L = 128 and 48, respectively. (In 2D the
previously performed numerical investigations17 went up
to L = 2048.) For each sizes we have renormalized typi-
cally 40000 random samples (for each type of disorder),
but even for the largest systems we have treated at least
10000 realizations.
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1. Finite-size critical points

The precise identification of the critical point of a dis-
ordered system is a very important issue, since the ac-
curacy of the determination of the critical exponents de-
pends very much on it. This question is deeply related to
the problem of finite-size scaling in random systems36–41,
since estimates for the critical points are generally calcu-
lated in finite samples. As has been observed recently37,38

the key issue in this point is the scaling behavior of the
finite-size critical points, which are calculated for a large
set of samples. For a given sample, denoted by α, this
pseudo-critical point, θc(L, α), is located at the point,
where some physical parameter of the system has a max-
imal value. For example in a classical random magnet
the susceptibility can be used for this purpose, which is
divergent at the true critical point of the infinite system.

For a random quantum system the susceptibility is di-
vergent in a whole region, in the so called Griffiths phase,
thus can not be used to monitor finite-size critical points.
Then in 1D random quantum systems the average entan-
glement entropy turned out to be a convenient quantity,
the maximum of which is a good indicator of finite-size
criticality42. In more complicated topology, for ladders15

and in 2D systems17 the so called doubling method41 is
found to provide an appropriate definition of θc(L, α).
In this procedure one considers two identical copies of
a given sample, α, which are joined together by surface
couplings and this replicated sample is denoted by 2α.
Using the SDRG method one calculates some physical
quantity (magnetization or gap) in the original and in the
replicated sample, which are denoted by f(α) and f(2α),
respectively, and study their ratio, r(α) = f(2α)/f(α),
as a function of the control parameter, θ. At θ = θc(α,L)
this ratio has a sudden jump, which is identified with the
pseudo-critical point of the sample. It has been realized17

that this jump in the ratio is related to a sudden change in
the cluster structure which is generated during the SDRG
procedure. For weak quantum fluctuations, θ < θc(L, α),
between the replicas correlations are generated during
renormalization, which are manifested by the presence of
a so called correlation cluster. This contains equivalent
sites in the two replicas. On the contrary for stronger
quantum fluctuations, θ > θc(L, α), the two replicas are
renormalized independently. For θ < θc(L, α) the mass
of the correlation cluster, µ(L, α, θ), is a monotonously
decreasing function of θ. Then we identify θc(L, α) as the
point where the correlation cluster disappears.

Using this doubling method we have calculated pseudo-
critical points in different dimensions and for different
forms of the disorder. We illustrate the distributions of
the pseudo-critical points in Fig.3 for D = 4. To ana-
lyze these distributions we make use results of finite-size
scaling theory37,38, which makes statements about the
average value, θc(L), and the width of the distribution ,
∆θc(L), in finite systems of linear size, L. The average

10-4

10-3

10-2

10-1

100

-0.07 -0.06 -0.05 -0.04 -0.03 -0.02

p

θc

4D

L=8
12
16
24
32

10-4

10-3

10-2

10-1

-0.2  0  0.2

p~
  

y

FIG. 3: (Color online) Distribution of the pseudo-critical
points, θc(L), for various sizes for fixed-h randomness for 4D.
In the inset the scaled distributions are shown as a function
of y = (θc(L)− θc)L

1/ν , see the text.

value of the distribution is expected to scale as:

∣

∣θc − θc(L)
∣

∣ ∼ L−1/νs , (8)

where θc is the true critical point of the system and νs
is the so called shift exponent. On the other hand the
width of the distribution is expected to scale as:

∆θc(L) ∼ L−1/νw , (9)

with a width exponent, νw. We have checked that these
finite-size scaling relations are satisfied in all dimensions,
and these relations are used - by comparing results at
two different sizes (at L and L/2) - to obtain finite-size
estimates for the exponents. These are presented in Fig.4
for the two different forms of disorder.

