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Summary

The present thesis considers three different problems from the theory of partial differential
equations and handles them using the techniques of nonlinear analysis.

The first is a very general one: given an ”energy” functional defined on a function space,
what can we say about its minimizers, maximizers and saddle points? Since most physi-
cal principles are formulated as such a problem, the relevance of this question is evident.
The classical field of calculus of variations was the first to take up this problem. The rela-
tively recent field of critical point theory aims to qualitatively analyze such problems. Our
contribution to this field is a generalization of a well-known set of results which concern
critical points restricted to a fixed ball. We extend that theory into the so-called nonsmooth
context, i.e. when the ”energy” functional is not differentiable anymore, but only Lipschitz
continuous. We obtain the existence of certain critical points called mountain-pass points,
derive alternative theorems and finally, as an example ”toy” application we prove a result on
partial differential inclusions involving the p-Laplacian.

The second problem describes the equilibrium configuration of the contact between an
elastic body and an obstacle. Such problems are intensely studied in the mathematical theory
of elasticity. The strong form of the problem is a system of nonlinear partial differential
equations with inequality boundary conditions. Through the use of the popular bipotential
method, we reformulate the weak form of the problem and prove its equivalence to a primal-
dual formulation. Then we prove solvability of the weak form using a recent existence result
from the theory of hemivariational inequalities. Our novel approach allows the treatment of
rather general boundary conditions.

The third problem is a nonlinear elliptic-type operator equation with nonlocal depen-
dence defined on an unbounded domain. Such nonlocal – or functional – dependence means
that the coefficient functions of the operator may depend on the whole solution instead of
only local quantities. This has already been treated in the literature, but not on an un-
bounded domain, where compact embedding of Sobolev spaces does not hold in general. We
prove solvability of the operator equation using the theory of pseudomonotone operators,
and give a series of examples of concrete operators with nonlocal dependence.
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Összefoglaló

Jelen értekezésben három különböző problémát tekintünk a parciális differenciálegyenletek
elméletéből, amelyeket a nemlineáris analízis módszereivel kezelünk.

Az első roppant általános: adott egy függvénytéren értelmezett ”energiafunkcionál”, mit
tudunk mondani a minimum-, maximum-, illetve nyeregpont-helyeiről? A kérdés relevan-
ciája nyilvánvaló, minthogy a legtöbb fizikai alapelvet ilyen feladatként fogalmazzák meg.
A klaszikus variációszámítás foglalkozott először ilyen ilyen kérdésekkel. A viszonylag új
kritikus pont elmélet célja a feladat kvalitatív elemzése. A mi hozzájárulásunk ehhez a
területhez egy olyan tételkör általánosítása, amely egy rögzített gömbön belüli kritikus pon-
tokkal foglalkozik. Kiterjesztjük a meglévő elméletet a nem differenciálható kontextusba,
azaz arra az esetre, amikor az energiafunkcionál csupán Lipschitz-folytonos. Mountain-
pass típusú kritikus pontokok létezését bizonyítjuk, alternatívatételeket, és egy ”játék” al-
kalmazás gyanánt egy, a p-Laplace operátort tartalmazó differenciálinklúziókkal kapcsolatos
eredményt bizonyítunk.

A második feladat egy rugalmas test és egy akadály közötti érintkezés egyensúlyi helyzetét
írja le. Az ilyesfajta problémákat sokat tanulmányozták a rugalmasságtan matematikai
elméletében. A feladat erős alakja egy nemlineáris parciális differenciálegyenlet-rendszer,
egyenlőtlenségeket tartalmazó peremfeltételekkel. A népszerű bipotenciál-módszer segít-
ségével átfogalmazzuk a feladat gyenge alakját és megmutatjuk ennek egyenértékűségét a
primál-duál feladattal. Ezek után bebizonyítjuk a gyenge alak megoldhatóságát a hemivar-
iáciációs egyenlőtlenségek elméletének egy új egziszenciatételével. Újszerű megközelítésünk
igen általános peremfeltételek kezelését teszi lehetővé.

A harmadik feladat egy nemkorlátos tartományon definiált nemlineáris elliptikus-típusú
operátoregyenlet, nemlokális függéssel. Az ilyen nemlokális, más szóval funkcionális füg-
gés azt jelenti, hogy az operátorban szereplő együtthatófüggvények függhetnek az egész
megoldástól, nem csak lokális mennyiségektől. Ezt már kezelték az irodalomban, de nem
nemkorlátos tartományokon, ahol a Sobolev-terek kompakt beágyazása nem érvényes ál-
talában. Az operátoregyenlet megoldhatóságát a pszeudomonoton operátorok elméletének
használatával igazoljuk, és megadunk egy sor konkrét példát olyan operátorra, amely nem-
lokális függést tartalmaz.
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Notations

f ′(u) The Fréchet derivative of f at u
f ′(u; v) The Gâteaux directional derivative of f at u in the direction v
f 0(u; v) The Clarke generalized directional derivative of f at u in the direction v
∂f(u) The Clarke subdifferential of f at u
|∂f |(u) = inf{‖u∗‖ : u∗ ∈ ∂f(u)}
fa = {u : f(u) ≥ a}
f b = {u : f(u) ≤ b}
f ba = fa ∩ fb
K The set of critical points of some functional
Kc The set of critical points of some functional at level c ∈ R

Lp(Ω) Lebesgue space of exponent 1 < p <∞ on Ω

W k,p(Ω) Sobolev space of order k ∈ N and exponent 1 < p <∞ on Ω

W k,p
0 (Ω) Homogeneous Sobolev space of order k ∈ N and exponent 1 < p <∞ on Ω

W−k,q(Ω) Negative exponent Sobolev space of order k ∈ N and exponent 1 < q <∞ on Ω

P(A) Power set of a set A
N The set of natural numbers
R,R+,R− The set of all, nonnegative and nonpositive real numbers
E Typically a real Banach space
E∗ Dual space of E∗

〈·, ·〉 Duality pairing
→ Convergence in norm
⇀ Weak convergence
∗
⇀ Weak∗ convergence
BX(u, r) Open ball of radius r and center u in the metric space X
dist(A,B) Distance between the sets A and B
dist(A) Distance between A and 0

[A]θ = A+BE(0, θ dist(A)), where A ⊂ E, 0 < θ < 1

co(A) Closed convex hull of A
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1 Introduction

”Man muss immer generalisieren.” – C. G. J. Jacobi

Mathematical analysis clearly has its origins in classical physics. The fruitful interaction
between the two fields initiated the development of many important methods in analysis.
Physics continues to be an inspiring force for the development of mathematical theories to
the present day. Therefore, it is worthwhile for mathematicians to directly study models
originating from physics. More often than not, these models are difficult to formulate in a
mathematically precise way and require sophisticated tools to analyze.

The common theme of this thesis is nonlinear analysis. The field of nonlinear analy-
sis studies existence, uniqueness and multiplicity questions of nonlinear partial differential
equations (and ordinary differential equations, as well) by employing tools from functional
analysis (see e.g. [40, 82, 2] for a comprehensible account). In this thesis, we study three
distinctively different problems and employ appropriate methods to prove solvability for
each.

In Chapter 2 we collect definitions and results mainly from functional analysis which
are needed in the sequel.

In Chapter 3, we develop new tools for critical point theory and apply them to a nonlin-
ear eigenvalue problem for the p-Laplacian. Critical point theory is a highly developed field
of mathematical analysis with wide-ranging practical applications to ordinary differential
equations, partial differential equations, differential geometry and optimization (see [50] or
the monographies cited above). Roughly speaking, we might say that critical point theory is
interested in the minimizers/maximizers and saddle points of functionals defined on a func-
tion space through the analysis of an appropriate concept of derivative of the functional.
If the functional is smooth in the usual sense, then we are talking about ”smooth” critical
point theory.

The development of the nonsmooth variant of critical point theory was initiated in 1981
by Chang [17] who extended various minimax principles due to Ambrosetti and Rabinowitz
[3] and Rabinowitz [77] to locally Lipschitz functions and then applied these theoretical
results in the study partial differential equations with discontinuous nonlinearities. See
Section 3.1 for more references on critical point theory.

Our starting point is Martin Schechter’s bounded critical point theory for C1-functionals
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2 INTRODUCTION

(see [80] and [81] for a concise account). Schechter’s most elementary results are concerned
with critical points of the functional inside a ball, i.e. critical points of bounded norm.
As expected, ”boundary conditions” on the surface of the ball become relevant (see (3.14)).
The theory is built up from a technical result called a ”deformation lemma” (Theorem 3.3.1),
from which various minimum and mountain pass theorems are derived (see Theorem 3.4.3,
and [49] for an excellent introduction to the subject). The results – when combined with
a suitable compactness assumption (Definition 3.6.1)– lead to the existence of minimizers
(Theorem 3.6.3) or saddle points (Theorem 3.6.2) for the functional. These results are
formulated in the generalized situation called ”linking”: there are two arbitrary sets in the
function space which ”cannot be pulled apart without intersecting” and the energy (i.e. the
values of the functional) on one set is dominated by the energy on the other (Definition
3.4.2). The rationale behind this concept is that an appropriate choice of the linking sets
enables one to exploit the symmetry properties of concrete functionals.

In summary, we generalize some of Schechter’s results from the Hilbert space- to the
Banach space-context, and more importantly, we allow locally Lipschitz functionals instead
of only C1. In other words, we extend those results to the nonsmooth setting. Since the dif-
ferential of a nonsmooth functional is set-valued in general, certain conditions and relations
become more complicated, as expected. For instance, the eigenvalue equation becomes a dif-
ferential inclusion (Theorem 3.6.2). As a ”toy” application, we study a nonlinear eigenvalue
problem for the p-Laplacian (Section 3.7). The p-Laplacian is an intensely studied subject
in nonlinear analysis, see [39] for a friendly introduction. Our results extend Schecter’s orig-
inal work for the usual Laplacian with a C1 forcing term to the more general p-Laplacian
with a locally Lipschitz forcing term (Theorem 3.7.3). The methods presented in Chapter 3
can be extended to a more complete theory – we barely demonstrated that the nonsmooth
generalization of Schechter’s theory is possible.

In Chapter 4, we formulate a very general problem in the mathematical theory of elas-
ticity and through the use of the so-called bipotential method we can apply an existence
result from the theory of hemivariational inequalities to prove the existence of a weak solu-
tion. The problem describes the equilibrium configuration of the contact between an elastic
body and an obstacle. The first problem of this sort was Signorini’s problem, for which
existence and uniqueness of the weak solution was proved by Fichera [41]. The main diffi-
culty of the problem lies in the nonstandard boundary conditions. The requirement that the
body should not penetrate the obstacle leads to inequality constraints, called ”ambiguous
boundary conditions”. The weak formulation of Signorini’s problem is a so-called variational
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inequality, which are studied systematically in nonlinear analysis ever since. It is a fact of
life that the strong form of a contact problem usually does not admit a solution.

Instead of the physically restrictive linear material law (Hooke’s law) in Signorini’s prob-
lem, researchers later handled more general nonlinear material laws. This relation between
the stress tensor and the strain can be rather complicated in practice, which necessitates
the use of convex analysis. Furthermore, more complicated boundary conditions can be
considered, which may require nonsmooth analysis techniques to handle. These are called
nonmonotone boundary conditions. For a short overview of the literature, see Section 4.1.

The key ingredient of our analysis is the bipotential method introduced by de Saxcé &
Feng [35] (see Definition 4.3.2). The novelty of our approach is that it allows the treatment of
nonmonotone boundary conditions through the use of bipotentials. We reformulate the weak
form of the problem in terms of a bipotential and as a primal-dual variational formulation.
We show that these two formulations are equivalent (Proposition 4.4.1). Then we prove
the solvability of the weak problem (Theorem 4.4.2). This is done using a recent existence
result for hemivariational inequalities by Costea and Varga [28] (see Theorem 2.5.1). Our
treatment allows the incorporation of very general material laws and boundary conditions,
and we give a series of examples in Section 4.2.

In Chapter 5, we prove the existence of a solution to a nonlinear, nonlocal elliptic PDE
defined on an unbounded domain. By nonlocal, we mean that the coefficient functions of
the operator may depend on the whole solution instead of only on local quantities, such
as pointwise values. This is also called functional dependence. Such nonlocal dependence
may occur in various models [67, 37, 62]. A nonlocal boundary value problem from plasma
physics is treated in [8]. Further, see [90] for a linear elliptic functional differential equation,
and [88, 86] for strongly nonlinear functional equations.

We invoke standard techniques from the theory of pseudomonotone operators (see Section
2.3 and [95, 89]). More precisely, we apply the well-known surjectivity result (Theorem 2.3.1)
due to Browder to prove the solvability of our operator equation. The main difficulty in the
treatment of the problem lies in the fact that the domain may be unbounded, for which the
Rellich–Kondrachov theorem fails. This can be remedied by applying Browder’s trick [12].
We also give a series of examples of operators with nonlocal dependence in Section 5.4.

In summary, we present three distinctively different methods to prove solvability of three
different models. Naturally, the methods used here build on the earlier conceptual frame-
work. But the novel ideas of Chapter 3 and 4 also extend the existing methods considerably,
so that – hopefully – more general problems can be tackled through their use.
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2 Preliminaries

In chapter, we collect some notions and results from functional analysis which are needed in
the sequel.

2.1 Basic Notions

Henceforth, elements of a vector space X are usually denoted as u, v, w, . . ., and elements
of its dual X∗ are denoted as u∗, v∗, w∗, . . ., where u∗ is to be understood as one symbol, i.e.
unrelated to u. This convention is common in nonlinear analysis.

Definition. Let X be a normed space and f : X → R a functional.

(i) The functional f is said to be locally Lipschitz on U ⊂ X open, if for every u ∈ U

there is a neighborhood Gu ⊂ X of u and a Lipschitz constant Lu > 0 such that
|f(v)− f(w)| ≤ Lu‖v − w‖ for all v, w ∈ Gu.

(ii) The functional f is said to be strongly (resp. weakly) lower semicontinuous, if for
every sequence {uj} ⊂ X and u ∈ X such that uj → u (resp. uj ⇀ u), there holds
f(u) ≤ lim inf

j→∞
f(uj).

(iii) The functional f is said to be convex on a convex set C ⊂ X, if for any u, v ∈ C and
any 0 ≤ λ ≤ 1, there holds f((1− λ)u+ λv) ≤ (1− λ)f(u) + λf(v).

(iv) The functional f is said to be coercive if for every sequence {uj} ⊂ X with ‖uj‖ → ∞,
there holds f(uj)→ +∞.

Definition. Let X be a normed space, U ⊂ X open. The functional f : U → R is said to
be Fréchet differentiable at u ∈ U if there exists u∗ ∈ X∗ such that

lim
h→0

f(u+ h)− f(u)− 〈u∗, h〉
‖h‖

= 0,

and the bounded linear functional u∗ is called the Fréchet derivative of f at u, denoted by
symbol f ′(u). The functional f is called r-times continuously differentiable, or Cr for short,
if its iterated Fréchet derivatives f ′, f ′′, ..., f (r) exist everywhere and f (r) is continuous.

Definition. Let X be a normed space, U ⊂ X open. The functional f : U → R is said to
be Gâteaux differentiable at u ∈ U if

f ′(u; v) = lim
t→0+

f(u+ tv)− f(u)

t

5



6 PRELIMINARIES

exists for all v ∈ X and the map v 7→ f ′(u; v) is a bounded linear functional for every u ∈ U .
The quantity f ′(u; v) is called the directional derivative of f at u in the direction v.

In other words, if f is Gâteaux differentiable at u, then there is a unique u∗ ∈ E∗ such
that f ′(u; v) = 〈u∗, v〉 for all v ∈ X. In Clarke’s generalization of the Gâteaux derivative
where the definition of f ′(u; v) is generalized, there may be multiple such u∗’s.

Definition. Let X be a normed space, U ⊂ X open. Let f : U → R be a locally Lipschitz
functional. For u, v ∈ U quantity

f 0(u; v) = lim sup
w→u
t→0+

f(w + tv)− f(w)

t

is called the generalized directional derivative of f at u in the direction v.

For a multivariate functional f : X1× . . .×XN → R, where the Xk’s are normed spaces,
the ”generalized partial derivatives” f 0

k (u1, . . . , uN ; vk) are defined in the obvious way.
In the next remark we record some important correspondences between the above notions.

Remarks.

(i) Fréchet differentiability implies Gâteaux differentiability, but not conversely.
(ii) For a C1-functional, the directional derivatives and the generalized directional deriva-

tives coincide [51, Proposition 1.1.1].
(iii) For a convex and locally Lipschitz functional defined on convex set, the directional

derivatives and the generalized directional derivatives coincide. [51, Proposition 1.1.1].

Clarke’s generalized derivative may serve as a building block for a convenient calculus.

Proposition 2.1.1. Let X be a Banach space, U ⊂ X open and f : U → R a locally
Lipschitz functional. Then the following properties hold true.
(i) For every fixed u ∈ U , the function v 7→ f 0(u; v) is positive homogeneous, subadditive

and bounded by the Lipschitz constant Lu > 0 of f at u.
(ii) f 0 : U ×X → R is upper semicontinuous, i.e. −f 0 is lower semicontinuous.
(iii) f 0(u;−v) = −f 0(u; v) for all u ∈ U and v ∈ X.

Proof. See [51, Proposition 1.1.3].

2.2 Functional analysis

Krein–Smulian theorem 2.2.1. Let X be a Banach space. If K ⊂ X is weakly compact,
then co(K) is weakly compact.
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Proof. See [21, V.13.4.].

Hahn–Banach separation theorem 2.2.1. Let X be a normed space, and let A ⊂ X

and B ⊂ X be nonempty convex sets such that A∩B = ∅. If A is closed and B is compact,
then there exists a closed hyperplane that strongly separates A and B, i.e. there is a u∗ ∈ X∗

and α, β, γ ∈ R such that

〈u∗, a〉 ≤ β < α < γ ≤ 〈u∗, b〉 for all a ∈ A, b ∈ B.

Proof. See [83, Theorem 5.10.6.].

Alaoglu’s theorem 2.2.1. Let X be a normed space. Then BX∗(0, 1) is weak∗-compact.

Proof. See [21, V.3.1.].

Proposition 2.2.1. Let X be reflexive Banach space. Then the weak-, and the weak∗-
topologies on X∗ coincide.

Proof. See [21, Theorem V.4.2.].

The following elementary result is sometimes useful in practice [23, p. 87].

Proposition 2.2.2. Let X be a normed space. Then for any u∗ ∈ X∗ and u ∈ X,

|〈u∗, u〉| = ‖ϕ‖ dist(u, keru∗).

Proof. First we prove the ”≤” part. Let u∗ ∈ X∗, u ∈ X and v ∈ keru∗, then

|〈u∗, u〉| = |〈u∗, u− v〉| ≤ ‖u∗‖‖u− v‖.

Taking infimum with respect to v ∈ keru∗ yields

|〈u∗, u〉| ≤ ‖u∗‖ inf{‖u− v‖ : v ∈ keru∗} = ‖u∗‖ dist(u, keru∗).

Finally, we prove the converse inequality. Let v ∈ E \ keru∗, then u− v 〈u
∗,u〉
〈u∗,v〉 ∈ keru∗. Then

dist(u, keru∗) ≤
∥∥∥u− (u− 〈u∗, u〉

〈u∗, v〉
v
)∥∥∥ =

|〈u∗, u〉|
|〈u∗, v〉|

‖v‖ ≤
|〈u∗, u〉|
|〈u∗, v〉|

|〈u∗, v〉|
‖u∗‖

=
|〈u∗, u〉|
‖u∗‖

The duality mapping is an important notion of Banach space geometry [18, Chapter 3].

Definition. A continuous and strictly increasing function τ : R+ → R+ with τ(0) = 0 and
τ(t)→∞ as t→∞ is called a gauge function.
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Definition. Let X be a normed space and τ a gauge function. The set-valued map Jτ :

X → P(X∗) defined as

Jτ (u) = {u∗ ∈ X∗ : 〈u∗, u〉 = ‖u‖‖u∗‖, ‖u∗‖ = τ(‖u‖)}

is called the duality map with gauge function τ . If τ(t) = t, then Jτ is called the normalized
duality map.

When the gauge function τ is obvious from the context, we drop it for brevity,

Remarks.

(i) The duality map is always nonempty-valued due to the Hahn–Banach theorem.
(ii) The normalized duality map reduces to the Riesz–Fréchet isomorphism in the Hilbert

space case.

Proposition. Let X be a Banach space. Then X∗ is uniformly convex if and only if any
duality mapping on X is single-valued and strongly uniformly continuous on BX(0, 1).

Proof. See [19, Theorem 2.16].

Let Ω ⊂ Rn be a domain. As usual, Sobolev spaces of index k ∈ N and exponent
1 ≤ p <∞ are defined as

W k,p(Ω) = {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α| ≤ k},

where ∂α denotes weak differentiation with respect to the multiindex α. The space W k,p(Ω)

is endowed with the norm

‖u‖Wk,p(Ω) =

( ∑
|α|≤k

‖∂αu‖pLp(Ω)

)1/p

.

We close this section with a simple result on the differentiation of norms.

Proposition 2.2.3. Let ϕ : [0,∞)→ X \ {0} be a C1-curve and ψ(t) =
∫ t

0
τ(s) ds. Then

d

dt
ψ(‖ϕ(t)‖) = 〈Jϕ(t), ϕ′(t)〉 .

Proof. Clearly, for all t, s > 0 the following relations hold

〈Jϕ(t), ϕ(t)〉 = τ(‖ϕ(t)‖)‖ϕ(t)‖,

and
〈Jϕ(t), ϕ(s)〉 ≤ τ(‖ϕ(t)‖)‖ϕ(s)‖,
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hence by subtraction we get

〈Jϕ(t), ϕ(s)− ϕ(t)〉 ≤ τ(‖ϕ(t)‖) [‖ϕ(s)‖ − ‖ϕ(t)‖] .

If s > t, then 〈
Jϕ(t),

ϕ(s)− ϕ(t)

s− t

〉
≤ τ(‖ϕ(t)‖)

‖ϕ(s)‖ − ‖ϕ(t)‖
s− t

,

and letting s ↓ t we get
〈Jϕ(t), ϕ′(t)〉 ≤ τ(‖ϕ(t)‖) d

dt
‖ϕ(t)‖.

For s < t we get the converse inequality, hence

〈Jϕ(t), ϕ′(t)〉 = τ(‖ϕ(t)‖) d
dt
‖ϕ(t)‖ =

d

dt
ψ(‖ϕ(t)‖).

2.3 Pseudomonotone operators

The concept of pseudomonotonicity was introduced by H. Brezis [10] in 1968.

Definition. Let V be a Banach space. A bounded operator A : V → V ∗ is said to be
pseudomonotone if for any sequence {uj} ⊂ V , such that

uj ⇀ u (in V ) and lim sup
j→∞

〈A(uj), uj − u〉 ≤ 0,

then

(PM1) 〈A(uj), uj − u〉 → 0 as j →∞ and

(PM2) A(uj) ⇀ A(u) in V ∗ as j →∞.

As usual, the symbol ⇀ denotes weak convergence.
The following abstract surjectivity result [89, Theorem 2.12] is widely used in the liter-

ature for proving the existence of a weak solution to a nonlinear elliptic partial differential
equation.

Theorem 2.3.1. Let V be a reflexive separable Banach space and A : V → V ∗ a bounded,
coercive and pseudomonotone operator. Then for arbitrary F ∈ V ∗, there exists u ∈ V ,
such that A(u) = F in V ∗.

In this context, coercivity is defined as follows:

Definition 2.3.2. An operator A : V → V ∗ is called coercive if
〈A(u), u〉
‖u‖

→ +∞ (as ‖u‖ → ∞).
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2.4 Clarke subdifferential

It was recognized in the early 1960’s that the ”subdifferential” of a convex function is a
rather fruitful concept, and constitutes the basis of convex analysis [78]. Let f : C → R
be a convex functional defined on a convex subset C ⊂ X of a normed space X. The
subdifferential of f (in the sense of convex analysis) is a set-valued map ∂f : C → P(X∗)

defined as
∂f(u) = {u∗ ∈ X∗ : f(v)− f(u) ≥ 〈u∗, v − u〉, v ∈ C}.

