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Abstract

Using a regularization by putting the system in finite volume, we develop a novel
approach to form factor perturbation theory for non-integrable models described as per-
turbations of integrable ones. This permits to go beyond first order in form factor pertur-
bation theory and in principle works to any order. The procedure is carried out in detail
for double sine-Gordon theory, where the vacuum energy density and breather mass cor-
rection is evaluated at second order. The results agree with those obtained from the
truncated conformal space approach. The regularization procedure can also be used to
compute other spectral sums involving disconnected pieces of form factors such as those
that occur e.g. in finite temperature correlators.

1 Introduction

Form factor perturbation theory (FFPT) was developed in [I] in order to evaluate quanti-
ties in a non-integrable model obtained as a perturbation of an integrable one. Writing the
Hamiltonian in the form

Hnonintegrable - Hintegrable +A / dx ¥ (t, )

where W denotes the local perturbing field that breaks integrability, the first order corrections
to the vacuum (bulk) energy density and particle masses are given as

8Epae = A0]W[0),_,
SMZ, = 2\F%(ir,0)

a
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where

FY i, (01,...,0n) = (01%(0,0)|Ai, (91) ... As, (9n))a=0 (1.1)

01...0n

are the form factors of the perturbing operator calculated at the integrable point A = 0 and b
denotes the charge conjugate of particle species b. It is possible to evaluate first order correc-
tions to the two-particle S matrix and also the widths of decays induced by the perturbation
[2].

The evaluation of higher order corrections has not been developed; simple considerations
along the lines of [I] lead to divergent expressions. However there is no place for mass renor-
malization by counter terms analogous to standard Feynman perturbation theory because the
operator (LI defined by the form factors is already well-defined and physical. This is also
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confirmed by the fact that when the non-integrable model is formulated using the truncated
conformal space approach pioneered by Yurov and Zamolodchikov [3] the mass gaps turn
out to be finite and well-defined (the vacuum energy can still have divergent contributions
depending on the ultraviolet weight of ¥, but the differences between energy levels are all
finite).

This leads to the central idea of the paper: since the TCSA expression for the relative
energy levels in a finite volume L is finite, and the ingredients necessary to evaluate finite
volume perturbation theory can be determined from infinite volume form factors using the
approach developed in [4 5], one can write down finite and well-defined analytic expressions
for the perturbation of finite volume energy levels (which are accurate up to so-called residual
finite size effects that decay exponentially with the volume i.e. are non-analytic in 1/L,
i.e. valid to all orders in 1/L). Then the quantity of interest (bulk energy density or mass
correction) can be expressed directly in finite volume and the infinite volume limit is taken
only at the end of the calculation. This is the same philosophy that was used to obtain the
expression of finite temperature one-point functions in [5].

Eventually, since first order FFPT was used in [5] to derive the expressions of one-particle
and two-particle diagonal matrix elements in finite volume, nothing new is to be gained from
the application of finite volume techniques at first order. However, we get new results at
second order: a consistent, generally valid way of calculating corrections to vacuum energy
density and particle masses. It can also be extended to other quantities such as the S matrix,
and to higher order FFPT corrections as well.

It is best to consider a concrete model to develop and test this approach. The model of
choice is the double sine-Gordon model defined by the Hamiltonian

Hpge = /dx (% (B0)? + % (8pp)? — 11z cos B : 4+ : sin ggo :> (1.2)
understood as a perturbation of the massless free boson (which also defines the normal or-
dering). It has attracted interest recently chiefly because it is a prototype of non-integrable
field theory which can be understood by application of techniques developed in the context of
integrable field theories [6 9] and it also has several interesting applications [0} [7, 8] such as
to the study of massive Schwinger model (two-dimensional quantum electrodynamics) and a
generalized Ashkin-Teller model (a quantum spin system) which are discussed in [6].

The double sine-Gordon model (L.2]) can be considered as a non-integrable perturbation of
the integrable sine-Gordon field theory obtained by setting A = 0 [6]. Form factor perturbation
theory was applied to the double sine-Gordon model in [9]; for the particular version in eqn.
(L2) it was shown that the corrections to the breather masses vanish to first order in A.
However later semiclassical considerations [10] seemed to contradict these naive expectations,
yielding mass corrections which were of first order in the coupling A. In [12] it was shown that
a precise numerical determination of the spectrum contradicts this conclusion and upholds the
naive picture obtained from form factor perturbation theory: i.e. there are only second order
corrections, and in fact all odd orders vanish since the entire spectrum turns out to be even
under A — —\. However, at that time the mass correction could not be calculated theoretically
due to the lack of FFPT beyond first order. Therefore this model is an interesting testing
ground for the present work, and it is also made ideal by the absence of first order corrections
which makes comparison to numerical results easier. The numerical results which are compared
with the theoretical predictions are obtained from TCSA which was first developed for the



sine-Gordon model in [11] and generalized to the double sine-Gordon model in [9]; to achieve a
better precision we use an improved version developed for the work [12] and described therein.

