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Abstra
t

Using a regularization by putting the system in �nite volume, we develop a novel

approa
h to form fa
tor perturbation theory for non-integrable models des
ribed as per-

turbations of integrable ones. This permits to go beyond �rst order in form fa
tor pertur-

bation theory and in prin
iple works to any order. The pro
edure is 
arried out in detail

for double sine-Gordon theory, where the va
uum energy density and breather mass 
or-

re
tion is evaluated at se
ond order. The results agree with those obtained from the

trun
ated 
onformal spa
e approa
h. The regularization pro
edure 
an also be used to


ompute other spe
tral sums involving dis
onne
ted pie
es of form fa
tors su
h as those

that o

ur e.g. in �nite temperature 
orrelators.

1 Introdu
tion

Form fa
tor perturbation theory (FFPT) was developed in [1℄ in order to evaluate quanti-

ties in a non-integrable model obtained as a perturbation of an integrable one. Writing the

Hamiltonian in the form

H
nonintegrable

= H
integrable

+ λ

�

dxΨ(t, x)

where Ψ denotes the lo
al perturbing �eld that breaks integrability, the �rst order 
orre
tions

to the va
uum (bulk) energy density and parti
le masses are given as

δEvac = λ 〈0|Ψ |0〉λ=0

δM2
ab = 2λFΨ

ab̄ (iπ , 0)

where

FΨ
i1...in (ϑ1, . . . , ϑn) = 〈0|Ψ(0, 0)|Ai1 (ϑ1) . . . Ain (ϑn)〉λ=0 (1.1)

are the form fa
tors of the perturbing operator 
al
ulated at the integrable point λ = 0 and b̄
denotes the 
harge 
onjugate of parti
le spe
ies b. It is possible to evaluate �rst order 
orre
-

tions to the two-parti
le S matrix and also the widths of de
ays indu
ed by the perturbation

[2℄.

The evaluation of higher order 
orre
tions has not been developed; simple 
onsiderations

along the lines of [1℄ lead to divergent expressions. However there is no pla
e for mass renor-

malization by 
ounter terms analogous to standard Feynman perturbation theory be
ause the

operator (1.1) de�ned by the form fa
tors is already well-de�ned and physi
al. This is also
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on�rmed by the fa
t that when the non-integrable model is formulated using the trun
ated


onformal spa
e approa
h pioneered by Yurov and Zamolod
hikov [3℄ the mass gaps turn

out to be �nite and well-de�ned (the va
uum energy 
an still have divergent 
ontributions

depending on the ultraviolet weight of Ψ, but the di�eren
es between energy levels are all

�nite).

This leads to the 
entral idea of the paper: sin
e the TCSA expression for the relative

energy levels in a �nite volume L is �nite, and the ingredients ne
essary to evaluate �nite

volume perturbation theory 
an be determined from in�nite volume form fa
tors using the

approa
h developed in [4, 5℄, one 
an write down �nite and well-de�ned analyti
 expressions

for the perturbation of �nite volume energy levels (whi
h are a

urate up to so-
alled residual

�nite size e�e
ts that de
ay exponentially with the volume i.e. are non-analyti
 in 1/L,
i.e. valid to all orders in 1/L). Then the quantity of interest (bulk energy density or mass


orre
tion) 
an be expressed dire
tly in �nite volume and the in�nite volume limit is taken

only at the end of the 
al
ulation. This is the same philosophy that was used to obtain the

expression of �nite temperature one-point fun
tions in [5℄.

Eventually, sin
e �rst order FFPT was used in [5℄ to derive the expressions of one-parti
le

and two-parti
le diagonal matrix elements in �nite volume, nothing new is to be gained from

the appli
ation of �nite volume te
hniques at �rst order. However, we get new results at

se
ond order: a 
onsistent, generally valid way of 
al
ulating 
orre
tions to va
uum energy

density and parti
le masses. It 
an also be extended to other quantities su
h as the S matrix,

and to higher order FFPT 
orre
tions as well.

It is best to 
onsider a 
on
rete model to develop and test this approa
h. The model of


hoi
e is the double sine-Gordon model de�ned by the Hamiltonian

HDSG =

�

dx

(
1

2
(∂tϕ)

2 +
1

2
(∂xϕ)

2 − µ : cosβϕ : +λ : sin
β

2
ϕ :

)

(1.2)

understood as a perturbation of the massless free boson (whi
h also de�nes the normal or-

dering). It has attra
ted interest re
ently 
hie�y be
ause it is a prototype of non-integrable

�eld theory whi
h 
an be understood by appli
ation of te
hniques developed in the 
ontext of

integrable �eld theories [6, 9℄ and it also has several interesting appli
ations [6, 7, 8℄ su
h as

to the study of massive S
hwinger model (two-dimensional quantum ele
trodynami
s) and a

generalized Ashkin-Teller model (a quantum spin system) whi
h are dis
ussed in [6℄.

The double sine-Gordon model (1.2) 
an be 
onsidered as a non-integrable perturbation of

the integrable sine-Gordon �eld theory obtained by setting λ = 0 [6℄. Form fa
tor perturbation

theory was applied to the double sine-Gordon model in [9℄; for the parti
ular version in eqn.