Intuitively, ∂f(u) is the collection of all ”supporting hyperplanes” of the epigraph of f at
the point (u, f(u)) ∈ X × R. The subdifferential ∂f(u) is closed and convex. Furthermore,
a global minimum of a (proper) convex function f is attained at u iff 0 ∈ ∂f(u). For further
properies of the convex subdifferential and various other topics of convex analysis, see [7].

In the 1970s, R. T. Rockafellar’s doctoral student, F. H. Clarke went on to generalize
the convex subdifferential to nonconvex functions.

Definition. Let f : U → R be a locally Lipschitz functional defined on an open subset
U ⊂ X of a Banach space X. The set-valed map ∂f : U → P(X∗) defined as

∂f(u) = {u∗ ∈ X∗ : f 0(u; v) ≥ 〈u∗, v〉, v ∈ X}

is called the Clarke subdifferential of f .

The success of the Clarke subdifferential rests in its convenient functional-analytic prop-
erties.

Theorem 2.4.1. Let f : U → R be a locally Lipschitz functional defined on an open
subset U ⊂ X of a Banach space X. Then the following properties hold true.
(i) ∂(λf)(u) = λ∂f(u) for all λ ∈ R and u ∈ U .
(ii) If g : U → R is locally Lipschitz, then ∂(f + g)(u) ⊂ ∂f(u) + ∂g(u) for all u ∈ U .

Further, equality holds if f and g are regular at u ∈ U , i.e. if the ordinary and the
generalized directional derivatives coincide in all directions for both f and g.

(iii) For every u ∈ U , the set ∂f(u) ⊂ X∗ is nonempty, closed, weak∗-compact and

‖u∗‖E∗ ≤ Lu for all u∗ ∈ ∂f(u),

where Lu > 0 is the Lipschitz constant of f near u.
(iv) For each u ∈ U and v ∈ X, there holds f 0(u; v) = max{〈u∗, v〉 : u∗ ∈ ∂f(u)}.
(v) The set-valed map ∂f : U → P(X∗) is weak∗-closed in the following sense: if
{uj} ⊂ U , uj → u ∈ U and {u∗j} ⊂ X∗ with u∗j ∈ ∂f(uj) and u∗j

∗
⇀ u∗ ∈ X∗, then

u∗ ∈ ∂f(u).
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(vi) The set-valued map ∂f : U → P(X∗) is weak∗-upper semicontinuous in the following
sense: for any ε > 0, u ∈ U and v ∈ X there exists δ > 0 such that for all w ∈ U with
u∗ ∈ ∂f(w) and ‖w − u‖ < δ, there holds |〈u∗, v〉 − 〈v∗, v〉| < ε for some v∗ ∈ ∂f(u).

(vii) (Lebourg’s mean value theorem) If x, y ∈ X are distinct, then there is a z ∈ (x, y)

such that f(y)− f(x) ∈ 〈∂f(z), y − x〉.

Proof. See [51, Proposition 1.1.4].

Remarks.

(i) If the locally Lipschitz functional f is Gâteaux differentiable at u ∈ U , then the
Gâteaux derivative of f belongs to the Clarke subdifferential f ′(u) ∈ ∂f(u).

(ii) For a C1-functional f , ∂f(u) = {f ′(u)}.
(iii) The Clarke subdifferential is an extension of the convex subdifferential in the sense

that for convex functions the two notions coincide.
(iv) If u ∈ U is an extreme value of f , then 0 ∈ ∂f(u). This last relation is colloquially

called a ”differential inclusion” and may be regarded as a set-valued generalization of
the classical Euler–Lagrange equations if f is an appropriate ”energy functional” or
”Lagrangian”.

Furthermore, the Clarke subdifferential admits a rich set of calculus rules.

Definition 2.4.2. For a Banach spaceX and a nonempty, closed and convex subsetK ⊂ X,
the normal cone of K at u is defined by

NK(u) =
{
u∗ ∈ X∗ : 〈u∗, v − u〉E∗×E ≤ 0, for all v ∈ K

}
.

It is well known that
NK(u) = ∂IK(u),

where IK is the indicator function of K, that is,

IK(u) =

{
0, if u ∈ K,
+∞, otherwise.

Definition. The Fenchel conjugate of a function ϕ : X → (−∞,+∞] is the function ϕ∗ :

X∗ → (−∞,+∞] given by

ϕ∗(u∗) = sup
u∈X
{〈u∗, u〉X∗×X − ϕ(u)} .

Proposition 2.4.3. Let ϕ : X → (−∞,+∞] be a proper, convex and lower semicontinuous
function. Then
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(i) ϕ∗ is proper, convex and lower semicontinuous;

(ii) ϕ(u) + ϕ∗(u∗) ≥ 〈u∗, u〉X∗×X , for all u ∈ X, u∗ ∈ X∗;

(iii) u∗ ∈ ∂ϕ(u)⇔ u ∈ ∂ϕ∗(u∗)⇔ ϕ(u) + ϕ∗(u∗) = 〈u∗, u〉X∗×X .

When dealing with concrete functionals, we often need to calculate the Clarke subdiffer-
ential of ”integral functional” of the form

Φ(u) =

∫
Ω

ϕ(x, u)µ(dx), (2.1)

where (Ω,F , µ) is a σ-finite measure space, E a Banach space and ϕ : Ω×X → R satisfies
the following assumptions.

Assumption 2.4.1.

(i) For each fixed u ∈ X, the map x 7→ ϕ(x, u) is F -measurable.
(ii) For any bounded subset B ⊂ X, there is a kb ∈ L1(Ω) such that for a.a. x ∈ Ω and

all u, v ∈ B
|ϕ(x, u)− ϕ(x, v)| ≤ kB(x)‖u− v‖.

Condition (ii) implies that the function u 7→ ϕ(x, u) is locally Lipschitz for all fixed
x ∈ Ω, so its partial Clarke subdifferential with respect to the second variable ∂2ϕ(x, u)

makes sense. The following classical result of J.-P. Aubin and Clarke holds true [6][43,
Theorem 1.3.9].

Aubin–Clarke theorem 2.4.1. Let Φ : X → R be given by (2.1), and suppose that
Assumption 2.4.1 holds true. If Φ is finite at some point, then f is finite everywhere,
Lipschitz continuous on every bounded subset of X and

∂Φ(u) ⊂
∫

Ω

∂2ϕ(x, u)µ(dx), (2.2)

by which we mean the following:1 for all u∗ ∈ ∂Φ(u) there exists ξ∗ : Ω → X∗ weak∗-
measurable2 such that ξ∗(x) ∈ ∂2ϕ(x, u) for a.a. x ∈ Ω and

〈u∗, u〉 =

∫
Ω

〈ξ∗(x), u〉µ(dx).

Moreover, if ϕ(x, ·) is a.e. regular at u ∈ X, then Φ is also regular at u and equality holds
in (2.2).

1This is called Gelfand-, or weak∗-integral.
2I.e. Ω 3 x 7→ 〈v, ξ∗(x)〉 ∈ R is F-measurable for all v ∈ X.
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Remark. Finally, we briefly remark that there is a weaker subdifferential applicable to
continuous funtionals [16] defined on normed spaces, This so-called Campa–Degiovanni sub-
differential reduces to the Clarke subdifferential in the locally Lipschitz case. (Actually, the
concept derives from the far weaker ”weak slope” of [22], which is defined for continuous
functionals on metric spaces.) However, the Campa–Degiovanni subdifferential may be un-
bounded which renders a number of techniques unapplicable, at least directly. Furthermore,
the Campa–Degiovanni subdifferential calculus is less developed at the present.

2.5 Hemivariational inequalities

In this section we quote an existence result from Costea and Varga [28]. Let X1, . . . , XN

be reflexive Banach spaces for some N ≥ 1 natural number. Let Y1, . . . , YN be Banach
spaces such that there are compact operators Tk : Xk → Yk for all k = 1, . . . , N . Con-
sider the following system of nonlinear hemivariational inequalities, where we need to find
(u1, . . . , uN) ∈ K1 × . . .×KN such that for all (v1, . . . , vN) ∈ K1 × . . .×KN

ψ1(u1, . . . , uN ; v1) + J0
1 (û1, . . . , ûN ; v̂1 − û1) ≥ 〈F1(u1, . . . , un), v1 − u1〉X1

...

ψN(u1, . . . , uN ; vN) + J0
N(û1, . . . , ûN ; v̂N − ûN) ≥ 〈FN(u1, . . . , un), vN − uN〉XN

(2.3)

where for each k = 1, . . . , N , ûk = Tk(uk) and

1. Kk ⊂ Xk is a nonempty closed set;

2. ψk : X1 × · · · ×XN ×Xk → R is such that

a) ψk(u1, . . . , uN ;uk) = 0 for all uk ∈ Xk,
b) For fixed vk ∈ Xk the map (u1, . . . , uN) 7→ ψk(u1, . . . , uN ;uk) is weakly upper

semicontinuous,
c) For fixed (u1, . . . , uN) ∈ X1×. . .×XN the map vk 7→ ψk(u1, . . . , uN ;uk) is convex;

3. Fk : X1 × . . .×Xn → X∗k is such that

lim inf
n→∞

〈Fk(un1 , . . . , unN), vk − unk〉Xk ≥ 〈Fk(u1, . . . , un), vk − uk〉Xk

for any (un1 , . . . , u
n
N) ⇀ (u1, . . . , uN) and vk ∈ Xk.

Using Lin’s fixed point theorem [59], the following existence result can be proved.

Theorem 2.5.1. [28, Theorem 3.1] Under the above assumptions the system of hemivari-
ational inequalities (2.3) admits a solution.
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2.6 Equiintegrability and tightness

In this section we collect a few elementary results from analysis needed in the sequel. See
e.g. [79] for proofs.

Definition 2.6.1. A sequence {fj} of measurable functions fj : Ω → R is said to be equi-
integrable over Ω if for all ε > 0 there exists δ > 0 such that∫

E

|fj| < ε for all j ∈ N and all E ⊂ Ω measurable with |E| < δ.

Definition 2.6.2. A sequence {fj} is said to be tight over Ω if for all ε > 0 there exists
E0 ⊂ Ω measurable with |E0| <∞ such that∫

Ω\E0

|fj| < ε for all j ∈ N.

Clearly, a dominated sequence inherits equiintegrability (tightness). More precisely, if
|gj| ≤ |fj| and {fj} is equiintegrable (tight), then {gj} is equiintegrable (tight). Similarly,
equiintegrability (tightness) is inherited to a smaller domain Ω′ ⊂ Ω. The following useful
properties are easily established.

Proposition 2.6.3. The following statements hold.
1. If {fj} ⊂ L1(Ω), f ∈ L1(Ω) and fj → f in L1(Ω), then {fj} is equiintegrable and

tight.
2. If {fj} and {gj} are equiintegrable and tight, then {αfj + βgj} is equiintegrable and

tight for all α, β ∈ R.
3. If {fj} ⊂ Lq(Ω) is bounded and {gj} ⊂ Lq

′
(Ω) (where q′ = q/(q − 1) and 1 < q <∞)

with {|gj|q
′} equiintegrable and tight, then {fjgj} is equiintegrable and tight.

Theorem 2.6.4. Suppose that |Ω| < ∞ and let {fj} be equiintegrable over Ω. If fj → f

a.e. on Ω, then f ∈ L1(Ω) and ∫
fj →

∫
f as j →∞.

Theorem 2.6.5. Let {fj} be equiintegrable and tight over Ω. If fj → f a.e. on Ω, then
f ∈ L1(Ω) and ∫

fj →
∫
f as j →∞.

Theorem 2.6.6. Suppose that hj ≥ 0 a.e. on Ω. Then∫
hj → 0 as j →∞

if and only if hj → 0 a.e. on Ω and {hj} is equiintegrable and tight over Ω.



3 Linking-type results in nonsmooth critical

point theory

This chapter is based on the paper [25].

3.1 Introduction

Nonsmooth critical point theory was initiated in 1981 by Chang [17] who extended various
minimax principles due to Ambrosetti and Rabinowitz [3] and Rabinowitz [77] to locally
Lipschitz functions and then applied these theoretical results in the study partial differential
equations with discontinuous nonlinearities. Since then, this new field has undergone an
explosive development as many important results for C1-functionals have been adapted to
non-differentiable functions which are either locally Lipschitz, a sum of a C1-function and a
convex lower semicontinuous function or, more generally, a sum of a locally Lipschitz function
and a convex lower semincontinuous function, see e.g. Brezis and Nirenberg [11], Pucci and
Serrin [76], Ghoussoub and Preiss [45] and their various nonsmooth generalizations in Livrea,
Marano and Motreanu [61], Kurogenis and Papageorgiou [54], Szulkin [91], Marano and
Motreanu [63], Arcoya and Carmona [4], just to name a few. More details and connections
regarding critical point theory and its applications can be found in the books of Jabri [49]
and Ghoussoub [44], for C1-functions and Gasinski and Papageorgiou [43], Motreanu and
Panagiotopoulos [70], Motreanu and Rădulescu [71], or more recently, Motreanu, Motreanu
and Papageorgiou [69], for nonsmooth functions.

At the beginning of 1990’s Schechter, see [80, 81], developed a critical point theory for
C1-functionals defined on a Hilbert space of the type G : B(0, R) ⊂ H → R, by proving a
deformation result which does not require the classical Palais-Smale compactness condition,
but uses instead a boundary condition on a certain region of the sphere ∂B(0, R) which
prevents deformations from exiting the ball. The deformation lemma ensures the existence
of a bounded Palais-Smale sequence, i.e. {un} ⊂ B(0, R) such that {G(un)} is bounded
and G′(un) → 0 as n → ∞. If the boundary condition is dropped, then one obtains an
alternative: either a bounded Palais-Smale sequence exists, or there exists a sequence in
∂B(0, R) tending to a negative eigenvalue.

The aim of this chapter is to extend Schechter’s results to locally Lipschitz functions
defined on closed ball of a real reflexive Banach space with strictly convex dual. In this new

15
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setting, Schechter’s approach fails even for C1-functions as the norm cannot be expressed
in terms of an inner product. In order to overcome this difficulty we exploit the properties
of the duality mapping. Another point of interest in our approach comes from the fact that
problems involving the p-Laplacian (with p ∈ (1,∞)) can now be tackled, in contrast to the
case where only p = 2 is allowed.

3.2 Construction of the Pseudogradient Vector Field

The proof of the deformation lemma in Section 3.3 relies on the existence of a certain vector
field. We begin with a simple compactness result.

Proposition 3.2.1. Let E : X → R be a locally Lipschitz functional. If u ∈ X, {un} ⊂ X

and {u∗n} ⊂ X∗ are such that un → u and u∗n ∈ ∂E(un), for all n ∈ N, then there exist
u∗ ∈ ∂E(u) and a subsequence {u∗nk} of {u

∗
n} such that u∗nk ⇀ u∗ in X∗.

Proof. The upper semicontinuity of ∂f together with Theorem 2.4.1 (iii) ensures that there
exists n0 ∈ N such that

∂E(un) ⊂ BX∗(0, 2Lu), for all n ≥ n0,

with Lu > 0 the Lipschitz constant near u. Therefore {u∗n} is a bounded sequence in X∗.
Since X is reflexive, X∗ is also reflexive, hence {u∗n} possesses subsequence {u∗nk} such that
u∗nk ⇀ u∗, for some u∗ ∈ X∗. It follows at once that u∗ ∈ ∂E(u) since ∂f is weakly
closed.

The following lemma ensures the existence of a locally Lipschitz vector field which plays
the role of a pseudo-gradient field in the smooth case and will be used in the sequel.

Lemma 3.2.2. Let E : X → R be a locally Lipschitz functional and let F0 ⊂ F ⊂ X be
such that
(A) there exists γ > 0 such that |∂E|(u) ≥ γ, for all u ∈ F ;
(B) there exists θ ∈ (0, 1) such that

0 6∈ C(u, θ), for all u ∈ F0,

where

C(u, θ) = co([∂E]θ(u) ∪ J(u)) where [∂E]θ(u) := ∂E(u) +BX∗(0, θ|∂E|(u))

Then there exists a locally Lipschitz vector field Λ : F → X such that
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(P1 ) ‖Λ(u)‖ ≤ 1, for all u ∈ F ;
(P2 ) 〈u∗,Λ(u)〉 > θγ/2, for all u ∈ F and all u∗ ∈ ∂E(u);
(P3 ) 〈J(u),Λ(u)〉 > 0, for all u ∈ F0.

Proof. Let u ∈ F0 be fixed. The Krein-Smulian theorem 2.2.1 implies that the convex set
C(u, θ) is weakly compact. Using the weak lower semicontinuity of the norm and assumption
(B) we deduce that there exists r0 > 0 such that

r0 = inf
u∗∈C(u,θ)

‖u∗‖.

Since BX∗(0, r0) ∩ C(u, θ) = ∅, the first geometric form of the Hahn-Banach separation
theorem 2.2.1 implies that there exists wu ∈ ∂BX(0, 1) and α ∈ R such that

〈v∗, wu〉 ≤ α ≤ 〈u∗, wu〉 for all v∗ ∈ BX∗(0, r0) and all u∗ ∈ C(u, θ).

Taking supremum with respect to v∗, we get

0 < r0 ≤ 〈u∗, wu〉, for all u∗ ∈ C(u, θ). (3.1)

In particular,
〈J(u), wu〉 > 0. (3.2)

We claim that
〈u∗, wu〉 > θγ/2, for all u∗ ∈ ∂E(u). (3.3)

Recall that 〈u∗, wu〉 = dist(u∗, kerwu) (see Proposition 2.2.2). Therefore, it suffices to prove
that dist(∂E(u), kerwu) > θγ/2. Let v∗ ∈ kerwu be fixed. Obviously v∗ 6∈ [∂E]θ(u),
otherwise v∗ would belong to C(u, θ) and (3.1) would be violated. By the definition of
[∂E]θ(u), we have dist(v∗, ∂E(u)) ≥ θ|∂E|(u). Since v∗ was arbitrary it follows that

dist(∂E(u), kerwu) ≥ θ|∂E|(u) > θγ/2.

We prove next that there exists ru > 0 such that

〈v∗, wu〉 > θγ/2, for all v ∈ BX(u, ru) ∩ F and all v∗ ∈ ∂E(v), (3.4)

and
〈J(v), wu〉 > 0, for all v ∈ BX(u, ru). (3.5)

Arguing by contradiction, assume that (3.4) does not hold, i.e. for each r > 0 there exist
v ∈ BX(u, r) ∩ F and v∗ ∈ ∂E(v) such that

〈v∗, wu〉 ≤ θγ/2.
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Taking r = 1/n we obtain the existence of two sequences {vn} ⊂ X and {ζn} ⊂ X∗ such
that

vn → u, v∗n ∈ ∂f(vn) and 〈v∗n, wu〉 ≤ θγ/2.

According to Proposition 3.2.1 there exists v∗0 ∈ ∂E(u) such that, up to a subsequence,

v∗n ⇀ v∗0, in X
∗.

Letting n → ∞ we get 〈v∗0, wu〉 ≤ θγ/2 which contradicts (3.3). Relation (3.5) may be
proved in a similar manner by using the fact that J is demicontinuous on reflexive Banach
spaces, i.e. if vn → u in X, then J(vn) ⇀ J(u) in X∗ (see e.g. [38, Proposition 3]).

If u ∈ F \ F0, we can employ a similar argument as above with ∂E(u) instead of C(u, θ)
to get the existence of an element wu ∈ ∂BX(0, 1) such that (3.3) holds.

Thus, the family {BX(u, ru)}u∈F is an open covering of F and it is paracompact, hence it
possesses a locally finite refinement say {Uα}α∈I . Standard arguments ensure the existence of
a locally Lipschitz partition of unity, denoted {ρα}α∈I , subordinated to the covering {Uα}α∈I .
The required locally Lipschitz vector field Λ : F → X can now be defined by

Λ(u) =
∑
α∈I

ρα(u)wu.

Simple computations show Λ satisfies the required conditions.

The following proposition provides an equivalent form of condition (B) in the previous
lemma, which will be useful the the following sections.

Proposition 3.2.3. Let u ∈ X \{0} and θ ∈ (0, 1) be fixed. Then the following statements
are equivalent
(i) 0 6∈ C(u, θ);
(ii) R−J(u) ∩ [∂E]θ(u) = ∅.

Proof. (i) ⇒ (ii) Arguing by contradiction, assume there exist α ∈ R− and u∗ ∈ [∂E]θ(u)

such that u∗ = αJ(u). Then, for t = 1
1−α ∈ (0, 1] we get

0 =
1

1− α
(−αJ(u) + u∗) = (1− t)J(u) + tu∗,

which shows that 0 ∈ C(u, θ), contradicting (i).

(ii) ⇒ (i) Assume by contradiction that 0 ∈ C(u, θ). Then there exist tn ∈ [0, 1] and
u∗n ∈ [∂f ]θ(u) such that

w∗n := (1− tn)J(u) + tnu
∗
n → 0, as n→∞.
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Since {tn} is a bounded sequence in R, it follows that it possesses a subsequence {tnk}
such that

tnk → t ∈ [0, 1].

Obviously the set [∂E]θ(u) is bounded, hence if t = 0, then tnku∗nk → 0. Thus w∗nk →
J(u) and the uniqueness of the limit leads to J(u) = 0 which is a contradiction, as
u 6= 0.

If t ∈ (0, 1], then

u∗nk =
1

tnk
w∗nk +

tnk − 1

tnk
J(u)→ t− 1

t
J(u) ∈ R−J(u).

Since [∂E]θ(u) is also closed, it follows that t−1
t
J(u) ∈ [∂E]θ(u), but this contradicts

(ii).

Remark. Assume E : BR → R is a C1-functional and fix u ∈ SR and θ ∈ (0, 1). Then

[∂E]θ(u) = E ′(u) + θ‖E ′(u)‖BX∗(0, 1) = BX∗ (E ′(u), θ‖E ′(u)‖) ,

and according to Proposition 3.2.3, 0 6∈ C(u, θ) if and only if

R−J(u) ∩BX∗(E
′(u), θ‖E ′(u)‖) = ∅. (3.6)

If in addition X is a Hilbert space endowed with the inner product (·, ·), then J =identity
and condition (3.6) becomes

‖αu− E ′(u)‖ > θ‖E ′(u)‖, for all α ∈ R−,

which can be equivalently rewritten as

R2α2 − 2 (E ′(u), u)α +
(
1− θ2

)
‖E ′(u)‖2 > 0, for all α ∈ R−. (3.7)

Taking a = R2, b = −2 (E ′(u), u), c = (1− θ2) ‖E ′(u)‖2 and regarding the latter as a
quadratic equation in α one can easily check that (3.7) holds if and only if one of the
following cases occurs: either ∆ = b2 − 4ac < 0, or ∆ ≥ 0 and −b−

√
∆

2a
> 0. Simple

computations show that this reduces to

(E ′(u), u) +
√

1− θ2R‖E ′(u)‖ > 0, (3.8)

which coincides with Schechter’s boundary condition

(E ′(u), u) + ΘR‖E ′(u)‖ ≥ 0, Θ ∈ (0, 1),

except when E ′(u) = 0, that is, u is a critical point of E.
We conclude that our boundary condition 0 6∈ C(u, θ) reduces to Schechter’s original

boundary condition if E is a C1-functional and X is a Hilbert space.
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3.3 A deformation lemma

We are now in position to prove the main technical tool of this chapter which is given by
the following deformation theorem. In what follows, the set Z ⊂ BR in the statement may
be regarded as a “restriction” set that allows us to control the deformation. The reader
may think of Z = BR as the “unrestricted” case. Here and hereafter, if E : BR → R is a
functional and Z is a subset of BR, we adopt the following notations

Ea =
{
u ∈ BR : E(u) ≤ a

}
,

and
Zb =

{
u ∈ BR : d(u, Z) ≤ b

}
.

Theorem 3.3.1. Let E : BR → R be a locally Lipschitz and Z ⊂ BR. Assume that there
exist c, ρ ∈ R, δ > 0 and θ ∈ (0, 1) such that the following conditions hold:

(H1 ) |∂E|(u) ≥ 4δ

ρθ2
, on

{
u ∈ BR : |E(u)− c| ≤ 3δ

}
∩ Z3ρ;

(H2 ) 0 6∈ C(u, θ), on {u ∈ SR : |E(u)− c| ≤ 3δ} ∩ Z3ρ.