2 Bulk energy correction

The general formula for second order corrections to energy levels can be written as

Z |Hl|1C
0)
k#i Ez(

where EZ-(O) are the unperturbed energy eigenvalue corresponding to the eigenstate |i) and H;
is the perturbation to the Hamiltonian. In our case

g B
le)\/ dr :sin—p:
0 2

where L is the spatial volume of the system. With periodic boundary conditions the matrix
elements of H; vanish unless the momenta of states |i) and |k) coincide; therefore when i is
taken to be the vacuum, only states with zero total momentum contribute. In addition, the
topological charge of |k) must also be zero, otherwise the amplitude vanishes. Furthermore,
Hy is odd under C : ¢ — —¢ and so the C-parity of the contributing state must be odd
as well (the nth breather B,, has C-parity (—1)"). Only contributions of breather states are
necessary to evaluate because our numerical data will come from a part of the attractive
regime of sine-Gordon theory where solitons are heavy and contribute little to the summation
over k, well below the available numerical precision.
When the momentum of the state |k) is zero,

<O]H1\k):)\<0

: sin gcp(t,x) :‘ k:>

L

is independent of x, therefore

0 expiggp(O, 0) :‘ k‘>L‘2

__)\ZLQZK -

0
k0 E," - Eé )

(2.1)

where the subscript L designates finite volume matrix elements (the two exponential terms
in the sine give equal contributions due to parity). For £ < 1/, the lowest lying states
contributing to the sum are

[B1(0)), [B3(0)),
|B1(601)B2(62)) with my sinh#; + mgsinhfy = 0
and ’Bl (91)31 (92)31 (03)> with  mg sinh 61 + my sinh 6y + mq sinh 63 =0

where

k
mg = 2Msin7TT5

'For the notations M and ¢ cf. Appendix [Al



are the breather masses, and the rapidities of the breathers are indicated in parentheses. In
details

. ‘ 2 ' P | ,
OBy (L) = —)\2L2‘<0 :exnggp(:;f) "B1(0)>L‘ —)\2L2‘<0 ‘explgSD(:;BO) "33(0)>L‘
2
01: expiZp(0,0) :| By(61)Ba(62)
AQLQZ ‘< ‘ m12005h 01 Jml colsh 922) : > ‘

2
epie0.0) | BiO)BIG)B6) |

(mq cosh 01 + my cosh 0 + m; cosh 03)

)\QLZZ ‘<

01,02

—i—O(e_“L)—i—...

where the presence of correction terms decaying exponentially with the volume is indicated,
and the ellipsis denotes the terms corresponding to further multi-particle states. The summa-
tions run over all distinct solutions of the Bethe-Yang equations

Qkiar.an (Ll01, ..., 0n) = Mo, Lsinh 0, + > —ilog Saya, (O — 0) =27L, I €Z
£k

that have total momentum zero. Using the results of [4] one can write

F20
<O expz 'Bl > = 17()—1—0(6_“1’)
p1(L|0)
/2
<0 expzﬁ 'Bg > = -3 7 (0) +0 (ef“L)
2”7 L p3(L[0)
Fi2(6,,0
<O :expié(p(o,()) 'Bl (91 BQ 02 > = M +O (efﬂL)
2 L p12(L[01,62)
{6,060
<0 expzé (O 0) ‘Bl(ﬁl Bl 92 B1 93 > == 111( L 2) +O (e_“L)
L Vp111(L61,62,65)
The density factors p are obtained as
an'al...a
pin i (Llfy. . 0,) = det {7
' 96, kl=1,...,
In particular, for the one-particle densities we obtain
pr(L|0) = my L cosh 6 (2.2)

The next step is to take the limit L. — oco: the exponential corrections can be dropped and
the summations substituted with integrals

oy _
> - | Semeie)
df dfy
P / —1—2/)111(L|91,92)