(1.2) it was shown that the 
orre
tions to the breather masses vanish to �rst order in λ.
However later semi
lassi
al 
onsiderations [10℄ seemed to 
ontradi
t these naive expe
tations,

yielding mass 
orre
tions whi
h were of �rst order in the 
oupling λ. In [12℄ it was shown that

a pre
ise numeri
al determination of the spe
trum 
ontradi
ts this 
on
lusion and upholds the

naive pi
ture obtained from form fa
tor perturbation theory: i.e. there are only se
ond order


orre
tions, and in fa
t all odd orders vanish sin
e the entire spe
trum turns out to be even

under λ → −λ. However, at that time the mass 
orre
tion 
ould not be 
al
ulated theoreti
ally

due to the la
k of FFPT beyond �rst order. Therefore this model is an interesting testing

ground for the present work, and it is also made ideal by the absen
e of �rst order 
orre
tions

whi
h makes 
omparison to numeri
al results easier. The numeri
al results whi
h are 
ompared

with the theoreti
al predi
tions are obtained from TCSA whi
h was �rst developed for the
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sine-Gordon model in [11℄ and generalized to the double sine-Gordon model in [9℄; to a
hieve a

better pre
ision we use an improved version developed for the work [12℄ and des
ribed therein.

2 Bulk energy 
orre
tion

The general formula for se
ond order 
orre
tions to energy levels 
an be written as

δEi =
∑

k 6=i

|〈i |H1| k〉|2

E
(0)
i −E

(0)
k

where E
(0)
i are the unperturbed energy eigenvalue 
orresponding to the eigenstate |i〉 and H1

is the perturbation to the Hamiltonian. In our 
ase

H1 = λ

� L

0
dx : sin

β

2
ϕ :

where L is the spatial volume of the system. With periodi
 boundary 
onditions the matrix

elements of H1 vanish unless the momenta of states |i〉 and |k〉 
oin
ide; therefore when i is
taken to be the va
uum, only states with zero total momentum 
ontribute. In addition, the

topologi
al 
harge of |k〉 must also be zero, otherwise the amplitude vanishes. Furthermore,

H1 is odd under C : ϕ → −ϕ and so the C-parity of the 
ontributing state must be odd

as well (the nth breather Bn has C-parity (−1)n). Only 
ontributions of breather states are

ne
essary to evaluate be
ause our numeri
al data will 
ome from a part of the attra
tive

regime of sine-Gordon theory where solitons are heavy and 
ontribute little to the summation

over k, well below the available numeri
al pre
ision.

When the momentum of the state |k〉 is zero,

〈0 |H1| k〉 = λ

〈

0

∣
∣
∣
∣
: sin

β

2
ϕ(t, x) :

∣
∣
∣
∣
k

〉

L

is independent of x, therefore

δE0 = −λ2L2
∑

k 6=0

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣ k
〉

L

∣
∣
∣

2

E
(0)
k − E

(0)
0

(2.1)

where the subs
ript L designates �nite volume matrix elements (the two exponential terms

in the sine give equal 
ontributions due to parity). For ξ < 1/31, the lowest lying states


ontributing to the sum are

|B1(0)〉 , |B3(0)〉 ,
|B1(θ1)B2(θ2)〉 with m1 sinh θ1 +m2 sinh θ2 = 0

and |B1(θ1)B1(θ2)B1(θ3)〉 with m1 sinh θ1 +m1 sinh θ2 +m1 sinh θ3 = 0

where

mk = 2M sin
πkξ

2

1

For the notations M and ξ 
f. Appendix A.
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are the breather masses, and the rapidities of the breathers are indi
ated in parentheses. In

details

δE0(L) = −λ2L2

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(0)

〉

L

∣
∣
∣

2

m1
− λ2L2

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B3(0)

〉

L

∣
∣
∣

2

m3

− λ2L2
∑

θ1

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(θ1)B2(θ2)

〉

L

∣
∣
∣

2

(m1 cosh θ1 +m2 cosh θ2)

− λ2L2
∑

θ1,θ2

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(θ1)B1(θ2)B1(θ3)

〉

L

∣
∣
∣

2

(m1 cosh θ1 +m1 cosh θ2 +m1 cosh θ3)
+O

(
e−µL

)
+ . . .

where the presen
e of 
orre
tion terms de
aying exponentially with the volume is indi
ated,

and the ellipsis denotes the terms 
orresponding to further multi-parti
le states. The summa-

tions run over all distin
t solutions of the Bethe-Yang equations

Qk;a1...an(L|θ1, . . . , θn) = makL sinh θk +
∑

l 6=k

−i log Sakal (θk − θl) = 2πIk , Ik ∈ Z

that have total momentum zero. Using the results of [4℄ one 
an write

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(0)

〉

L

=
F

1/2
1 (0)

√

ρ1(L|0)
+O

(
e−µL

)

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B3(0)

〉

L

=
F

1/2
3 (0)

√

ρ3(L|0)
+O

(
e−µL

)

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(θ1)B2(θ2)

〉

L

=
F

1/2
12 (θ1, θ2)