 0

 0.3

 0.6

 0.9

 1.2

 1.5

102 103 104 105 106

ν

N

νs

2D
3D
4D

102 103 104 105 106
N

νw

FIG. 4: (Color online) Finite-size estimates for the shift, νs,
(left) and the width, νw, (right) critical exponents for 2D, 3D
and 4D and for the two different disorders (fixed-h +, box-h
⊡). The estimated values, as given in Table.I are indicated
at the right edge of the figures.

For a given dimension the estimated exponents are
found to be independent of the form of the disorder, fur-
thermore the shift and the width exponents are identi-
cal within the error of the calculation. Our estimates
about the critical exponents are collected in Table.I, to-
gether with the estimates of the true critical points.
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TABLE I: Critical properties of the RTIM in different di-
mensions. In 1D the analytical results are from13, in 2D the
numerical results are taken from17.

1D 2D 3D 4D

θ
(b)
c 0 1.6784(1) 2.5305(10) 3.110(5)

θ
(f)
c −1. −0.17034(2) −0.07627(2) −0.04698(10)

νw 2. 1.24(2) 0.97(5) 0.825(40)

νs 1.25(3) 0.987(17) 0.74(4)

x 3−
√

5
4

0.982(15) 1.840(15) 2.72(12)

ψ 1/2 0.48(2) 0.46(2) 0.46(2)

We note, that the relation νs = νw = ν is character-
istic for scaling at a conventional random fixed point,
and the distributions of the pseudo-critical points can
be rescaled to a master curve in terms of the variable,
y = (θc(L) − θc)L

1/ν , which is shown in the inset of
Fig.3.

FIG. 5: (Color online) Left panel: correlation clusters at
the critical point for fixed-h randomness in 2D (L = 32) and
3D (L = 16). Right panel: the connected subgraphs, which
contain the correlation clusters (see text).

2. Magnetization

The magnetization of the system, m(L, θ), is related to
the average mass of the largest effective clusters, µ(L, θ),
as m(L, θ) = µ(L, θ)/Ld. In the thermodynamic limit,
L → ∞, in the ferromagnetic phase, δ = θ − θc < 0 the
magnetization is finite and vanishes at the critical point
as: limL→∞m(L, θ) ∼ (−δ)β where β is the magnetiza-
tion exponent. At the critical point the largest connected
clusters are fractals, which are illustrated in the left panel
of Fig.5 for 2D and 3D. The mass of these critical clus-
ters scales as µ ∼ Ldf , where df is the appropriate fractal

dimension which is related to the anomalous dimension
of the magnetization as x = β/ν = d − df . Compar-
ing the average mass of the largest clusters at two finite
sizes, we have calculated effective, size-dependent fractal
dimensions, as well as effective magnetization scaling di-
mensions. These are presented in the inset of Fig.6 for
the different dimensions and using the two disorder dis-
tributions in Eqs.(3) and (4). Extrapolating these values
the obtained exponents, for a given dimension, do not
depend on the form of the disorder. These are presented
in Table.I.

We have also studied the distribution function of the
mass of the clusters, PL(µ), which is expected to behave

at the critical point as: PL(µ) = Ldf P̃ (µL−df ). Accord-

ing to scaling theory43 P̃ (u) for large arguments has a

power-law tail, P̃ (u) ∼ u−τ , with τ = 1+
d

df
. In Fig.6 we

have plotted PL(µ) for D = 2, 3 and 4 for L = 1024, 128
and 48, respectively, and good agreement with scaling
theory is found.
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4D
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d f
/d

N

FIG. 6: (Color online) Distribution of the mass of the clus-
ters, PL(µ), at the critical point for 2D (L = 1024), 3D
(L = 128) and 4D (L = 48) with box-h randomness in a
log-log scale. The scaling results about the asymptotic slopes
of the curves are indicated by straight lines. Inset: Finite-size
estimates for the fractal dimension of the critical correlation
cluster for 2D, 3D and 4D and for the two different disor-
ders (fixed-h +, box-h ⊡). The estimated values, as given in
Table.I are indicated at the right edge of the figure.