01,02



where p denotes the density of zero-momentum states. For the first integral, it can be obtained
by inspecting the Bethe-Yang equations

mlL sinh01 - ilog 512(01 - 02) = 27‘(’[1
m2L Sinh92 — ilog 512(92 — 91) = 27TI2

with S denoting the ByBy S-matrix (cf. eqn. (A.4))). The second equation is actually
superfluous due to the zero-momentum constraint m;j sinh #; + mosinh 6y = 0. Taking the
derivative of the first equation gives

me cosh Oy

ﬁ12(L|91) = myLcosh6; + (1 + ) ‘1)12(91 — 92)

my cosh 6

.0
log 512(9)

P12(0) = —igg

using the zero-momentum constraint during the differentiation. On the other hand, the density
factor pio is

p12(L|91, 92) = my L cosh 61msL cosh 69 + (mlL cosh 61 + msL cosh 92)(1)12(91 — 92) (23)

and therefore ~
pr2(L[61) 1

p12(L|91, 92) N mgL cosh 92

A similar calculation yields

p111(L101,62) 1

P111 (L‘@l, 02, 03) - mlL cosh (93

The end result is that the correction is proportional to the volume L, and therefore it represents
a correction to the bulk energy density

1/2 01 |2 1/2 01 |2
CGB(D) L[ |HCO] |ER0)
0€ = 7 = - - + - (2.4)
(e
—oo 21 | (my cosh 6y + my cosh 02)msg cosh 6

02=—arsinh(m1 sinh 61 /m2)

2
1/2
1 e  db dbo ‘Fll/l 91’ 02, 93)
/ /OO 27 27 | (mq cosh 67 + my cosh 62 + mq cosh O3)mq cosh 63
03=—arsinh(sinh 61 +sinh 65)

+... }+O(A4)

where the form factor functions are defined in Appendix [A] (the combinatorial factor in the
last integral takes into account that states that only differ in the ordering of the rapidities are
eventually identical).



| R=V4r/B| 15 1.9 2.2 2.5
by (TCSA) | 0.81 1.53 2.21 3.04
by (FFPT) | 0.82 1.53 2.20 3.01
bss (FFPT) | 0.0025 | 4x107° [ 1 x107% | 1 x 1078

Table 2.1: Comparing vacuum energy density from FFPT to TCSA numerics. The parameter
R isrelated to the compactification radius of the ultraviolet limiting ¢ = 1 free boson conformal
field theory.

The bulk energy density corrections can now be evaluated explicitly in units of the soliton
mass M. Introducing also the dimensionless coupling [12]

+— \M—2t8%/167°

we can write 5&
T —byt? + O(th)

The results of second order FFPT are summarized and compared to numerical values ex-
tracted from TCSA in Table 211 The accuracy of the data in the table corresponds to the
estimated precision of the TCSA results; at this level, the contribution of the integral terms is
negligible. The deviation between FFPT and TCSA comes from two sources. For lower values
of R, TCSA was observed to converge slower, thereby limiting the accuracy of the numerical
determination. Albeit there exists a renormalization group method for improving convergence
[14, 15], implementing it comes with a cost (in terms of programming and running). It also
does not seem to gain much compared to the simple-minded approach of evaluating bulk en-
ergy by the simpler method which was applied with success in many previous examples [9, [12].
Our method (also used in [9, 12]) is to find the scaling regime where the ground state level
is most linear (the region where its second derivative in L is smallest) and evaluate the slope
of the line there. Similarly, masses can be evaluated in the region where the gap between
the appropriate excited state and the ground state becomes closest to constant (found by
searching for the minimum of the first derivative) and taking the value of the gap there as the
approximate mass.

For higher values of R, the spectrum of the theory becomes more and more dense as the
sine-Gordon model is increasingly attractive (at the point R = 1.5 there are three breather
states in the spectrum, while at R = 2.5 there are already eleven of them), therefore there
are more multi-breather states to be included, and in addition there are also states containing
solitons.

To demonstrate that solitons contribute very little, let us also compute the value of the
first solitonic correction, which comes from the soliton-antisoliton two-particle state. It can
be written in a form very similar to the BBy term:

Y /°° 9 |Fo%(0,-0) — Fis' (0, ~0) /4
00 2T 2M cosh @ M cosh 6

where F;;l/ ? is given in (A5). The contribution of this integral to by is denoted bys and is
shown separately in table 21l The reason for the smallness of this integral is that it has a
very limited effective support. The integrand is eventually symmetric in 6, and form factors



generally vanish on threshold (6 = 0). On the other hand, the form factor combination in the
numerator exhibits an exponential decay for large 6

P00 = P 2(0,-0)7 ~ oxp (50
where £ < 1 in the attractive regime. Together with the denominator this makes the integrand
decay very fast with increasing 6. Similar behaviour happens in terms with larger number of
particles, ensuring the convergence of all multi-particle integrals involved. Similar arguments
hold also for the BBy term, but that is made larger by the appearance of smaller masses
(my, mo instead of M) in the denominator.

