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Abstrat

Using a regularization by putting the system in �nite volume, we develop a novel

approah to form fator perturbation theory for non-integrable models desribed as per-

turbations of integrable ones. This permits to go beyond �rst order in form fator pertur-

bation theory and in priniple works to any order. The proedure is arried out in detail

for double sine-Gordon theory, where the vauum energy density and breather mass or-

retion is evaluated at seond order. The results agree with those obtained from the

trunated onformal spae approah. The regularization proedure an also be used to

ompute other spetral sums involving disonneted piees of form fators suh as those

that our e.g. in �nite temperature orrelators.

1 Introdution

Form fator perturbation theory (FFPT) was developed in [1℄ in order to evaluate quanti-

ties in a non-integrable model obtained as a perturbation of an integrable one. Writing the

Hamiltonian in the form

H
nonintegrable

= H
integrable

+ λ

�

dxΨ(t, x)

where Ψ denotes the loal perturbing �eld that breaks integrability, the �rst order orretions

to the vauum (bulk) energy density and partile masses are given as

δEvac = λ 〈0|Ψ |0〉λ=0

δM2
ab = 2λFΨ

ab̄ (iπ , 0)

where

FΨ
i1...in (ϑ1, . . . , ϑn) = 〈0|Ψ(0, 0)|Ai1 (ϑ1) . . . Ain (ϑn)〉λ=0 (1.1)

are the form fators of the perturbing operator alulated at the integrable point λ = 0 and b̄
denotes the harge onjugate of partile speies b. It is possible to evaluate �rst order orre-

tions to the two-partile S matrix and also the widths of deays indued by the perturbation

[2℄.

The evaluation of higher order orretions has not been developed; simple onsiderations

along the lines of [1℄ lead to divergent expressions. However there is no plae for mass renor-

malization by ounter terms analogous to standard Feynman perturbation theory beause the

operator (1.1) de�ned by the form fators is already well-de�ned and physial. This is also
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on�rmed by the fat that when the non-integrable model is formulated using the trunated

onformal spae approah pioneered by Yurov and Zamolodhikov [3℄ the mass gaps turn

out to be �nite and well-de�ned (the vauum energy an still have divergent ontributions

depending on the ultraviolet weight of Ψ, but the di�erenes between energy levels are all

�nite).

This leads to the entral idea of the paper: sine the TCSA expression for the relative

energy levels in a �nite volume L is �nite, and the ingredients neessary to evaluate �nite

volume perturbation theory an be determined from in�nite volume form fators using the

approah developed in [4, 5℄, one an write down �nite and well-de�ned analyti expressions

for the perturbation of �nite volume energy levels (whih are aurate up to so-alled residual

�nite size e�ets that deay exponentially with the volume i.e. are non-analyti in 1/L,
i.e. valid to all orders in 1/L). Then the quantity of interest (bulk energy density or mass

orretion) an be expressed diretly in �nite volume and the in�nite volume limit is taken

only at the end of the alulation. This is the same philosophy that was used to obtain the

expression of �nite temperature one-point funtions in [5℄.

Eventually, sine �rst order FFPT was used in [5℄ to derive the expressions of one-partile

and two-partile diagonal matrix elements in �nite volume, nothing new is to be gained from

the appliation of �nite volume tehniques at �rst order. However, we get new results at

seond order: a onsistent, generally valid way of alulating orretions to vauum energy

density and partile masses. It an also be extended to other quantities suh as the S matrix,

and to higher order FFPT orretions as well.

It is best to onsider a onrete model to develop and test this approah. The model of

hoie is the double sine-Gordon model de�ned by the Hamiltonian

HDSG =

�

dx

(
1

2
(∂tϕ)

2 +
1

2
(∂xϕ)

2 − µ : cosβϕ : +λ : sin
β

2
ϕ :

)

(1.2)

understood as a perturbation of the massless free boson (whih also de�nes the normal or-

dering). It has attrated interest reently hie�y beause it is a prototype of non-integrable

�eld theory whih an be understood by appliation of tehniques developed in the ontext of

integrable �eld theories [6, 9℄ and it also has several interesting appliations [6, 7, 8℄ suh as

to the study of massive Shwinger model (two-dimensional quantum eletrodynamis) and a

generalized Ashkin-Teller model (a quantum spin system) whih are disussed in [6℄.

The double sine-Gordon model (1.2) an be onsidered as a non-integrable perturbation of

the integrable sine-Gordon �eld theory obtained by setting λ = 0 [6℄. Form fator perturbation

theory was applied to the double sine-Gordon model in [9℄; for the partiular version in eqn.