√

ρ12(L|θ1, θ2)
+O

(
e−µL

)

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(θ1)B1(θ2)B1(θ3)

〉

L

=
F

1/2
111 (θ1, θ2)

√

ρ111(L|θ1, θ2, θ3)
+O

(
e−µL

)

The density fa
tors ρ are obtained as

ρi1...in(L|θ1, . . . , θn) = det

{
∂Qk;a1...an

∂θl

}

k,l=1,...,n

In parti
ular, for the one-parti
le densities we obtain

ρk(L|θ) = mkL cosh θ (2.2)

The next step is to take the limit L → ∞: the exponential 
orre
tions 
an be dropped and

the summations substituted with integrals

∑

θ1

→
� ∞

−∞

dθ1
2π

ρ̃12(L|θ1)

∑

θ1,θ2

→
� ∞

−∞

dθ1
2π

dθ2
2π

ρ̃111(L|θ1, θ2)

4



where ρ̃ denotes the density of zero-momentum states. For the �rst integral, it 
an be obtained

by inspe
ting the Bethe-Yang equations

m1L sinh θ1 − i log S12(θ1 − θ2) = 2πI1

m2L sinh θ2 − i log S12(θ2 − θ1) = 2πI2

with S12 denoting the B1B2 S-matrix (
f. eqn. (A.4)). The se
ond equation is a
tually

super�uous due to the zero-momentum 
onstraint m1 sinh θ1 + m2 sinh θ2 = 0. Taking the

derivative of the �rst equation gives

ρ̃12(L|θ1) = m1L cosh θ1 +

(

1 +
m2 cosh θ2
m1 cosh θ1

)

Φ12(θ1 − θ2)

Φ12(θ) = −i
∂

∂θ
log S12(θ)

using the zero-momentum 
onstraint during the di�erentiation. On the other hand, the density

fa
tor ρ12 is

ρ12(L|θ1, θ2) = m1L cosh θ1m2L cosh θ2 + (m1L cosh θ1 +m2L cosh θ2)Φ12(θ1 − θ2) (2.3)

and therefore

ρ̃12(L|θ1)
ρ12(L|θ1, θ2)

=
1

m2L cosh θ2

A similar 
al
ulation yields

ρ̃111(L|θ1, θ2)
ρ111(L|θ1, θ2, θ3)

=
1

m1L cosh θ3

The end result is that the 
orre
tion is proportional to the volume L, and therefore it represents
a 
orre
tion to the bulk energy density

δE =
δE0(L)

L
= −λ2

{
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

+

∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2

m2
3

(2.4)

+

� ∞

−∞

dθ1
2π






∣
∣
∣F

1/2
12 (θ1, θ2)

∣
∣
∣

2

(m1 cosh θ1 +m2 cosh θ2)m2 cosh θ2






∣
∣
∣
∣
∣
∣
∣
θ2=−arsinh(m1 sinh θ1/m2)

+
1

3!

� ∞

−∞

� ∞

−∞

dθ1
2π

dθ2
2π






∣
∣
∣F

1/2
111 (θ1, θ2, θ3)

∣
∣
∣

2

(m1 cosh θ1 +m1 cosh θ2 +m1 cosh θ3)m1 cosh θ3






∣
∣
∣
∣
∣
∣
∣
θ3=−arsinh(sinh θ1+sinh θ2)

+ . . .

}

+O
(
λ4
)

where the form fa
tor fun
tions are de�ned in Appendix A (the 
ombinatorial fa
tor in the

last integral takes into a

ount that states that only di�er in the ordering of the rapidities are

eventually identi
al).
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R =
√
4π/β 1.5 1.9 2.2 2.5

b2 (TCSA) 0.81 1.53 2.21 3.04

b2 (FFPT) 0.82 1.53 2.20 3.01

bss̄ (FFPT) 0.0025 4× 10−5 1× 10−6 1× 10−8

Table 2.1: Comparing va
uum energy density from FFPT to TCSA numeri
s. The parameter

R is related to the 
ompa
ti�
ation radius of the ultraviolet limiting c = 1 free boson 
onformal

�eld theory.

The bulk energy density 
orre
tions 
an now be evaluated expli
itly in units of the soliton

mass M . Introdu
ing also the dimensionless 
oupling [12℄

t = λM−2+β2/16π2

we 
an write

δE
M2

= −b2t
2 +O(t4)

The results of se
ond order FFPT are summarized and 
ompared to numeri
al values ex-

tra
ted from TCSA in Table 2.1. The a

ura
y of the data in the table 
orresponds to the

estimated pre
ision of the TCSA results; at this level, the 
ontribution of the integral terms is

negligible. The deviation between FFPT and TCSA 
omes from two sour
es. For lower values

of R, TCSA was observed to 
onverge slower, thereby limiting the a

ura
y of the numeri
al

determination. Albeit there exists a renormalization group method for improving 
onvergen
e

[14, 15℄, implementing it 
omes with a 
ost (in terms of programming and running). It also

does not seem to gain mu
h 
ompared to the simple-minded approa
h of evaluating bulk en-

ergy by the simpler method whi
h was applied with su

ess in many previous examples [9, 12℄.