The issue of whether the summation over the states with increasing number of particles
implied by (2.1 converges is more subtle since it is also necessary to take into account the
various numerical prefactors (form factor normalization etc.) entering the individual contribu-
tions and is not considered here in detail. Just as in the above calculation, the contributions
can be naturally ordered by the sum of the masses of the constituent particles in the inter-
mediate state, and explicit numerical evaluations support the observation that they decrease
very rapidly when going to more and more massive states.

3 Mass correction

Let us now turn to evaluating the mass correction for the first breather Bj. In finite volume,
the B; one-particle state is just the next energy level |1) above the vacuum |0)in the zero-
momentum, zero topological charge sector. Therefore

:

S — 212 Z ‘<1 : expiggp(0,0) :‘ k>L 6.1)

0) 0)
o B — B
and the correction to the mass gap is obtained by taking the difference to the vacuum level:

5m1 = lim (5E1 (L) — (5E0(L)
L—oo

3.1 Bulk contributions: a puzzle and its solution

In particular, terms linear in the volume are expected to cancel, leaving us with a finite
correction to the mass gap. However, right with the first term a serious problem appears. The
first contribution to (3.I]) is given by the vacuum state and can be written as

) B ) 2 1/2 1|2
o (O] 0 19] 6 e el m<%°>\ 32

which has the wrong sign to cancel the corresponding contribution to the vacuum energy
density i.e. the first term in eqn. (2.4).

The puzzle can be solved by observing that the contribution from By B two-particle states
(which are naively of order L° for large L) diverges as L — oodue to a disconnected piece.
Such divergent pieces are finite for L. < oo, and have a dependence of L to the power of
the number of particles involved in the disconnected part. In this case it leads to a piece



proportional to L, and we proceed to show that it gives the correct contributions to account
for the mismatch noted above. The corresponding term can be written as

—N\212 Zg: ‘<Bl (O) ‘: eXp;?ifiz;i)ez‘_B;(l@)Bl(_0)>L‘ + 0 (e*uL)

and using the results of [4] this can be written as

2
ey |Fiff im,0,-0)]
- p1(L]0)p11 (L]0, —0)(2m1 cosh @ — m;)

+0 (e7#h) (3.3)

with p; as in (2:2)) and
p11(L|01,62) = m%L2 cosh 67 cosh 65 + mj L(cosh 01 + cosh 02) P11 (61 — 02)

.0
‘1)11(9) = —Z% log 511(9)

where ) )
sinh 8 4 ¢ sin 7€

sinh @ — ¢sin w&

S11(0) =

(3.4)

is the By By scattering amplitude. A simple calculation similar to that in the previous subsec-
tion gives the density of zero total momentum states as

pll(Lw? _0)

011(L|0) = mqL coshf + 2P1(20) =
pu(L10) = maLcosh 6 + 2011 (26) my L cosh 6

Naive application of the infinite volume limit to ([B.3]) gives

2
12,
)\2 10 ‘Fll/l (Z7T,9,—9)
B /0 %mi{’ cosh0(2cosh 6 — 1)

However, the integral is divergent due to kinematical poles of the form factor at § = 0. The
form factors in an integrable quantum field theory satisfy a number of axioms (for the details
we refer to Smirnov’s review [I3]), among which there is the kinematical residue axiom of the
for

- ieReeS/ F,?Jrg(@ +im, 6,61, .. On)ijin.in = (1 —0;j H Sii, (0 — 9k)> F(01,...,00)ir i
= k=1

(3.5)
which results in the following singularity

1/2
» ) 16‘F1/ (0) ;
R (im,0,~0)| ~ ————+0(0")
2This form of the axiom is valid for self-conjugate particles; for charged particles it involves the charge
conjugation matrix.

‘ 2




using the fact that S11(0) = —1 which expresses the Pauli exclusion principle satisfied by the
B; particles. Therefore one must return to a more careful evaluation of the sum ([B.3]). The
quantization of € in a finite volume is given by

1
miLsinh0 +611(20) =27, J €N+ (3.6)

where the quantum number is shifted by —1/2 due to the following identification of the two-
particle phase-shift:
S (6) = e
As a result we obtain that for fixed J
_2nJ

2 -
mlL

and the leading term in the sum (33) can be written as

16 (Ff/ 2(0)

