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INTRODUCTION

Ground beef shares an important portion of the fresh beef market in the

USA, and is largely sold in the bright red form. To facilitate longer storage and/or

display life and shipping long distances, ground beef trim generated at fabrication

plant is often coarse ground and stuffed into an oxygen permeable casing. This is

then fine ground at the retail store and should form the bright red color upon

exposure to air. Failure of development of the bright red color or poor color

stability (short shelf life) has been reported in the industry and represents product

loss.

Understanding and control of the factors that may extend color stability

during display in oxygen permeable packages at the retail stores is important and

should help to reduce product loss.

The purpose of this study was to evaluate the effect of minimized exposure

to air during processing of ground beef on the color stability.



Chapter I

REVIEW OF LITERATURE

Structure and Properties of Myoglobin

Meat color is largely determined by muscle structure and by concentration

and chemical state of a complex and relatively unstable protein, myoglobin (Mb).

Mb concentration is dependent on muscle function and location. Relative

proportions of the three major chemical states of myoglobin; oxymyoglobin (oxyMb),

deoxymyoglobin (deoxyMb) and metmyoglobin or ferric myoglobin (metMb) are

dependent on oxidative-reductive state and on the partial oxygen pressure (p0
2
).

These pigment states are in a state of dynamic equilibrium depending on conditions

at individual locations in the muscle.

Mb structure and reactivity is affected by muscle changes after slaughter

and during processing, storage and distribution (Giddings, 1977). Changes in pH

affect the morphology of muscle; consequently the light scattering/absorbing

properties (Solberg, 1970).

Although Mb is the major component responsible for fresh meat color, and

in most studies it is used alone as an index of color, hemoglobin constitutes as

much as 12 to 30 % of the total pigment (Rickansrud and Henrickson, 1967).

However, Bunnig and Hamm (1974) found that the hemoglobin content of meat from

well-bled animals was less than 6 %. The earlier higher figures were attributed to

methodology limitations and consequently overestimation of hemoglobin. The

spectral properties and chemical reactions of both pigments are similar so that any

spectral color measurement also includes the contribution of hemoglobin

(Govindarajan, 1973).



Mb is associated with the sarcoplasmic protein fraction of muscle that is

soluble in water and dilute salt solutions. It has vital functions of supplying oxygen

for muscle metabolic activity (tissue respiration) in living animals. Mb may be

localized very close to mitochondria to maintain desirable intracellular pO-

(Giddings, 197*).

Mb is contained mainly in cardiac and skeletal muscles and is present in

relatively high concentrations in the "red", Type I, oxidative, slow twitch, tonic

fibers, to a lesser extent in the "intermediate" fibers and is virtually absent in

"white", Type II, glycolytic, fast twitch, phasic fibers (Giddings, 1974). Mb is a

monomeric, globular heme protein. The single heme moiety has one iron atom per

molecule, and has a molecular weight of about 18,000. Hemoglobin, by comparison,

is a tetrameric globular heme protein containing four heme structures (M.W. about

67,000), and is localized in the erythrocytes. The polypeptide chain of Mb is folded

into helical segments in a manner to give the molecule a flattened, globular shape.

The heme group is "trapped" inside the essentially hydrophobic globin in a precise

geometric orientation, protected from solvents and contacted by approximately 25

amino acid residues of the protein. Hydrogen bonds, salt bridges and hydrophobic

interactions stabilize the native conformation of the protein. The only covalent

bond between the heme and protein moieties is that of the iron ligand to the

histidine group which plays an important role in oxygen binding (Livingston and

Brown, 1981).

The oxidation state and type of ligand bound to the iron determine the

color and reactivity of Mb. The heme iron atom has eight valence electrons;

because of its low electronegativity it may form ferrous (Fe ) or ferric (Fe )

cations by losing 2 or 3 valence electrons, respectively. Both Fe and Fe

usually have 6 ligands bound to them, except native Mb which has 5. Four of these



positions are occupied by the heme pyrrole nitrogens forming a very stable chelate

(Livingston and Brown, 1981). The fifth position (axial or proximal) binds histidine.