Our method (also used in [9, 12℄) is to �nd the s
aling regime where the ground state level

is most linear (the region where its se
ond derivative in L is smallest) and evaluate the slope

of the line there. Similarly, masses 
an be evaluated in the region where the gap between

the appropriate ex
ited state and the ground state be
omes 
losest to 
onstant (found by

sear
hing for the minimum of the �rst derivative) and taking the value of the gap there as the

approximate mass.

For higher values of R, the spe
trum of the theory be
omes more and more dense as the

sine-Gordon model is in
reasingly attra
tive (at the point R = 1.5 there are three breather

states in the spe
trum, while at R = 2.5 there are already eleven of them), therefore there

are more multi-breather states to be in
luded, and in addition there are also states 
ontaining

solitons.

To demonstrate that solitons 
ontribute very little, let us also 
ompute the value of the

�rst solitoni
 
orre
tion, whi
h 
omes from the soliton-antisoliton two-parti
le state. It 
an

be written in a form very similar to the B1B2 term:

−λ2

� ∞

−∞

dθ

2π

|F 1/2
ss̄ (θ,−θ)− F

−1/2
ss̄ (θ,−θ)|2/4

2M cosh θM cosh θ

where F
±1/2
ss̄ is given in (A.5). The 
ontribution of this integral to b2 is denoted bss̄ and is

shown separately in table 2.1. The reason for the smallness of this integral is that it has a

very limited e�e
tive support. The integrand is eventually symmetri
 in θ, and form fa
tors

6



generally vanish on threshold (θ = 0). On the other hand, the form fa
tor 
ombination in the

numerator exhibits an exponential de
ay for large θ

|F 1/2
ss̄ (θ,−θ)− F

−1/2
ss̄ (θ,−θ)|2 ∼ exp

(

−1− ξ

ξ
θ

)

where ξ < 1 in the attra
tive regime. Together with the denominator this makes the integrand

de
ay very fast with in
reasing θ. Similar behaviour happens in terms with larger number of

parti
les, ensuring the 
onvergen
e of all multi-parti
le integrals involved. Similar arguments

hold also for the B1B2 term, but that is made larger by the appearan
e of smaller masses

(m1,m2 instead of M) in the denominator.

The issue of whether the summation over the states with in
reasing number of parti
les

implied by (2.1) 
onverges is more subtle sin
e it is also ne
essary to take into a

ount the

various numeri
al prefa
tors (form fa
tor normalization et
.) entering the individual 
ontribu-

tions and is not 
onsidered here in detail. Just as in the above 
al
ulation, the 
ontributions


an be naturally ordered by the sum of the masses of the 
onstituent parti
les in the inter-

mediate state, and expli
it numeri
al evaluations support the observation that they de
rease

very rapidly when going to more and more massive states.

3 Mass 
orre
tion

Let us now turn to evaluating the mass 
orre
tion for the �rst breather B1. In �nite volume,

the B1 one-parti
le state is just the next energy level |1〉 above the va
uum |0〉in the zero-

momentum, zero topologi
al 
harge se
tor. Therefore

δE1 = −λ2L2
∑

k 6=1

∣
∣
∣

〈

1
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣ k
〉

L

∣
∣
∣

2

E
(0)
k − E

(0)
1

(3.1)

and the 
orre
tion to the mass gap is obtained by taking the di�eren
e to the va
uum level:

δm1 = lim
L→∞

δE1(L)− δE0(L)

3.1 Bulk 
ontributions: a puzzle and its solution

In parti
ular, terms linear in the volume are expe
ted to 
an
el, leaving us with a �nite


orre
tion to the mass gap. However, right with the �rst term a serious problem appears. The

�rst 
ontribution to (3.1) is given by the va
uum state and 
an be written as

λ2L2

∣
∣
∣

〈

B1(0)
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣ 0
〉

L

∣
∣
∣

2

m1ρ1(L|0)
+O

(
e−µL

)
−→
L→∞

λ2L

∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

(3.2)

whi
h has the wrong sign to 
an
el the 
orresponding 
ontribution to the va
uum energy

density i.e. the �rst term in eqn. (2.4).

The puzzle 
an be solved by observing that the 
ontribution from B1B1 two-parti
le states

(whi
h are naively of order L0
for large L) diverges as L → ∞due to a dis
onne
ted pie
e.

Su
h divergent pie
es are �nite for L < ∞, and have a dependen
e of L to the power of

the number of parti
les involved in the dis
onne
ted part. In this 
ase it leads to a pie
e

7



proportional to L, and we pro
eed to show that it gives the 
orre
t 
ontributions to a

ount

for the mismat
h noted above. The 
orresponding term 
an be written as

−λ2L2
∑

θ

∣
∣
∣

〈

B1(0)
∣
∣
∣: exp iβ2ϕ(0, 0) :

∣
∣
∣B1(θ)B1(−θ)