Close to the critical point the finite-size magnetizations
are shown in Fig.7 for 3D and 4D. For large L in the
ordered phases (δ < 0) the magnetization approaches
a finite limiting value, whereas for δ > 0 it tends to
zero. In the vicinity of the critical point the finite-size
magnatizations can be transformed to a master curve, if
one considers the scaled magnetization, m̃ = mLx, as
a function of the scaling variable, δ̃ = δL1/ν . This is
illustrated in the insets of Fig.7 where the exponents x
and ν are taken from Table.I.
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FIG. 7: (Color online) Finite-size magnetizations in the vicin-
ity of the critical point for the 3D (left) and the 4D (right)
models for box-h randomness. In the insets the scaled mag-
netizations are presented, see the text.

3. Dynamical scaling

The dynamical behavior of the RTIM is related to
the low-energy excitations of the system, the energy of
which in the SDRG method is given by the values of
the effective transverse fields at which a given cluster is
eliminated. Generally, for each such eliminated cluster
one can define a connected subgraph, which contains the
given cluster and renormalization of this subgraph gives
the same energy value. The form of the connected sub-
graphs of the correlation clusters is illustrated44 in the
right panel of Fig.5. The energy-parameter of a given
sample, which is denoted by ǫ(L, α), is given by the small-
est effective transverse field, not considering the trans-
verse field of the correlation cluster, if it exists in the
system. The distribution of the log-energy parameter,
γ(L, α) = − log ǫ(L, α), is shown in the upper panel of
Fig.8 at the critical points of the 3D and 4D systems. The
distributions for both dimensions are broadening with in-
creasing L, which is a clear signature of infinite disorder
scaling. The typical value of the log-energy parameter
grows with the size as γ(L) ∼ Lψ, thus the appropriate
scaling combination is given by: γ̃ = (γ(L) − γ0)L

−ψ.
Here ψ is a scaling exponent and γ0 is a non-universal
constant. The scaled distributions are shown in the lower
panel of Fig.8.

We have calculated effective, size-dependent ψ expo-
nents, by comparing the widths of the distributions of the
log-energy parameters at two sizes (L and L/2). These
are given in Fig.9 for the different dimensions and for the
two different form of disorder. As for other exponents
studied before, the estimates for ψ for a given dimension
do not depend on the actual form of the randomness.
These are summarized in Table.I. Interestingly the ψ ex-
ponents for all studied dimensions are close to 1/2, which
is the exact value in 1D. This observation can be ex-
plained by the fact, that the connected subgraphs, which
are related to the energy-parameter of the sample, are ba-
sically one-dimensional objects in all studied dimensions,
see in the right panel of Fig.5. The very small variation
of ψ with the dimensionality is probably due to the fact
that the renormalized couplings and transverse fields of
the connected subgraphs are more and more correlated
in higher dimensions.
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FIG. 8: (Color online) Distribution of the log-energy param-
eters as the system size in 3D and 4D for box-h randomness
at the critical point (upper panel). The scaled distributions
are shown in the lower panel, using the non-universal param-
eters: γ0 = 3.1 (3D) and γ0 = 4.06 (4D), as described in the
text.

Finally we note that thermodynamic singularities at
a small temperature, T , but δ = 0 are related to the
critical exponents in Table.I. For example the suscep-
tibility, χ, and the specific heat, CV , behave as11,14:
χ(T ) ∼ (log T )(d−2x)/ψ/T and CV (T ) ∼ (logT )−d/ψ.
The similar relations at T = 0 but with a small longi-
tudinal field, H , are given by: χ(H) ∼ (logH)−x/ψ/H
and CV (H) ∼ (logH)−d/ψ.
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FIG. 9: (Color online) Finite-size estimates for the ψ critical
exponent for 2D, 3D and 4D obtained from the width of the
log-energy distributions for the two different disorders (fixed-
h +, box-h ⊡).
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4. Griffiths effects