The sixth position is left open for substitution by oxygen or other ligands or is

liganded and hydrogen bonded to the distal histidine. The 0„ molecule, with two

impaired electrons, bonds to the Fe
+
but not to the Fe

+
(Solberg, 1970).

In native Mb, only small molecules can bind to the iron because of steric

hindrances. If denaturation occurs, coordination with larger ligands can occur. The

series of changes that muscle undergoes after slaughter include depletion of

oxygen, pH and temperature decline, increased cell membrane permeability, drop in

redox potential, lower and altered enzymatic activities and are, therefore,

important factors influencing fresh meat color (Solberg, 1970). Conditions

describing the three forms of Mb in meat are summarized on Table 1.

Deoxymyoglobin , the deoxygenated, reduced form of Mb is the native meat

pigment. Its iron atom is in the ferrous state and has no ligand between it and the

distal histidine residue (sixth position). It is responsible for the purplish-red color

found in the interior of freshly cut meat.

Partial pressure of oxygen (pO^) is the major external factor, besides

temperature, that affects the chemical state of myoglobin. George and Stratmann

(1952b) studied this effect extensively. DeoxyMb is formed when pO. in muscle and

meat is below 1.4 mm Hg. Oxidation begins to occur at 1.4 mm Hg and metMb

dominates at this and slightly higher pO-. As the pO- increases, the potential for

oxidation decreases. At about 20 mm Hg this reaction levels off and a continual

conversion of deoxyMb to oxidized metMb can be expected. The pO.. of normal

atmosphere is approximately 160 mm Hg.



Table 1. Description of the three forms of myoglobin molecule in meat
(Solberg, 1970).

Visual

Pigment State of iron Ligand 6th site appearance

Deoxymyoglobin

Oxymyoglobin

Metmyoglobin

Fe
2+ -- purple

Fe
2+

°2 bright red

Fe
3+

H
2

brown
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Oxymyoglobin is a stable derivative under high oxygen conditions and its

color is bright red. An oxygen molecule is situated parallel to the heme plane;

there is a hydrogen bond of the oxygen molecule to the distal histidine and a

covalent bond to the ferrous iron atom (Fig. I, Solberg, 1970). The reaction is

exothermic (i H -13 to -20 kcal/mol) and spontaneous, therefore the formation of

oxyMb on the surface of meat exposed to air is rapid. The reaction is also

reversible, but with a dissociation equilibrium constant of 2.1x10" which means

the equilibrium of the reaction lies far to the left, making it much more stable to

oxidation than deoxyMb. The hydrophobic environment around the heme is the

suggested reason for greater stability against oxidation (Govindarajan, 1973).

Metmyoglobin has its distal histidine hydrogen bonded to a water molecule

which is covalently attached to the oxidized iron atom (Fig. 1). This univalent

oxidation of oxyMb is commonly referred to as "autoxidation", meaning a

nonenzymatic, spontaneous oxidation by free oxygen. This expression implies that a

free superoxide anion (0
7
~) is formed; but (X cannot dissociate for reasons of

mechanism and thermodynamics. An interpretation that better explains the

observed effect of proton concentration, particularly over the pH range from 5 to

7 is that a hydroperoxy radical is dissociated from the oxyhemoprotein as one

major pathway for autoxidation. A mechanism based on this compound and on

oxygen uptake/evolution stoichiometry (0.25 mol per 0.75 mol) and dependent on

the amount of oxygen dissolved has been reported by Brown and Mebine (1969).

Another mechanism based on the findings of George and Stratman (1952a;b), and

since confirmed by others, involves a two-equivalent reduction of bound oxygen to

the peroxide level, with one electron donated by the iron and the second one

donated by a one-equivalent reducing agent (metal ions or organic reducing agents)

in intimate proximity to the ligand heme, or by electron tunneling from a redox



reaction site on the globin remote from the heme or on the periphery of heme

itself. The heme-globin may be considered to be a system in a state of equilibrium.