〉

L

∣
∣
∣

2

2m1 cosh θ −m1
+O

(
e−µL

)

and using the results of [4℄ this 
an be written as

− λ2L2
∑

θ

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

ρ1(L|0)ρ11(L|θ,−θ)(2m1 cosh θ −m1)
+O

(
e−µL

)
(3.3)

with ρ1 as in (2.2) and

ρ11(L|θ1, θ2) = m2
1L

2 cosh θ1 cosh θ2 +m1L(cosh θ1 + cosh θ2)Φ11(θ1 − θ2)

Φ11(θ) = −i
∂

∂θ
log S11(θ)

where

S11(θ) =
sinh θ + i sinπξ

sinh θ − i sinπξ
(3.4)

is the B1B1 s
attering amplitude. A simple 
al
ulation similar to that in the previous subse
-

tion gives the density of zero total momentum states as

ρ̃11(L|θ) = m1L cosh θ + 2Φ11(2θ) =
ρ11(L|θ,−θ)

m1L cosh θ

Naive appli
ation of the in�nite volume limit to (3.3) gives

−λ2

� ∞

0

dθ

2π

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

However, the integral is divergent due to kinemati
al poles of the form fa
tor at θ = 0. The
form fa
tors in an integrable quantum �eld theory satisfy a number of axioms (for the details

we refer to Smirnov's review [13℄), among whi
h there is the kinemati
al residue axiom of the

form

2

− iRes
θ=θ

′

FO
n+2(θ + iπ, θ

′

, θ1, . . . , θn)i j i1...in =

(

1− δi j

n∏

k=1

Si ik(θ − θk)

)

FO
n (θ1, . . . , θn)i1...in

(3.5)

whi
h results in the following singularity

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2
∼

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

θ2
+O(θ0)

2

This form of the axiom is valid for self-
onjugate parti
les; for 
harged parti
les it involves the 
harge


onjugation matrix.
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using the fa
t that S11(0) = −1 whi
h expresses the Pauli ex
lusion prin
iple satis�ed by the

B1 parti
les. Therefore one must return to a more 
areful evaluation of the sum (3.3). The

quantization of θ in a �nite volume is given by

m1L sinh θ + δ11(2θ) = 2πJ , J ∈ N+
1

2
(3.6)

where the quantum number is shifted by −1/2 due to the following identi�
ation of the two-

parti
le phase-shift:

S11(θ) = −eiδ11(θ)

As a result we obtain that for �xed J

θ =
2πJ

m1L

and the leading term in the sum (3.3) 
an be written as

−λ2L2
∑

J

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m1L(m1L)2(2m1 −m1)

(
m1L

2πJ

)2

Using the identity

∑

J∈N+1/2

1

J2
=

π2

2

we obtain

−λ2L
2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

whi
h exa
tly 
ompensates for the mismat
h 
aused by the �wrong sign� in eqn. (3.2). The


orre
tion to the mass term 
omes from the subleading L0
term in the sum (3.3), whi
h

requires a very 
areful evaluation that is 
arried out in Appendix B.

Moving to the next 
orre
tion (B3 term) to the bulk energy density in (2.4) and keeping in

mind the above example, it is easy to see that its 
ounterpart arises from the B1B3 
ontribution

to (3.1). Here we en
ounter a di�erent me
hanism for the generation of the bulk term. The

appropriate sum to evaluate is

− λ2L2
∑

θ1

∣
∣
∣

〈

B1(0)
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(θ1)B3(θ2)

〉

L

∣
∣
∣

2

(m1 cosh θ1 +m3 cosh θ2)−m1
(3.7)

with m1 sinh θ1 +m3 sinh θ2 = 0

It turns out that due to S13(0) = +1 the form fa
tor

F
1/2
113 (iπ, θ1, θ2)

is regular as θ1 → 0 (and therefore also θ2 ∼ m1θ1/m3 → 0) and so the above dis
rete sum


onverts dire
tly to an integral of the form

− λ2

� ∞

−∞

dθ1
2π






∣
∣
∣F

1/2
113 (iπ, θ1, θ2)

∣
∣
∣

2

(m1 cosh θ1 +m3 cosh θ2 −m1)m3 cosh θ2






∣
∣
∣
∣
∣
∣
∣
θ2=−arsinh(m1 sinh θ1/m3)

(3.8)
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However, the Bethe-Yang equations

m1L sinh θ1 − i log S13(θ1 − θ2) = 2πI1

m3L sinh θ2 − i log S13(θ2 − θ1) = 2πI2

have the solution θ1 = θ2 = 0 for I1 = I2 = 0, whi
h is allowed due to S13(0) = +1. Using the
results of the paper [5℄, the �nite volume matrix element 
an be written as

〈

B1(0)

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(0)B3(0)

〉

L

=
1

√

ρ13(L|0, 0)ρ1(L|0)

(

F
1/2
113 (iπ, 0, 0) +m1LF

1/2
3 (0)

)

with ρ13 obtained from (2.3) by repla
ing the index 2 with 3. The θ1 = 0 term of (3.7)

therefore takes the form

−λ2






∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2

m2
3

L+ 2ℜeF
1/2
113 (iπ, 0, 0)F

1/2
3 (0)

m1m3
−

(m1 +m3)
∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2
Φ13(0)

m1m
2
3

+O(L−1)






Φ13(θ) = −i
∂

∂θ
log S13(θ) (3.9)

The �rst term is just the 
orre
t bulk 
ontribution, the next two terms must be added to the

mass 
orre
tion and the L−1

orre
tions 
an be dis
arded.