2
2

3272 ‘ miL
AL ; mi1L(myL)?(2my — mq) <27TJ>

Using the identity

JEN+1/2

we obtain )
2|F%(0)]
T S B

2
mi

which exactly compensates for the mismatch caused by the “wrong sign” in eqn. ([32]). The
correction to the mass term comes from the subleading L° term in the sum (3.3), which
requires a very careful evaluation that is carried out in Appendix [Bl

Moving to the next correction (Bs term) to the bulk energy density in (2Z4]) and keeping in
mind the above example, it is easy to see that its counterpart arises from the B; B3 contribution
to (B.J). Here we encounter a different mechanism for the generation of the bulk term. The
appropriate sum to evaluate is

2
expil .
ey [(B1(0) |: expi5(0,0) 2| Bi(01)Bs(02)) |
0 (ml cosh 01 + ms cosh 02) —mq
1

(3.7)

with my sinh 87 + m3sinh 6y = 0

It turns out that due to S13(0) = +1 the form factor

F111/3,2(i77, 61,02)

is regular as 6; — 0 (and therefore also 6y ~ m16;/ms — 0) and so the above discrete sum
converts directly to an integral of the form

2
o0 F1/2(iﬂ-591,92)
N / ! — (3.8)

—oo 21 | (mqcosh®; + mgcoshfy — mq)ms cosh Oy
02=—arsinh(m1 sinh 61 /ms3)



However, the Bethe-Yang equations

mlL Sinh91 — ilog 513(91 — 92) = 27TI1
m3L Sinh92 — ilog 513(92 — 91) = 27TI2

have the solution 61 = 0 = 0 for I; = Iy = 0, which is allowed due to S13(0) = +1. Using the
results of the paper [5], the finite volume matrix element can be written as

(B

B , _ 1 /2 /
: expigp(0,0) .‘31(0)33(0)>L = T om0 (Flllgz(m,0,0)—i—mlLFgl 2(o))

with pi3 obtained from (23] by replacing the index 2 with 3. The 61 = 0 term of (3.7
therefore takes the form

2 2
F7%(0) 12, 1/2 (m1 + m3) |Fy7%(0)]” ®15(0)
)2 ‘ 3 ~ ‘ L+2%6F113(z7r,0,0)F3 0) ‘ 3 ~ ‘ Lo
m3 mims m1m3
0
(1)13(9) = —z%log 513(9) (39)

The first term is just the correct bulk contribution, the next two terms must be added to the
mass correction and the L' corrections can be discarded.

The other bulk terms in (2.4)), written as integrals, are expected to follow from terms of
(B1) with B; BBy and By B1 By Bj as intermediate state. However, their evaluation is rather
tedious and will not be pursued here. The corresponding bulk parts in (2.4) are small and
therefore it is plausible that their contributions to the mass shift are small as well, compa-
rable to numerical accuracy of TCSA and the errors made by neglecting other states. This
assumption will be justified by the later comparison to TCSA.

3.2 Evaluating the mass correction

Using the formulae in the previous subsection and the end result (B.2) of Appendix [B] the
correction to the first breather mass can be written as follows (the particle composition of the

10



|R=VA4r/B| 16 1.9 2.2 25 |

as (TCSA) [38+03 [47+02]61+0176+0.1
as (FFPT) | 3.66 4,91 6.23 7.82

Table 3.1: Comparing the mass correction coefficient ay from FFPT to TCSA numerics. The
parameter R is related to the compactification radius of the ultraviolet limiting ¢ = 1 free
boson conformal field theory. The values of R are chosen to lie in a range to ensure a sufficient
precision for the TCSA determination, for which an estimate of the numerical uncertainty is
shown. FFPT values from (B.I0]) are reported with two decimal places accuracy.

contributing intermediate state is indicated below each term):

smi = om\"™ +om® +omi"™ £ omP? +oml 4 (3.10)
—— e N—— \,_/ \,_/
BB By BiBs  B2Bs Ba
/2. 2 112 2
5m(11) B _)\Z/Ooﬁ ‘Fll/l (ZW,@,—H)‘ 16‘F/ ‘
! N o 27 | m3cosh@(2coshf —1) m3 sinh? 6 cosh 6

~ X2 16‘F11/2(0)‘2 (@11(0) _ L)

4m:1” 4m:1”
@ ‘FI/Q im,0) ‘
om =
! m1mz(m2 —my)
) ‘F im0 ‘
om =
! m1m4(m4 —my)
1/2 /2 1/2 ‘2
o [ PEm 00 R @) 1t me) [P0 @10)
1 mims mlm?,’
1/2,. 2
)\2 0 d91 ‘FHS (271',(91,02)‘
B /OO o (mq cosh 01 + mg cosh 03 — mq)mg cosh 0y
02=—arsinh(m1 sinh 61 /m3)
1/2,. 2
i - ot (e
! 2! J_o 27 | (2mg cosh @ — mq)mgy cosh 0