Then there exists a continuous map σ : [0, 1]×BR → BR such that:
(i) σ(0, ·) = Id;
(ii) σ(t, ·) : BR → BR is a homeomorphism for all t ∈ [0, 1];
(iii) σ(t, u) = u, for all u ∈ BR \

{
u ∈ BR : d(u, Z) ≤ 2ρ, |E(u)− c| ≤ 2δ

}
;

(iv) The function E(σ(·, u)) is nonincresing for all u ∈ BR. Moreover, E(σ(t, u)) < E(u),

whenever σ(t, u) 6= u;
(v) ‖σ(t1, u)− σ(t2, u)‖ ≤ ρθ|t1 − t2| for all t1, t2 ∈ [0, 1];
(vi) σ

(
1, Ec+δ ∩ Z

)
⊆ Ec−δ ∩ Zρ.

Proof. Let us define the following subsets of BR as follows

F =

{
u ∈ BR : |∂E|(u) ≥ 4δ

ρθ2

}
,

F0 = {u ∈ SR : d(u, Z) ≤ 3ρ, |E(u)− c| ≤ 3δ} ,

F1 =
{
u ∈ BR : d(u, Z) ≤ 2ρ, |E(u)− c| ≤ 2δ

}
,

and
F2 =

{
u ∈ BR : d(u, Z) ≤ ρ, |E(u)− c| ≤ δ

}
,

and consider the locally Lipschitz function χ : BR → R defined as

χ(u) =
d(u,BR \ F1)

d(u,BR \ F1) + d(u, F2)
.
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Obviously χ ≡ 0 on BR \ F1, whereas χ ≡ 1 on F2 and 0 < χ < 1 in-between. Applying
Lemma 3.2.2 with F and F0 defined as above, we get the existence of a locally Lipschitz
vector field Λ : F → X having the properties (P1)-(P3). Using the cutoff function we define
V : BR → X to be given by

V (u) =

−χ(u)Λ(u), if u ∈ F,

0, otherwise.

Then V can be extended to a locally Lipschitz and globally bounded map defined on the
whole X by setting

V (u) = V

(
R

‖u‖
u

)
, whenever ‖u‖ > R.

By an extended version of the Picard–Lindelöf existence theorem for Banach spaces (see e.g.
[81, Lemma 2.11.1]) the initial value problem

d

dt
η(t, u) = V (η(t, u)),

η(0, u) = u.

possesses a unique maximal solution η : R ×X → X. We define the required deformation
via ”time dilation”,

σ(t, ·) = η(ρθt, ·), for all t ∈ R.

The initial value ensures that σ(0, ·) = Id, thus establishing (i). It follows from the aforemen-
tioned result that σ(t, ·) : X → X is a homeomorphism (with inverse σ(t, ·)−1 = σ(−t, ·)).
For convenience, we denote by σu : X → X, the orbit defined by σu(t) = σ(t, u), for all
(t, u) ∈ R×X.

We claim that, for each u ∈ BR, the orbit {σu(t)}t≥0 lies entirely in BR. In order to
check this, assume that T0 ≥ 0 is such that

u1 := σu(T0) ∈ SR,

and
‖σu(t)‖ ≤ R, for all t ∈ [0, T0).

By Proposition 2.2.3 we have
d

dt
ψ (‖σu(t)‖) = ρθ 〈J(σu(t)), V (σu(t))〉 , (3.9)

and

〈J(σu(t)), V (σu(t))〉 =

{
−χ(σu(t))〈J(σu(t)),Λ(σu(t))〉, if σu(t) ∈ F,
0, otherwise ,

(3.10)
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whenever σu(t) 6= 0.
If u1 ∈ F0, then 〈J(u1),Λ(u1)〉 > 0, hence there exists a neighborhood U of u1 such that

〈J(v),Λ(v)〉 > 0, for all v ∈ U ∩ F. (3.11)

The continuity of σu(·) and relations (3.9)-(3.11) ensure that

d

dt
ψ(‖σu(t)‖) ≤ 0,

holds in a neighborhood [T0, T0 + s) of T0.
If u1 6∈ F0, then V vanishes in a neighborhood of u1 and by a similar reasoning we obtain

d

dt
ψ(‖σu(t)‖) = 0, for all t ∈ [T0, T0 + s).

Thus ψ(‖σu(·)‖) is nonincreasing in [T0, T0 +s), while ψ(·) is strictly increasing on R+, hence
‖σu(t)‖ ≤ R for all t ∈ [T0, T0 + s). The argument can be repeated whenever {σu(t)}t≥0

reaches SR.
Henceforth we restrict σ to [0, 1] × BR, without changing the notation. It is clear from

above that σ(t, ·) is a homeomorphism for all t ∈ [0, 1] and χ ≡ 0 on BR \ F1, therefore (ii)
and (iii) hold.

In order to prove (iv), fix u ∈ BR and define h : [0, 1]→ R by h(t) = E(σu(t)). Then h is
differentiable almost everywhere (see e.g. Chang [17, Proposition 9]) and for a.e. s ∈ [0, 1]

we have

h′(s) ≤ max {〈v∗, σ′u(s)〉 : v∗ ∈ ∂E(σu(s))}

= max {ρθ 〈v∗, V (σu(s))〉 : v∗ ∈ ∂E(σu(s))} .

Since Λ satisfies property (P2) and χ vanishes onBR \ F1, we get h′(s) ≤ 0 if σu(s) ∈ BR \ F1

and

h′(s) ≤ −ρθχ(σu(s))〈v∗,Λ(σu(s))〉

≤ −ρθχ(σu(s))
θ

2

4δ

ρθ2

= −2δχ(σu(s)),

otherwise. This shows that E(σu(·)) is nonincreasing.
If σu(t) 6= u, then t > 0 and σu(t) 6∈ BR \ F1. Therefore there exists ε > 0 such that

σu(s) 6∈ BR \ F1 for all s ∈ (t− ε, t+ ε). Thus χ(σu(s)) > 0 for all s ∈ (t− ε, t) and

E(σu(t))− E(u) = E(σu(t))− E(σu(0)) =

∫ t

0

h′(s)ds < 0.
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For a fixed u ∈ BR and 0 ≤ t1 < t2 ≤ 1 we have

‖σu(t2)− σu(t1)‖ =

∥∥∥∥∫ t2

t1

σ′u(s)ds

∥∥∥∥ ≤ ρθ

∫ t2

t1

‖V (σu(s))‖ds ≤ ρθ(t2 − t1),

which shows that (v) holds. Moreover, if u ∈ Z, then

‖σu(t)− u‖ ≤ ρθt < ρ,

hence σu(t) ∈ Zρ, for all t ∈ [0, 1].

Finally, in order to complete the proof it suffices to show that for any u ∈ Z ⊂ BR such
that E(u) ≤ c+ δ we have E(σu(1)) ≤ c− δ. We distinguish two cases:

(i) E(u) ≤ c− δ. Then

E(σu(1)) ≤ E(σu(0)) = E(u) ≤ c− δ.

(ii) c − δ < E(u) ≤ c + δ. Then u ∈ F2. Let tmax ∈ [0, 1] be the maximal time for which
the σu(·) does not exit F2, i.e.

σu(t) ∈ F2 for t ∈ [0, tmax].

If tmax = 1, then χ(σu(s)) = 1 for all s ∈ [0, 1] and

E(σu(1))− E(u) =

∫ 1

0

h′(s)ds ≤
∫ 1

0

−2δχ(σu(s)) ds = −2δ,

which leads to

E(σu(1)) ≤ E(u)− 2δ ≤ c+ δ − 2δ = c− δ.

If tmax < 1, then there exists t0 ∈ (tmax, 1] such that σu(t0) 6∈ F2. Since σu(t0) ∈ Zρ, it
follows that either E(σu(t0)) < c − δ, or E(σu(t0)) > c + δ. The latter cannot occur
due to (i) and (iv).

Before proceeding to more sophisticated results, we present a prototypical application of
the deformation lemma above.
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Theorem 3.3.2. Let E : BR → R be a locally Lipschitz function such that

mR := inf
BR

E > −∞. (3.12)

Suppose that there exist θ ∈ (0, 1) and ε > 0 such that

0 6∈ C(u, θ), on {u ∈ SR : |E(u)−mR| ≤ ε} .

Then there exists a sequence {un} ⊂ BR such that

E(un)→ mR and |∂E|(un)→ 0.

Proof. Arguing by contradiction, assume that such a sequence does not exist. Then there
exist γ, δ > 0 such that

|∂E|(u) ≥ γ, on
{
u ∈ BR : |E(u)−mR| ≤ 3δ

}
.

Shrinking δ if necessary, we may assume that 3δ ≤ ε. Applying Theorem 3.3.1 with Z = BR

and c = mR and ρ = 4δ
γθ2

we get the existence of a continuous deformation σ : [0, 1]×BR →
BR which satisfies

σ
(
1, EmR+δ

)
⊆ EmR−δ. (3.13)

Due to (3.12), the set in the left-hand side is nonempty, while the set in the right-hand side
is empty, thus (3.13) yields a contradiction.

3.4 A minimax theorem in the presence of linking

A number of different definitions are in use for ”linking” see [81, p. 100], [49, p. 226] and
[43, p. 136] for the relations between them. In this section we shall work with Schechter’s
definition of linking for the ball BR. To this end we introduce the family of admissible
deformations to be the set G ⊂ C([0, 1]×BR, BR) whose elements Γ ∈ G satisfy:
(G1 ) For each t ∈ [0, 1), Γ(t, ·) : BR → BR is a homeomorphism;
(G2 ) Γ(0, ·) = Id;
(G3 ) For each Γ ∈ G, there exists uΓ ∈ BR such that Γ(1, u) = uΓ for all u ∈ BR and

Γ(t, u)→ uΓ uniformly as t→ 1.
If follows from property (G3) that every Γ ∈ G is a contraction of BR to a point.

Definition 3.4.1. We say that A ⊂ BR links B ⊂ BR w.r.t. G if
(L1 ) A ∩B = ∅;
(L2 ) For every Γ ∈ G there exists t ∈ (0, 1] such that Γ(t, A) ∩B 6= ∅.
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For various examples to linking, see [81].

The following linking-type theorem says that if A and B are linked, i.e. cannot be pulled
apart without intersecting and the energy over A is dominated by the energy over B, then
there is a bounded sequence whose energy is converging to a minimax level – given that a
certain boundary condition holds on SR. For later convenience we introduce the following
notation for the above mentioned condition.

Definition 3.4.2. The sets A,B ⊂ BR are linked (w.r.t. E : BR → R) if

(LC)A,B,E


(i) BR ⊃ A links B ⊂ BR w.r.t G;
(ii) sup

A
E := a0 ≤ b0 := inf

B
E;

(iii) cR := inf
Γ∈G

sup
t∈[0,1]
u∈A

E(Γ(t, u)) < +∞.

The following is a direct generalization of Schechter’s result [81, Theorem 5.2.1] to the
nonsmooth context.

Theorem 3.4.3. Let E : BR → R be a locally Lipschitz functional such that (LC)A,B,E
holds for some A,B ⊂ BR. Suppose that there exist θ ∈ (0, 1) and ε > 0 such that

0 6∈ C(u, θ), on {u ∈ SR : |E(u)− cR| ≤ ε} . (3.14)

Then there exists a sequence {un} ⊂ BR such that

E(un)→ cR and |∂E|(un)→ 0.

Furthermore, if cR = b0, then d(un, B)→ 0 also holds.

Proof. Clearly, b0 ≤ cR. We distinguish two cases.

Case 1. b0 < cR.

Assume by contradiction that a sequence satisfying the required properties does not
exist. Then one can find γ, δ > 0 such that

|∂E|(u) ≥ γ, on
{
u ∈ BR : |E(u)− cR| ≤ 3δ

}
.

Without loss of generality we may assume that δ < min{ε/3, cR−b0}. For Z = BR and
c = cR and ρ = 4δ

γθ2
, Theorem 3.3.1 ensures that there exists a continuous deformation

σ : [0, 1]× BR → BR such that (i)–(vi) hold. We reach contradiction by constructing
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a deformation Γ ∈ G for which the “sup” in the definition of cR is actually lower than
cR. By the definition of cR, there exists Γ ∈ G such that

sup
t∈[0,1]
u∈A

E(Γ(t, u)) ≤ cR + δ.

In other words
Γ(t, A) ⊆ EcR+δ, for all t ∈ [0, 1]. (3.15)

Now let Γ : [0, 1]×BR → BR to be defined by

Γ(t, u) =

σ (4t/3, u) , if t ∈ [0, 3/4],

σ(1,Γ(4t− 3, u)), if t ∈ (3/4, 1].
(3.16)

We claim that Γ ∈ G. Obviously (G1) and (G2) follow directly from the deformation
theorem. In order to check (G3), let uΓ ∈ BR be the element for which Γ satisfies
(G3), then uΓ = σ(1, uΓ) is suitable for Γ.

Furthermore, we claim that

Γ(t, A) ⊆ EcR−δ, for all t ∈ [0, 1].

Indeed, if t ∈ [0, 3/4], then

E
(
Γ(t, u)

)
= E (σ(4t/3, u)) ≤ E(u) ≤ a0 ≤ b0 < cR − δ,

for all u ∈ A. On the other hand, if t ∈ (3/4, 1] then

E
(
Γ(t, u)

)
= E(σ(1,Γ(4t− 3, u))) ≤ c− δ,

for all u ∈ A.

In conclusion we constructed Γ ∈ G such that

E
(
Γ(t, u)

)
≤ cR − δ, for all u ∈ A and all t ∈ [0, 1],

which contradicts the definition of cR.

Case 2. b0 = cR.

We point out the fact that it suffices to prove that for any γ, δ > 0 there exists u ∈ BR

such that
|E(u)− cR| ≤ 3δ, d(u,B) ≤ 16δ

γθ2
and |∂E|(u) < γ, (3.17)
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as we can set δ = 1/n2 and γ = 1/n to get the desired sequence.

Assume by contradiction that (3.17) does not hold, i.e. there exist γ, δ > 0 such that

|∂E|(u) ≥ γ, on
{
u ∈ BR : |E(u)− cR| ≤ 3δ, d(u,B) ≤ 16δ

γθ2

}
and let σ : [0, 1]×BR → BR be the deformation given by Theorem 3.3.1 with c = cR,
ρ = 4δ

γθ2
and Z = {u ∈ BR : d(u,B) ≤ ρ}.

We claim that
σ
(
1, EcR+δ

)
∩B = ∅, (3.18)

and
σ(t, A) ∩B = ∅, for all t ∈ (0, 1]. (3.19)

If there exists u ∈ EcR+δ such that σ(1, u) ∈ B, then

‖σ(1, u)− u‖ = ‖σ(1, u)− σ(0, u)‖ ≤ ρθ < ρ,

hence u ∈ Z. Property (vi) implies that

E(σ(1, u)) ≤ cR − δ = b0 − δ,

which violates the definition of b0.

In order to show that (3.19) holds, assume by contradiction that there exists (t, u) ∈
(0, 1]×A such that σ(t, u) ∈ B. If σ(t, u) = u, then u ∈ A ∩B, which contradicts the
fact that A links B. If σ(t, u) 6= u, then

E(σ(t, u)) < E(u) ≤ a0 ≤ b0,

and this contradicts the definition of b0.

Define Γ : [0, 1] × BR → BR formally as in (3.16). Clearly, Γ ∈ G, but (3.15), (3.18)
and (3.19) imply that Γ(t, A) ∩B = ∅ for all t ∈ (0, 1] which contradicts the fact that
A links B.

3.5 The minimax alternative

This section is devoted to the case when the boundary condition is dropped. Of course,
one cannot expect to get the existence of a bounded Palais-Smale sequence in this case.
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However, we are able to prove that the following alternative holds: either E possesses a
Palais-Smale sequence in BR, or, there exist {un} ⊂ SR and u∗n ∈ ∂E(un) such that

u∗n −
〈u∗n, un〉
Rτ(R)

Jun → 0, as n→∞.

Before stating the theorem, for each u ∈ BR we define the projection πu : X∗ → keru as
follows

πu(u
∗) =

{
u∗ − 〈u∗,u〉

‖u‖τ(‖u‖)Ju, if u 6= 0,

u∗, if u = 0.

Obviously,

‖πu(u∗)‖ =

∥∥∥∥u∗ − 〈u∗, u〉
‖u‖τ(‖u‖)

Ju

∥∥∥∥ ≤ ‖u∗‖+
|〈u∗, u〉|
‖u‖

≤ 2‖u∗‖, for all u∗ ∈ X∗.

For u 6= 0 and α ∈ R and u∗ ∈ X∗ we have the following estimates

‖u∗ − αJu‖ =

∥∥∥∥πu(u∗) +

( 〈u∗, u〉
‖u‖τ(‖u‖)

− α
)
Ju

∥∥∥∥
≤ ‖πu(u∗)‖+

∣∣∣∣ 〈u∗, u〉‖u‖τ(‖u‖)
− α

∣∣∣∣ τ(‖u‖),

and

‖πu(u∗)‖ = ‖πu(u∗ − αJu)‖ ≤ 2‖u∗ − αJu‖.

Taking the infimum as α ∈ R we get

d(u∗,RJu) ≤ ‖πu(u∗)‖ ≤ 2d(u∗,RJu), for all u∗ ∈ X∗. (3.20)

Moreover, restricting the infimum to R− or R∗+ we also have

〈u∗, u〉 ≤ 0⇒ d(u∗,R−Ju) ≤ ‖πu(u∗)‖ ≤ 2d(u∗,R−Ju), (3.21)

and

〈u∗, u〉 > 0⇒ d(u∗,R∗+Ju) ≤ ‖πu(u∗)‖ ≤ 2d(u∗,R∗+Ju). (3.22)

We will also make use of the following decomposition of ∂E(u)

∂E−(u) = {u∗ ∈ ∂E(u) : 〈u∗, u〉 ≤ 0} ,

and

∂E+(u) = {u∗ ∈ ∂E(u) : 〈u∗, u〉 > 0} .
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Theorem 3.5.1. Let E : BR → R be a locally Lipschitz functional and let A,B ⊂ BR be
such that (LC)A,B,E holds. Assume in addition that there exists ΛR > 0 such that

|〈u∗, u〉| ≤ ΛR, for all u ∈ SR and all u∗ ∈ ∂E(u). (3.23)

Then the following alternative holds:

Either

(A1) there exists {un} ⊂ BR such that

E(un)→ cR and |∂E|(un)→ 0.

Furthermore, if cR = b0, then d(un, B ∪ SR)→ 0.

or,

(A2) there exists {un} ⊂ SR and {u∗n} ⊂ X∗ with u∗n ∈ ∂E(un) such that

E(un)→ cR, ‖πun(u∗n)‖ → 0 and 〈u∗n, un〉 ≤ 0.

Proof. Assume option (A2) does not hold. Then there exist γ, δ > 0 such that

‖πu(u∗)‖ ≥ γ, (3.24)

whenever u ∈ SR and u∗ ∈ ∂E(u) satisfy

|E(u)− cR| ≤ δ and 〈u∗, u〉 ≤ 0. (3.25)

Obviously if there exist θ ∈ (0, 1) and ε > 0 such that

0 6∈ C(u, θ), on {u ∈ SR : |E(u)− cR| ≤ ε} ,

then (A1) is obtained via Theorem 3.4.3.
If this is not the case, then for each n ∈ N there exists un ∈ SR such that

|E(un)− cR| ≤
1

n
and 0 ∈ C

(
un,

1

n

)
.

Proposition 3.2.3 implies that R−Jun ∩ [∂E]θn(un) 6= ∅, that is, there exist u∗n ∈ ∂E(un),
v∗n ∈ BX∗(0, 1) and w∗n ∈ R−Jun such that

u∗n +
1

n
λE(un)v∗n = w∗n,
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hence

d(u∗n,R−Jun) ≤ ‖u∗n − w∗n‖ ≤
1

n
λE(un) ≤ 1

n
‖u∗n‖

≤ 1

n
‖πun(u∗n)‖+

1

n

|〈u∗n, un〉|
R

≤ 2

n
d(u∗n,RJun) +

ΛR

nR

≤ 2

n
d(u∗n,R−Jun) +

ΛR

nR
,

which leads to
d(u∗n,R−Jun)→ 0, as n→∞. (3.26)

Conditions (3.21), (3.24) and (3.25) ensure that there exists n0 ∈ N such that

〈u∗n, un〉 > 0, for all n ≥ n0. (3.27)

From (3.26) and (3.27) we deduce that

d(∂E+(un),R−Jun)→ 0, as n→∞. (3.28)

On the other hand, taking the infimum as u∗ ∈ ∂E+(un) in (3.22) and keeping in mind
(3.20) we get

d(∂E+(un),R∗+Jun) ≤ inf
u∗∈∂E+(un)

‖πun(u∗)‖ ≤ 2 inf
u∗∈∂E+(un)

d(u∗,RJun)

≤ 2d(u∗n,RJun) ≤ 2d(u∗n,R−Jun),

hence
d(∂E+(un),R∗+Jun)→ 0, as n→∞. (3.29)

Relations (3.28) and (3.29) ensure that for sufficiently large n ∈ N there exist αn ∈ R−,
βn ∈ R∗+ and y∗n, z∗n ∈ ∂E+(un) such that

max{‖y∗n − αnJun‖, ‖z∗n − βnJun‖} → 0, as n→∞.

Define tn = βn
βn−αn ∈ (0, 1] and ū∗n = tny

∗
n + (1 − tn)z∗n. Since ∂E+(un) is convex it follows

that ū∗n ∈ ∂E+(un). Then

‖ū∗n‖ = ‖tny∗n + (1− tn)z∗n‖

= ‖tn(y∗n − αnJun) + (1− tn)(z∗n − βnJun)‖

≤ tn‖y∗n − αnJun‖+ (1− tn)‖z∗n − βnJun‖

≤ max{‖y∗n − αnJun‖, ‖z∗n − βnJun‖}.
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We have proved thus that there exists {un} ⊆ SR and such that |E(un)− cR| ≤ 1
n
and

|∂E|(un) ≤ ‖ūn‖ → 0, as n→∞,

that is, (A1) holds.

Corollary 3.5.2. Assume the hypotheses of Theorem 3.5.1 are fulfilled. Then there exists
{un} ⊂ BR, {u∗n} ⊂ X∗ with u∗n ∈ ∂E(un) and ν ∈ R− such that

E(un)→ cR, ‖πun(u∗n)‖ → 0 and 〈u∗n, un〉 → ν.

Furthermore, if cR = b0, then d(un, B ∪ SR)→ 0.

Proof. Suppose that (A1) of the alternative theorem holds, i.e. E(un)→ cR and |∂E|(un)→
0 and let u∗n ∈ ∂E(un) be such that ‖u∗n‖ = λE(un). Then

‖πun(u∗n)‖ ≤ 2‖u∗n‖ → 0, as n→∞,

and
|〈u∗n, un〉| ≤ ‖u∗n‖‖un‖ ≤ R‖u∗n‖ → 0, as n→∞,

hence we can choose ν = 0 in this case.
On the other hand, if (A2) holds, then condition (3.23) implies that the sequence νn :=

〈u∗n, un〉 ≤ 0 is bounded in R hence possesses a convergent subsequence.
Finally, if cR = b0, then (A1) implies d(un, B ∪ SR) → 0, while (A2) ensures that

d(un, SR) = 0, hence the proof is complete.

Remark. If E : BR → R is a C1-functional, then the conclusion of the previous corollary
reads as follows: there exists {un} ⊂ BR such that

E(un)→ cR,

∥∥∥∥E ′(un)−
〈E ′(un), un〉
‖un‖τ(‖un‖)

Jun

∥∥∥∥→ 0, 〈E ′(un), un〉 → ν ≤ 0,

If, in addition, X is a Hilbert space, then this reduces to Schechter’s conclusion (see e.g.
[81, Corollary 5.3.2.]).