We have also studied the distribution of the low-energy
excitations outside the critical point. In the paramag-
netic phase the distribution of γ(L) for different sizes
are shown in Fig.10 and in Fig.11, for the 3D model
(δ = 0.37) and for the 4D model (δ = 0.34), respectively.
As seen in these figures the distributions have approxi-
mately the same width, they are merely shifted with in-
creasing L. This behaviour is in agreement with scaling
theory in the disordered Griffiths-phase11, where the typ-
ical excitation energy scales with the size as: ǫ(L) ∼ L−z,
where z = z(δ) is the dynamical exponent, which depends
on the distance from the critical point, δ. Then the ap-
propriate scaling combination is: γ̃ = γ(L)−z logL−γ0,
in terms of which a scaling collapse of the distributions
are found, which is shown in the inset of Fig.10 and
Fig.11. One way to estimate z(δ) is to analyze the scaling
collapse of the distributions, or equivalently to compare
the shift of the distributions with L. From this type of
analysis we obtain d/z = 0.75(4) for the 3D model and
d/z = 0.80(4) for 4D. There is, however, another possi-
bility to calculate d/z from the asymptotic form of the
distributions. If the low-energy excitations are localised,
which is satisfied for the RTIM, the distribution function
of the scaled variable, γ̃, is expected to follow extreme
value statistics45 and given by the Fréchet distribution46:

ln p(γ̃ − γ0) = −d
z
γ̃ − exp

(

−γ̃ d
z

)

+ ln

(

d

z

)

. (10)

Indeed the scaled distributions in the insets of Figs.10
and 11 are well described by this form, having just one
free parameter, γ0. From Eq.(10) follows that the asymp-
totic slope of ln p(γ) vs. γ is just d/z, what we have
measured in Figs.10 and 11. The estimates for d/z for
different values of L, as given in the captions are in good
agreement with our previous estimates from the shift of
the curves.
We have repeated these type of calculations at other

points of the disordered Griffiths phase and we have
measured δ dependent dynamical exponents. We could
not, however, check the scaling result11,14 for small δ:
d/z ∝ δνψ, due to strong finite-size effects in the vicinity
of the critical point. (In 2D this type of analysis has been
performed in17.)
We have also calculated the distribution of the log-

energy parameters in the ordered Griffiths phase, which
is illustrated in Fig.12 for the 3D model at δ = −0.33. In
the ordered phase there is a huge magnetization cluster,
which has a very small effective field and the energy pa-
rameter is given by the second smallest effective field of
the RG process. As in the disordered Griffiths phase the
width of the distributions is approximately L indepen-
dent and the distributions are shifted with L. However,
the amount of shift with L, as well as the shape of the dis-
tributions are different in the two cases. This is related
to the scaling result, that the typical value of the exci-
tation energy in the ordered Griffiths phase scales with
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FIG. 10: (Color online) Distribution of the log-excitation
energies in the disordered Griffiths-phase of the 3D model
for box-h disorder at δ = 0.37 in a log-lin scale for different
sizes. The slopes of the straight lines indicating the tail of the
curves are d/z = 0.71(2), 0.69(2) and 0.71(2), for L = 24, 48
and 96, respectively. In the inset the scaled distributions are
shown with d/z = 0.73, which is well described by the Fréchet
distribution with γ0 = 6.09 (full line).
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FIG. 11: (Color online) The same as in Fig.10 for 4D at
δ = 0.34. The slopes of the straight lines indicating the tail of
the curves are d/z = 0.81(3), 0.81(3) and 0.76(3), for L = 8, 16
and 32, respectively. In the inset the scaled distributions are
shown with d/z = 0.8, and the full line represents the Fréchet
distribution with γ0 = 5.60.