At physiological pH the association/dissociation rate is very low so autoxidation is

not appreciable; but the rate is high at lower pH. This, along with globin unfolding

and bound oxygen protonation accounts for the pH effect on autoxidation

(Giddings, 1977).

MacDougall and Taylor (1975) demonstrated the positive effect of

temperature on oxidation rate, which can be promoted when temperature of fresh

meat rises. The amount of dissolved O- is lowered and also any remaining

respiratory activity is accelerated. The well documented relationship between

oxidation and the p0
2
can be accounted for by this mechanism.

George and Stratman (1952a;b) observed that while autoxidation at

saturating pCU had a simple first-order kinetics, at much lower concentrations the

observed rate constants showed a complex second-order variation according to the

concentration of deoxyMb and oxyMb present.

Oxygenated heme iron contributes one electron and the uncomplexed iron of

deoxyMb contributes the second (outer sphere or peripheral type mechanism).

Depending on the donor compound, an inner-sphere or axial mechanism can also be

involved (Giddings, 1977).

This information indicates more than one mechanism of autoxidation, which

vary depending on the conditions and would increase reactive hydroxyl when a

peroxide anion reacts with the ferric heme to which an oxygen had been liganded

and might catalyze free radical reactions such as lipid oxidation (Giddings, 1977).



Factors Affecting Metmyoglobin Formation

Muscle location . Muscles vary greatly regarding color stability, mainly due

to anatomical location, function and structure which influence the oxygen demand

of the respiratory enzymatic system.

Mb is found in higher concentration in "red" fibers and is virtually absent in

"white" fibers (Giddings, 1974). High Mb content in muscle is associated with high

oxidative enzymatic activity, particularly cytochrome oxidase. The more Mb in

skeletal muscle, the greater its capacity for oxidative metabolism and the less its

capacity for glycolytic metabolism, and vice-versa (Lawrie, 1952). A high

respiratory capacity in the postmortem muscle strongly affects pigment oxidation.

Billaut et al. (198*) studied the rate of discoloration of 57 different beef

muscles, prepackaged and stored at 0° C. Color changes during display, measured

by a visual scoring system based on a discoloration index (0 = bright red with no

discoloration; 5 = 50 % of the surface discolored), largely varied with muscles. The

length of storage with minimum discoloration was greater for obliquous externus

abdominis, transversus abdominis and latissimus dorsi muscles; whereas less stable

muscles were diaphragma medialis, iliacus, diaphragma pars lateralis, biceps femoris

and adductor. A similar study (Hood, 1980) of 6 muscles measured the rate of

metMb accumulation in pre-packed beef. Longissimus dorsi was the most stable,

semitendinosus, semimembranosus and vastus lateralis were of intermediate

stability, and gluteus medius and psoas major the least stable muscles. The author

points out that from a practical point of view it is important to consider that the

least stable muscles occur in the most expensive cuts and that pre-packaging

techniques might increase these differences in appearance. These results correlated

well with Ledward (1971), where the muscle susceptibility to metMb formation and

discoloration from greatest to least was biceps femoris, semimembranosus,
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longissimus dorsi and semitendinosus; and with the results of Hood (1971), where

degree of metMb formation from greatest to least was psoas, gluteus medius and

longissimus dorsi.