If E is bounded from below, then following similar steps as in the proofs of Theorems
3.3.2, 3.5.1 and Corollary 3.5.2 one can prove the following result.

Theorem 3.5.3. Let E : BR → R be a locally Lipschitz satisfying (3.12) and (3.23). Then
there exist {un} ⊂ BR, {u∗n} ⊂ X∗ with u∗n ∈ ∂E(un) and ν ∈ R− such that

E(un)→ mR, ‖πun(u∗n)‖ → 0 and 〈u∗n, un〉 → ν.
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3.6 The Schechter-Palais-Smale compactness condition

In this section we revisit some of the results obtained in the previous sections under the
additional assumption that a certain compactness condition holds. Recall that a locally
Lipschitz functional E : X → R satisfies the Palais-Smale condition at level c, (PS)c for
short, if any sequence {un} ⊂ X for which

E(un)→ c and |∂E|(un)→ 0, (3.30)

possesses a (strongly) convergent subsequence.

Following Schechter, we introduce a compactness condition for locally Lipschitz func-
tionals.

Definition 3.6.1. we say that a locally Lipschitz functional E : X → R satisfies the
Schechter-Palais-Smale condition at level c in BR, (SPS)c for short, if any sequence {un} ⊂
BR satisfying:

(SPS1) E(un)→ c, as n→∞;

(SPS2) u∗n ∈ ∂E(un) and ν ≤ 0 such that ‖πun(u∗n)‖ → 0 and 〈u∗n, un〉 → ν ≤ 0,

possesses a (strongly) convergent subsequence.

Theorem 3.6.2. Let E : BR → R be a locally Lipschitz functional such that the (LC)A,B,E
holds for some A,B ⊂ BR. Assume in addition that (3.23) and (SPS)cR hold. Then the
following alternative holds:

(A1’) Either there exists u ∈ BR such that

E(u) = cR and 0 ∈ ∂E(u),

(A2’) or there exist u ∈ SR and λ < 0 such that

E(u) = cR and λJu ∈ ∂E(u).

Furthermore, in case (A1’), if cR = b0, then u ∈ B̄ ∪ SR.

Proof. If case (A1) of Theorem 3.5.1 holds, then there exists {un} ⊂ BR such that

E(un)→ cR, and |∂E|(un)→ 0.
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Let u∗n ∈ ∂E(un) be such that ‖u∗n‖ = |∂E|(un). Then

‖πun(u∗n)‖ ≤ 2‖u∗n‖ → 0, as n→∞,

and

|〈u∗n, un〉| ≤ R‖u∗n‖ → ν = 0, as n→∞.

The (SPS)cR condition there exists a subsequence {unk} of {un} and u ∈ BR such that
unk → u in X. Moreover, u∗nk ∈ ∂E(unk) and u∗nk → 0, thus Proposition 3.2.1 ensures that
0 ∈ ∂E(u).

If cR = b0, then d(unk , B ∪ SR)→ 0, hence u ∈ B̄ ∪ SR.
On the other hand, if case (A2) of Theorem 3.5.1 holds, then there exist {un} ∈ SR,

u∗n ∈ ∂E(un) and ν ≤ 0 such that

E(un)→ cR, ‖πun(u∗n)‖ → 0 and 〈u∗n, un〉 → ν.

The (SPS)cR condition and Proposition 3.2.1 show that there exist u ∈ SR, u∗ ∈ ∂E(u) and
two subsequences {unk}, {u∗nk} of {un} and {u

∗
n}, respectively, such that

unk → u and u∗nk ⇀ u∗.

But J is demicontinuous, hence

πunk (u∗nk) = u∗nk −
〈u∗nk , unk〉
Rτ(R)

Junk ⇀ u∗ − ν

Rτ(R)
Ju,

which together with πunk (u∗nk)→ 0 gives

u∗ =
ν

Rτ(R)
Ju ∈ ∂E(u).

If ν = 0, then option (A1′) holds, while ν < 0 implies that option (A2′) holds for λ =
ν

Rτ(R)
.

The next result follows directly from Theorem 3.5.3 and the (SPS)-condition.

Theorem 3.6.3. Assume the hypotheses of Theorem 3.5.3 are fulfilled and assume
(SPS)mR also holds. Then there exist u ∈ BR and λ ≤ 0 such that

E(u) = mR and λJu ∈ ∂E(u).

Furthermore, λ 6= 0 ⇒ u ∈ SR.
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Assuming the hypotheses of Theorems 3.6.2 and 3.6.3 are simultaneously satisfied, one
can obtain multiplicity results of the following type.

Theorem 3.6.4. Let E : BR → R be a locally Lipschitz functional such that (3.12) and
(3.23) hold. Suppose there exist two subsets A,B of BR such that (LC)A,B,E holds and
condition (SPS)c is satisfied for c ∈ {cR,mR}. Then there exist u1, u2 ∈ BR and λ1, λ2 ≤ 0

such that u1 6= u2 and
λkJuk ∈ ∂E(uk), k = 1, 2. (3.31)

Furthermore, if λk < 0, then uk ∈ SR. Also, if there exist v0, v1 ∈ A∩BR distinct such that
E(v1) ≤ E(v0) and v0 6∈ B, then u1 and u2 can be chosen in such a way that v0 6∈ {u1, u2}.

Proof. It follows from Theorems 3.6.2 and 3.6.3 that there exist u1, u2 ∈ BR and λ1, λ2 ≤ 0

such that
E(u1) = mR ≤ cR = E(u2), and λkJuk ∈ ∂E(uk), k = 1, 2.

The fact that λk < 0⇒ uk ∈ SR, follows directly from Theorems 3.6.2 and 3.6.3, respectively.
In order to complete the proof we consider the following cases:
(i) mR ≤ b0 < cR. Then

E(u1) = mR ≤ E(v1) ≤ E(v0) ≤ a0 ≤ b0 < cR = E(u2),

hence u1 6= u2 and v0 6= u2. If u1 = v0, then E(v1) = mR, that is v1 is a global
minimum point of E on BR. As any extremum point of a locally Lipschitz functional
is in fact a critical point, we conclude that 0 ∈ ∂E(v1), which shows that v1, u2 satisfy
the conclusion of the theorem.

(ii) mR < b0 = cR. Then
E(u1) = mR < b0 = cR = E(u2),

hence u1 6= u2. Moreover, u2 ∈ B ∪ SR which shows that v0 6= u2. Again, if u1 = v0,
then we can replace u1 with v1.

(iii) mR = b0 = cR. Then each point of A is a solution of (3.31). Note that A must have at
least two points in order to link B. It is readily seen that we only need to discuss the
case A = {v0, v1} ⊂ BR and v1 ∈ B. Let ρ ∈ (0, ‖v1 − v0‖) be such that Sρ(v0) ⊂ BR.
Then A links Sρ(v0) (see [81, Example 1, p. 31]) and

mR ≤ inf
Sρ(v0)

E ≤ inf
Γ∈G

sup
t∈[0,1]
u∈A

E(Γ(t, u)) = mR.

Theorem 3.6.2 ensures that (3.31) possesses a solution u∗ ∈ Sρ(v0)∪SR, hence u∗ 6= v0.
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3.7 Application: Differential inclusions

In this section we use the theoretical results obtained in the previous sections to study
differential inclusions involving the p-Laplace operator. More exactly we prove that either
the problem

(P )

{
−∆pu ∈ ∂2f(x, u(x)), in Ω,

u = 0, on ∂Ω,

possesses at least two nontrivial weak solutions, or the the corresponding eigenvalue problem

(Pλ)

{
−∆pu ∈ λ∂2f(x, u(x)), in Ω,

u = 0, on ∂Ω,

has a rich family of eigenfunctions corresponding to eigenvalues located in the interval (0, 1).
Here, ∆pu = div(|∇u|p−2∇u), 1 < p < ∞, is the p-Laplacian, Ω ⊂ RN (N ≥ 2) is a

bounded domain with C1,α boundary, f : Ω × R → R is a locally Lipschitz function with
respect to the second variable and ∂2f(x, t) denotes the Clarke subdifferential of the map
t 7→ f(x, t). The p-Laplacian is used in many applications including

• Fluid flows in porous media [55, Example 14.1.2.][39, 93, 53],

• Lane–Emden and Emden–Fowler equation of stellar physics [55, 14.2-14.3],

• Growth and diffusion of sandpiles [5] and

• Image denoising [52].

As usual, we consider the Sobolev space

W 1,p(Ω) =

{
u ∈ Lp(Ω) :

∂u

∂xi
∈ Lp(Ω), i = 1, . . . , N

}
endowed with the norm ‖u‖1,p = ‖u‖p + ‖∇u‖p, with ‖ · ‖p being the usual norm on Lp(Ω).
Since we work with Dirichlet boundary condition, the natural space to seek weak solution
of problem (P ) is the Sobolev space

W 1,p
0 (Ω) = C∞0 (Ω)‖·‖1,p =

{
u ∈ W 1,p(Ω) : u = 0 on ∂Ω

}
,

with the value of u on ∂Ω understood in the sense of traces.

Definition 3.7.1. A function u ∈ W 1,p
0 (Ω) is a weak solution of problem (P ) if there exists

ξ ∈ W−1,p′(Ω) such that ξ(x) ∈ ∂2f(x, u(x)) for a.e. x ∈ Ω and∫
Ω

|∇u|p−2∇u · ∇v dx =

∫
Ω

ξ(x)v(x) dx, for all v ∈ W 1,p
0 (Ω),
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Definition 3.7.2. A real number λ 6= 1 is said to be an eigenvalue of (Pλ) if there exist
uλ ∈ W 1,p

0 (Ω) \ {0} and ξλ ∈ W−1,p′(Ω) such that ξλ(x) ∈ ∂2f(x, uλ(x)) for a.e. x ∈ Ω and∫
Ω

|∇u|p−2∇u · ∇v dx = λ

∫
Ω

ξλ(x)v(x) dx, for all v ∈ W 1,p
0 (Ω).

The function uλ satisfying the above relation is called an eigenfunction corresponding to λ.

Following a well-known idea of Lions [60], we may regard −∆p as an operator acting
from W 1,p

0 (Ω) into its dual W−1,p′(Ω) by

〈−∆pu, v〉 :=

∫
Ω

|∇u|p−2∇u · ∇v dx, for all u, v ∈ W 1,p
0 (Ω).

Henceforth we consider W 1,p
0 (Ω) to be endowed with the norm |u|1,p = ‖∇u‖p, which is

equivalent to ‖u‖1,p due to the Poincaré inequality. Then the duality mapping corresponding
to the normalization function τ(t) = tp−1, J : W 1,p

0 (Ω)→ W−1,p′(Ω) satisfies

J(u) = −∆pu. (3.32)

It is also known that −∆p is a potential operator in the sense that

ψ′(u) = −∆pu,

with ψ : W 1,p
0 (Ω)→ R being the C1-functional defined as follows

ψ(u) =
1

p
|u|p1,p =

1

p

∫
Ω

|∇u|p dx.

Finally, we note that X = W 1,p
0 (Ω) is separable and uniformly convex (see [1, Theo-

rem 3.6] or [38, Theorem 1.6]), therefore the theory developed in the preceding sections is
applicable. Here and hereafter, we denote by p∗ the critical Sobolev exponent, that is,

p∗ =

{
Np
N−p , if p < N,

∞, otherwise.

Assumption 3.7.1. The function f : Ω× R→ R satisfies:
(f1) For all t ∈ R the map x 7→ f(x, t) is measurable and f(x, 0) = 0;

(f2) For almost all x ∈ Ω, the map t 7→ f(x, t) is locally Lipschitz;
(f3) There exists C > 0 and q ∈ (p, p∗) such that

|ξ| ≤ C|t|q−1,

for a.e. x ∈ Ω, all t ∈ R and all ξ ∈ ∂2f(x, t).
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Assumption 3.7.2. There exists u0 ∈ W 1,p
0 (Ω) \ {0} such that

|u0|p1,p ≤ p

∫
Ω

f(x, u0(x)) dx.

Theorem 3.7.3. Suppose that Assumptions 3.7.1–3.7.2 hold. Then the following alterna-
tive holds:

Either

(a) Problem (P ) possesses at least two nontrivial weak solutions;

or,

(b) For each R ∈ (|u0|1,p,∞) problem (Pλ) possesses an eigenvalue λ ∈ (0, 1) with the
corresponding eigenfunction satisfying |uλ|1,p = R.

Proof. Assumption 1 ensures that we can apply the Aubin-Clarke theorem (see e.g. [20,
Theorem 2.7.5]) to conclude that the function F : Lq(Ω)→ R defined by

F (w) =

∫
Ω

f(x,w(x)) dx,

is Lipschitz continuous on bounded domains and

∂F (w) ⊆
∫

Ω

∂2f(x,w(x)) dx, for all w ∈ Lq(Ω),

in the sense that for each ζ ∈ ∂F (w), there exists ξ ∈ Lq′(Ω) such that ξ(x) ∈ ∂2f(x,w(x))

for a.e. x ∈ Ω and
〈ζ, w〉 =

∫
Ω

ξ(x)w(x) dx.

Define now the energy functional E : W 1,p
0 (Ω)→ R as follows

E(u) =
1

p
|u|p1,p − F (u).

It follows from the Rellich-Kondrachov theorem (see e.g. [1, Theorem 6.3]) that the inclusion
W 1,p

0 (Ω) ↪→ Lq(Ω) is compact, hence E is well defined. Moreover, using Clarke’s calculus
with subgradients (see [20, Proposition 2.3.1 & Proposition 2.3.3]) we have

∂E(u) ⊂ −∆pu− ∂F (u).

In conclusion, if µ ≤ 0 and u ∈ W 1,p
0 (Ω) are such that

µJu ∈ ∂E(u),
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then there exists ξ ∈ Lq′(Ω) ⊂ W−1,p′(Ω) such that ξ(x) ∈ ∂2f(x, u(x)) for almost all x ∈ Ω

and
µ

∫
Ω

|∇u|p−2∇u · ∇v dx =

∫
Ω

|∇u|p−2∇u · ∇v dx−
∫

Ω

ξ(x)v(x) dx.

Moreover, if µ = 0, then u is a weak solution of (P ), while µ < 0 implies that λ = 1
1−µ ∈ (0, 1)

is an eigenvalue of (Pλ), provided that u 6= 0.
Fix R ∈ (|u0|1,p,∞). We prove next that E|BR satisfies the hypotheses of Theorem 3.6.4.

Claim 1. The functional E maps bounded sets into bounded sets.

Fix u ∈ W 1,p
0 (Ω) andM > 0 such that |u|1,p ≤M . According to Lebourg’s mean value

theorem (see [58]) there exist t ∈ (0, 1) and ξ̄(x) ∈ ∂2f(x, tu(x)) such that

f(x, u(x)) = f(x, u(x))− f(x, 0) = ξ̄(x)u(x), for a.e. x ∈ Ω.

Therefore,

|F (u)| ≤
∫

Ω

|f(x, u(x))| dx ≤
∫

Ω

|ξ̄(x)||u(x)| dx

≤
∫

Ω

C|t|q−1|u(x)|q−1|u(x)| dx

≤ C‖u‖qq.

Then
|E(u)| ≤ 1

p
Mp + CCq

qM
q,

with Cq > 0 being the constant given by the compact embedding W 1,p
0 (Ω) ↪→ Lq(Ω).

Claim 2. There exists ρ ∈ (0, |u0|1,p) such that E(u) ≥ 0 for all u ∈ Sρ.

By Assumption 3.7.2 and Claim 1 we have

1

p
|u0|p1,p ≤ F (u0) ≤ CCq

q |u0|q1,p.

Pick ρ = 1
2

(
1
pc0

) 1
q−p , with c0 = CCq

q . Then ρ <
(

1
pc0

) 1
q−p ≤ |u0|1,p and for all

u ∈ W 1,p
0 (Ω) satisfying |u|1,p = ρ we have

E(u) =
1

p
|u|p1,p − F (u) ≥ 1

p
|u|p1,p − c0|u|q1,p

=

(
1

p

) q

q−p
(

1

c0

) p

q−p
(

1

2p
− 1

2q

)
≥ 0.
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Claim 3. The functional E satisfies (SPS)c in BR for all c ∈ R.

Let c ∈ R, {un} ⊂ BR be such that E(un) → c and assume there exists {ζn} ⊂
W−1,p′(Ω) satisfying

ζn ∈ ∂E(un), ‖πun(ζn)‖ → 0, 〈ζn, un〉 → ν ≤ 0. (3.33)

Since {un} is bounded and W 1,p
0 (Ω) is reflexive, it follows that there exist u ∈ W 1,p

0 (Ω)

and a subsequence of {un}, still denoted {un}, such that

un ⇀ u, in W 1,p
0 (Ω).

We may assume that |un|1,p → r. If r = 0, then un → 0 in W 1,p
0 (Ω). Assume now that

r > 0. Then the compactness of the embedding W 1,p
0 (Ω) ↪→ Lq(Ω) implies

un → u, in Lq(Ω).

Since ∂E(un) ⊂ −∆pun − ∂F (un), it follows that there exists ηn ∈ ∂F (un) such that

ζn = −∆pun − ηn.

Since un → u in Lq(Ω), it follows from Proposition 3.2.1 that there exists η ∈ ∂F (u)

such that

ηn ⇀ η, in Lq
′
(Ω).

But Lq′(Ω) is compactly embedded into W−1,p′(Ω) which means

ηn → η, in W−1,p′(Ω).

It follows that

−ζn −∆pun → η, in W−1,p′(Ω). (3.34)

On the other hand, the second relation of (3.33) implies

ζn +
〈ζn, un〉
|un|p1,p

∆pun → 0 in W−1,p′ . (3.35)

Adding (3.34) and (3.35) we get(
1−
〈ζn, un〉
|un|p1,p

)
(−∆pun)→ η, in W−1,p′(Ω).
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Consequently,

lim
n→∞

(
1−
〈ζn, un〉
|un|p1,p

)
〈−∆pun, un − u〉 = 0.

But, limn→∞(1 − 〈ζn, un〉/|un|p1,p) = 1 − ν/rp ≥ 1, which combined with the above
relation gives

lim
n→∞
〈−∆pun, un − u〉 = 0.

It follows that un → u inW 1,p
0 (Ω) due to the fact that −∆p satisfies the (S)+ condition

(see e.g. [38, Proposition 2]), that is, if un ⇀ u and lim sup
n→∞

〈−∆pun, un − u〉 ≤ 0, then
un → u.

Claim 4. There exists ΛR > 0 such that |〈ζ, u〉| ≤ ΛR, for all u ∈ SR and all ζ ∈ ∂E(u).

Fix u ∈ SR and ζ ∈ ∂E(u). Then there exists ξ ∈ W−1,p′(Ω) satisfying ξ(x) ∈
∂2f(x, u(x)) such that

|〈ζ, u〉| =

∣∣∣∣〈−∆pu, u〉 −
∫

Ω

ξ(x)u(x) dx

∣∣∣∣
≤ |〈−∆pu, u〉|+

∫
Ω

|ξ(x)| |u(x)| dx

≤ Rp + C‖u‖qq ≤ Rp + CCq
qR

q := ΛR.

Applying Theorem 3.6.4 with A = {0, u0}, B = Sρ (with ρ > 0 given by Claim 2), v0 = 0,
v1 = u0 we get the desired conclusion.



4 Weak solvability for a contact problem with

nonmonotone boundary conditions

This chapter is based on the paper [24].

4.1 Introduction

This chapter focuses on the weak solvability of a general mathematical model which describes
the contact between a body and an obstacle. The process is assumed to be static and we
work under the small deformations hypothesis. The behavior of the materials is described
by a possibly multivalued constitutive law written as a subdifferential inclusion, while the
contact between the body and the foundation is described by two inclusions, corresponding
to the normal and the tangential directions, each inclusion involving the sum of a Clarke
subdifferential and the normal cone of a nonempty, closed and convex set.

Inspired and motivated by some recent papers in the literature we consider a variational
formulation in terms of bipotentials for our model. This leads to a system of two inequali-
ties: a hemivariational inequality related to the equilibrium law and a variational inequality
related to the functional extension of the constitutive law. The unknown of the system is a
pair (u,σ) consisting of the displacement field and the Cauchy stress field. A key role in our
approach is played by the separable bipotential that can be defined as the sum of the con-
stitutive map and its Fenchel conjugate. Bipotentials were introduced in 1991 by de Saxcé
& Feng [35] and within a very short period of time this theory has undergone a remark-
able development both in pure and applied mathematics as bipotentials were successfully
applied in addressing various problems arising in mechanics (non-associated Drücker-Prager
models in plasticity [15, 32], cam-clay models in soil mechanics [31, 96], cyclic plasticity
[9, 30] and viscoplasticity of metals with kinematical hardening rule [48], Coulomb’s friction
law [13, 56, 65], displacement-traction models for elastic materials [66], contact models with
Signorini’s boundary condition [64]). For more details and connections regarding the theory
of bipotentials see also [14, 33, 34]. The bipotential approach has the advantage that it al-
lows to approximate simultaneously the displacement field and the Cauchy stress tensor and
facilitated the implementation of new and efficient numerical algorithms (see e.g. [42, 36]).
However, in all the works we are aware of, the bipotential method has been used only for
problems with monotone boundary conditions, mostly expressed as inclusions involving the

41
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subdifferential of a proper, convex and lower semicontinuous function. Thus, the variational
formulation for these problems leads to a coupled system of variational inequalities. Due to
the nonmonotone boundary conditions two major differences arise:

• The set of admissible stress tensors is defined with respect to a given displacement
field and depends explicitly on this displacement field, in contrast to the case of mono-
tone boundary conditions when the set of admissible stress tensors is the same for all
displacement fields;

• The variational formulation leads to a system of inequalities consisting of a hemivari-
ational inequality and a variational inequality.

Consequently, several difficulties occur in determining the existence of weak solutions since
the classical methods fail to be applied directly.

Here and hereafter, m is a positive integer, indices i and j run from 1 to m and the
summation convention of the repeated indices is adopted. For a bounded open set Ω ⊂ Rm

with sufficiently smooth boundary Γ (e.g. Lipschitz continuous) we denote by ν the outward
unit vector to Γ and we introduce the following function spaces which will play a key role
in our approach

H = L2 (Ω;Rm)

H =
{
τ = (τij)

m
i,j=1 : τij = τji ∈ L2(Ω)

}
= L2 (Ω;Sm)

H1 = {u ∈ H : ε(u) ∈ H} = H1 (Ω;Rm)

H1 = {τ ∈ H : Divτ ∈ H} ,

where ε and Div are the deformation operator and the divergence operator, respectively and
are defined in the following way

εij(u) =
1

2

(
∂jui + ∂iuj

)
, Divτ =

m∑
j=1

∂jτij.

These Hilbert spaces are endowed with the following inner products

(u,v)H =

∫
Ω

u · v, (τ ,σ)H =

∫
Ω

τ : σ, (u,v)H1 = (u,v)H + (ε(u), ε(v))H,

(τ ,σ)H1 = (τ ,σ)H + (Divτ ,Divσ)H .

We recall that the trace operator γ : H1(Ω;Rm) → H1/2(Γ;Rm) ⊂ L2(Γ;Rm) is compact
[1]. For the sake of brevity, we will omit to write γ to indicate the Sobolev trace on the
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boundary, writing v instead of γv. For a given v ∈ H1/2(Γ;Rm) we denote by vν and vτ the
normal and the tangential components of v on the boundary, i.e.

vν = v · ν and vτ = v − vνν,

respectively. Similarly, for a tensor field σ, we define σν and στ to be the normal and the
tangential components of the Cauchy vector field σν, that is

σν = σν · ν and στ = σν − σνν,

respectively. Recall that the following Green formula holds

(σ, ε(v))H + (Divσ,v)H =

∫
Γ

σν · v, for all v ∈ H1. (4.1)

Let Sm denote the subspace of symmetric matrices in Rm×m endowed with the Frobenius
inner product.

4.2 The mechanical model and its strong formulation

Let us consider a body B which occupies the domain Ω ⊂ Rm (m = 2, 3) with a sufficiently
smooth boundary Γ (e.g. Lipschitz continuous) and a unit outward normal ν. The body is
acted upon by forces of density f0 and it is mechanically constrained on the boundary. In
order to describe these constraints we assume Γ is partitioned into three Lebesgue measurable
parts Γ1,Γ2,Γ3 such that Γ1 has positive Lebesgue measure.