the size as: ǫ(L) ∼ − ln1/d(L), thus the appropriate scal-

ing combination is: γ̃ = γ(L)− A ln1/d(L) − γ0, with A
and γ0 being nonuniversal constants. Using this variable
the distributions have a scaling collapse as shown in the
inset of Fig.12. We should, however, mention that due
to finite-size effects we can not obtain an independent
estimate of the exponent of the logarithm, being theoret-
ically 1/d. We are facing to the same kind of limitations
concerning the shape of the scaling curve, which asymp-
totically should behave as: ln p(γ̃) ∼ −γ̃d, according to
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scaling theory. Our data, however, are still not in the
asymptotic regime.
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FIG. 12: (Color online) The same as in Fig.10 for 3D at the
ordered Griffiths phase, δ = −0.33. In the inset the scaled
distributions are shown with A = 10.0.

Finally we note that in the disordered Griffiths phase
the singularities of the susceptibility and the specific
heat at a small temperature are given by11,16: χ(T ) ∼
T−1+d/z and CV (T ) ∼ T d/z. The same expressions in the
ordered Griffiths phase are: χ(T ) ∼ exp(−C| logT |d)/T
and CV (T ) ∼ exp(−C′| logT |d).

C. Numerical results for Erdős-Rényi random

graphs

Here we come back to the question posed in the In-
troduction about the possible value of the upper critical
dimension, Du, in the problem. In order to answer to this
question we consider Erdős-Rényi (ER) random graphs26

with a finite coordination number, which are represent-
ing the large-dimensional limit of our lattices. Generally
an ER random graph consists of N sites and kN/2 edges,
which are put in random positions. In order to have a
percolating random graph we should have k > 1. Here
we have used k = 3, but some controlling calculations
had also been done with k = 4. In the actual calcula-
tion we have put the RTIM on ER random graphs and
study their critical behaviour by our improved algorithm
of the SDRG method. Due to infinite dimensionality of
ER clusters we had to modify some parts of the analysis
used in Sec.III B for finite D.
As for D ≤ 4 we have calculated sample dependent

pseudo-critical points, but now in the doubling method
the two identical copies of the sample have been con-
nected by N/2 random links. The distribution of the
calculated pseudo-critical points for different values of N
are shown in Fig.13. The general behaviour of the distri-
butions is similar to that for finite-D, see Fig.3 for 4D,
but in the present case for large θc values there is an N -
independent background of the distributions. This back-
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FIG. 13: (Color online) Distribution of the pseudo-critical
points, θc(N), for the ER random graphs with box-h ran-
domness. In the inset the scaled distributions are shown as a
function of y = (θc(N)− θc)N

1/ω with ω = 6.

ground is probably due to the large number of connect-
ing random links between the replicas. This background,
however, has a very small weight to the distributions and
does not influence the analysis of the properties of the
pseudo-critical points. Concerning Fig.13 we have mea-
sured the shift,

∣

∣θc − θc(N)
∣

∣ ∼ N−1/ωs and the width

∆θc(N) ∼ N−1/ωw of the distributions, in analogy with
the finite dimensional problem. (Compare with Eqs.(8)
and (9), as well as with νs → ωs/d and νw → ωw/d, re-
spectively.) From two-point fits we have calculated effec-
tive exponents (see Fig.14) from which we have obtained
the estimates, ωs = 4.5(1.5) and ωw = 7.8(2.0), which are
valid for both type of randomnesses. We note that the
relative error of the estimates is somewhat larger than for
finite D, but still the two exponents of the distribution
agree with each other giving ω = 6.(2). Using the scaled
variable, y = (θc(N)− θc)N

1/ω, the distributions show a
scaling collapse as illustrated in the inset of Fig.13.

We have studied the fractal properties of the correla-
tion cluster, the average mass of which is found to scale
at the critical point as: µ(N) ∼ Nϑ. From two-point fit
we have obtained effective values for ϑ, which are shown
in Fig.14 and which are extrapolated to ϑ = 0.17(5). We
note that according to scaling theory the magnetization
exponent of the RTIM on the ER random graph is given
by: β = ω(1− ϑ) = 5.(2).