The other bulk terms in (2.4), written as integrals, are expe
ted to follow from terms of

(3.1) with B1B1B2 and B1B1B1B1 as intermediate state. However, their evaluation is rather

tedious and will not be pursued here. The 
orresponding bulk parts in (2.4) are small and

therefore it is plausible that their 
ontributions to the mass shift are small as well, 
ompa-

rable to numeri
al a

ura
y of TCSA and the errors made by negle
ting other states. This

assumption will be justi�ed by the later 
omparison to TCSA.

3.2 Evaluating the mass 
orre
tion

Using the formulae in the previous subse
tion and the end result (B.2) of Appendix B, the


orre
tion to the �rst breather mass 
an be written as follows (the parti
le 
omposition of the

10



R =
√
4π/β 1.6 1.9 2.2 2.5

a2 (TCSA) 3.8 ± 0.3 4.7± 0.2 6.1± 0.1 7.6± 0.1

a2 (FFPT) 3.66 4.91 6.23 7.82

Table 3.1: Comparing the mass 
orre
tion 
oe�
ient a2 from FFPT to TCSA numeri
s. The

parameter R is related to the 
ompa
ti�
ation radius of the ultraviolet limiting c = 1 free

boson 
onformal �eld theory. The values of R are 
hosen to lie in a range to ensure a su�
ient

pre
ision for the TCSA determination, for whi
h an estimate of the numeri
al un
ertainty is

shown. FFPT values from (3.10) are reported with two de
imal pla
es a

ura
y.


ontributing intermediate state is indi
ated below ea
h term):

δm1 = δm
(11)
1

︸ ︷︷ ︸

B1B1

+ δm
(2)
1

︸ ︷︷ ︸

B2

+ δm
(13)
1

︸ ︷︷ ︸

B1B3

+ δm
(22)
1

︸ ︷︷ ︸

B2B2

+ δm
(4)
1

︸ ︷︷ ︸

B4

+ . . . (3.10)

δm
(11)
1 = −λ2

� ∞

0

dθ

2π






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

−
16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1 sinh

2 θ cosh θ






− λ2 × 16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2
(
Φ11(0)

4m3
1

− 1

4m3
1

)

δm
(2)
1 = −λ2

∣
∣
∣F

1/2
12 (iπ, 0)

∣
∣
∣

2

m1m2(m2 −m1)

δm
(4)
1 = −λ2

∣
∣
∣F

1/2
14 (iπ, 0)

∣
∣
∣

2

m1m4(m4 −m1)

δm
(13)
1 = −λ2




2ℜeF

1/2
113 (iπ, 0, 0)F

1/2
3 (0)

m1m3
−

(m1 +m3)
∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2
Φ13(0)

m1m2
3






− λ2

� ∞

−∞

dθ1
2π






∣
∣
∣F

1/2
113 (iπ, θ1, θ2)

∣
∣
∣

2

(m1 cosh θ1 +m3 cosh θ2 −m1)m3 cosh θ2






∣
∣
∣
∣
∣
∣
∣
θ2=−arsinh(m1 sinh θ1/m3)

δm
(22)
1 = −λ2 1

2!

� ∞

−∞

dθ

2π






∣
∣
∣F

1/2
122 (iπ, θ,−θ)

∣
∣
∣

2

(2m2 cosh θ −m1)m2 cosh θ






(the evaluation of the terms δm
(2)
1 , δm

(4)
1 and δm

(22)
1 pro
eeds by the already dis
ussed meth-

ods; there are no dis
onne
ted pie
es in any of them). The mass 
orre
tion 
an be parametrized

with the dimensionless 
oe�
ient a2 de�ned by

δm1

M
= −a2t

2 +O(t4)

whi
h is 
ompared to TCSA data in Table 3.1.
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4 Con
lusions

In this paper it was shown how to use �nite volume te
hniques to go beyond �rst order in form

fa
tor perturbation theory. The se
ond-order 
orre
tions to va
uum energy and �rst breather

mass was evaluated in double sine-Gordon theory. In prin
iple, the method works for higher


orre
tions, and for other quantities, su
h as the S matrix

3

as well.

The results of se
ond order FFPT are in good agreement with numeri
al data from TCSA.

In addition, the regularization te
hniques developed to evaluate dis
onne
ted 
ontributions


an also be used for the form fa
tor expansion of �nite temperature two-point 
orrelators.

Eventually, during the typing of this manus
ript there appeared an independent work by

Essler and Konik [16℄, whi
h uses similar �nite volume te
hniques for 
orrelators, and also

introdu
es another, novel in�nite volume regularization pro
edure.

A
knowledgments

This work was partially supported by the Hungarian OTKA grants K60040 and K75172.