• The body is clamped on Γ1, i.e. the displacement field vanishes here.

• On Γ2 surface traction of force density f2 act.

• On Γ3 the body may come in contact with an obstacle which will be referred to as the
foundation.

The process is assumed to be static and the behavior of the material is modeled by a
(possibly multivalued) constitutive law expressed as a subdifferential inclusion. The contact
between the body and the foundation is modeled with respect to the normal and the tangent
direction respectively, to each corresponding an inclusion involving the sum between the
Clarke subdifferential of a locally Lipschitz function and the normal cone of a nonempty,
closed and convex set.
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It is well-known that the subdifferential of a convex function is a monotone set-valued
operator, while the Clarke subdifferential is a set-valued operator which is not necessarily
monotone in general (See Section 2.4). This is why we say that the constitutive law is
monotone and the boundary conditions are nonmonotone.

The mathematical model which describes the above process is the following.
(P) Find a displacement u : Ω→ Rm and a stress tensor σ : Ω→ Sm such that

−Divσ = f0, in Ω (4.2)

σ ∈ ∂ϕ(ε(u)), in Ω (4.3)

u = 0, on Γ1 (4.4)

σν = f2, on Γ2 (4.5)

−σν ∈ ∂2jν(·, uν) +NC1(uν), on Γ3 (4.6)

−στ ∈ h(·,uτ )∂2jτ (·,uτ ) +NC2(uτ ), on Γ3 (4.7)

where

• ϕ : Sm → R is convex and lower semicontinous,

• jν : Γ3×R→ R and jτ : Γ3×Rm → R are locally Lipschitz with respect to the second
variable and h : Γ3 × Rm → R is a prescribed function.

Here, C1 ⊂ R and C2 ⊂ Rm are nonempty closed and convex subsets and NCk denotes the
normal cone of Ck (k = 1, 2). See Definition 2.4.2.

Relation (4.2) represents the equilibrium equation (i.e. Newton’s second law), (4.3) is
the constitutive law, (4.4)-(4.5) are the displacement and traction boundary conditions and
(4.6)-(4.7) describe the contact between body and the foundation.

Relations between the stress tensor σ and the strain tensor ε of the type (4.3) describe
the constitutive laws of the deformation theory of plasticity, of Hencky plasticity with convex
yield function, of locking materials with convex locking functions, etc. For concrete examples
and their physical interpretation one can consult Sections 3.3.1 and 3.3.2 in Panagiotopoulos
[74] (see also Section 3.1 in [75]). A particular case of interest regarding (4.3) is when the
constitutive map ϕ is Gâteaux differentiable, thus the subdifferential inclusion reducing to

σ = ϕ′(ε(u)), (4.8)

which corresponds to nonlinear elastic materials.
Some classical constitutive laws which can be written in the form (4.8) are presented

below:
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(i) Assume that ϕ is defined by

ϕ(µ) =
1

2
Eµ : µ,

where E = (Eijkl), 1 ≤ i, j, k, l ≤ m is a fourth order tensor which satisfies the symmetry
property

Eµ : τ = µ : Eτ , for all µ, τ ∈ Sm,

and the ellipticity property

Eµ : µ ≥ c|µ|2, for all µ ∈ Sm.

In this case (4.8) reduces to the classical Hooke’s law, that is, σ = Eε(u), and corre-
sponds to linearly elastic materials.

(ii) Assume that ϕ is defined by

ϕ(µ) =
1

2
Eµ : µ+ β |µ− PKµ|2 ,

where E is the elasticity tensor and satisfies the same properties as in the previous
example, β > 0 is a constant coefficient of the material, P : Sm → K is the projection
operator and K is the nonempty, closed and convex von Mises set

K =

{
µ ∈ Sm :

1

2
µD : µD ≤ a2, a > 0

}
.

Here the notation µD stands for the deviator of the tensor µ, that is, µD = µ −
1
m

tr(µ)I, with I being the identity tensor.

In this case (4.8) becomes

σ = Eε(u) + 2β(I− PK)ε(u),

which is known in the literature as piecewise linear constitutive law (see e.g. Han &
Sofonea [47]).

(iii) Assume ϕ is defined by

ϕ(µ) =
k0

2
tr(µ)I : µ+

1

2
ψ
(∣∣µD∣∣2) ,

where k0 > 0 is a constant and ψ : [0,∞) → [0,∞) is a continuously differentiable
constitutive function.
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In this case (4.8) becomes

σ = k0 tr(ε(u))I + ψ′
(∣∣εD(u)

∣∣2) εD(u),

and this describes the behavior of the so-called ”Hencky materials” (see e.g. Zeidler
[94]).

Boundary conditions of the type (4.6) and (4.7) can model a large class of contact problems
arising in mechanics and engineering. For the case h ≡ 1 many examples of ”nonmonotone”
laws of the type

−σν ∈ ∂jν(uν) and − στ ∈ ∂jτ (uτ ),

can be found in [75] Section 2.4, [73] Section 1.4 or [46] Section 2.8.
The case when the function h actually depends on the second variable allows the study

of contact problems with slip-dependent friction law (see e.g. [26, 68] for antiplane models
and [27] for general 3D models). This friction law reads as follows

−|στ | ≤ µ(x, |uτ |), −στ = µ(x, |uτ |)
uτ

|uτ |
if uτ 6= 0, (4.9)

where µ : Γ3 × [0,+∞)→ [0,+∞) is the sliding threshold and it is assumed to satisfy

0 ≤ µ(x, t) ≤ µ0, for a.e. x ∈ Γ3 and all t ≥ 0,

for some positive constant µ0. It is easy to see that (4.7) can be cast in the form (4.9) simply
by choosing

h(x,uτ ) = µ(x, |uτ |) and jτ (x,uτ ) = |uτ |.

We point out the fact that the above example cannot be written in the form −στ ∈ ∂jτ (uτ )
as, in general, for two locally Lipschitz functions h, g there does not exists j such that
∂j(u) = h(u)∂g(u). We would also like to point out that many boundary conditions of
classical elasticity are particular cases of (4.6) and (4.7), in most of these cases the functions
jν and jτ being convex, hence leading to monotone boundary conditions. We list below some
examples:

(a) The Winkler boundary condition

−σν = k0uν , k0 > 0.

This law is used in engineering as it describes the interaction between a deformable
body and the soil and can be expressed in the form (4.6) by setting

C1 = R and jν(x, uν) =
k0

2
u2
ν ,
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More generally, if we want to describe the case when the body may lose contact with
the foundation, we can consider the following law{

uν < 0⇒ σν = 0,

uν ≥ 0⇒ −σν = k0uν ,

The first relation corresponds to the case when there is no contact, while the second
models the contact case. Obviously the above law can be expressed in the form (4.6)
by choosing

C1 = R and jν(x, uν) =

{
0, if uν < 0,
k0
2
u2
ν , if uν ≥ 0,

In [72] the following nonmonotone boundary conditions were imposed to model the
contact between a body and a Winkler-type foundation which may sustain limited
values of efforts 

uν < 0⇒ σν = 0,

uν ∈ [0, a)⇒ −σν = k0uν ,

uν = a⇒ −σν ∈ [0, k0a],

uν > a⇒ σν = 0.

This means that the rupture of the foundation is assumed to occur at those points in
which the limit effort is attained. The first condition holds in the noncontact zone, the
second describes the zone where the contact occurs and it is idealized by the Winkler
law. The maximal value of reactions that can be maintained by the foundation is given
by k0a and it is accomplished when uν = a, with k0 being the Winkler coefficient. The
fourth relation holds in the zone where the foundation has been destroyed. The above
Winkler-type law can be written as an inclusion of the type (4.6) by setting

C1 = R and jν(x, uν) =


0, if uν < 0,
k0
2
u2
ν , if 0 ≤ uν < a,

k0
2
a2, if uν ≥ a.

Since all of the above example only describe what happens in the normal direction,
in order to complete the model we must combine these with boundary conditions
concerning στ , uτ , or both. The simplest cases are uτ = 0 (which corresponds to
C2 = {0}) and στ = Sτ , where Sτ = Sτ (x) is given (which corresponds to jτ (x, uτ ) =

−Sτ · uτ ).
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(b) The Signorini boundary conditions, which hold if the foundation is rigid and are as
follows {

uν < 0⇒ σν = 0,

uν = 0⇒ σν ≤ 0,

or equivalently,

uν ≤ 0, σν ≤ 0 and σνuν = 0.

This can be written equivalently in form (4.6) by setting

C1 = (−∞, 0] and jν ≡ 0.

(c) In [65] the following static version of Coulomb’s law of dry friction with prescribed
normal stress was considered

−σν(x) = F (x)

|στ | ≤ k(x)|σν |,
στ = −k(x)|σν | uτ|uτ | , if uτ (x) 6= 0.

We can write the above law in the form of (4.6) and (4.7) simply by setting

C1 = R, C2 = Rm, jν(x, uν) = F (x)uν , h(x,uτ ) = k(x)|F (x)| and jτ (x,uτ ) = |uτ |.

The strong formulation of problem (P) consists of finding u : Ω→ Rm and σ : Ω→ Sm,
regular enough, such that (4.2)-(4.7) are satisfied. However, it is a fact that for most contact
problems the strong formulation does not admit a solution.

4.3 Variational formulation

It is useful to reformulate problem (P) in a weaker sense, i.e. we shall derive a variational
formulation. The assumptions on the functions f0, f2, ϕ, h, jν and jτ required to prove
our main result are listed below.

(HC) The constraint sets C1 and C2 are convex cones, i.e.

0 ∈ Ck and λCk ⊂ Ck for all λ > 0, k = 1, 2.

(Hf) The force density and the traction satisfy f0 ∈ H and f2 ∈ L2(Γ2;Rm).
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(Hϕ) The constitutive function ϕ : Sm → R and its Fenchel conjugate ϕ∗ : Sm →
(−∞,+∞] satisfy

(i) ϕ is convex and lower semicontinuous;

(ii) there exists α1 > 0 such that ϕ(τ ) ≥ α1|τ |2, for all τ ∈ Sm;

(iii) there exists α2 > 0 such that ϕ∗(µ) ≥ α2|µ|2, for all µ ∈ Sm;

(iv) ϕ(ε(v)) ∈ L1(Ω), for all v ∈ V and ϕ∗(τ ) ∈ L1(Ω), for all τ ∈ H.

(Hh) The function h : Γ3 × Rm → R is such that

(i) Γ3 3 x 7→ h(x, ζ) is measurable for each ζ ∈ Rm;

(ii) Rm 3 ζ 7→ h(x, ζ) is continuous for a.e. x ∈ Γ3;

(iii) there exists h0 > 0 such that 0 ≤ h(x, ζ) ≤ h0 for a.e. x ∈ Γ3 and all ζ ∈ Rm.

(Hjν) The function jν : Γ3 × R→ R is such that

(i) Γ3 3 x 7→ jν(x, t) is measurable for each t ∈ R;

(ii) there exists p ∈ L2(Γ3) such that for a.e. x ∈ Γ3 and all t1, t2 ∈ R

|jν(x, t1)− jν(x, t2)| ≤ p(x)|t1 − t2|;

(iii) jν(x, 0) ∈ L1(Γ3).

(Hjτ ) The function jτ : Γ3 × Rm → R is such that

(i) Γ3 3 x 7→ jτ (x, ζ) is measurable for each ζ ∈ Rm;

(ii) there exist q ∈ L2(Γ3) such that for a.e. x ∈ Γ3 and all ζ1, ζ2 ∈ Rm

|jτ (x, ζ1)− jτ (x, ζ2)| ≤ q(x)|ζ1 − ζ2|;

(iii) jτ (x, 0) ∈ L1(Γ3;Rm).

We consider the following function space

V = {v ∈ H1 : v = 0 a.e. on Γ1} (4.10)

which is a closed subspace of H1, hence a Hilbert space. Since the Lebesgue measure of Γ1

is positive, it follows from Korn’s inequality that the following inner product

(u,v)V = (ε(u), ε(v))H (4.11)
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generates a norm on V which is equivalent with the norm inherited from H1.
Now we provide a variational formulation for problem (P). To this end, let u be a strong

solution, v ∈ V a test function and multiply the first line of (P) by v − u. Using Green’s
formula (4.1) we have

(f0,v − u)H = − (Divσ,v − u)H

= −
∫

Γ

(σν) · (v − u) + (σ, ε(v)− ε(u))H

= −
∫

Γ2

f2 · (v − u)−
∫

Γ3

[σν(vν − uν) + στ · (vτ − uτ )] + (σ, ε(v)− ε(u))H

for all v ∈ V . Since V 3 v 7→ (f0,v)H +
∫

Γ2
f2 · v is linear and continuous, we can apply

Riesz’s representation theorem to conclude that there exists a unique element f ∈ V such
that

(f ,v)V = (f0,v)H +

∫
Γ2

f2 · v. (4.12)

Definition 4.3.1. The following nonempty, closed and convex subset of V

Λ = {v ∈ V : vν(x) ∈ C1 and vτ (x) ∈ C2 for a.e. x ∈ Γ3} ,

is called the set of admissible displacement fields.

Since C1, C2 are convex cones, it follows that Λ is also a convex cone. Moreover, taking
into account the definition of the Clarke subdifferential, we deduce that for all v ∈ Λ the
following inequalities hold

−
∫

Γ3

σν(vν − uν) ≤
∫

Γ3

j0
ν(x, uν ; vν − uν) dx (4.13)

and
−
∫

Γ3

στ · (vτ − uτ ) ≤
∫

Γ3

h(x,uτ )j
0
τ (x,uτ ;vτ − uτ ) dx. (4.14)

Here, and hereafter, the generalized derivatives of the functions jν and jτ are taken with
respect to the second variable, i.e. of the functions R 3 t 7→ jν(x, t) and Rm 3 ζ 7→ jτ (x, ζ)

respectively, but for simplicity we omit to mention that in fact these are partial generalized
derivatives. On the other hand, taking Proposition 2.4.3 into account we can rewrite (4.3)
as

ε(u) ∈ ∂ϕ∗(σ), a.e. in Ω,

and which after integration over Ω leads to

−(ε(u),µ− σ)H +

∫
Ω

(ϕ∗(µ)− ϕ∗(σ)) ≥ 0, for all µ ∈ H. (4.15)
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Let us define the operator L : V → H by Lv = ε(v) and denote by L∗ : H → V its adjoint,
that is,

(L∗µ,v)V = (µ, Lv)H, for all v ∈ V and all µ ∈ H.

Using (4.12)-(4.15) we arrive at the following system of inequalities

(P̃ )



Find u ∈ Λ and σ ∈ H such that

(L∗σ,v − u)V

+

∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x, uτ )j

0
τ (x,uτ ;vτ − uτ )

]
dx ≥ (f ,v − u)V , ∀v ∈ Λ,

−(Lu,µ− σ)H +

∫
Ω

(ϕ∗(µ)− ϕ∗(σ)) ≥ 0, ∀µ ∈ H.

Here, the first inequality is related to the equilibrium relation, while the second represents
the functional extension of the constitutive law (4.3). It is well-known (see e.g. [46], Theorem
1.3.21) that the second relation implies Lu ∈ ∂ϕ∗(σ) almost everywhere in Ω.

Definition 4.3.2. A bipotential is a function B : E × E∗ → (−∞,+∞] satisfying the
following conditions

(i) for any x ∈ E, if D(B(x, ·)) 6= ∅, then B(x, ·) is proper and lower semicontinuous; for
any ξ ∈ E∗, if D(B(·, ξ)) 6= ∅, then B(·, ξ) is proper, convex and lower semicontinuous;

(ii) B(x, ξ) ≥ 〈ξ, x〉E∗×E, for all x ∈ E, ξ ∈ E∗;

(iii) ξ ∈ ∂B(·, ξ)(x)⇔ x ∈ ∂B(x, ·)(ξ)⇔ B(x, ξ) = 〈ξ, x〉E∗×E.

Proposition 2.4.3 allows us to construct the separable bipotential a : Sm × Sm →
(−∞,+∞], which connects the constitutive law, the function ϕ and its Fenchel conjugate
ϕ∗, as follows

a(τ ,µ) = ϕ(τ ) + ϕ∗(µ), for all τ ,µ ∈ Sm.

Using the bipotential a let us define A : V ×H → R by

A(v,µ) =

∫
Ω

a(Lv,µ) dx, for all v ∈ V,µ ∈ H.

and note that, due to (Hϕ), A is well defined and

A(v,µ) ≥ α1‖v‖2
V + α2‖µ‖2

H, for all v ∈ V,µ ∈ H.

Moreover, Proposition 2.4.3 ensures that

A(u,σ) = (L∗σ,u)V and A(v,µ) ≥ (L∗µ,v)V , for all v ∈ V, µ ∈ H. (4.16)
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Combining the first inequality of (P̃ ) and (4.16) we get

A(v,σ)− A(u,σ) +

∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x,uτ )j

0
τ (x,uτ ;vτ − uτ )

]
dx ≥ (f ,v − u)V ,

(4.17)
for all v ∈ Λ.

Definition 4.3.3. Let us define now the set of admissible stress tensors with respect to the
displacement u, to be the following subset of H

Θu =
{
µ ∈ H :

(L∗µ,v)V +

∫
Γ3

[
j0
ν(x, uν ; vν) + h(x,uτ )j

0
τ (x,uτ ;vτ )

]
dx ≥ (f ,v)V , ∀v ∈ Λ

}
.

Now let w ∈ Λ be fixed. Choosing v = u + w ∈ Λ in ((P̃ ) shows that σ ∈ Θu, hence
Θu 6= ∅. It is easy to check that Θu is an unbounded, closed and convex subset of H. Taking
into account (4.16) we have

A(u,µ) +

∫
Γ3

[
j0
ν(x, uν ;uν) + h(x,uτ )j

0
τ (x,uτ ;uτ )

]
dx ≥ (f ,u)V , for all µ ∈ Θu,

while for v = 0 ∈ Λ in (P̃ ) we have

−A(u,σ) +

∫
Γ3

[
j0
ν(x, uν ;−uν) + h(x,uτ )j

0
τ (x,uτ ;−uτ )

]
dx ≥ −(f ,u)V .

Adding the above relations, for all µ ∈ Θu we have

A(u,µ)− A(u,σ)

+

∫
Γ3

[
j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν) + h(x,uτ )
(
j0
τ (x,uτ ;uτ ) + j0

τ (x,uτ ;−uτ )
)]
dx ≥ 0.

(4.18)
On the other hand, Proposition 2.1.1 and (Hh) ensure that∫

Γ3

[
j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν) + h(x,uτ )
(
j0
τ (x,uτ ;uτ ) + j0

τ (x,uτ ;−uτ )
)]
dx ≥ 0,

(4.19)
as

0 = j0
ν(x, uν ; 0) + h(x,uτ )j

0
τ (x,uτ ; 0)

= j0
ν(x, uν ;uν − uν) + h(x,uτ )j

0
τ (x,uτ ;uτ − uτ )

≤
(
j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν)
)

+ h(x,uτ )
(
j0
τ (x,uτ ;uτ ) + j0

τ (x,uτ ;−uτ )
)
.
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Putting together (4.17)-(4.19) we derive the variational formulation in terms of bipotentials
of problem (P) which reads as follows:

(
Pbvar

)


Find u ∈ Λ and σ ∈ Θu such that

A(v,σ)− A(u,σ)+∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x,uτ )j

0
τ (x,uτ ;vτ − uτ )

]
dx ≥ (f ,v − u)V , ∀v ∈ Λ,

A(u,µ)− A(u,σ) ≥ 0,∀µ ∈ Θu.

Each solution (u,σ) ∈ Λ×Θu of problem
(
Pbvar

)
is called a weak solution for problem (P).

4.4 Existence of weak solutions

In this section we prove an existence result concerning the solutions of problem
(
Pbvar

)
by

using a recent result due to Costea and Varga [28], see Section 2.5. First, we highlight the
connection between the variational formulation in terms of bipotentials and other variational
formulations such as the primal and dual variational formulations. As we have seen in the
previous section, multiplying the first line of problem (P) by v− u, integrating over Ω and
then taking the functional extension of the constitutive law, we get a coupled system of
inequalities, namely problem (P̃ ). The primal variational formulation consists in rewriting
(P̃ ) as an inequality which depends only on the displacement field u, while the dual vari-
ational formulation consists in rewriting (P̃ ) in terms of the stress tensor σ. The primal
variational formulation can be derived by reasoning in the following way.

The second line of (P̃ ) implies that Lu ∈ ∂ϕ∗(σ) and this can be written equivalently
as σ ∈ ∂ϕ(Lu), hence

σ : (µ− Lu) ≤ ϕ(µ)− ϕ(Lu), for all µ ∈ Sm.

For each v ∈ Λ, taking µ = Lv in the previous inequality and integrating over Ω yields

(L∗σ,v − u)V ≤
∫

Ω

[ϕ(Lv)− ϕ(Lu)], for all v ∈ Λ.

Now, combining the above relation and the first line of (P̃ ) we get the following problem

(Ppvar)


Find u ∈ Λ such that

F (v)− F (u)

+

∫
Γ3

[
j0
ν(x,uν ;vν − uν) + h(x,uτ )j

0
τ (x,uτ ;vτ − uτ )

]
dx ≥ (f ,v − u)V , ∀v ∈ Λ,



54 WEAK SOLVABILITY FOR A CONTACT PROBLEM...

where F : V → R is the convex and lower semicontinous function defined by

F (v) =

∫
Ω

ϕ(Lv).

Problem (Ppvar) is called the primal variational formulation of problem (P ).

Conversely, in order to transform (P̃ ) into a problem formulated in terms of the stress
tensor we reason in the following way. First, let us define G : H → R by

G(µ) =

∫
Ω

ϕ∗(µ),

and for a fixed w ∈ Λ let Θw be the following subset of H

Θw =
{
µ ∈ H : (L∗µ,v)V

+

∫
Γ3

[
j0
ν(x,wν ;vν) + h(x,wτ )j

0
τ (x,wτ ;vτ )

]
dx ≥ (f ,v)V , ∀v ∈ Λ

}
.

Let us consider the following inclusion

(
Pdw
)Find σ ∈ H such that

0 ∈ ∂G(σ) + ∂IΘw(σ)

which we call the dual variational formulation with respect to w.
Now, looking at the first line of (P̃ ) and keeping in mind the above notations, we deduce

that Θu 6= ∅ as σ ∈ Θu. Moreover, for each µ ∈ Θu we have

−(L∗(µ− σ), u)V ≤
∫

Γ3

[j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν)

+ h(x,uτ )
(
j0
τ (x,uτ ;uτ ) + j0

τ (x,uτ ;−uτ )
)
] dx,

which combined with the second line of (P̃ ) leads to

G(µ)−G(σ) ≥ −
∫

Γ3

[j0
ν(x, uν ;uν) + j0

ν(x, uν ;−uν)

+ h(x,uτ )
(
j0
τ (x,uτ ;uτ ) + j0

τ (x,uτ ;−uτ )
)
] dx,

(4.20)

for all µ ∈ Θu. A simple computation shows that any solution of
(
Pdu
)
will also solve (4.20).

A particular case of interest regarding problem
(
Pdw
)
is when the set Θw does not actually

depend on w. In this case problem
(
Pdw
)
will be simply denoted

(
Pd
)
and will be called the

dual variational formulation of problem (P ). For example, this case is encountered when
the functions jν and jτ are convex and positive homogeneous, as it is the case of examples
(a)-(c) presented in Section 3.
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In the above particular case, problem (P̃ ) reduces to the following system of variational
inequalities

(P̃ ′)


Find u ∈ Λ and σ ∈ H such that
(L∗σ,v − u)V +H(v)−H(u) ≥ (f ,v − u)V , for all v ∈ Λ

− (Lu,µ− σ)H +G(µ)−G(σ) ≥ 0, for all µ ∈ H,

where H = j ◦ T , j : L2 (Γ3;Rm)→ R is defined by

j(y) =

∫
Γ3

[jν(x, yν) + jτ (x,yτ )] dx,

and T : V → L2(Γ3;Rm) is given by Tv = [(γ ◦ i)(v)]|Γ3 , with i : V → H1 being the
embedding operator and γ : H1 → H1/2(Γ;Rm) being the trace operator. On the other
hand, for each w ∈ Λ,

Θw := Θ = {µ ∈ H : (L∗µ,v)V +H(v) ≥ (f ,v)V , for all v ∈ Λ} ,

and thus by taking v = 2u and v = 0 in the first line of (P̃ ′) we get

(L∗σ,v)V +H(u) = (f ,u)V ,

hence
−(Lu,µ− σ)H ≤ 0, for all µ ∈ Θ.