(1.2) it was shown that the orretions to the breather masses vanish to �rst order in λ.
However later semilassial onsiderations [10℄ seemed to ontradit these naive expetations,

yielding mass orretions whih were of �rst order in the oupling λ. In [12℄ it was shown that

a preise numerial determination of the spetrum ontradits this onlusion and upholds the

naive piture obtained from form fator perturbation theory: i.e. there are only seond order

orretions, and in fat all odd orders vanish sine the entire spetrum turns out to be even

under λ → −λ. However, at that time the mass orretion ould not be alulated theoretially

due to the lak of FFPT beyond �rst order. Therefore this model is an interesting testing

ground for the present work, and it is also made ideal by the absene of �rst order orretions

whih makes omparison to numerial results easier. The numerial results whih are ompared

with the theoretial preditions are obtained from TCSA whih was �rst developed for the
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sine-Gordon model in [11℄ and generalized to the double sine-Gordon model in [9℄; to ahieve a

better preision we use an improved version developed for the work [12℄ and desribed therein.

2 Bulk energy orretion

The general formula for seond order orretions to energy levels an be written as

δEi =
∑

k 6=i

|〈i |H1| k〉|2

E
(0)
i −E

(0)
k

where E
(0)
i are the unperturbed energy eigenvalue orresponding to the eigenstate |i〉 and H1

is the perturbation to the Hamiltonian. In our ase

H1 = λ

� L

0
dx : sin

β

2
ϕ :

where L is the spatial volume of the system. With periodi boundary onditions the matrix

elements of H1 vanish unless the momenta of states |i〉 and |k〉 oinide; therefore when i is
taken to be the vauum, only states with zero total momentum ontribute. In addition, the

topologial harge of |k〉 must also be zero, otherwise the amplitude vanishes. Furthermore,

H1 is odd under C : ϕ → −ϕ and so the C-parity of the ontributing state must be odd

as well (the nth breather Bn has C-parity (−1)n). Only ontributions of breather states are

neessary to evaluate beause our numerial data will ome from a part of the attrative

regime of sine-Gordon theory where solitons are heavy and ontribute little to the summation

over k, well below the available numerial preision.

When the momentum of the state |k〉 is zero,

〈0 |H1| k〉 = λ

〈

0

∣
∣
∣
∣
: sin

β

2
ϕ(t, x) :

∣
∣
∣
∣
k

〉

L

is independent of x, therefore

δE0 = −λ2L2
∑

k 6=0

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣ k
〉

L

∣
∣
∣

2

E
(0)
k − E

(0)
0

(2.1)

where the subsript L designates �nite volume matrix elements (the two exponential terms

in the sine give equal ontributions due to parity). For ξ < 1/31, the lowest lying states

ontributing to the sum are

|B1(0)〉 , |B3(0)〉 ,
|B1(θ1)B2(θ2)〉 with m1 sinh θ1 +m2 sinh θ2 = 0

and |B1(θ1)B1(θ2)B1(θ3)〉 with m1 sinh θ1 +m1 sinh θ2 +m1 sinh θ3 = 0

where

mk = 2M sin
πkξ

2

1

For the notations M and ξ f. Appendix A.
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are the breather masses, and the rapidities of the breathers are indiated in parentheses. In

details

δE0(L) = −λ2L2

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(0)

〉

L

∣
∣
∣

2

m1
− λ2L2

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B3(0)

〉

L

∣
∣
∣

2

m3

− λ2L2
∑

θ1

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(θ1)B2(θ2)

〉

L

∣
∣
∣

2

(m1 cosh θ1 +m2 cosh θ2)

− λ2L2
∑

θ1,θ2

∣
∣
∣

〈

0
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(θ1)B1(θ2)B1(θ3)

〉

L

∣
∣
∣

2

(m1 cosh θ1 +m1 cosh θ2 +m1 cosh θ3)
+O

(
e−µL

)
+ . . .

where the presene of orretion terms deaying exponentially with the volume is indiated,

and the ellipsis denotes the terms orresponding to further multi-partile states. The summa-

tions run over all distint solutions of the Bethe-Yang equations

Qk;a1...an(L|θ1, . . . , θn) = makL sinh θk +
∑

l 6=k

−i log Sakal (θk − θl) = 2πIk , Ik ∈ Z

that have total momentum zero. Using the results of [4℄ one an write

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(0)

〉

L

=
F

1/2
1 (0)

√

ρ1(L|0)
+O

(
e−µL

)

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B3(0)

〉

L

=
F

1/2
3 (0)

√

ρ3(L|0)
+O

(
e−µL

)

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(θ1)B2(θ2)

〉

L

=
F

1/2
12 (θ1, θ2)

√

ρ12(L|θ1, θ2)
+O

(
e−µL

)

〈

0

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(θ1)B1(θ2)B1(θ3)

〉

L

=
F

1/2
111 (θ1, θ2)

√

ρ111(L|θ1, θ2, θ3)
+O

(
e−µL

)