A Breather form fa
tors in sine-Gordon theory

To obtain matrix elements 
ontaining the �rst breather, one 
an analyti
ally 
ontinue the

form fa
tors of sinh-Gordon theory obtained in [17℄ to imaginary values of the 
ouplings. For

the theory obtained by setting λ = 0 in (1.2), the result reads

F a
11...1
︸︷︷︸

n

(θ1, . . . , θn) =
〈

0
∣
∣
∣eiaβϕ(0)

∣
∣
∣B1(θ1) . . . B1(θn)

〉

= Ga(β) [a]ξ (iλ̄(ξ))
n
∏

i<j

fξ(θj − θi)

eθi + eθj
Q(n)

a

(

eθ1 , . . . , eθn
)

(A.1)

where ξ = β2/(8π − β2),

Q(n)
a (x1, . . . , xn) = det [a+ i− j]ξ σ

(n)
2i−j(x1, . . . , xn)i,j=1,...,n−1

if n ≥ 2

Q(1)
a = Q(2)

a = 1 , [a]ξ =
sinπξa

sinπξ

λ̄(ξ) = 2 cos
πξ

2

√

2 sin
πξ

2
exp

(

−
� πξ

0

dt

2π

t

sin t

)

and

fξ(θ) = v(iπ + θ,−1)v(iπ + θ,−ξ)v(iπ + θ, 1 + ξ)v(−iπ − θ,−1)v(−iπ − θ,−ξ)v(−iπ − θ, 1 + ξ)

v(θ, ζ) =

N∏

k=1

(
θ + iπ(2k + ζ)

θ + iπ(2k − ζ)

)k

× exp

{
� ∞

0

dt

t

(

− ζ

4 sinh t
2

− iζθ

2π cosh t
2

+
(
N + 1−Ne

−2t
)
e

−2Nt+ itθ
π

sinh ζt

2 sinh2 t

)}

3

The evaluation of S matrix 
orre
tions 
an be 
arried out by 
al
ulating the shifts of two-parti
le levels,

whi
h depend on the phase shift in �nite volume.
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gives the minimal B1B1 form fa
tor

4

, while σ
(n)
k denotes the elementary symmetri
 polynomial

of n variables and order k de�ned by

n∏

i=1

(x+ xi) =
n∑

k=0

xn−kσ
(n)
k (x1, . . . , xn)

Furthermore

Ga(β) = 〈eiaβϕ〉 =




M

√
πΓ
(

4π
8π−β2

)

2Γ
(

β2/2
8π−β2

)





a2β2

4π

× exp







� ∞

0

dt

t




sinh2

(
a
4π t
)

2 sinh
(
β2

8π t
)

cosh
((

1− β2

8π

)

t
)

sinh t
− a2β2

4π
e−2t











is the exa
t va
uum expe
tation value of the exponential �eld [18℄, with M denoting the

soliton mass related to the 
oupling µ via [19℄

µ =
2Γ(∆)

πΓ(1−∆)





√
πΓ
(

1
2−2∆

)

M

2Γ
(

∆
2−2∆

)





2−2∆

, ∆ =
β2

8π
(A.2)

Formula (A.1) also 
oin
ides with the result given in [20℄.

Form fa
tors 
ontaining higher breathers 
an be obtained using that Bn is a bound state

of B1 and Bn−1; therefore sequentially fusing n adja
ent �rst breathers gives Bn. Following

the lines of reasoning of Appendix A of the paper [21℄ one obtains

F a
k1...krnl1...ls(θ1, . . . , θr, θ, θ

′
1, . . . , θ

′
s) = (A.3)

〈

0
∣
∣
∣eiaβΦ(0)

∣
∣
∣Bk1(θ1) . . . Bkr(θr)Bn(θ)Bl1(θ

′
1) . . . Bls(θ

′
s)
〉

= γ211γ
3
12 . . . γ

n
1n−1

×F a
k1...kr 11...1︸︷︷︸

n

l1...ls

(

θ1, . . . , θr, θ +
1− n

2
iπξ, θ +

3− n

2
iπξ, . . . , θ +

n− 1

2
iπξ, θ′1, . . . , θ

′
s

)

where

γk+1
1k =

√
√
√
√

2 tan kπξ
2 tan (k+1)πξ

2

tan πξ
2

is the B1Bk → Bk+1 
oupling, de�ned as the residue of the appropriate s
attering amplitude:

i
(

γk+1
1k

)2
= Res

θ= iπ(k+1)ξ
2

S1k(θ)

S1k(θ) =
sinh θ + i sin π(k+1)ξ

2

sinh θ − i sin π(k+1)ξ
2

sinh θ + i sin π(k−1)ξ
2

sinh θ − i sin π(k−1)ξ
2

(A.4)

4

The formula for the fun
tion v is in fa
t independent of N ; 
hoosing N large extends the width of the

strip where the integral 
onverges and also speeds up 
onvergen
e.
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Using the results of [20℄ we also quote here the simplest solitoni
 form fa
tor, whi
h is needed

in the main text

F
±1/2
ss̄ (θ1, θ2) = Ga(β)

G(θ2 − θ1)

G(−iπ)

2ie
∓ θ+iπ

2ξ

ξ sinh
(
θ+iπ
ξ

)
(A.5)

where

G(θ) = iC1 sinh
θ

2
exp

(
� ∞

0

dt

t

sinh2 t(1− iθ
π ) sinh t(ξ − 1)

sinh 2t cosh t sinh tξ

)