Combining this and the second line of (P̃ ′) we get

G(µ)−G(σ) ≥ 0, for all µ ∈ Θ,

which can be formulated equivalently as

(
Pd
)Find σ ∈ H such that

0 ∈ ∂G(σ) + ∂IΘ(σ).

The following proposition points out the connection between the variational formulations
presented above.

Proposition 4.4.1. A pair (u,σ) ∈ V ×H is a solution for
(
Pbvar

)
if and only if u solves

(Ppvar) and σ solves
(
Pdu
)
.

Proof. ”⇒ ” Let (u,σ) ∈ V ×H be a solution for
(
Pbvar

)
. Then u ∈ Λ, σ ∈ Θu and

A(v,σ)− A(u,σ) +

∫
Γ3

[
j0
ν(x, uν ; vν − uν) + h(x,uτ )j

0
τ (x,uτ ;vτ − uτ )

]
dx

≥ (f ,v − u)V ,

A(u,µ)− A(u,σ) ≥ 0,
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for all (v,µ) ∈ Λ×Θu.

Taking into account the way A,F and G were defined we get

A(v,σ)− A(u,σ) = F (v)− F (u), for all v ∈ V, (4.21)

and
A(u,µ)− A(u,σ) = G(µ)−G(σ), for all µ ∈ H, (4.22)

which shows that u is a solution for (Ppvar) and

[G(µ) + IΘu(µ)]− [G(σ) + IΘu(σ)] ≥ 0, for all µ ∈ H.

The last inequality can be written equivalently as

0 ∈ ∂(G+ IΘu)(σ).

On the other hand, applying Proposition 1.3.10 in [46] we deduce that

∂(G+ IΘu)(σ) = ∂G(σ) + ∂IΘu(σ),

hence σ solves (Pdu).

” ⇐ ” Assume now that u ∈ V is a solution of (Ppvar) and σ ∈ H solves
(
Pdvar

)
. The fact

that σ solves (Pdu) implies that D(∂IΘu) 6= ∅ and

σ ∈ D(∂IΘu).

On the other hand, it is well known that

D(∂IΘu) ⊆ D(IΘu) = Θu,

hence σ ∈ Θu. Moreover,{
F (v)− F (u) +

∫
Γ3

[j0
ν(x, uν ; vν − uν) + h(x,uτ )j

0
τ (x,uτ ;vτ − uτ )] dx ≥ (f ,v − u)V ,

G(µ)−G(σ) ≥ 0,

for all (v,µ) ∈ Λ×Θu, which combined with (4.21) and (4.22) shows that (u,σ) is a
solution for problem (Pbvar).

The main result of this chapter is given by the following theorem.

Theorem 4.4.2. Assume (HC), (Hf), (Hh), (Hjν), (Hjτ ) and (Hϕ) hold. Then prob-
lem (Pbvar) has at least one solution.
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Before proving the main result we need the following Aubin-Clarke type result concerning
the Clarke subdifferential of integral functions. Let us consider the function j : L2(Γ3;Rm)×
L2(Γ3;Rm)→ R defined by

j(y, z) =

∫
Γ3

jν(x, zν) + h(x,yτ )jτ (x, zτ ) dx. (4.23)

Lemma 4.4.3. Assume (Hh), (Hjν) and (Hjτ ) are fulfilled. Then, for each y ∈ L2(Γ3;Rm),
the function z 7→ j(y, z) is Lipschitz continuous and

j0
2(y, z; z̄) ≤

∫
Γ3

[j0
ν(x, zν ; z̄ν) + h(x,yτ )j

0
τ (x, zτ ; z̄τ )] dx. (4.24)

Proof. Let y, z1, z2 ∈ L2(Γ3;Rm) be fixed. Then

|j(y, z1)− j(y, z2)| =

∣∣∣∣∫
Γ3

[jν(x, z
1
ν)− jν(x, z2

ν) + h(x,yτ )
(
jτ (x, z

1
τ )− jτ (x, z2

τ )
)
] dx

∣∣∣∣
≤

∫
Γ3

∣∣jν(x, z1
ν)− jν(x, z2

ν)
∣∣ dx+ h0

∫
Γ3

∣∣jτ (x, z1
τ )− jτ (x, z2

τ )
∣∣ dx.

The equality
|z|2 = z · z = zνzν + zτ · zτ = z2

ν + |zτ |2,

shows that if z ∈ L2(Γ3;Rm), then zν ∈ L2(Γ3) and zτ ∈ L2(Γ3;Rm) and

‖zν‖L2(Γ3), ‖zτ‖L2(Γ3;Rm) ≤ ‖z‖L2(Γ3;Rm).

Thus, from the hypotheses and Hölder’s inequality we get∣∣j(y, z1)− j(y, z2)
∣∣ ≤ ‖p‖L2(Γ3)‖z1

ν − z2
ν‖L2(Γ3) + h0‖q‖L2(Γ3)‖z1

τ − z2
τ‖L2(Γ3;Rm)

≤
(
‖p‖L2(Γ3) + h0‖q‖L2(Γ3)

)
‖z1 − z2‖L2(Γ3;Rm),

which shows that j is Lipschitz continuous.
In order to prove (4.24) we use Fatou’s lemma and the fact that the convergence in

L2(Γ3;Rm) implies, up to a subsequence a.e. convergence on Γ3

j0
2(y, z; z̄) = lim sup

u→z
λ↓0

j(y,u + λz̄)− j(y,u)

λ

= lim sup
u→z
λ↓0

∫
Γ3

[
jν(x, uν + λz̄ν)− jν(x, uν)

λ
+ h(x,yτ )

jτ (x,uτ + λz̄τ )− jτ (x,uτ )
λ

]
dx

≤
∫

Γ3

[
lim sup

u→z
λ↓0

jν(x, uν + λz̄ν)− jν(x, uν)
λ

+ h(x,yτ ) lim sup
u→z
λ↓0

jτ (x,uτ + λz̄τ )− jτ (x,uτ )
λ

]
dx

≤
∫

Γ3

[j0
ν(x, zν ; z̄ν) + h(x,yτ )j

0
τ (x, zτ ; z̄τ )] dx.
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In order to prove Theorem 4.4.2 we consider the following system of nonlinear hemivari-
ational inequalities according to Section 2.5,

(SK1,K2)


Find (u,σ) ∈ K1 ×K2 such that
ψ1(u,σ,v) + J0

1 (Tu, Sσ;Tv − Tu) ≥ (F1(u,σ),v − u)X1 , for all v ∈ K1,

ψ2(u,σ,µ) + J0
2 (Tu, Sσ;Sµ− Sσ) ≥ (F2(u,σ),µ− σ)X2 , for all µ ∈ K2,

where

• X1 = V , X2 = H, Ki ⊂ Xi is closed and convex (i = 1, 2), Y1 = L2(Γ3;Rm), Y2 = {0};

• ψ1 : X1 ×X2 ×X1 → R is defined by ψ1(u,σ,v) = A(v,σ)− A(u,σ);

• ψ2 : X1 ×X2 ×X2 → R is defined by ψ2(u,σ,µ) = A(u,µ)− A(u,σ);

• T : X1 → Y1 is defined by Tv = [(γ ◦ i)(v)]|Γ3 , with i : V → H1 the embedding operator
and γ : H1 → H1/2(Γ;Rm) is the trace operator;

• S : X2 → Y2 is defined by Sτ = 0, for all τ ∈ X2;

• J : Y1×Y2 → R is defined by J(y1,y2) = j(y0,y1), where j : L2(Γ3;Rm)×L2(Γ3;Rm)→ R
is as in (4.23) and y0 is a fixed element of L2(Γ3;Rm);

• F1 : X1 ×X2 → X1 is defined by F1(v,µ) = f ;

• F2 : X1 ×X2 → X2 is defined by F2(v,µ) = 0.

Lemma 4.4.4. Assume (Hh), (Hjν), (Hjτ ) and (Hϕ) are fulfilled. Then the following
statements hold:

(i) ψ1(u,σ,u) = 0 and ψ2(u,σ,σ) = 0, for all (u,σ) ∈ X1 ×X2;

(ii) for each v ∈ X1 and each µ ∈ X2 the maps (u,σ) 7→ ψ1(u,σ,v) and (u,σ) 7→
ψ2(u,σ,µ) are weakly upper semicontinuous;

(iii) for each (u,σ) ∈ X1×X2 the maps v 7→ ψ1(u,σ,v) and µ 7→ ψ2(u,σ,µ) are convex;

(iv) lim inf
k→+∞

(F1(uk,σk),v−uk)X1 ≥ (F1(u,σ),v−u)X1 and lim inf
k→+∞

(F2(uk,σk),µ−σk)X2 ≥
(F2(u,σ),µ− σ)X2 whenever (uk,σk) ⇀ (u,σ) as k → +∞;

(v) there exists c : R+ → R+ with the property lim
t→+∞

c(t) = +∞ such that

ψ1(u,σ, 0) + ψ2(u,σ, 0) ≤ −c
(√
‖u‖2

X1
+ ‖σ‖2

X2

)√
‖u‖2

X1
+ ‖σ‖2

X2

for all (u,σ) ∈ X1 ×X2.
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(vi) The function J : Y1× Y2 → R is Lipschitz with respect to each variable. Moreover, for
all (y1,y2), (z1, z2) ∈ Y1 × Y2 we have

J0
1 (y1,y2; z1) = j0

2(y0,y1; z1)

and
J0

2 (y1,y2; z2) = 0;

(vii) There exists M > 0 such that

J0
1 (y1,y2;−y1) ≤M‖y1‖Y1 , for all (y1,y2) ∈ Y1 × Y2;

(viii) there exist mi > 0, i = 1, 2, such that ‖Fi(u,σ)‖Xi ≤ mi, for all (u,σ) ∈ X1 ×X2.

Proof. (i) Trivial.

(ii) Let v ∈ X1 be fixed and let {(uk,σk)}k be a sequence such that (uk,σk) converges
weakly in X1×X2 to (u,σ) as k →∞. Using the fact that L is linear, ϕ is convex and
lower semicontinuous, hence weakly lower semicontinuous and using Fatou’s lemma,
we have

lim sup
k→∞

ψ1(uk,σk,v) = lim sup
k→∞

[A(v,σk)− A(uk,σk)]

= lim sup
k→∞

∫
Ω

[ϕ(Lv)− ϕ(Luk)]

≤
∫

Ω

ϕ(Lv)−
∫

Ω

lim inf
k→∞

ϕ(Luk)

≤
∫

Ω

[ϕ(Lv)− ϕ(Lu) + ϕ∗(σ)− ϕ∗(σ)]

= A(v,σ)− A(u,σ)

= ψ1(u,σ,v),

which shows that the map (u,σ) 7→ ψ1(u,σ,v) is weakly upper semicontinuous.

In a similar fashion we prove that for µ ∈ X2 fixed, the map (u,σ) 7→ ψ2(u,σ,µ) is
weakly upper semicontinuous.

(iii) Follows from the convexity of ϕ and ϕ∗;

(iv) Let {(uk,σk)} be a sequence which converges weakly to (u,σ) in X1×X2 as k → +∞.
Then uk → u in X1 as k → +∞ and

lim inf
k→∞

(F1(uk,σk),v − uk)X1
= lim inf

k→∞
(f ,v − uk)X1 = (f ,v − u)X1 ,
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and

lim inf
k→∞

(F2(uk,σk),µ− σk)X2 = 0 = (F2(u,σ),µ− σ)X2 .

(v) Let (u,σ) ∈ X1 ×X2. Using (Hϕ) we get the following estimates

ψ1(u,σ, 0) + ψ2(u,σ, 0) = A(0,σ)− A(u,σ) + A(u, 0)− A(u,σ)

=

∫
Ω

[ϕ(0) + ϕ∗(0)− (ϕ(ε(u)) + ϕ∗(σ))]

≤ c̃−min{α1, α2}
(
‖u‖2

X1
+ ‖σ‖2

X2

)
.

Choosing c(t) = b0t, with b0 > 0 a suitable constant, we get the desired inequality.

(vi) It follows directly from Lemma 4.4.3 and the definition of J .

(vii) From (vi) and Lemma 4.4.3 we deduce

J0
1 (y1,y2;−y1) = j0

2(y0,y1;−y1)

≤
∫

Γ3

[j0
ν(x, y

1
ν ;−y1

ν) + h(x,y0
τ )j

0
τ (x,y

1
τ ;−y1

τ )] dx

On the other hand, assumptions (Hjν) and (Hjν) imply

j0
ν(x, t1; t2) ≤ p(x)|t2|, for all t1, t2 ∈ R,

and

j0
τ (x, ζ1; ζ2) ≤ q(x)|ζ2|, for all ζ1, ζ2 ∈ Rm.

Thus, invoking Hölder’s inequality we get

J0
1 (y1,y2;−y1) ≤

(
‖p‖L2(Γ3) + h0‖q‖L2(Γ3;Rm)

)
‖y1‖L2(Γ3;Rm).

(viii) Trivial.

Proof of Theorem 4.4.2 The proof will be carried out in three steps as follows.

Step 1. Let K1 ⊂ X1 and K2 ⊂ X2 be closed and convex sets. Then (SK1,K2) admits at
least one solution.

This will be done by applying a slightly modified version of Corollary 3.2 in [28].
Lemma 4.4.4 ensures that all the conditions of the aforementioned corollary are satis-
fied except the regularity of J . We point out the fact that in our case this condition
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needs not to be imposed because the only reason it is imposed in the paper of Costea
& Varga is to ensure the following inequality

J0(y1,y2; z1, z2) ≤ J0
1 (y1,y2; z1) + J0

2 (y1,y2; z2),

which in our case is automatically fulfilled because J does not depend on the second
variable and the following equalities take place

J0(y1,y2; z1, z2) = J0
1 (y1,y2; z1)

and
J0

2 (y1,y2; z2) = 0,

and this completes the first step.

Step 2. Let K1
1 , K

2
1 ⊂ X1 and K1

2 , K
2
2 ⊂ X2 be closed and convex sets and let (u1,σ1)

and (u2,σ2) be solutions for (SK1
1 ,K

1
2
) and (SK2

1 ,K
2
2
), respectively. Then (u1,σ2) solves

(SK1
1 ,K

2
2
) and (u2,σ1) solves (SK2

1 ,K
1
2
).

The fact that (u1,σ1) solves (SK1
1 ,K

1
2
) means{

ψ1(u1,σ1,v) + J0
1 (Tu1, Sσ1;Tv − Tu1) ≥ (F1(u1,σ1),v − u1)X1 , for all v ∈ K1

1

ψ2(u1,σ1,µ) + J0
2 (Tu1, Sσ1;Sµ− Sσ1) ≥ (F2(u1,σ1),µ− σ1)X2 , for all µ ∈ K1

2

(4.25)
while the fact that (u2,σ2) solves (SK2

1 ,K
2
2
) shows{

ψ1(u2,σ2,v) + J0
1 (Tu2, Sσ2;Tv − Tu2) ≥ (F1(u2,σ2),v − u2)X1 , for all v ∈ K2

1

ψ2(u2,σ2,µ) + J0
2 (Tu2, Sσ2;Sµ− Sσ2) ≥ (F2(u2,σ2),µ− σ2)X2 , for all µ ∈ K2

2

(4.26)
Putting together the first line of (4.25) and the second line of (4.26) we get

{
ψ1(u1,σ1,v) + J0

1 (Tu1, Sσ1;Tv − Tu1) ≥ (F1(u1,σ1),v − u1)X1 , for all v ∈ K1
1

ψ2(u2,σ2,µ) + J0
2 (Tu2, Sσ2;Sµ− Sσ2) ≥ (F2(u2,σ2),µ− σ2)X2 , for all µ ∈ K2

2

(4.27)
On the other hand, keeping in mind the way ψ1, ψ2, J, F1, F2 were defined is it easy to
check that for any (v,µ) ∈ K1

1 ×K2
2 the following equalities hold

ψ1(u1,σ1,v) = ψ1(u1,σ2,v) and ψ2(u2,σ2,µ) = ψ2(u1,σ2,µ),

J0
1 (Tu1, Sσ1;Tv − Tu1) = J0

1 (Tu1, Sσ2;Tv − Tu1)
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J0
2 (Tu2, Sσ2;Sµ− Sσ2) = J0

2 (Tu1, Sσ2;Sµ− Sσ1)

F1(u1,σ1) = F1(u1,σ2) and F2(u2,σ2) = F2(u1,σ2).

Using these equalities and (4.27) we obtain{
ψ1(u1,σ2,v) + J0

1 (Tu1, Sσ2;Tv − Tu1) ≥ (F1(u1,σ2),v − u1)X1 , for all v ∈ K1
1

ψ2(u1,σ2,µ) + J0
2 (Tu1, Sσ2;Sµ− Sσ2) ≥ (F2(u1,σ2),µ− σ2)X2 , for all µ ∈ K2

2

hence (u1,σ2) solves (SK1
1 ,K

2
2
). In a similar way we can prove that (u2,σ1) solves

(SK2
1 ,K

1
2
).

Step 3. There exists u ∈ Λ and σ ∈ Θu such that (u,σ) solves (Pbvar).

Let us choose K1
1 = Λ and K1

2 = X2. According to Step 1 there exists a pair (u1,σ1)

which solves (SK1
1 ,K

1
2
). Next, we choose K2

1 = Λ and K2
2 = Θu1 and use again Step 1

to deduce that there exists a pair (u2,σ2) which solves (SK2
1 ,K

2
2
). Then, according to

Step 2, the pair (u1,σ2) will solve (SK1
1 ,K

2
2
). Invoking the way ψ1, ψ2, J, F1, F2, K

1
1 , K

2
2

were defined, it is clear that the pair (u,σ) = (u1,σ2) ∈ Λ × Θu is a solution of the
system{

A(v,σ)− A(u,σ) + j0
2(y0, Tu;Tv − Tu) ≥ (f ,v − u)V , for all v ∈ Λ,

A(u,µ)− A(u,σ) ≥ 0, for all µ ∈ Θu,

for all y0 ∈ L2(Γ3;Rm), since y0 was arbitrary fixed. Choosing y0 = Tu an taking
into account (4.24) we conclude that (u,σ) ∈ Λ×Θu solves (Pbvar), hence the proof is
complete.

We close this section with some comments and remarks concerning the particular case
when the boundary conditions (4.6) and (4.7) reduce to the Signorini boundary condition
combined with a frictionless condition, that is στ = 0. In this case

C1 = (−∞, 0], C2 = Rm and jν , jτ , h ≡ 0,

while
Λ = {v ∈ V : vν ≤ 0 on Γ3},

and
Θ = {µ ∈ H : (µ, ε(v))H ≥ (f ,v)V for all v ∈ Λ}.

Problem (Pbvar) reduces to the following system of variational inequalities
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Find (u,σ) ∈ Λ×Θ such that for all (v,µ) ∈ Λ×Θ{
A(v,σ)− A(u,σ) ≥ (f ,v − u)V ,

A(u,µ)− A(u,σ) ≥ 0.
(4.28)

This case was studied recently by Matei [64] who used the Direct Method in the Calculus
of Variations to prove that the functional L : Λ×Θ→ R

L(v,µ) = A(v,µ)− (f ,v)V ,

admits a global minimizer and each minimizer (u,σ) of L is in fact a solution for (4.26).
However, our proof is different, so even in this particular case our approach is new and
supplements the result obtained by Matei in [64]. Furthermore, as far as we are aware, there
were no papers in the literature in which the existence of the solutions for the variational
approach via bipotentials is proved by using systems of hemivariational inequalities.





5 Existence result for a nonlocal elliptic

problem

This chapter is based on the paper [29].

5.1 Introduction

In this chapter we generalize F. E. Browder’s results concerning pseudomonotone elliptic
partial differential operators defined on unbounded domains. Browder treated equations for
quasilinear operators of divergence form∑

|α|≤k

∂αaα(x, u(x), . . . , ∂βu(x)) = f(x),

on an arbitrary unbounded domain Ω, where |β| ≤ k for some k ≥ 1. We show that under
suitable assumptions, Browder’s result holds true if the functions aα are functionals of u.

We applying the theory of pseudomonotone operators, see Section 2.3, guaranteeing
boundedness and coercivity is usually a trivial matter. The proof of pseudomonotonicity
usually involves the Rellich–Kondrachov compactness theorem as a crucial step. On un-
bounded domains however, a compact embedding result seems to require more complicated
conditions on the domain, see e.g. [1, Theorem 6.52]. F. E. Browder managed to avoid the
use of such compactness results in [12]. To establish pseudomonotonicity, it turns out that
the main task is to prove the a.e. convergence of the sequences {∂αuj}∞j=1. Browder’s idea
is a natural one: let the unbounded domain Ω be exhausted by an increasing sequence {Ωi}
of bounded domains with smooth boundary – such that on each Ωi the Rellich–Kondrachov
theorem holds. Combining this with a diagonal argument, we extract a subsequence of the
lower-order derivatives {∂αuj} converging a.e. to ∂αu (|α| ≤ k−1). Proving a.e. convergence
of the highest-order derivatives ∂αuj → ∂αu (|α| = k) is more involved.

The results of F. E. Browder on nonlinear elliptic equations on unbounded domains have
been extended in [92], [57] and [84] to strongly nonlinear elliptic equations, i.e. equations
containing a term which is arbitrarily quickly increasing with respect to the values of the
unknown function u. Further, there are some results in [85] and [87] on elliptic problems
where the lower order terms or the boundary condition contains nonlocal (e.g. integral type)
dependence on u.

65
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The aim of this chapter is to extend Browder’s theorem to elliptic operators with nonlocal
dependence in the main (highest order) terms, too: we shall modify the assumptions and
the proof of the original theorem for 2k-order divergence-type nonlinear functional elliptic
equations. After formulating sufficient conditions for such a nonlocal operator to be bounded,
coercive and pseudomonotone, we prove our main result. Finally, we give concrete examples
that satisfy our assumptions.

5.2 Problem formulation and main result

Let Ω ⊂ Rn be a possibly unbounded domain with sufficiently smooth boundary, and let
W k,p

0 (Ω) ⊂ V ⊂ W k,p(Ω) be a closed linear subspace with 1 < p < ∞ and k ≥ 1. Let
A : V → V ∗ be defined by

〈A(u), v〉 =
∑
|α|≤k

∫
Ω

aα(x, u(x), . . . , ∂βu(x), . . . ;u)∂αv(x) dx (5.1)

for all u, v ∈ V , where |β| ≤ k is a multiindex. The function aα may depend on the pointwise
values of any of the partial derivatives of u. Furthermore, “ ;u” notation signifies that aα
may be a functional of u. In other words, aα may depend on the whole solution u.

The arguments of the functions aα are denoted as aα(x, η;u), and we sometimes split η
as η = (ζ, ξ) where ζ ∈ RN1 and ξ ∈ RN2 , so that η ∈ RN with N = N1 + N2 and write
aα(x, ζ, ξ;u), where the numbers N1 and N2 denote number of multiindexes β such that
|β| ≤ k − 1 and |β| = k, respectively. Furthermore, the notation

η(`) = {ηβ : |β| = `}

is used, where ` = 0, 1, . . . , k. Note that

ζ =
{
η(`) : ` = 0, 1, . . . , k − 1

}
and ξ =

{
η(`) : ` = k

}
.