The density fators ρ are obtained as

ρi1...in(L|θ1, . . . , θn) = det

{
∂Qk;a1...an

∂θl

}

k,l=1,...,n

In partiular, for the one-partile densities we obtain

ρk(L|θ) = mkL cosh θ (2.2)

The next step is to take the limit L → ∞: the exponential orretions an be dropped and

the summations substituted with integrals

∑

θ1

→
� ∞

−∞

dθ1
2π

ρ̃12(L|θ1)

∑

θ1,θ2

→
� ∞

−∞

dθ1
2π

dθ2
2π

ρ̃111(L|θ1, θ2)
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where ρ̃ denotes the density of zero-momentum states. For the �rst integral, it an be obtained

by inspeting the Bethe-Yang equations

m1L sinh θ1 − i log S12(θ1 − θ2) = 2πI1

m2L sinh θ2 − i log S12(θ2 − θ1) = 2πI2

with S12 denoting the B1B2 S-matrix (f. eqn. (A.4)). The seond equation is atually

super�uous due to the zero-momentum onstraint m1 sinh θ1 + m2 sinh θ2 = 0. Taking the

derivative of the �rst equation gives

ρ̃12(L|θ1) = m1L cosh θ1 +

(

1 +
m2 cosh θ2
m1 cosh θ1

)

Φ12(θ1 − θ2)

Φ12(θ) = −i
∂

∂θ
log S12(θ)

using the zero-momentum onstraint during the di�erentiation. On the other hand, the density

fator ρ12 is

ρ12(L|θ1, θ2) = m1L cosh θ1m2L cosh θ2 + (m1L cosh θ1 +m2L cosh θ2)Φ12(θ1 − θ2) (2.3)

and therefore

ρ̃12(L|θ1)
ρ12(L|θ1, θ2)

=
1

m2L cosh θ2

A similar alulation yields

ρ̃111(L|θ1, θ2)
ρ111(L|θ1, θ2, θ3)

=
1

m1L cosh θ3

The end result is that the orretion is proportional to the volume L, and therefore it represents
a orretion to the bulk energy density

δE =
δE0(L)

L
= −λ2

{
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

+

∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2

m2
3

(2.4)

+

� ∞

−∞

dθ1
2π






∣
∣
∣F

1/2
12 (θ1, θ2)

∣
∣
∣

2

(m1 cosh θ1 +m2 cosh θ2)m2 cosh θ2






∣
∣
∣
∣
∣
∣
∣
θ2=−arsinh(m1 sinh θ1/m2)

+
1

3!

� ∞

−∞

� ∞

−∞

dθ1
2π

dθ2
2π






∣
∣
∣F

1/2
111 (θ1, θ2, θ3)

∣
∣
∣

2

(m1 cosh θ1 +m1 cosh θ2 +m1 cosh θ3)m1 cosh θ3






∣
∣
∣
∣
∣
∣
∣
θ3=−arsinh(sinh θ1+sinh θ2)

+ . . .

}

+O
(
λ4
)

where the form fator funtions are de�ned in Appendix A (the ombinatorial fator in the

last integral takes into aount that states that only di�er in the ordering of the rapidities are

eventually idential).
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R =
√
4π/β 1.5 1.9 2.2 2.5

b2 (TCSA) 0.81 1.53 2.21 3.04

b2 (FFPT) 0.82 1.53 2.20 3.01

bss̄ (FFPT) 0.0025 4× 10−5 1× 10−6 1× 10−8

Table 2.1: Comparing vauum energy density from FFPT to TCSA numeris. The parameter

R is related to the ompati�ation radius of the ultraviolet limiting c = 1 free boson onformal

�eld theory.

The bulk energy density orretions an now be evaluated expliitly in units of the soliton

mass M . Introduing also the dimensionless oupling [12℄

t = λM−2+β2/16π2

we an write

δE
M2

= −b2t
2 +O(t4)

The results of seond order FFPT are summarized and ompared to numerial values ex-

trated from TCSA in Table 2.1. The auray of the data in the table orresponds to the

estimated preision of the TCSA results; at this level, the ontribution of the integral terms is

negligible. The deviation between FFPT and TCSA omes from two soures. For lower values

of R, TCSA was observed to onverge slower, thereby limiting the auray of the numerial

determination. Albeit there exists a renormalization group method for improving onvergene

[14, 15℄, implementing it omes with a ost (in terms of programming and running). It also

does not seem to gain muh ompared to the simple-minded approah of evaluating bulk en-

ergy by the simpler method whih was applied with suess in many previous examples [9, 12℄.

Our method (also used in [9, 12℄) is to �nd the saling regime where the ground state level

is most linear (the region where its seond derivative in L is smallest) and evaluate the slope

of the line there. Similarly, masses an be evaluated in the region where the gap between

the appropriate exited state and the ground state beomes losest to onstant (found by

searhing for the minimum of the �rst derivative) and taking the value of the gap there as the

approximate mass.

