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Abstract. A virtual testing of double cantilever beam interlaminar fracture toughness sandwich specimens under different
types of dynamic loads and loading rates is considered. The nonlinear dynamic response of those sandwich specimens being
fractured during the test is numerically examined using the two-dimensional finite element model within the ABAQUSTM

code. The interaction integral method is exploited to extract the dynamic stress intensity factor. Cohesive elements allocated
along the face/core interface are used to simulate the dynamic fracturing of the specimens.

Introduction

The interfacial debonding between the core and the face sheets poses a threat to the structural integrity of a whole

sandwich construction. As a result, fracture mechanics methods, which are able to validate sandwich composites

in terms of damage tolerance and possible failure should be used. In this respect, interlaminar fracture toughness

specimens supply necessary information regarding the fracture resistance. A commonly used experimental method

for studying the mode I interlaminar fracture is a double cantilever beam (DCB) sandwich specimen. Then, the

fracture parameters such as stress intensity factors (SIFs) or strain energy release rate (ERR) controlling the

fracture process are inferred. The understanding of the dynamic behaviour of fracture is required for a complete

assessment of the interlaminar strength. Thus, a great deal of attention should be given to dynamic DCB tests. The

aim of this research is to develop an accurate and efficient finite element model of the DCB sandwich specimen

for predictions of a nonlinear dynamics and strength of sandwich material in virtual fracture testing.

Formulation of the model

A dynamic framework of the finite element method (FEM) with cohesive elements is used in the present work.

By assuming infinitesimal deformations, neglecting body forces, but accounting for cohesive and contact forces

for a 2-D body occupying a space V and containing crack at a surface ∂Vc = ∂V +
c ∪ ∂V −

c , and with prescribed

displacements ū at a boundary ∂Vu and given traction t̄ at ∂Vt, the principle of virtual work can be stated as [1]:

∫

V \∂Vc

(σσσ : ∇δu+ ρü · δu) dV +

∫

∂Vc

T · δ∆∆∆dA+

∫

∂Vc

(tNδgN + tT · δgT ) dA−

∫

∂Vt

t̄ · δudA = 0 (1)

for all kinematically admissible displacement fields δu. Herein, ρ is the density of material; σσσ is the Cauchy stress

associated with a displacement field u, and ü stands for an acceleration field. ∆∆∆ is the displacement jump across

∂V +
c and ∂V −

c , along which the cohesive traction T = σσσ · nc directed by the normal nc acts in accordance with

a bilinear traction separation law (TSL), given for each fracture mode (i = I, II) in the form [2]:

T =







ki∆i, ∆i ≤ ∆0
i

(1−Di)ki∆i, ∆0
i ≤ ∆i ≤ ∆f

i

0, ∆i ≥ ∆f
i ,

(2)

where Di =
(

∆f
i (∆i −∆0

i )
)

/
(

∆i(∆
f
i −∆0

i )
)

is a damage variable. The damage initiates based on the

quadratic stress criterion, whereas the damage propagates if the Benzeggagh-Kenane fracture criterion is met.

Also in (1), tN = tNnc and tT are normal and tangential components of the contact traction, which are in-

terrelated with appropriate normal gN and tangential gT gap functions [3]. In terms of these functions, the

impenetrability and friction constraints are stated in the form of Karush–Kuhn–Tucker conditions as follows:

tN ≤ 0, gN ≥ 0, tNgN = 0 and ‖tT ‖ ≤ τcrit, ‖gT ‖ ≥ 0, (‖tT ‖ − τcrit) ‖gT ‖ = 0, (3)

respectively. In the case of the Coulomb friction model, τcrit = µtN , where µ is the coefficient of friction.

In the context of the FEM, at time instant t Eq. (1) is transformed to the discrete system of equations as follows:

[M ] ¨{U}t + {Rint}t + {Rcoh}t + {Rcont}t = {Rext}t , (4)
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where {U} are nodal displacements; {Rint}, {Rext} , {Rcoh} and {Rcont} are nodal internal, external, cohesive

and contact forces, respectively; [M ] is the mass matrix. Either central difference explicit or Hilber-Hughes-Taylor

implicit time-stepping schemes available in ABAQUS are used for solving (4).

The components of the SIF (i = I, II) are evaluated using the interaction integral method as follows:

Ki =
H

2Kaux
i

(

lim
Γ→0

∫

C+C++Γ+C
−

m ·

{

σσσ : (εεε)auxi I−σσσ ·

(

∂u

∂x1

)aux

i

− (σσσ)auxi

∂u

∂x1

}

· qdΓ

)

, (5)

where H = (2 cosh2 πǫ)/(1/Ē1 + 1/Ē2) with Ēk = Ek for in plane stress and Ēk = Ek/(1 − νk) for in plane

strain, k = 1, 2; and ǫ is the bi-material oscillation index; (aux) stands for auxiliary factors known from the

asymptotic Williams solutions; q is a weighting function within the region enclosed by a contour C ∪Γ∪C+∪C−;

m is the outward normal. The line integral in (5) is computed based on the domain integral formulation.

Numerical Results

A 2-D finite element model of the DCB specimen is developed using eight-node reduced integration plane strain

finite elements (CPE8R) available in ABAQUS. The mesh contained a refinement near the crack-tip region.

The effect of impulsive loading on the transient dynamic SIF of the DCB with stationary debonding is demon-

strated in Figure 1. One can see that the DSIFs exceed their static counterparts for all cases and the form of

impulse remarkably affects their time histories. A significant mode II component is generated due to this loading.

(a) (b) (c)

Figure 1: Dynamic SIFs with a ramp time t0 = 1 ms due to: (a) step loading; (b) rectangular pulse; (c) triangular pulse.

Four-node cohesive elements (COH2D4) satisfying the TSL (2) were inserted into the finite element mesh of the

DCB model to simulate the nonlinear fracture dynamics of the specimens. The debonding growth under impulse

loads of different durations and the harmonic load at a ceratin driving frequency is shown in Figure 2.

(a) (b)

Figure 2: Debonding propagation versus time under: (a) impulsive step loading; (b) harmonic loading.

Conclusions

The calculations revealed that there is a large dynamic effect in the DCB test, primarily due to stress waves from

both the loading and crack face contact. Such waves interact with the crack tip and strongly affect the fracture

parameters and the debonging behaviour of the DCB sandwich specimen.
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