We impose the following assumptions on the structure of A and Ω.
(A0) Suppose that there exist a sequence {Ωi} ⊂ Rn of bounded domains such that Ωi ⊂
Ωi+1 (i = 1, 2, . . .) and Ω =

⋃∞
i=1 Ωi. Furthermore, assume that each ∂Ωi is sufficiently

smooth so that the Rellich–Kondrachov theorem holds: W k,p(Ωi) ⊂⊂ W k−1,p(Ωi) (i =

1, 2, . . .).
(A1) Let aα be Carathéodory functions for fixed u ∈ V and all multiindex |α| ≤ k, i.e.
let aα( · , η;u) be measurable for every fixed η ∈ RN , and let aα(x, · ;u) be continuous for
almost every fixed x ∈ Ω.
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(A2) Suppose that there exist a bounded functional g1 : V → R+ and a compact map

kα1 : V → Lr
′
`(Ω)

with kα1 (u) ≥ 0, where p′ = p/(p− 1), r′` = r`/(r` − 1) and

p ≤ r` < p∗` , p∗` =


np

n− (k − `)p
, if n > (k − `)p

> 0, otherwise.

such that
|aα(x, η;u)| ≤ g1(u)

[
|η(`)|p−1 + |η(`)|r`−1

]
+ [kα1 (u)](x)

for each multiindex ` = |α| ≤ k, almost all x ∈ Ω, all η ∈ RN and all u ∈ V . Note that for
|α| = ` = k, we must have rk = p. Here, we introduce the notation

[K(`)
1 (u)](x) = max

|α|=`
[kα1 (u)](x)

for all ` = 1, . . . , k.
(A3) Suppose that ∑

|α|=k

(
aα(x, ζ, ξ;u)− aα(x, ζ, ξ′;u)

)
(ξα − ξ′α) > 0

for almost all x ∈ Ω, all ζ ∈ RN1 , ξ 6= ξ′ ∈ RN2 and all u ∈ V .
(A4) Suppose that there exist a bounded and lower semicontinuous functional g2 : V → R+

and a compact map k2 : V → L1(Ω) such that∑
|α|≤k

aα(x, η;u)ηα ≥ g2(u)|ξ|p − [k2(u)](x)

for almost all x ∈ Ω, every u ∈ V , and all η = (ζ, ξ) ∈ RN1 × RN2 .
Note that the preceding coercivity-like assumption requires the inequality to hold for

all u ∈ V and η – contrary to usual asymptotic version, which is prescribed only for large
‖u‖V and |η|. The reason for this is that the proof of pseudomonotonicity employs a certain
inequality which is needed for all u and η and is derived from this coercivity estimate.
We now state a significant strengthening of (A4) that ensures coercivity in the sense of
Definition 2.3.2.
(A4’) Suppose that there exist a bounded functional g2 : V → R+ and a compact map
k2 : V → L1(Ω) such that

∑
|α|≤k

aα(x, η;u)ηα ≥

g2(u)|ξ|p − [k2(u)](x), for every u ∈ V

g2(u)
[
|ξ|p +

∑k−1
`=0 (|η(`)|p + |η(`)|r`)

]
− [k2(u)](x), for large ‖u‖V
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for almost all x ∈ Ω and all η = (ζ, ξ) ∈ RN . Here, the functional g2 satisfies the estimate

g2(u) ≥ c∗‖u‖−σ∗V

for all u ∈ V with sufficiently large ‖u‖V , with some c∗ > 0 and 0 ≤ σ∗ < p − 1. Also, the
map k2 satisfies

‖k2(u)‖L1(Ω) ≤ c∗‖u‖σV

for all u ∈ V with sufficiently large ‖u‖V and some 0 ≤ σ < p− σ∗.
(A5) Whenever uj ⇀ u in V and {ηj} ⊂ RN with ηj → η, then aα(x, ηj;uj) → aα(x, η;u)

for a.e. x ∈ Ω up to a subsequence.

We state the main result of this chapter as

Theorem 5.2.1. Suppose Assumptions (A0)-(A5) and (A4′) holds true. Then for any
F ∈ V ∗ there is a u ∈ V such that A(u) = F holds in V ∗.

The proof is simply a verification of the assumptions of Theorem 2.3.1. It is straightfor-
ward to see that under these assumption the operator A is bounded using Hölder’s inequality.
In order to apply the abstract surjectivity result (Theorem 2.3.1), it remains to prove that
A is pseudomonotone and coercive.

5.3 Proof of pseudomonotonicity and coercivity

Theorem 5.3.1. Assume (A0), (A1), (A2), (A3) and (A4). Then the operator A : V →
V ∗ defined in (5.1) is pseudomonotone.

Proof. Let {uj} ⊂ V be a sequence that satisfies uj ⇀ u in V and

lim sup
j→∞

〈A(uj), uj − u〉 ≤ 0. (5.2)

Assumption (A0) implies that there exists a sequence {Ωi} ⊂ Rn of bounded domains
such that Ωi ⊂ Ωi+1, Ω =

⋃∞
i=1 Ωi and the Rellich–Kondrachov theorem holds on each

Ωi: W k,p(Ωi) ⊂⊂ W k−1,p(Ωi). For every i ∈ N there is a subsequence {u(i)
j }∞j=1 ⊂ {uj}∞j=1

(indexed by the same j for simplicity) such that {u(i)
j }∞j=1 ⊃ {u

(i+1)
j }∞j=1 and u

(i)
j → u in

W k−1,p(Ωi) as j → ∞. The diagonal sequence {uj}∞j=1 = {u(j)
j }∞j=1 satisfies uj → u in

W k−1,p(Ωi) for any i ∈ N. Then

∂γuj → ∂γu a.e. in Ω for all |γ| ≤ k − 1 (5.3)
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up to a subsequence. Further, by (A2) and (A4) we may assume that the sequences
{K(`)

1 (uj)} ⊂ Lr
′
`(Ω) (for every ` = 1, . . . , k) and {k2(uj)} ⊂ L1(Ω) are convergent. Note

however, that we do not have uj → u in W k−1,p(Ω).
The following notations are used throughout the proof:

ζ(x) = {∂βu(x) : |β| ≤ k − 1},

ζj(x) = {∂βuj(x) : |β| ≤ k − 1},

ξ(x) = {∂βu(x) : |β| = k},

ξj(x) = {∂βuj(x) : |β| = k}

η(`)(x) = {∂βu(x) : |β| = `},

η
(`)
j (x) = {∂βuj(x) : |β| = `},

η(x) = {η(`)(x) : ` = 1, . . . , k},

ηj(x) = {η(`)
j (x) : ` = 1, . . . , k}.



(5.4)

Using these, we may write

〈A(uj)− A(u), uj − u〉 =

∫
Ω

pj,

where
pj(x) =

∑
|α|≤k

[
aα(x, ζj(x), ξj(x);uj)− aα(x, ζ(x), ξ(x);u)

]
(∂αuj − ∂αu),

Also, (5.3) may be written as ζj → ζ a.e. or η(`)
j → η(`) a.e. for all ` = 0, 1, . . . , k − 1.

First we derive conclusion (PM1) of pseudomonotonicity. The following trivial lemma
is well-known.

Lemma 5.3.2. Relation (5.2) implies

lim sup
j→∞

〈A(uj)− A(u), uj − u〉 ≤ 0.

Proof. We have

lim sup
j→∞

〈A(uj)− A(u), uj − u〉 ≤ lim sup
j→∞

〈A(uj), uj − u〉 − lim inf
j→∞

〈A(u), u− uj〉.

By (5.2), the first term is nonpositive. For the second term, note that the functional v 7→
〈A(u), u− v〉 is weakly lower semicontinuous, so lim inf 〈A(u), u− uj〉 ≥ 0.

The conclusion of Lemma 5.3.2 can be written briefly as

lim sup
j→∞

∫
Ω

pj ≤ 0. (5.5)
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Using the positive-negative decomposition pj(x) = p+
j (x)− p−j (x), we have 0 ≤ p+

j (x) =

pj(x) + p−j (x) hence (5.5) immediately implies∫
Ω

p+
j → 0 (5.6)

as j → ∞. Hence, the convergence
∫

Ω
p−j → 0 (j → ∞) needs to be established, so that∫

Ω
pj → 0 (j →∞) holds, which implies (PM1). This will be done via Vitali’s convergence

theorem (see Theorem 2.6.6) applied to the sequence {p−j }.

Lemma 5.3.3. The sequence {p−j } is equiintegrable and tight over Ω. Furthermore, there
exist C1 > 0 and an a.e. bounded function β : Ω→ R+ such that for a.a. x ∈ Ω,

pj(x) ≥ C1|ξj(x)|p − β(x) (5.7)

Proof. Expand pj(x) as

pj(x) =
∑
|α|=k

aα(x, ζj, ξj;uj)∂
αuj +

∑
|α|≤k−1

aα(x, ζj, ξj;uj)∂
αuj − wj(x),

where

wj(x) =
∑
|α|≤k

[
aα(x, ζ, ξ;u)

(
∂αuj − ∂αu) + aα(x, ζj, ξj;uj)∂

αu
]

=:
k∑
`=0

w
(`)
j (x).

We prove that {wj} is equiintegrable and tight. Assumption (A2) implies that

|w(`)
j (x)| ≤ C2

(
g1(u)

[
|η(`)|p−1 + |η(`)|r`−1

]
+ [K(`)

1 (u)](x)
)(
|η(`)
j |+ |η(`)|

)
+ C2

(
g1(uj)

[
|η(`)
j |p−1 + |η(`)

j |r`−1
]

+ [K(`)
1 (uj)](x)

)
|η(`)|

(5.8)

≤ C3

(
|η(`)|p−1|η(`)

j |+ |η(`)|p + |η(`)|r`−1|η(`)
j |+ |η(`)|r`

+ |η(`)
j |p−1|η(`)|+ |η(`)

j |r`−1|η(`)|

+ [K`1(u)](x)
(
|η(`)
j |+ |η(`)|

)
+ [K(`)

1 (uj)](x)|η(`)|
) (5.9)

where C2, C3 > 0 are constants. We shall apply Proposition 2.6.3 to prove that the function
dominating w

(`)
j (x) is equiintegrable and tight. The weak convergence uj ⇀ u in V ⊂

W k,p(Ω) implies that the sequence {η(`)
j } ⊂ W k−`,p(Ω) is bounded, hence by the Sobolev

embedding W k−`,p(Ω) ⊂ Lq(Ω) (where p ≤ q ≤ p∗`) we have that {η(`)
j } ⊂ Lq(Ω) is bounded.

In particular, {|η(`)
j |r`}, {|η

(`)
j |p} ⊂ L1(Ω) are bounded.



PROOF OF PSEUDOMONOTONICITY AND COERCIVITY 71

The second and fourth terms in (5.9) are equiintegrable and tight by part (1) of Proposi-
tion 2.6.3. Further, the first term is equiintegrable and tight by part (3) of Proposition 2.6.3
applied to the constant sequence |η(`)|p−1 ∈ Lp′(Ω) (with |η(`)|p ∈ L1(Ω) being equiintegrable
and tight by part (1) of the said Proposition) and to the bounded sequence {|η(`)

j |} ⊂ Lp(Ω).
The third term is similar. The fifth term is also equiintegrable and tight by part (3) of Propo-
sition 2.6.3 applied to the bounded {|η(`)

j |p−1} ⊂ Lp
′
(Ω) and the constant |η(`)| ∈ Lp(Ω)

sequences. The sixth term is handled in a similar way. Finally, {K(`)
1 (uj)

r′`} ⊂ L1(Ω) is
convergent by construction. Therefore the last two terms are equiintegrable and tight, too.

Moreover, assumption (A4) implies that

pj(x) ≥ g2(uj)|ξj|p − k2(uj)(x)− |wj(x)| ≥ −k2(uj)(x)− |wj(x)|. (5.10)

It follows that

0 ≤ p−j (x) ≤ [k2(uj)](x) + |wj(x)|,

hence {p−j } is equiintegrable and tight, where we have used the fact that {k2(uj)} is equiin-
tegrable and tight, since it is convergent in L1(Ω).

Finally, we turn to the proof of inequality (5.7). Young’s inequality applied to the
products on the right side of (5.8) implies that

|w(`)
j (x)| ≤ K3(ε)

(
|η(`)|(p−1)r′` + |η(`)|r` + [K(`)

1 (u)](x)r
′
`

)
+ C3ε

(
|η(`)
j |r` + |η(`)|r`

)
+ C4ε

(
|η(`)
j |(p−1)r′` + |η(`)

j |r` + [K(`)
1 (uj)](x)r

′
`

)
+K4(ε)|η(`)|r` .

By summing over j = 0, 1, . . . , k, and noting that rk = p, we get

|wj(x)| ≤ C5ε|ξj|p +K5(ε)
(

2|ξ|p + [K(k)
1 (u)](x)p

′
+ [K(k)

1 (uj)](x)p
′
)

+
k−1∑
`=0

|w(`)
j (x)|

≤ C5ε|ξj|p +K(ε)

(
2|ξ|p + [K(k)

1 (u)](x)p
′
+ [K(k)

1 (uj)](x)p
′

+
k−1∑
`=0

[
|η(`)|r` + |η(`)|(p−1)r′` + |η(`)

j |r` + |η(`)
j |(p−1)r′`

+ [K(`)
1 (u)](x)r

′
` + [K(`)

1 (uj)](x)r
′
`

])
=: C5ε|ξj|p

+K(ε)

(
2|ξ|p +

k−1∑
`=0

[
|η(`)|r` + |η(`)

j |r` + |η(`)|(p−1)r′` + |η(`)
j |(p−1)r′`

]
+ [K3(u, uj)](x)

)
,
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where {K3(u, uj)} ⊂ L1(Ω) is convergent, hence it is convergent a.e. up to a subsequence,
thus it is a.e. bounded. Therefore, using the a.e. convergence η(`) → η (` = 0, . . . , k − 1) we
have that the function

β1(x) = 2|ξ|p +
k−1∑
`=0

[
|η(`)|r` + |η(`)

j |r` + |η(`)|(p−1)r′` + |η(`)
j |(p−1)r′`

]
+ [K3(u, uj)](x)

is bounded a.e.
The first inequality of (5.10) combined with the preceding estimate and assumption (A4)

leads to

pj(x) ≥ g2(uj)|ξj|p − [k2(uj)](x)− |wj(x)|

≥ g2(uj)|ξj|p − C5ε|ξj|p − [k2(uj)](x)−K(ε)β1(x)

≥ |ξj|p(A− C5ε)− β(x)

where g2(uj) ≥ A > 0 (due to the weak lower semicontinuity of g2 : V → R+ and the
weak convergence uj ⇀ u) and β(x) = K(ε)β1(x) + [k2(uj)](x) is still bounded a.e., because
{k2(uj)} ⊂ L1(Ω) is bounded and therefore convergent a.e. up to a subsequence. The desired
inequality follows by choosing ε = A/(2C5).

Claim. The convergence p−j → 0 a.e. holds.

Proof. Split pj(x) as

pj(x) =
∑
|α|=k

[
aα(x, ζj, ξj;uj)− aα(x, ζj, ξ;uj)

]
(∂αuj − ∂αu)

+
∑
|α|=k

[
aα(x, ζj, ξ;uj)− aα(x, ζ, ξ;u)

]
(∂αuj − ∂αu)

+
∑
|α|≤k−1

[
aα(x, ζj, ξj;uj)− aα(x, ζ, ξ;u)

]
(∂αuj − ∂αu)

=: qj(x) + rj(x) + sj(x)

(5.11)

Let χj be the characteristic function of the level set {x ∈ Ω : p−j (x) > 0} and write

−p−j = χjqj + χjrj + χjsj.

First, note that χjqj ≥ 0 a.e. due to the monotonicity assumption (A3), so it is enough to
prove χjrj → 0 a.e. and χjsj → 0 a.e. Lemma 5.3.3 ensures that there exists β : Ω→ R a.e.
bounded such that

|ξj(x)|p ≤ β(x),
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for all x ∈ Ω such that pj(x) < 0. Therefore {χj(x)ξj(x)} is bounded for a.e. x ∈ Ω. By
(A2), (A5) and ζj → ζ a.e. (from (5.3)), we find that χjrj → 0 a.e. and χjsj → 0 a.e. for
a subsequence, from which p−j → 0 a.e. follows.

In summary, we have that {p−j } is equiintegrable and tight, and p−j → 0 a.e. A corollary
of the Vitali convergence theorem (Theorem 2.6.6 below) yields that these conditions are
actually necessary and sufficient to ensure the convergence∫

Ω

p−j → 0,

as j →∞. Recalling (5.6), we have in summary∫
Ω

pj → 0 (5.12)

as j →∞. Then conclusion (PM1) of pseudomonotonicity is established:

〈A(uj), uj − u〉 = 〈A(uj)− A(u), uj − u〉+ 〈A(u), uj − u〉

=

∫
Ω

pj + 〈A(u), uj − u〉 → 0.

Turning to the proof of (PM2), first note that (5.12) implies that pj → 0 a.e. up to a
subsequence.

Claim. The convergence ξj → ξ a.e. holds.

Proof. It follows from estimate (5.7) that {ξj} is bounded a.e. Fix an x0 ∈ Ω such that
{ξj(x0)} is bounded and pj(x0)→ 0. Assume for contradiction that ξj(x0)→ ξ′ for a subse-
quence and some ξ′ such that ξ′ 6= ξ(x0). Since we have ζj → ζ a.e., by using decomposition
(5.11) and (A1), it follows that rj → 0 and sj → 0 a.e. But then the continuity assumption
(A5) implies

pj(x0)→ 0 =
∑
|α|=k

[
aα(x0, ζ, ξ

′;u)− aα(x0, ζ, ξ;u)
]
(ξ′α − ∂αu(x0))

Thus (A3) yields ξ′α = ∂αu(x0), which is a contradiction.

Finally, we prove A(uj) ⇀ A(u) in V ∗. By the Vitali convergence theorem

〈A(uj), v〉 =
∑
|α|≤k

∫
Ω

aα(x, ηj;uj)∂
αv(x) dx

→
∑
|α|≤k

∫
Ω

aα(x, η;u)∂αv(x) dx,

because the integrand is equiintegrable and tight by Proposition 2.6.3 (3) and the a.e. con-
vergence aα(x, ηj;uj)→ aα(x, η;u) follows from (A5).
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Proposition 5.3.4. If (A4’) holds then A : V → V ∗ is coercive.

Proof. We have for u ∈ V with sufficiently large ‖u‖V ,

〈A(u), u〉 ≥ g2(u)

∫
Ω

|ξ|p +
k−1∑
`=0

(|η(`)|r` + |η(`)|p) dx−
∫

Ω

[k2(u)](x) dx

≥ C‖u‖−σ∗V ‖u‖pV − c
∗‖u‖σV

≥ C ′‖u‖p−σ
∗

V

for some C,C ′ > 0. Therefore 〈A(u), u〉/‖u‖V → +∞ if ‖u‖V →∞, because p−σ∗ > 1.

5.4 Examples

Here we formulate examples satisfying (A1)–(A5) and (A4’). For all |α| = `, with ` =

0, 1, . . . , k consider

aα(x, η;u) = Ψ`(H`(u))
[
a`(x)χ`(G`(u))

(
|η(`)|r`−2 + |η(`)|p−2

)
ηα + bα(x)Mα(u)

]
,

where p ≤ r` ≤ p∗` and m ≤ a`(x) ≤ M for some constants m,M > 0. (We remind the
reader that η(k) = ξ and p∗k = p, so that the highest order aα reads

aα(x, η;u) = Ψk(Hk(u))
[
ak(x)χk(Gk(u))|ξ|p−2ξα + bα(x)Mα(u)

]
,

where |α| = k, which is reminiscent of the p-Laplacian.) We propose the following two
possibilities for the choice of Ψ` and H`.

1. Let H` : W
k−1,p(Ω′) → L∞(Ω) be a bounded linear map (with Ω′ ⊂ Ω a bounded

domain) and let Ψ` : R → R+ be continuous with Ψ`(ν) ≥ CΨ/(1 + |ν|)−σ∗ for some
CΨ > 0 and large |ν|.

2. Let H` : V → R be a bounded linear functional and let Ψ` : R → R+ be continuous
with Ψ`(ν) ≥ CΨ/(1 + |ν|σ∗) for some CΨ > 0.

Again, we may choose χ` and G` as follows.
1. Let G` : W

k−1,p(Ω′) → Lp
′
(Ω) be a bounded linear map and let χ` : R → R+ be

continuous with m ≤ χ`(ν) ≤M for some constants m,M > 0.
2. Let G` : V → R be a bounded linear functional and let χ` : R → R+ be continuous

with m ≤ χ`(ν) ≤M for some constants m,M > 0.
Finally, for fixed any |α| = `, let 2 ≤ p1 ≤ p, m = 1, . . . , k and let

Mα : V → Wm,p1(Ω) (or R)
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be a bounded map such that

‖Mα(u)‖Wm,p1 (Ω) ≤ const‖u‖γαV , (5.13)

‖Mα(u)−Mα(v)‖Wm,p1 (Ω) ≤ const‖u− v‖γαV , (5.14)

where 0 < γα <
p

r′`
; also, let λα = qα/r

′
` and bα ∈ Lr

′
`λ
′
α(Ω) wherep1 < qα <

np1
n−mp1 if m < n

p1

qα > 0 otherwise

(or, if Mα : V → R, then

|Mα(u)| ≤ const‖u‖γαV , (5.15)

|Mα(u)−Mα(v)| ≤ const‖u− v‖γαV , (5.16)

with γα = σ/r′`, bα ∈ Lr
′
`(Ω)).

Under these hypotheses, (A1) and (A3) are satisfied. Note that the continuous embed-
dings Wm,p1(Ω) ⊂ Lqα(Ω) hold, so

‖Mα(u)‖Lqα (Ω) ≤ const‖Mα(u)‖Wm,p1 (Ω) ≤ const‖u‖γαV .

Therefore, by Hölder’s inequality and (5.13)∫
Ω

|bα(x)|r′`|Mα(u)|r′` dx ≤ ‖bα‖
r′`

L
r′
`
λ′α (Ω)

[ ∫
Ω

|Mα(u)|r′`λα
]1/λα

= ‖bα‖
r′`

L
r′
`
λ′α (Ω)
‖Mα(u)‖qα/λαLqα (Ω)

≤ const‖bα‖
r′`

L
r′
`
λ′α (Ω)
‖u‖qαγα/λαV

≤ c∗‖u‖σV ,

(5.17)

where σ = qαγα/λα = r′`γα < p for the case Mα : V → Wm,p1(Ω). The case Mα : V → R is
treated similarly.

Claim. Assumption (A2) holds.

Proof. The growth condition reads

|aα(x, η, ξ;u)| ≤ Ψ`(H`(u))|a`(x)|χ`(G`(u))
(
|η(`)|r`−1 + |η(`)|p−1

)
+ Ψ`(H`(u))|bα(x)Mα(u)|.

Then g1(u) = Ψ`(H`(u))M2 is a bounded functional by assumption. Letting

[kα1 (u)](x) = Ψ`(H`(u))|bα(x)Mα(u)|,
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we find by (5.17) that kα1 : V → Lr
′
`(Ω) is bounded.

Proving the compactness of kα1 requires more effort (except when Mα : V → R). To this
end, suppose that {uj} ⊂ V is a bounded sequence. Let {Ωi} be the sequence guaranteed
to exist by assumption (A0). Then ‖bα‖Lr′`λ′α (Ω\Ωi)

→ 0. Using the compact embedding
Wm,p1(Ωi) ⊂⊂ Lqα(Ωi) we can choose subsequences of {uj} as follows. Let {u1j} ⊂ {uj} be
a subsequence such that

‖Mα(u1j)−Mα(u1m)‖Lqα (Ω1) < 1 for j,m = 1, 2, 3, . . .

Let {u2j} ⊂ {u1j} be a subsequence such that

‖Mα(u2j)−Mα(u2m)‖Lqα (Ω2) <
1

2
for j,m = 2, 3, . . .

Continuing this way, for fixed i let {uij} ⊂ {ui−1,j} be a subsequence such that

‖Mα(uij)−Mα(uim)‖Lqα (Ωi) <
1

i
for j,m = i, i+ 1, . . .

It follows that the diagonal sequence {ujj} satisfies

‖Mα(ujj)−Mα(umm)‖Lqα (Ωi) <
1

i
for j,m = i, i+ 1, . . .