For higher values of R, the spetrum of the theory beomes more and more dense as the

sine-Gordon model is inreasingly attrative (at the point R = 1.5 there are three breather

states in the spetrum, while at R = 2.5 there are already eleven of them), therefore there

are more multi-breather states to be inluded, and in addition there are also states ontaining

solitons.

To demonstrate that solitons ontribute very little, let us also ompute the value of the

�rst solitoni orretion, whih omes from the soliton-antisoliton two-partile state. It an

be written in a form very similar to the B1B2 term:

−λ2

� ∞

−∞

dθ

2π

|F 1/2
ss̄ (θ,−θ)− F

−1/2
ss̄ (θ,−θ)|2/4

2M cosh θM cosh θ

where F
±1/2
ss̄ is given in (A.5). The ontribution of this integral to b2 is denoted bss̄ and is

shown separately in table 2.1. The reason for the smallness of this integral is that it has a

very limited e�etive support. The integrand is eventually symmetri in θ, and form fators

6



generally vanish on threshold (θ = 0). On the other hand, the form fator ombination in the

numerator exhibits an exponential deay for large θ

|F 1/2
ss̄ (θ,−θ)− F

−1/2
ss̄ (θ,−θ)|2 ∼ exp

(

−1− ξ

ξ
θ

)

where ξ < 1 in the attrative regime. Together with the denominator this makes the integrand

deay very fast with inreasing θ. Similar behaviour happens in terms with larger number of

partiles, ensuring the onvergene of all multi-partile integrals involved. Similar arguments

hold also for the B1B2 term, but that is made larger by the appearane of smaller masses

(m1,m2 instead of M) in the denominator.

The issue of whether the summation over the states with inreasing number of partiles

implied by (2.1) onverges is more subtle sine it is also neessary to take into aount the

various numerial prefators (form fator normalization et.) entering the individual ontribu-

tions and is not onsidered here in detail. Just as in the above alulation, the ontributions

an be naturally ordered by the sum of the masses of the onstituent partiles in the inter-

mediate state, and expliit numerial evaluations support the observation that they derease

very rapidly when going to more and more massive states.

3 Mass orretion

Let us now turn to evaluating the mass orretion for the �rst breather B1. In �nite volume,

the B1 one-partile state is just the next energy level |1〉 above the vauum |0〉in the zero-

momentum, zero topologial harge setor. Therefore

δE1 = −λ2L2
∑

k 6=1

∣
∣
∣

〈

1
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣ k
〉

L

∣
∣
∣

2

E
(0)
k − E

(0)
1

(3.1)

and the orretion to the mass gap is obtained by taking the di�erene to the vauum level:

δm1 = lim
L→∞

δE1(L)− δE0(L)

3.1 Bulk ontributions: a puzzle and its solution

In partiular, terms linear in the volume are expeted to anel, leaving us with a �nite

orretion to the mass gap. However, right with the �rst term a serious problem appears. The

�rst ontribution to (3.1) is given by the vauum state and an be written as

λ2L2

∣
∣
∣

〈

B1(0)
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣ 0
〉

L

∣
∣
∣

2

m1ρ1(L|0)
+O

(
e−µL

)
−→
L→∞

λ2L

∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

(3.2)

whih has the wrong sign to anel the orresponding ontribution to the vauum energy

density i.e. the �rst term in eqn. (2.4).

The puzzle an be solved by observing that the ontribution from B1B1 two-partile states

(whih are naively of order L0
for large L) diverges as L → ∞due to a disonneted piee.

Suh divergent piees are �nite for L < ∞, and have a dependene of L to the power of

the number of partiles involved in the disonneted part. In this ase it leads to a piee

7



proportional to L, and we proeed to show that it gives the orret ontributions to aount

for the mismath noted above. The orresponding term an be written as

−λ2L2
∑

θ

∣
∣
∣

〈

B1(0)
∣
∣
∣: exp iβ2ϕ(0, 0) :

∣
∣
∣B1(θ)B1(−θ)

〉

L

∣
∣
∣

2

2m1 cosh θ −m1
+O

(
e−µL

)

and using the results of [4℄ this an be written as

− λ2L2
∑

θ

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

ρ1(L|0)ρ11(L|θ,−θ)(2m1 cosh θ −m1)
+O

(
e−µL

)
(3.3)

with ρ1 as in (2.2) and

ρ11(L|θ1, θ2) = m2
1L

2 cosh θ1 cosh θ2 +m1L(cosh θ1 + cosh θ2)Φ11(θ1 − θ2)