We have also investigated the distribution of the log-
energy parameters at the critical point, which is shown
in Fig.15 for different sizes of the ER clusters. In or-
der to see the possible existence of infinite disorder scal-
ing we have measured the width of the distributions,
which are shown in the inset of Fig.15 as a function
of logN . As seen in the inset the width of the distri-
bution can be parametrized as W0 + W1 log

εN , where
the constant is W0 ≈ 0 for fix-h randomness and it is
W0 ≈ 1.2 for box-h randomness. In both cases the ex-
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FIG. 14: (Color online) Finite-size estimates for the critical
exponents in ER random graphs for the two different disorders
(fixed-h +, box-h ⊡). The estimated values for large-N are
indicated at the right part of the figure.
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FIG. 15: (Color online) Distribution of the log-energy pa-
rameters as a function of the size of the ER clusters for box-h
randomness at the critical point. In the inset the width of
the distribution is shown as a function of logN for the two
different disorders (fixed-h +, box-h ⊡).

ponent in the logarithm can be estimated as: ε = 1.3(2),
thus the increase of the width of the distribution is some-
what larger than linear in logN . This fact justifies that
even for ER random graphs the critical behaviour of the
RTIM is controlled by a (logarithmically) infinite disor-
der fixed point47. Thus we conclude, that the upper crit-
ical dimension of infinite disorder scaling of the RTIM
is Du = ∞. For ER random graphs the singularities of
the susceptibility and the specific heat at small temper-
ature are given by: log[Tχ(T )] ∼ (2ϑ − 1)| logT |1/ε and
log[CV (T )] ∼ | logT |1/ε.

IV. DISCUSSION

In this paper we have considered the random
transverse-field Ising model, which is a basic model of
random quantum magnets and studied its critical be-
havior in different dimensions by a variant of the SDRG
method. These investigations are made possible that we
have developed an improved numerical algorithm for the
SDRG method so that we could renormalize clusters with
up to N ∼ 4 × 106 sites irrespective of their dimension-
ality and topology. We have found strong numerical ev-
idence that the critical behaviour of the RTIM for all
dimensions up to D = 4 is governed by infinite disorder
fixed points. This fact justifies the validity of the use of
the SDRG method as well as indicates that the obtained
critical properties of the model, which are summarized in
Table.I are asymptotically exact. This means that with
increasing sizes in the calculation the critical exponents
approach their exact value. We have demonstrated by
using different disorder distributions in the initial mod-
els that the strong disorder fixed points are universal, the
critical parameters do not depend on the actual form of
the disorder. We have also studied the behaviour of the
systems in the vicinity of the critical points and good
agreement with scaling considerations are obtained.
We have considered the upper critical dimension of infi-

nite disorder scaling of the RTIM and studied the critical
behaviour of the model on Erdős-Rényi random graphs
by the improved SDRG algorithm. Our results indicate
that even in this, formally infinite dimensional lattice the
critical behaviour of the RTIM is governed by a (loga-
rithmically) infinite disorder fixed point, thus the upper
critical dimension is Du = ∞.

Our results presented in this paper are relevant for sev-
eral other problems, too, since the IDFP of the RTIM is
expected to govern the critical properties of a large class
of random systems, at least for strong enough disorder.
These are, among others, random quantum ferromagnetic
systems having a continuous phase transition at which a
discrete symmetry of a non-conserved order parameter
is broken. Examples are the quantum Potts and clock
models48 as well as the Ashkin-Teller model49. Also the
quantum spin glass (QSG) problem could be related to
the IDFP of the RTIM. For the QSG the distribution
of couplings in Eq.(2) contains antiferromagnetic terms,
too, however, at an IDFP frustration is expected to be
irrelevant. Thus the critical exponents in Table.I, with
some appropriate modifications of the scaling relations in
the ordered phase16 should hold for the QSG, at least for
strong enough disorder. Also nonequilibrium phase tran-
sitions in the presence of quenched disorder are expected
to belong to the universality class of the RTIM24 and the
random walk in a self-affine random potential50 could be
related to the RTIM.