Using Hölder’s inequality, we find for j,m ≥ i∫
Ω

|bα(x)|r′`|Mα(ujj)−Mα(umm)|r′` dx

=

(∫
Ω\Ωi

+

∫
Ωi

)
|bα(x)|r′` |Mα(ujj)−Mα(umm)|r′` dx

≤ const‖bα‖Lr′`λ′α (Ω\Ωi)

[ ∫
Ω\Ωi
|Mα(ujj)−Mα(umm)|qα dx

]1/λα

+const‖bα‖Lr′`λ′α (Ωi)

[ ∫
Ωi

|Mα(ujj)−Mα(umm)|qα dx
]1/λα

.

Here, ‖bα‖Lr′`λ′α (Ω\Ωi)
→ 0 and ‖bα‖Lr′`λ′α (Ωi)

is bounded. By assumption (5.14), the first
integral is bounded and for the second integral we have∫

Ωi

|Mα(ujj)−Mα(umm)|qα dx ≤ 1

iqα
→ 0

if j,m ≥ i and i→∞.

We now show that (A4’) holds. It is enough to estimate the terms of∑
|α|=`

aα(x, η;u)ηα

= Ψ`(H`(u))a`(x)χ`(G`(u))(|η(`)|r` + |η(`)|p) +
∑
|α|=`

Ψ`(H`(u))bα(x)Mα(u)ηα
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for all ` = 0, 1, . . . , k. The first term may be estimated from below by

CΨ`(H`(u))
(
|η(`)|r` + |η(`)|p

)
for some constant C > 0. Here, the quantity Ψ`(H`(u)) satisfies

Ψ`(H`(u)) ≥ CΨ

|H`(u)|σ∗ + 1
≥ CΨ

‖H`(u)‖σ∗L∞(Ω) + 1
≥

C ′Ψ
‖u‖σ∗

Wk−1,p(Ω′)
+ 1
≥

C ′Ψ
‖u‖σ∗V + 1

.

The terms of the sum may be bounded from above by Young’s inequality,

Ψ`(H`(u))|bα(x)Mα(u)ηα| ≤ εΨ`(H`(u))|ηα|r` + C∗(ε)|bα(x)|r′` |Mα(u)|r′`

≤ εΨ`(H`(u))|η(`)|r` + C∗(ε)|bα(x)|r′` |Mα(u)|r′` .

Choosing a sufficiently small ε > 0, it turns out that it is enough to estimate the L1(Ω)-norm
of the expression

[kα2 (u)](x) = |bα(x)|r′` |Mα(u)|r′` ,

which, using (5.17), satisfies
‖kα2 ‖L1(Ω) ≤ c∗‖u‖σV .

The proof of compactness of kα2 is analogous to that of kα1 . The required k2 in Assumption
(A4’) is given by the pointwise maximum of kα2 over all |α| ≤ k.

To finish the argument, note that assumption (A5) is satisfied since the functions Φ`,
χ` and Ψα are continuous and the operators H`, G` and Mα are continuous in the respective
Sobolev and Lebesgue spaces. Thus if uj ⇀ u in V , then for a subsequence H`(uj), G`(uj),
Mα(uj) are convergent a.e. in Ω.

Example 5.4.1. For a more concrete example to Mα, consider the following. In the case
Mα : V → Wm,p1(Ω), let Mα(u) = H̃α(u) where H̃α : V → Wm,p1(Ω) is a continuous linear
operator. For a more concrete example, consider

[H̃α(u)](x) =
∑
|α|≤k

∫
Ω

Gα(x, y)∂αu(y) dy,

where the functions Gα : Ω× Ω→ R satisfy

x 7→
[ ∫

Ω

|∂βGα(x, y)|p′ dy
]1/p′

∈ Lp1(Ω) for |β| ≤ m.

In the case Mα : V → R, let Mα(u) = Φα(H̃α(u)), where H̃α : V → R+ is a bounded linear
functional and Φα : R+ → R+ is continuous with |Φα(ν1)− Φα(ν2)| ≤ CΦ|ν1 − ν2|σ/r

′
` . Note

that Φα(ν) ≤ CΦ|ν|σ/r
′
` follows automatically.
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The operators H` : W
k−1,p(Ω′) → L∞(Ω) and G` : W

k−1,p(Ω′) → Lp
′
(Ω) can be defined

by the formula
(Bu)(x) =

∑
|α|≤k−1

∫
Ω′
Gα(x, y)∂αu(u) dy,

where the measurable functions Gα : Ω× Ω′ → R satisfy

x 7→
[∫

Ω′
|Gα(x, y)|p′ dy

]1/p′

∈ L∞(Ω) and Lp
′
(Ω),

respectively.

Example 5.4.2. Now suppose that Ω′ ⊂ Ω is a bounded domain with sufficiently smooth
boundary. Let V = H1

0 (Ω), V1 = H1
0 (Ω′) ⊂ W 1,2(Ω′), m = 1, p1 = 2 and let Bα : V1 → V ∗1

be an elliptic operator given by

〈Bα(v), w〉 =

∫
Ω

[
n∑

j,k=1

aαjk(x)∂jv∂kw + cα(x)vw

]
dx,

where v, w ∈ V1 and aαjk ∈ L∞(Ω) form a uniformly elliptic coefficient matrix and cα(x) ≥
c0 > 0. The strong form of this operator is “−divAαDv+ cαv”, where Aα = (aαjk). Then we
may takeMα(u) = H̃α(u) = v, where v ∈ V1 is a unique solution to Bα(v) = u

∣∣
Ω′
∈ V ∗1 . Then

H̃α = B−1
α : V → V1 ⊂ W 1,2(Ω) is a continuous linear operator. (A function v ∈ H1

0 (Ω′)

belongs to W 1,2(Ω) if it is extended by 0 in Ω \ Ω′.)

Example 5.4.3. More generally, let V1 ⊂ Wm,p1(Ω) be a closed subspace (which may
depend on α) and let Nα : V1 → V ∗1 be a bounded, strictly monotone and coercive operator
that satisfies

〈Nα(v1)−Nα(v2), v1 − v2〉 ≥ c2‖v1 − v2‖p1V1 ,

and
〈Nα(v), v〉 ≥ c3‖v‖p1V1 .

Then for every w ∈ V ∗1 there exists a unique element v ∈ V1 such that Nα(v) = w and the
mapping N−1

α : V ∗1 → V1 is Hölder continuous:

‖N−1
α (w1)−N−1

α (w2)‖1/(p1−1)
V1

≤ const‖w1 − w2‖V ∗1 .

Now let
Mα(u) := N−1

α (hαu),

for all u ∈ V , where hα ∈ Lp
′
1r(Ω) is some fixed function that makes hαu ∈ Lp

′
1(Ω) ⊂ V ∗1 if

p > 2, and we may take hα ≡ 1 if p = 2. We have that Mα(u) ∈ V1 and Mα : V → Wm,p1(Ω)



is bounded map:

‖Mα(u)‖Wm,p1 (Ω) = ‖N−1
α (hαu)‖Wm,p1 (Ω) ≤ ‖hαu‖1/(p1−1)

V ∗1

≤ const‖hαu‖1/(p1−1)

Lp
′
1 (Ω)

= const
[ ∫

Ω

|hαu|p
′
1

]1/p1

≤ const

[[∫
Ω

|hα|p
′
1r

]1/r[ ∫
Ω

|u|p
]p′1/p]1/p1

≤ const‖hα‖1/(p1−1)

Lp
′
1r(Ω)

‖u‖p
′
1−1
V ,

where r = p/(p− p′1). The exponent γ′α = p′1 − 1 satisfies γα < p/r′` if 2 ≤ p1 < p.

79





Bibliography

[1] R. Adams and J. Fournier, Sobolev Spaces, Pure and Applied Mathematics, Elsevier
Science, 2003.

[2] A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems,
no. v. 10 in Cambridge Studies in Advanced Mathematics, Cambridge University Press,
2007.

[3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and
applications, J. Functional Analysis, 14 (1973), pp. 349 – 381.

[4] D. Arcoya and J. Carmona, A nondifferentiable extension of a theorem of Pucci and
Serrin and applications, J. Differential Equations, 235 (2007), pp. 683 – 700.

[5] G. Aronsson, L. C. Evans, and Y. Wu, Fast/slow diffusion and growing sandpiles,
Journal of Differential Equations, 131 (1996), pp. 304–335.

[6] J.-P. Aubin and F. Clarke, Shadow prices and duality for a class of optimal control
problems, SIAM Journal on Control and Optimization, 17 (1979), pp. 567–586.

[7] V. Barbu and T. Precupanu, Convexity and Optimization in Banach Spaces, Springer
Monographs in Mathematics, Springer Netherlands, 2012.

[8] A. Bitsadze and A. Samarskii, On some simple generalizations of linear elliptic boundary
problems, mr0247271 russian acad. sci, in Dokl. Math, vol. 10, 1969, pp. 398–400.

[9] G. Bodovillé and G. de Saxcé, Plasticity with non-linear kinematic hardening: modelling
and shakedown analysis by the bipotential approach, European Journal of Mechanics-
A/Solids, 20 (2001), pp. 99–112.

[10] H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité,
Ann. Inst. Fourier (Grenoble), 18 (1968), pp. 115–175.

[11] H. Brezis and L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl.
Math., XLIV (1991), pp. 939 – 963.

[12] F. E. Browder, Pseudo-monotone operators and nonlinear elliptic boundary value prob-
lems on unbounded domains, Proceedings of the National Academy of Sciences, 74
(1977), pp. 2659–2661.

[13] M. Buliga, G. De Saxcé, and C. Vallée, Non maximal cyclically monotone graphs
and construction of a bipotential for the coulomb’s dry friction law, arXiv preprint
arXiv:0802.1140, (2008).

[14] , Bipotentials for non-monotone multivalued operators: fundamental results and
applications, Acta applicandae mathematicae, 110 (2010), pp. 955–972.

81



[15] M. Buliga, G. de Saxcé, and C. Vallée, A variational formulation for constitutive laws
described by bipotentials, Mathematics and Mechanics of Solids, 18 (2013), pp. 78–90.

[16] I. Campa and M. Degiovanni, Subdifferential calculus and nonsmooth critical point the-
ory, SIAM J. on Optimization, 10 (1999), pp. 1020–1048.

[17] K.-C. Chang, Variational methods for non-differentiable functionals and their applica-
tions to partial differential equations, J. Math. Anal. Appl., 80 (1981), pp. 102 – 129.

[18] C. Chidume, Geometric properties of Banach spaces and nonlinear iterations, vol. 1965,
Springer, 2009.

[19] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems,
Mathematics and Its Applications, vol. 62, Kluwer Academic Publishers, 1990.

[20] F. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics,
Society for Industrial and Applied Mathematics, 1990.

[21] J. Conway, A Course in Functional Analysis, Graduate Texts in Mathematics, Springer,
1990.

[22] J. Corvellec, M. DeGiovanni, and M. Marzocchi, Deformation Properties for Continuous
Functionals and Critical Point Theory, Dipartimento di matematica, Università Pisa.
106, Dipartimento, Univ., 1992.

[23] C. Costara and D. Popa, Exercises in Functional Analysis, Texts in the Mathematical
Sciences, Springer, 2003.

[24] N. Costea, M. Csirik, and C. Varga, Weak solvability via bipotential method for contact
models with nonmonotone boundary conditions, Zeitschrift für angewandte Mathematik
und Physik, 66 (2015), pp. 2787–2806.

[25] , Linking-type results in nonsmooth critical point theory and applications, Set-
Valued and Variational Analysis, 25 (2017), pp. 333–356.

[26] N. Costea and A. Matei, Weak solutions for nonlinear antiplane problems leading to
hemivariational inequalities, Nonlinear Analysis: Theory, Methods & Applications, 72
(2010), pp. 3669–3680.

[27] , Contact models leading to variational–hemivariational inequalities, Journal of
Mathematical Analysis and Applications, 386 (2012), pp. 647–660.

[28] N. Costea, C. Varga, et al., Systems of nonlinear hemivariational inequalities and ap-
plications, Topological Methods in Nonlinear Analysis, 41 (2013), pp. 39–65.

[29] M. Csirik, On pseudomonotone elliptic operators with functional dependence on un-
bounded domains, Electronic Journal of Qualitative Theory of Differential Equations,
2016 (2016), pp. 1–15.

82



[30] G. De Saxcé, Une généralisation de l’inégalité de fenchel et ses applications aux lois
constitutives, Comptes rendus de l’Académie des sciences. Série 2, Mécanique, Physique,
Chimie, Sciences de l’univers, Sciences de la Terre, 314 (1992), pp. 125–129.

[31] , The bipotential method, a new variational and numerical treatment of the dis-
sipative laws of materials, in Proc. 10th Int. Conf. on Mathematical and Computer
Modelling and Scientific Computing,(Boston, 1995), 1995.

[32] G. De Saxcé and L. Bousshine, On the extension of limit analysis theorems to the non
associated flow rules in soils and to the contact with coulomb’s friction, in Proc. XI
Polish Conference on Computer Methods in Mechanics (Kielce, 1993), vol. 2, 1993,
pp. 815–822.

[33] G. De Saxcé, M. Buliga, and C. Vallée, Blurred constitutive laws and bipotential convex
covers, Mathematics and Mechanics of Solids, 16 (2011), pp. 161–171.

[34] , Blurred constitutive laws and bipotential convex covers, Mathematics and Me-
chanics of Solids, 16 (2011), pp. 161–171.

[35] G. De Saxcé and Z.-Q. Feng, New inequality and functional for contact with friction:
The implicit standard material approach, Journal of Structural Mechanics, 19 (1991),
pp. 301–325.

[36] G. De Saxcé and Z.-Q. Feng, The bipotential method: a constructive approach to design
the complete contact law with friction and improved numerical algorithms, Mathematical
and computer modelling, 28 (1998), pp. 225–245.

[37] J. Díaz and G. Hetzer, A quasilinear functional reaction-diffusion equation arising in
climatology, Equations aux Dérivée Partielles et Apllications, Gauthier-¡ illars, Paris,
(1998), pp. 461–480.

[38] G. Dincă, P. Jebelean, and J. Mawhin, Variational and topological methods for Dirichlet
problems with p-Laplacian, Port. Math., 58 (2001), pp. 339 – 378.

[39] P. Drábek, The p-Laplacian–mascot of nonlinear analysis, Acta Math. Univ. Comeni-
anae, 76 (2007), pp. 85–98.

[40] P. Drabek and J. Milota, Methods of Nonlinear Analysis: Applications to Differential
Equations, Birkhäuser Advanced Texts Basler Lehrbücher, Springer Basel, 2013.

[41] G. Fichera, Sul problema elastostatico di Signorini con ambigue condizioni al contorno.,
Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., 34 (1963), pp. 138–
142.

[42] J. Fortin and G. de Saxcé, Modélisation numérique des milieux granulaires par
l’approche du bipotentiel, CR Acad. Sci, 327 (1999), pp. 721–724.

83



[43] L. Gasinski and N. Papageorgiou, Nonsmooth Critical Point Theory and Nonlinear
Boundary Value Problems, Mathematical Analysis and Applications, CRC Press, 2004.

[44] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge
University Press, 1993.

[45] N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and clas-
sifying critical points, Ann. Inst. Henri Poincaré Anal. Nonlineaire, 6 (1984), pp. 321 –
330.

[46] D. Goeleven, D. Motreanu, Y. Dumont, and M. Rochdi, Variational and hemivariational
inequalities: Theory, methods and applications, Unilateral Problems, 2 (2003).

[47] W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplas-
ticity, American Mathematical Soc., 2002.

[48] M. Hjiaj, G. Bodovillé, and G. de Saxcé, Matériaux viscoplastiques et lois de normal-
ité implicites, Comptes Rendus de l’Académie des Sciences-Series IIB-Mechanics, 328
(2000), pp. 519–524.

[49] Y. Jabri, The Mountain Pass Theorem: Variants, Generalizations and Some Applica-
tions, Encyclopedia of Mathematics and its Applications, Cambridge University Press,
2003.

[50] A. Kristály, V. Radulescu, and C. Varga, Variational Principles in Mathematical
Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and
Unilateral Problems, Encyclopedia of Mathematics and its Applications, Cambridge
University Press, 2010.

[51] A. Kristály and C. Varga, An introduction to critical point theory for non-smooth func-
tions, Casa Cartii de Stiinca, 2004.

[52] A. Kuijper, p-laplacian driven image processing, in Image Processing, 2007. ICIP 2007.
IEEE International Conference on, vol. 5, IEEE, 2007, pp. V–257.

[53] G. Y. Kulikov, P. M. Lima, and M. L. Morgado, Analysis and numerical approximation
of singular boundary value problems with the p-laplacian in fluid mechanics, Journal of
Computational and Applied Mathematics, 262 (2014), pp. 87–104.

[54] N. Kurogenis and N. Papageorgiou, Nonsmooth critical point theory and nonlinear el-
liptic equations at resonance, J. Austral. Math. Soc. (series A), 69 (2000), pp. 245 –
271.

[55] P. Kythe, Fundamental solutions for differential operators and applications, Springer
Science & Business Media, 2012.

84



[56] P. Laborde and Y. Renard, Fixed point strategies for elastostatic frictional contact
problems, Mathematical Methods in the Applied Sciences, 31 (2008), pp. 415–441.

[57] R. Landes and V. Mustonen, Boundary value problems for strongly nonlinear second
order elliptic equations, Boll. UMI (6), 4 (1985), pp. 15–32.

[58] G. Lebourg, Valeur moyenne pour gradient généralisé, C. R. Math. Acad. Sci. Paris,
281 (1975), pp. 795 – 797.

[59] T.-C. Lin, Convex sets, fixed points, variational and minimax inequalities, Bulletin of
the Australian Mathematical Society, 34 (1986), p. 107–117.

[60] J. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires,
Collection études mathématiques, Dunod, 1969.

[61] R. Livrea, S. Marano, and D. Motreanu, Critical points for nondifferentiable functions
in presence of splitting, J. Differential Equations, 226 (2006), pp. 704 – 725.

[62] J. D. Logan, M. R. Petersen, and T. S. Shores, Numerical study of reaction-mineralogy-
porosity changes in porous media, Applied Mathematics and Computation, 127 (2002),
pp. 149–164.

[63] S. Marano and D. Motreanu, A deformation theorem and some critical point results for
non-differentiable functions, Topol. Methods Nonlinear Anal., 22 (2003), pp. 139 – 158.

[64] A. Matei, A variational approach via bipotentials for unilateral contact problems, Jour-
nal of Mathematical Analysis and Applications, 397 (2013), pp. 371–380.

[65] , A variational approach via bipotentials for a class of frictional contact problems,
Acta applicandae mathematicae, 134 (2014), pp. 45–59.

[66] A. Matei and C. P. Niculescu, Weak solutions via bipotentials in mechanics of de-
formable solids, Journal of Mathematical Analysis and Applications, 379 (2011), pp. 15–
25.

[67] C. Michel and M. Lue, Asymptotic behaviour of some nonlocal diffusion problems, Ap-
plicable Analysis, 80 (2001), pp. 279–315.

[68] S. Migórski, A. Ochal, and M. Sofonea, Weak solvability of antiplane frictional contact
problems for elastic cylinders, Nonlinear Analysis: Real World Applications, 11 (2010),
pp. 172–183.

[69] D. Motreanu, V. Motreanu, and N. Papageorgiou, Topological and Variational Methods
with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.

[70] D. Motreanu and P. Panagiotopoulos, Minimax Theorems and Qualitative Properties
of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and Its Ap-
plications, Kluwer Academic Publishers, Dordrecht/Boston/London, 1999.

85



[71] D. Motreanu and V. Rădulescu, Variational and Non-variational Methods in Non-
linear Analysis and Boundary Value Problems, Kluwer Academic Publishers, Dor-
drecht/Boston/London, 2003.

[72] Z. Naniewicz, On some nonmonotone subdifferential boundary conditions in elastostat-
ics, Ingenieur-Archiv, 60 (1989), pp. 31–40.

[73] Z. Naniewicz and P. D. Panagiotopoulos, Mathematical theory of hemivariational in-
equalities and applications, vol. 188, CRC Press, 1994.

[74] P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications: Convex
and nonconvex energy functions, Springer Science & Business Media, 2012.

[75] P. D. Panagiotopoulos and V. Demyanov, Hemivariational inequalities: Applications
in mechanics and engineering, Journal of Global Optimization, 6 (1995), p. 321.

[76] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985),
pp. 142 – 149.

[77] P. Rabinowitz, Some minimax theorems and applications to nonlinear partial differen-
tial equations, In Nonlinear Analysis: A collection of papers in honor of Erich H. Rothe,
L. Cesari, R. Kannan and H.F. Weinberger (eds.), Academic Press, New York, 1978.

[78] R. Rockafellar, Convex Analysis, Princeton Landmarks in Mathematics and Physics,
Princeton University Press, 2015.

[79] H. L. Royden and P. Fitzpatrick, Real analysis, vol. 32, Macmillan New York, 1988.

[80] M. Schechter, The mountain pass alternative, Adv. Appl. Math., 12 (1991), pp. 91 –
105.

[81] , Linking Methods in Critical Point Theory, Birkhäuser Boston, 1999.

[82] M. Schechter, B. Bollobas, W. Fulton, A. Katok, F. Kirwan, P. Sarnak, and B. Simon,
An Introduction to Nonlinear Analysis, Cambridge Studies in Advanced Mathematics,
Cambridge University Press, 2004.

[83] B. Simon, Real Analysis: A Comprehensive Course in Analysis, Part 1:, Comprehensive
Course in Analysis, American Mathematical Society, 2015.

[84] L. Simon, On strongly nonlinear elliptic equations in unbounded domains, Ann. Univ.
Sci. Budapest. Eötvös Sect. Math, 28 (1985), pp. 241–252.

[85] , Strongly nonlinear elliptic variational inequalities with nonlocal boundary condi-
tions, Coll. Math. Soc. J. Bolyai, 3 (1988), pp. 605–620.

[86] L. Simon, Existence results for strongly nonlinear functional-elliptic problems, Coll.
Math. Soc. J. Bolyai, 62 (1991).

86



[87] L. Simon, Existence results for strongly nonlinear functional elliptic problems coll, Math.
Soc. J. Bolyai, 62 (1991), pp. 271–287.

[88] L. Simon, Application of monotone type operators to parabolic and functional parabolic
pde’s, Handbook of differential equations: evolutionary equations, 4 (2008), pp. 267–
321.

[89] L. Simon, Application of monotone type operators to nonlinear PDE’s, ELTE, 2013.
[90] A. L. Skubachevskii, Elliptic functional differential equations and applications, vol. 91,

Springer Science & Business Media, 1997.
[91] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to

nonlinear boundary problems, Ann. Inst. Henri Poincaré, 3 (1986), pp. 77 – 109.
[92] J. Webb, Boundary value problems for strongly nonlinear elliptic equations, Journal of

the London Mathematical Society, 2 (1980), pp. 123–132.
[93] D. Wei, An existence theorem for weak solution of a nonlinear dam problem, Applicable

analysis, 34 (1989), pp. 219–230.
[94] E. Zeidler, Nonlinear functional analysis and its applications: III: variational methods

and optimization, Springer Science & Business Media, 2013.
[95] E. Zeidler and L. Boron, Nonlinear Functional Analysis and its Applications: II/B:

Nonlinear Monotone Operators, Springer New York, 2013.
[96] N. Zouain, I. Pontes Filho, L. Borges, and L. M. da Costa, Plastic collapse in non-

associated hardening materials with application to cam-clay, International journal of
solids and structures, 44 (2007), pp. 4382–4398.

87


	Introduction
	Preliminaries
	Basic Notions
	Functional analysis
	Pseudomonotone operators
	Clarke subdifferential
	Hemivariational inequalities
	Equiintegrability and tightness

	Linking-type results...
	Introduction
	Construction of the Pseudogradient Vector Field
	A deformation lemma
	A minimax theorem in the presence of linking
	The minimax alternative
	The Schechter-Palais-Smale compactness condition
	Application: Differential inclusions

	Weak solvability for a contact problem...
	Introduction
	The mechanical model and its strong formulation
	Variational formulation
	Existence of weak solutions

	Existence result for a nonlocal elliptic problem
	Introduction
	Problem formulation and main result
	Proof of pseudomonotonicity and coercivity
	Examples

	Bibliography