Φ11(θ) = −i
∂

∂θ
log S11(θ)

where

S11(θ) =
sinh θ + i sinπξ

sinh θ − i sinπξ
(3.4)

is the B1B1 sattering amplitude. A simple alulation similar to that in the previous subse-

tion gives the density of zero total momentum states as

ρ̃11(L|θ) = m1L cosh θ + 2Φ11(2θ) =
ρ11(L|θ,−θ)

m1L cosh θ

Naive appliation of the in�nite volume limit to (3.3) gives

−λ2

� ∞

0

dθ

2π

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

However, the integral is divergent due to kinematial poles of the form fator at θ = 0. The
form fators in an integrable quantum �eld theory satisfy a number of axioms (for the details

we refer to Smirnov's review [13℄), among whih there is the kinematial residue axiom of the

form

2

− iRes
θ=θ

′

FO
n+2(θ + iπ, θ

′

, θ1, . . . , θn)i j i1...in =

(

1− δi j

n∏

k=1

Si ik(θ − θk)

)

FO
n (θ1, . . . , θn)i1...in

(3.5)

whih results in the following singularity

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2
∼

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

θ2
+O(θ0)

2

This form of the axiom is valid for self-onjugate partiles; for harged partiles it involves the harge

onjugation matrix.
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using the fat that S11(0) = −1 whih expresses the Pauli exlusion priniple satis�ed by the

B1 partiles. Therefore one must return to a more areful evaluation of the sum (3.3). The

quantization of θ in a �nite volume is given by

m1L sinh θ + δ11(2θ) = 2πJ , J ∈ N+
1

2
(3.6)

where the quantum number is shifted by −1/2 due to the following identi�ation of the two-

partile phase-shift:

S11(θ) = −eiδ11(θ)

As a result we obtain that for �xed J

θ =
2πJ

m1L

and the leading term in the sum (3.3) an be written as

−λ2L2
∑

J

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m1L(m1L)2(2m1 −m1)

(
m1L

2πJ

)2

Using the identity

∑

J∈N+1/2

1

J2
=

π2

2

we obtain

−λ2L
2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

whih exatly ompensates for the mismath aused by the �wrong sign� in eqn. (3.2). The

orretion to the mass term omes from the subleading L0
term in the sum (3.3), whih

requires a very areful evaluation that is arried out in Appendix B.

Moving to the next orretion (B3 term) to the bulk energy density in (2.4) and keeping in

mind the above example, it is easy to see that its ounterpart arises from the B1B3 ontribution

to (3.1). Here we enounter a di�erent mehanism for the generation of the bulk term. The

appropriate sum to evaluate is

− λ2L2
∑

θ1

∣
∣
∣

〈

B1(0)
∣
∣
∣: exp i

β
2ϕ(0, 0) :

∣
∣
∣B1(θ1)B3(θ2)

〉

L

∣
∣
∣

2

(m1 cosh θ1 +m3 cosh θ2)−m1
(3.7)

with m1 sinh θ1 +m3 sinh θ2 = 0

It turns out that due to S13(0) = +1 the form fator

F
1/2
113 (iπ, θ1, θ2)

is regular as θ1 → 0 (and therefore also θ2 ∼ m1θ1/m3 → 0) and so the above disrete sum

onverts diretly to an integral of the form

− λ2

� ∞

−∞

dθ1
2π






∣
∣
∣F

1/2
113 (iπ, θ1, θ2)

∣
∣
∣

2

(m1 cosh θ1 +m3 cosh θ2 −m1)m3 cosh θ2






∣
∣
∣
∣
∣
∣
∣
θ2=−arsinh(m1 sinh θ1/m3)

(3.8)
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However, the Bethe-Yang equations

m1L sinh θ1 − i log S13(θ1 − θ2) = 2πI1

m3L sinh θ2 − i log S13(θ2 − θ1) = 2πI2

have the solution θ1 = θ2 = 0 for I1 = I2 = 0, whih is allowed due to S13(0) = +1. Using the
results of the paper [5℄, the �nite volume matrix element an be written as

〈

B1(0)

∣
∣
∣
∣
: exp i

β

2
ϕ(0, 0) :

∣
∣
∣
∣
B1(0)B3(0)

〉

L

=
1

√

ρ13(L|0, 0)ρ1(L|0)

(

F
1/2
113 (iπ, 0, 0) +m1LF

1/2
3 (0)

)

with ρ13 obtained from (2.3) by replaing the index 2 with 3. The θ1 = 0 term of (3.7)

therefore takes the form

−λ2






∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2

m2
3

L+ 2ℜeF
1/2
113 (iπ, 0, 0)F

1/2
3 (0)

m1m3
−

(m1 +m3)
∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2
Φ13(0)

m1m
2
3

+O(L−1)






Φ13(θ) = −i
∂

∂θ
log S13(θ) (3.9)

The �rst term is just the orret bulk ontribution, the next two terms must be added to the

mass orretion and the L−1
orretions an be disarded.

The other bulk terms in (2.4), written as integrals, are expeted to follow from terms of

(3.1) with B1B1B2 and B1B1B1B1 as intermediate state. However, their evaluation is rather

tedious and will not be pursued here. The orresponding bulk parts in (2.4) are small and

therefore it is plausible that their ontributions to the mass shift are small as well, ompa-

rable to numerial auray of TCSA and the errors made by negleting other states. This

assumption will be justi�ed by the later omparison to TCSA.