(the evaluation of the terms 5mg ), 5m(4) and 5m§22) proceeds by the already discussed meth-
ods; there are no disconnected pieces in any of them). The mass correction can be parametrized
with the dimensionless coefficient ay defined by

om
Wl = —ayt? + O(tY)

which is compared to TCSA data in Table 311

11



4 Conclusions

In this paper it was shown how to use finite volume techniques to go beyond first order in form
factor perturbation theory. The second-order corrections to vacuum energy and first breather
mass was evaluated in double sine-Gordon theory. In principle, the method works for higher
corrections, and for other quantities, such as the S matrl). as well.

The results of second order FFPT are in good agreement with numerical data from TCSA.
In addition, the regularization techniques developed to evaluate disconnected contributions
can also be used for the form factor expansion of finite temperature two-point correlators.
Eventually, during the typing of this manuscript there appeared an independent work by
Essler and Konik [16], which uses similar finite volume techniques for correlators, and also
introduces another, novel infinite volume regularization procedure.
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A Breather form factors in sine-Gordon theory

To obtain matrix elements containing the first breather, one can analytically continue the
form factors of sinh-Gordon theory obtained in [I7] to imaginary values of the couplings. For
the theory obtained by setting A = 0 in (.2]), the result reads

Py 1(01,...,0,) = <0 eiaﬁ“’(o)‘ By(6y) ... B1(9n)>
<~
= Gu(B)[a H Q™ <e91 ,60”) (A1)
e@ + e a 9
where ¢ — 82/ (87 - 52),
QMW (xy,...,x,) = detla+i—jle Ué?zj(xl, . ’w")i,jzl,...,n—l ifn>2
Q(l) _ Q(z) _ [ale = sinméa
¢ “ sin ¢
X ”5 dt t
= 2 —4/2sin — -
A(§) cos & sin exp < o sint)

and

fe(0) = w(ir+0,-1v(im + 6, = v(in + 0,1 + §)v(—in — 0, —1)v(—imr — 0, =&)v(—imr — 6,1 +§)

N 0+ im(2k + ¢)\*
v(6,¢) = H<m>

k=1

ot (6O i h{t
X exp / df__¢ - i ~+ (N+1-Ne e 2Nt+w%
o t 4sinh 5 2mcosh 5 2sinh“ ¢

3The evaluation of S matrix corrections can be carried out by calculating the shifts of two-particle levels,
which depend on the phase shift in finite volume.
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(n)

gives the minimal By B form factor@, while o, denotes the elementary symmetric polynomial
of n variables and order k defined by

2:1
Furthermore
a2[32
| MYAT (525)]
Gu(8) = (%) = s
o ( 2 62>
(o) : 2( a
X exp / = L) - agﬁge*%
o t |2sinh (%t) cosh ((1 — g) t) sinht dm

is the exact vacuum expectation value of the exponential field [18], with M denoting the
soliton mass related to the coupling p via [19]

ora) (VA () i\ 5
F=ara—a) 2r<2 m) AT (4.2)

Formula (A7) also coincides with the result given in [20].

Form factors containing higher breathers can be obtained using that B, is a bound state
of By and B, _1; therefore sequentially fusing n adjacent first breathers gives B,,. Following
the lines of reasoning of Appendix A of the paper [2I] one obtains

Flg1...krnl1...ls(017 s 707"707037 LRI 70;) = (A3)
(0 et lwntmawammwomBu%w:ﬁwﬁmﬂul
1— 3 —
XFgl...krll...lll...ls <017"'707"70+ nZﬂ'g,e—i— n271'§7 0+ Z7T§ 0 ,02)
—~
where
kil 2tan@tan%
Wlk - g

tan £

is the B; By — Bj41 coupling, defined as the residue of the appropriate scattering amplitude:

k+1 _
<71k ) = 9:% S1k(0)
sinh 6 4 i sin n(kt1)e + ) Sinh 6 + 7 sin m(k=1)§
Sik(0) = 2 (A.4)

sinh § — i sin ”(kﬂ) sinh @ — i sin %

“The formula for the function v is in fact independent of N; choosing N large extends the width of the
strip where the integral converges and also speeds up convergence.
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Using the results of [20] we also quote here the simplest solitonic form factor, which is needed
in the main text ois

G0y —61) 2iet =
G(—i : O0+im
( Zﬂ—) fsmh <T)

FEY2(6,,6,) = Gu(B)