Finally we mention that the ideas about the numeri-
cal implementation of the SDRG method in Sec.II A can
be generalized for another models. In the Appendix we
outline the elements of the improved SDRG algorithm
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for the random quantum Potts model48, as well as for
the model of disordered Josephson junctions51. These
results can be used to investigate the critical behaviour
of these systems in higher dimensions.

Appendix A: Improved SDRG algorithm for other

models

The SDRG approach has been applied for a series of
random quantum and classical problems mainly in one
dimension. In higher dimensions the numerical imple-
mentation of the SDRG method for these models has ba-
sically the same problems as the näıve algorithm for the
RTIM. In these cases one can try to apply and generalize
the concept of our improved algorithm. Here we present
the appropriate RG rules for two random quantum mod-
els: for the disordered q-state quantum Potts model and
for the disordered quantum rotor model, which is a stan-
dard model of granular superconductors and Josephson
arrays.

1. Disordered q-state quantum Potts model

In this model at each lattice site, i (or j) there is a q-
state spin variable: si = 1, 2, . . . , q and the Hamiltonian
is given by48:

H = −
∑

〈ij〉

Jijδ(si, sj)−
∑

i

hi
q

q−1
∑

k=1

Mk
l . (A1)

Here the first term represents the interaction between the
spins and the second term is a generalized transverse field
whereMi is a spin-flip operator at site i: Mi|si〉 = |si+1,
mod q〉. As for the random transverse-field Ising model,
what we recover for q = 2, the Jij couplings and the
hi transverse fields are random variables. The SDRG
decimation rules are very similar to that of the RTIM as
described in Sec.II, which differ only in an extra factor:
κ = 2/q.
J-decimation: the effective transverse fields are given

by: h̃ = κhihj/Jij .
h-decimation: the effective couplings are given by:

J̃jk = κJjiJik/hi, which should be supplemented by the
maximum rule.
In the improved algorithm in Sec.II A the distances

and ranges in the log-energy space, see Eqs.(5),(6) and
(7), are extended by a constant: d0 = ln (q/2) = − lnκ,
which now read as:

dij = − ln Jij +
li
2
lnhi +

lj
2
lnhj + d0, (A2)

ri = − lnhi + d0, (A3)

r̃ = ri + rj − δij + d0. (A4)

This generalization works for 2 ≤ q <∞.
2. Disordered Josephson junctions

Here we consider disordered bosons with an occupation
operator, n̂i, and a phase-variable, ϕi, at site i. The
system is described by the following Hamiltonian51:

H = −
∑

〈ij〉

Jij cos (ϕi − ϕj) +
∑

i

Uin̂
2
i , (A5)

with random Jij Josephson couplings and Ui charging
energies. The SDRG approach has also been applied to
this model resulting in the following RG rules.

U -decimation: If the strongest parameter in the Hamil-
tonian is a grain charging energy Ui, then site i is elimi-
nated and effective couplings are generated between the
nearest neighbours of i, say j and k. In second-order per-
turbation calculation this is given by: J̃jk = JjiJik/Ui,
which have to be supplemented with the maximum rule.

J-decimation: If the strongest coupling in the system
is a Josephson coupling, Jij , then the two sites form a

composite site having an effective charging energy, Ũi,
which does not depend on the value of Jij but given by:
1

Ũi
=

1

Ui
+

1

Uj
.

In the improved SDRG algorithm the distance and the
range in Eqs.(5) and (6) are modified with the substitu-
tion hi → Ui as:

dij = − ln Jij +
li
2
lnUi +

lj
2
lnUj , (A6)

ri = − lnUi. (A7)

On the contrary the updated range in Eq.(7) has a dif-
ferent form and given by:

r̃ = ln [exp (ri) + exp (rj)]. (A8)
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