3.2 Evaluating the mass orretion

Using the formulae in the previous subsetion and the end result (B.2) of Appendix B, the

orretion to the �rst breather mass an be written as follows (the partile omposition of the

10



R =
√
4π/β 1.6 1.9 2.2 2.5

a2 (TCSA) 3.8 ± 0.3 4.7± 0.2 6.1± 0.1 7.6± 0.1

a2 (FFPT) 3.66 4.91 6.23 7.82

Table 3.1: Comparing the mass orretion oe�ient a2 from FFPT to TCSA numeris. The

parameter R is related to the ompati�ation radius of the ultraviolet limiting c = 1 free

boson onformal �eld theory. The values of R are hosen to lie in a range to ensure a su�ient

preision for the TCSA determination, for whih an estimate of the numerial unertainty is

shown. FFPT values from (3.10) are reported with two deimal plaes auray.

ontributing intermediate state is indiated below eah term):

δm1 = δm
(11)
1

︸ ︷︷ ︸

B1B1

+ δm
(2)
1

︸ ︷︷ ︸

B2

+ δm
(13)
1

︸ ︷︷ ︸

B1B3

+ δm
(22)
1

︸ ︷︷ ︸

B2B2

+ δm
(4)
1

︸ ︷︷ ︸

B4

+ . . . (3.10)

δm
(11)
1 = −λ2

� ∞

0

dθ

2π






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

−
16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1 sinh

2 θ cosh θ






− λ2 × 16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2
(
Φ11(0)

4m3
1

− 1

4m3
1

)

δm
(2)
1 = −λ2

∣
∣
∣F

1/2
12 (iπ, 0)

∣
∣
∣

2

m1m2(m2 −m1)

δm
(4)
1 = −λ2

∣
∣
∣F

1/2
14 (iπ, 0)

∣
∣
∣

2

m1m4(m4 −m1)

δm
(13)
1 = −λ2




2ℜeF

1/2
113 (iπ, 0, 0)F

1/2
3 (0)

m1m3
−

(m1 +m3)
∣
∣
∣F

1/2
3 (0)

∣
∣
∣

2
Φ13(0)

m1m2
3






− λ2

� ∞

−∞

dθ1
2π






∣
∣
∣F

1/2
113 (iπ, θ1, θ2)

∣
∣
∣

2

(m1 cosh θ1 +m3 cosh θ2 −m1)m3 cosh θ2






∣
∣
∣
∣
∣
∣
∣
θ2=−arsinh(m1 sinh θ1/m3)

δm
(22)
1 = −λ2 1

2!

� ∞

−∞

dθ

2π






∣
∣
∣F

1/2
122 (iπ, θ,−θ)

∣
∣
∣

2

(2m2 cosh θ −m1)m2 cosh θ






(the evaluation of the terms δm
(2)
1 , δm

(4)
1 and δm

(22)
1 proeeds by the already disussed meth-

ods; there are no disonneted piees in any of them). The mass orretion an be parametrized

with the dimensionless oe�ient a2 de�ned by

δm1

M
= −a2t

2 +O(t4)

whih is ompared to TCSA data in Table 3.1.
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4 Conlusions

In this paper it was shown how to use �nite volume tehniques to go beyond �rst order in form

fator perturbation theory. The seond-order orretions to vauum energy and �rst breather

mass was evaluated in double sine-Gordon theory. In priniple, the method works for higher

orretions, and for other quantities, suh as the S matrix

3

as well.

The results of seond order FFPT are in good agreement with numerial data from TCSA.

In addition, the regularization tehniques developed to evaluate disonneted ontributions

an also be used for the form fator expansion of �nite temperature two-point orrelators.

Eventually, during the typing of this manusript there appeared an independent work by

Essler and Konik [16℄, whih uses similar �nite volume tehniques for orrelators, and also

introdues another, novel in�nite volume regularization proedure.
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A Breather form fators in sine-Gordon theory

To obtain matrix elements ontaining the �rst breather, one an analytially ontinue the

form fators of sinh-Gordon theory obtained in [17℄ to imaginary values of the ouplings. For

the theory obtained by setting λ = 0 in (1.2), the result reads

F a
11...1
︸︷︷︸

n

(θ1, . . . , θn) =
〈

0
∣
∣
∣eiaβϕ(0)

∣
∣
∣B1(θ1) . . . B1(θn)

〉

= Ga(β) [a]ξ (iλ̄(ξ))
n
∏

i<j

fξ(θj − θi)

eθi + eθj
Q(n)

a

(

eθ1 , . . . , eθn
)