(A.5)

where

0 % ¢ sinh? t(1 — ﬁ) sinht(¢ — 1)
9 f 1 51 h - 4 -
G(0) 1Cy sin o P < /0 t sinh 2t cosht sinh t&

cl —  dt sinh?® L sinh¢(¢ — 1)
L= o _/0 t sinh 2t cosht sinh¢¢

B Evaluation of disconnected contributions

To obtain 6m§11) we need to evaluate the O(LY) of the sum (3.3]), which is

(Ff{f(m, 0, —9)(2

—\2L7 +0 (e7r
g p1(L]0)p11 (L]0, —0)(2m1 cosh @ — my) ( )
Using
/2, |2
e > 16|F(0)| .
|Fi{E(im,0,-0)] ~ ————+0(6")

we can subtract the singular piece to write

2
|Fi{}(im,0.-6) 16| F%(0)

2
_)\2L2 Z T2 ‘
- p1(L|0)p11 (L]0, —0)(2m1 cosh® —my)  sinh® Op;(L]0)p11(L|6, —0)m4

which can be readily converted for L — oo to the following integral:

‘ 2

1/2,, 1/2 0 |2
2 [ do im0, -6) 16| F%(0)]
a /0 21 | m3 coshf(2coshf — 1) m?3 sinh? § cosh 0

Therefore what we need is the O(L") part of the subtracted term

16 (Ff/ 2(0)

2
)\2L2 ‘
; sinh? 01 (L]0)p11 (L[0, —0)mq

where
p1(L|0) =mqiL, p11(L|6,—0) = m%L2 cosh? @ + 2my L cosh 0P11(20)

According to eqn. (B.0) the rapidity is quantized as

miLsinh 6 + §11(20) = 27 J
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where J is a positive half-integer. Using the arguments of Subsection B

2
16RO iz 16| F%(0)] . 2 7 0)
A2L2 4ul A2L2 Y/ i
Z m2L (mq1L)? (277J Z 2L (m1D)2 \ sinh o N 5;11(125) m%

is just the O(L) part of the sum (B.I]), which can be explicitly subtracted without affecting
the O(LY) part. Thus the O(L?) term of (B.I) can be obtained as the L — oo limit of

2
A2|F2(0)

Z < 1 3 1 >
m$ n sinh? @ cosh @ (m1 L cosh @ + 2®1,(20))  m;Lsinh?6

16

172, |2
A2 |F(0) 1 1

+ 16 T >

7 sinh26 <smh0—i— 511(29))

mi1L

where an intermediate subtraction was inserted to simplify the evaluation. The second sum
can be written

3 1 1 :Zm%LQ 201(20)  (_0u(20) 2
sinh? 6 (Slnh9+6u(2€)> . 472 J2 \ mqLsinh @ mq L sinh 0

0

Now the singular part is in the J 2 prefactor, and the remainder is finite for any fixed J when
L — oo. Since in the infinite volume limit 8 — 0 for any fixed J, and the summation over J
is uniformly convergent, permitting to exchange the limit with the sum, we can write

1 1 my L m1 L®11(0)
Z sinh? 6 B 5 (29) - Z 2.2 4911(0) + O(LO) = 5 + O(LO)
0 <smh9 4 2 )

For the first sum we obtain

1 1
Z <sinh2 0 cosh 0 (mq L cosh 0 + 2911(260))  myLsinh? 9> B

)
1 1—1/cosh?6 ®1(20) _3
- +2 +O(L73)) =
Z sinh? < my1L m3 L2 cosh® 0 (&™)
1 @11(0)
—1- 4 tod” Y
where in the first term we used
1—1/cosh?6 / do 1 1 1
_— = Lcoshf + ®11(20) ————— = - + O(L
Z ma L sinh? 6 o 2m o (L cos n ))mchosh20 4 (L)

[%

(the integrand is non-singular at # = 0, hence it can be evaluated by a density integral), while
for the second term:

1 2@11(20) 2@11(0) -1 2‘1311(0) _1 (I)H(O) 1
E : =) —5—5 .5, T0L7") = +O(L Y = —~2+0(L
) sinh? 6 m?L2 cosh® @ ; m?L2 sinh? 6 ( ) ; 472 J2 ( ) 4 ( )
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where again, all parts non-singular at § = 0 were evaluated at the origin. Collecting all the

pieces we obtain that the subtracted part (B.I)) equals

16|F!/*(0) . 2|R2of

2
)\2L2 ‘ —
; sinh? 61 (L]0)p11 (L[0, —0)ma m

and therefore
1/2,. 2 1/2
e o [2 |Fiff im,0,-0)] 16| F/%(0)|
g - /0 27 | m3 cosh 0(2coshd — 1) _mi{’sinhZHCoshG

22 % 16 ‘Fll/z(o)r (M _ L)

3 3
4my 4my

References

+A2x16 (Ff”(o)‘2 <M

[1] G. Delfino, G. Mussardo and P. Simonetti, Nucl. Phys. B473 (1996) 469-508,

hep-th/9603011.