C1 = exp

(

−
� ∞

0

dt

t

sinh2 t
2 sinh t(ξ − 1)

sinh 2t cosh t sinh tξ

)

B Evaluation of dis
onne
ted 
ontributions

To obtain δm
(11)
1 we need to evaluate the O(L0) of the sum (3.3), whi
h is

−λ2L2
∑

θ

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

ρ1(L|0)ρ11(L|θ,−θ)(2m1 cosh θ −m1)
+O

(
e−µL

)

Using

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2
∼

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

θ2
+O(θ0)

we 
an subtra
t the singular pie
e to write

−λ2L2
∑

θ






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

ρ1(L|0)ρ11(L|θ,−θ)(2m1 cosh θ −m1)
−

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

sinh2 θρ1(L|0)ρ11(L|θ,−θ)m1






whi
h 
an be readily 
onverted for L → ∞ to the following integral:

−λ2

� ∞

0

dθ

2π






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

−
16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1 sinh

2 θ cosh θ






Therefore what we need is the O(L0) part of the subtra
ted term

λ2L2
∑

θ

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

sinh2 θρ1(L|0)ρ11(L|θ,−θ)m1

(B.1)

where

ρ1(L|0) = m1L , ρ11(L|θ,−θ) = m2
1L

2 cosh2 θ + 2m1L cosh θΦ11(2θ)

A

ording to eqn. (3.6) the rapidity is quantized as

m1L sinh θ + δ11(2θ) = 2πJ
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where J is a positive half-integer. Using the arguments of Subse
tion 3.1

λ2L2
∑

J

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1L(m1L)2

(
m1L

2πJ

)2

= λ2L2
∑

θ

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1L(m1L)2

(

1

sinh θ + δ11(2θ)
m1L

)2

= λ2L
2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

is just the O(L) part of the sum (B.1), whi
h 
an be expli
itly subtra
ted without a�e
ting

the O(L0) part. Thus the O(L0) term of (B.1) 
an be obtained as the L → ∞ limit of

16
λ2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1

∑

θ

(
1

sinh2 θ cosh θ (m1L cosh θ + 2Φ11(2θ))
− 1

m1L sinh2 θ

)

+ 16
λ2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m4
1L

∑

θ






1

sinh2 θ
− 1
(

sinh θ + δ11(2θ)
m1L

)2






where an intermediate subtra
tion was inserted to simplify the evaluation. The se
ond sum


an be written

∑

θ






1

sinh2 θ
− 1
(

sinh θ + δ11(2θ)
m1L

)2




 =

∑

J

m2
1L

2

4π2J2

(

2δ11(2θ)

m1L sinh θ
+

(
δ11(2θ)

m1L sinh θ

)2
)

Now the singular part is in the J−2
prefa
tor, and the remainder is �nite for any �xed J when

L → ∞. Sin
e in the in�nite volume limit θ → 0 for any �xed J , and the summation over J
is uniformly 
onvergent, permitting to ex
hange the limit with the sum, we 
an write

∑

θ






1

sinh2 θ
− 1
(

sinh θ + δ11(2θ)
m1L

)2




 =

∑

J

m1L

4π2J2
4Φ11(0) +O(L0) =

m1LΦ11(0)

2
+O(L0)

For the �rst sum we obtain

∑

θ

(
1

sinh2 θ cosh θ (m1L cosh θ + 2Φ11(2θ))
− 1

m1L sinh2 θ

)

=

−
∑

θ

1

sinh2 θ

(
1− 1/ cosh2 θ

m1L
+ 2

Φ11(2θ)

m2
1L

2 cosh3 θ
+O(L−3)

)

=

−1

4
− Φ11(0)

4
+O(L−1)

where in the �rst term we used

∑

θ

1− 1/ cosh2 θ

m1L sinh2 θ
=

� ∞

0

dθ

2π
(m1L cosh θ +Φ11(2θ))

1

m1L cosh2 θ
=

1

4
+O(L−1)

(the integrand is non-singular at θ = 0, hen
e it 
an be evaluated by a density integral), while

for the se
ond term:

∑

θ

1

sinh2 θ

2Φ11(2θ)

m2
1L

2 cosh3 θ
=
∑

θ

2Φ11(0)

m2
1L

2 sinh2 θ
+O(L−1) =

∑

J

2Φ11(0)

4π2J2
+O(L−1) =

Φ11(0)

4
+O(L−1)
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where again, all parts non-singular at θ = 0 were evaluated at the origin. Colle
ting all the

pie
es we obtain that the subtra
ted part (B.1) equals

λ2L2
∑

θ

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

sinh2 θρ1(L|0)ρ11(L|θ,−θ)m1

= λ2L
2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

+λ2×16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2
(
Φ11(0)

4m3
1

− 1

4m3
1

)

+O(L−1)

and therefore

δm
(11)
1 = −λ2

� ∞

0

dθ

2π






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

−
16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1 sinh

2 θ cosh θ




 (B.2)

−λ2 × 16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2
(
Φ11(0)

4m3
1

− 1

4m3
1

)
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