(A.1)

where ξ = β2/(8π − β2),

Q(n)
a (x1, . . . , xn) = det [a+ i− j]ξ σ

(n)
2i−j(x1, . . . , xn)i,j=1,...,n−1

if n ≥ 2

Q(1)
a = Q(2)

a = 1 , [a]ξ =
sinπξa

sinπξ

λ̄(ξ) = 2 cos
πξ

2

√

2 sin
πξ

2
exp

(

−
� πξ

0

dt

2π

t

sin t

)

and

fξ(θ) = v(iπ + θ,−1)v(iπ + θ,−ξ)v(iπ + θ, 1 + ξ)v(−iπ − θ,−1)v(−iπ − θ,−ξ)v(−iπ − θ, 1 + ξ)

v(θ, ζ) =

N∏

k=1

(
θ + iπ(2k + ζ)

θ + iπ(2k − ζ)

)k

× exp

{
� ∞

0

dt

t

(

− ζ

4 sinh t
2

− iζθ

2π cosh t
2

+
(
N + 1−Ne

−2t
)
e

−2Nt+ itθ
π

sinh ζt

2 sinh2 t

)}

3

The evaluation of S matrix orretions an be arried out by alulating the shifts of two-partile levels,

whih depend on the phase shift in �nite volume.
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gives the minimal B1B1 form fator

4

, while σ
(n)
k denotes the elementary symmetri polynomial

of n variables and order k de�ned by

n∏

i=1

(x+ xi) =
n∑

k=0

xn−kσ
(n)
k (x1, . . . , xn)

Furthermore

Ga(β) = 〈eiaβϕ〉 =




M

√
πΓ
(

4π
8π−β2

)

2Γ
(

β2/2
8π−β2

)





a2β2

4π

× exp







� ∞

0

dt

t




sinh2

(
a
4π t
)

2 sinh
(
β2

8π t
)

cosh
((

1− β2

8π

)

t
)

sinh t
− a2β2

4π
e−2t











is the exat vauum expetation value of the exponential �eld [18℄, with M denoting the

soliton mass related to the oupling µ via [19℄

µ =
2Γ(∆)

πΓ(1−∆)





√
πΓ
(

1
2−2∆

)

M

2Γ
(

∆
2−2∆

)





2−2∆

, ∆ =
β2

8π
(A.2)

Formula (A.1) also oinides with the result given in [20℄.

Form fators ontaining higher breathers an be obtained using that Bn is a bound state

of B1 and Bn−1; therefore sequentially fusing n adjaent �rst breathers gives Bn. Following

the lines of reasoning of Appendix A of the paper [21℄ one obtains

F a
k1...krnl1...ls(θ1, . . . , θr, θ, θ

′
1, . . . , θ

′
s) = (A.3)

〈

0
∣
∣
∣eiaβΦ(0)

∣
∣
∣Bk1(θ1) . . . Bkr(θr)Bn(θ)Bl1(θ

′
1) . . . Bls(θ

′
s)
〉

= γ211γ
3
12 . . . γ

n
1n−1

×F a
k1...kr 11...1︸︷︷︸

n

l1...ls

(

θ1, . . . , θr, θ +
1− n

2
iπξ, θ +

3− n

2
iπξ, . . . , θ +

n− 1

2
iπξ, θ′1, . . . , θ

′
s

)

where

γk+1
1k =

√
√
√
√

2 tan kπξ
2 tan (k+1)πξ

2

tan πξ
2

is the B1Bk → Bk+1 oupling, de�ned as the residue of the appropriate sattering amplitude:

i
(

γk+1
1k

)2
= Res

θ= iπ(k+1)ξ
2

S1k(θ)

S1k(θ) =
sinh θ + i sin π(k+1)ξ

2

sinh θ − i sin π(k+1)ξ
2

sinh θ + i sin π(k−1)ξ
2

sinh θ − i sin π(k−1)ξ
2

(A.4)

4

The formula for the funtion v is in fat independent of N ; hoosing N large extends the width of the

strip where the integral onverges and also speeds up onvergene.
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Using the results of [20℄ we also quote here the simplest solitoni form fator, whih is needed

in the main text

F
±1/2
ss̄ (θ1, θ2) = Ga(β)

G(θ2 − θ1)

G(−iπ)

2ie
∓ θ+iπ

2ξ

ξ sinh
(
θ+iπ
ξ

)
(A.5)

where

G(θ) = iC1 sinh
θ

2
exp

(
� ∞

0

dt

t

sinh2 t(1− iθ
π ) sinh t(ξ − 1)

sinh 2t cosh t sinh tξ

)

C1 = exp

(

−
� ∞

0

dt

t

sinh2 t
2 sinh t(ξ − 1)

sinh 2t cosh t sinh tξ

)

B Evaluation of disonneted ontributions

To obtain δm
(11)
1 we need to evaluate the O(L0) of the sum (3.3), whih is

−λ2L2
∑

θ

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

ρ1(L|0)ρ11(L|θ,−θ)(2m1 cosh θ −m1)
+O

(
e−µL

)