[2] G. Delfino, P. Grinza and G. Mussardo, Nucl. Phys. B737 (2006) 291-303,

hep-th /0507133

[3] V. P. Yurov and Al. B. Zamolodchikov, Int. J. Mod. Phys. A6 (1991) 4557-4578.

[4] B. Pozsgay and G. Takics, Nucl. Phys. B788 (2007) 167-208, arXiv: 0706.1445 [hep-th].
[5] B. Pozsgay and G. Takacs, Nucl. Phys. B788 (2007) 209-251, arXiv: 0706.3605 [hep-th].
[6] G. Delfino and G. Mussardo, Nucl. Phys. B516 (1998) 675-703, hep-th/9709028.

[7] M. Fabrizio, A.O. Gogolin and A.A. Nersesyan, Nucl. Phys. B580 (2000) 647-687,
cond-mat /0001227,

[8] R.K. Bullough, P.J. Caudry and H.M. Gibbs, in Solitons, Eds. R.K. Bullough and P.J.
Caudry, Topics in Current Physics v. 17, Springer-Verlag, 1980.

[9] Z. Bajnok, L.Palla, G. Takdcs and F. Wagner, Nucl. Phys. B601 (2001) 503-538,
hep-th/0008066.

[10] G. Mussardo, V. Riva and G. Sotkov, Nucl. Phys. B687 (2004) 189-219, hep-th /0402179.

[11] G. Feverati, F. Ravanini and G. Takéacs, Phys. Lett. B430 (1998) 264-273,

hep-th /9803104,
[12] G. Takacs and F. Wégner, Nucl. Phys. B741 (2006), 353-367, hep-th/0512265.

[13] F.A. Smirnov: Form-factors in completely integrable models of quantum field

theory, Adv. Ser. Math. Phys. 14 (1992) 1-208.

16


http://arxiv.org/abs/hep-th/9603011
http://arxiv.org/abs/hep-th/0507133
http://arxiv.org/abs/hep-th/9709028
http://arxiv.org/abs/cond-mat/0001227
http://arxiv.org/abs/hep-th/0008066
http://arxiv.org/abs/hep-th/0402179
http://arxiv.org/abs/hep-th/9803104
http://arxiv.org/abs/hep-th/0512265

[14] G. Feverati, K. Graham, P.A. Pearce, G.Zs. T6th and Gerard Watts: A Renormalisation
group for TCSA. Talk given at International Workshop on Integrable Models and Appli-
cations: From Strings to Condensed Matter, Santiago de Compostela, Spain, 12-16 Sep
2005. E-print: hep-th/0612203.

[15] R.M. Konik and Yu. Adamov, Phys. Rev. Lett. 98 (2007) 147205, cond-mat/0701605.

[16] F.H.L. Essler and R.M. Konik: Finite Temperature Dynamical Correlations in
Massive Integrable Quantum Field Theories, arXiv:0907.0779.

[17] A. Koubek and G. Mussardo, Phys. Lett. B311 (1993) 193-201, hep-th/9306044.

[18] S. Lukyanov and A.B. Zamolodchikov, Nucl. Phys. B493 (1997) 571-587, hep-th /9611238.
[19] Al B. Zamolodchikov, Int. J. Mod. Phys. A10 (1995) 1125-1150.

[20] S. Lukyanov, Mod. Phys. Lett. A12 (1997) 2543-2550, hep-th /9703190

[21] G. Takacs and B. Pozsgay, Nucl. Phys. B748 (2006) 485-523, hep-th/0604022.

17


http://arxiv.org/abs/hep-th/0612203
http://arxiv.org/abs/cond-mat/0701605
http://arxiv.org/abs/0907.0779
http://arxiv.org/abs/hep-th/9306044
http://arxiv.org/abs/hep-th/9611238
http://arxiv.org/abs/hep-th/9703190
http://arxiv.org/abs/hep-th/0604022

	Introduction
	Bulk energy correction
	Mass correction
	Bulk contributions: a puzzle and its solution
	Evaluating the mass correction

	Conclusions
	Breather form factors in sine-Gordon theory
	Evaluation of disconnected contributions