Using

∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2
∼

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

θ2
+O(θ0)

we an subtrat the singular piee to write

−λ2L2
∑

θ






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

ρ1(L|0)ρ11(L|θ,−θ)(2m1 cosh θ −m1)
−

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

sinh2 θρ1(L|0)ρ11(L|θ,−θ)m1






whih an be readily onverted for L → ∞ to the following integral:

−λ2

� ∞

0

dθ

2π






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

−
16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1 sinh

2 θ cosh θ






Therefore what we need is the O(L0) part of the subtrated term

λ2L2
∑

θ

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

sinh2 θρ1(L|0)ρ11(L|θ,−θ)m1

(B.1)

where

ρ1(L|0) = m1L , ρ11(L|θ,−θ) = m2
1L

2 cosh2 θ + 2m1L cosh θΦ11(2θ)

Aording to eqn. (3.6) the rapidity is quantized as

m1L sinh θ + δ11(2θ) = 2πJ
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where J is a positive half-integer. Using the arguments of Subsetion 3.1

λ2L2
∑

J

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1L(m1L)2

(
m1L

2πJ

)2

= λ2L2
∑

θ

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1L(m1L)2

(

1

sinh θ + δ11(2θ)
m1L

)2

= λ2L
2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

is just the O(L) part of the sum (B.1), whih an be expliitly subtrated without a�eting

the O(L0) part. Thus the O(L0) term of (B.1) an be obtained as the L → ∞ limit of

16
λ2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1

∑

θ

(
1

sinh2 θ cosh θ (m1L cosh θ + 2Φ11(2θ))
− 1

m1L sinh2 θ

)

+ 16
λ2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m4
1L

∑

θ






1

sinh2 θ
− 1
(

sinh θ + δ11(2θ)
m1L

)2






where an intermediate subtration was inserted to simplify the evaluation. The seond sum

an be written

∑

θ






1

sinh2 θ
− 1
(

sinh θ + δ11(2θ)
m1L

)2




 =

∑

J

m2
1L

2

4π2J2

(

2δ11(2θ)

m1L sinh θ
+

(
δ11(2θ)

m1L sinh θ

)2
)

Now the singular part is in the J−2
prefator, and the remainder is �nite for any �xed J when

L → ∞. Sine in the in�nite volume limit θ → 0 for any �xed J , and the summation over J
is uniformly onvergent, permitting to exhange the limit with the sum, we an write

∑

θ






1

sinh2 θ
− 1
(

sinh θ + δ11(2θ)
m1L

)2




 =

∑

J

m1L

4π2J2
4Φ11(0) +O(L0) =

m1LΦ11(0)

2
+O(L0)

For the �rst sum we obtain

∑

θ

(
1

sinh2 θ cosh θ (m1L cosh θ + 2Φ11(2θ))
− 1

m1L sinh2 θ

)

=

−
∑

θ

1

sinh2 θ

(
1− 1/ cosh2 θ

m1L
+ 2

Φ11(2θ)

m2
1L

2 cosh3 θ
+O(L−3)

)

=

−1

4
− Φ11(0)

4
+O(L−1)

where in the �rst term we used

∑

θ

1− 1/ cosh2 θ

m1L sinh2 θ
=

� ∞

0

dθ

2π
(m1L cosh θ +Φ11(2θ))

1

m1L cosh2 θ
=

1

4
+O(L−1)

(the integrand is non-singular at θ = 0, hene it an be evaluated by a density integral), while

for the seond term:

∑

θ

1

sinh2 θ

2Φ11(2θ)

m2
1L

2 cosh3 θ
=
∑

θ

2Φ11(0)

m2
1L

2 sinh2 θ
+O(L−1) =

∑

J

2Φ11(0)

4π2J2
+O(L−1) =

Φ11(0)

4
+O(L−1)
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where again, all parts non-singular at θ = 0 were evaluated at the origin. Colleting all the

piees we obtain that the subtrated part (B.1) equals

λ2L2
∑

θ

16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

sinh2 θρ1(L|0)ρ11(L|θ,−θ)m1

= λ2L
2
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m2
1

+λ2×16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2
(
Φ11(0)

4m3
1

− 1

4m3
1

)

+O(L−1)

and therefore

δm
(11)
1 = −λ2

� ∞

0

dθ

2π






∣
∣
∣F

1/2
111 (iπ, θ,−θ)

∣
∣
∣

2

m3
1 cosh θ(2 cosh θ − 1)

−
16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2

m3
1 sinh

2 θ cosh θ




 (B.2)

−λ2 × 16
∣
∣
∣F

1/2
1 (0)

∣
∣
∣

2
(
Φ11(0)

4m3
1

− 1

4m3
1

)
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