The same behavior of these muscles has been observed by O'Keeffe and

Hood (1982) under a variety of storage treatments. This difference in behavior can

be explained by the basic biological and biochemical properties of stable and

unstable muscles. The main characteristics of psoas major and longissimus dorsi are

listed on Table 2. Psoas major muscle tends to convert oxyMb to deoxyMb more

rapidly beacause of rapid O^ consumption by the oxidative enzymes and relatively

low
7

availability in the tissue because of low O. storage capacity by Mb. The

reduced form is more readily oxidized. The high respiration rate is associated with

high SDH (succinic dehydrogenase) activity.

pH . Mb oxidation was found to be directly dependent on the hydrogen ion

concentration, with rate of oxidation increasing rapidly with decreasing pH

(Brooks, 1931). The pH, particularly in the range 5 to 7, influences the heme-globin

association/dissociation rate (George and Stratmann, 1952a;b). According to Brown

and Mebine (1969), bovine Mb oxidation proceeds 2.5 times faster at pH 6.0 than at

pH 6.5. Low final pH thus enhances Mb oxygenation and oxidation, the latter

leading to fading or browning of color.

PSE pork color problems are related to the more heat and pH sensitive Mb

(Bembers and Satterlee, 1975). With higher final pH, aerobic metabolism remains

active when most of the Mb remains in the reduced state, since oxygen

consumption rate at the surface is higher than in meat with a normal pH decrease

(Ashmore et al., 1972).



11

Table 2. Comparison of biochemical properties in psoas major and longissimus

dorsi muscles (O'Keeffe and Hood, 1982).

Psoas major Longissmus dorsi

Oxygen consumption rate (OCR)

Oxygenation of intact muscle

Oxymyoglobin layer

Succinic dehydrogenase (SDH) activity)

Oxidation with K,Fe (CN),

Myoglobin content

Conversion of oxymyoglobin to myoglobin

Metmyoglobin formation during conversion

of oxymyoglobin to myoglobin

Metmyoglobin reducing activity (MRA)

Colour stability

Aerobic reducing activity (ARA)

High Low

Efficient Less efficient

Narrow Wide

High Low

Easy Difficult

'Lower* "Higher
*

Rapid Slow

Strong Weak

Low High

Poor Good

Low High
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In normal carcasses, glycolysis and the resulting lower pH inactivates

mitochondria and associated enzyme systems. Oxygen consumption is inhibited and

consequently Mb remains more fully oxygenated, resulting in bright red color. The

pH of meat also influences the perceived color by affecting water binding capacity

of meat proteins. If pH is closer to the isoelectric point, less water is bound and

more incident light is scattered and the meat appears less red (Lawrie, 1958). More

recently, Offer and Trinick (1983) suggested that differences in meat color

associated with different rigor states (PSE, DFD, normal) are due to the difference

in refractive index between myofibrils and sarcoplasm which is dependent on

degree of myofibril shrinkage. In normal rigor and in the PSE condition, myofibrils

shrink considerably which increases the refractive index and produces more light

scattering. In contrast DFD muscle with higher pH also has less myofibrillar

shrinkage hence the refractive indices of myofibrils and sarcoplasm are more

nearly the same and light scattering is decreased.

Temperature . Temperature has a marked effect on color stability. If

increased, oxyMb autoxidation rate is accelerated (George and Stratmann, 1952a;

b; Brown and Mebine, 1969) because oxygen dissociates from Mb and autoxidation

of deoxyMb occurs. Substantial differences in color were recorded both while the

meat was stored in an oxygen-free gas atmosphere and during subsequent holding in

air at different temperatures. Discoloration was more rapid with an increase in

storage temperature from -1° C to +5° C (O'Keeffe and Hood, 1980a, b). Earlier,

MacDougall and Taylor (1975) had also reported that even a small rise in

temperature during display accelerated metMb formation; it was doubled by an

increase of only 3" C. Unfortunately, typical running temperatures on commercial

fan assisted convection display cabinets usually are above *»" C, the temperature
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these workers regarded as nearly ideal for color stability

Snyder (1964) compared storage temperatures of 6, 2 and -2° C for fresh

beef. The redness was greater at lower temperatures. Slower discoloration was

attributed to decreased respiratory activity, when penetration of oxygen is deeper.

Maximal oxidation of Mb to metMb occured closer to the meat surface with an

increase in temperature due to decreased oxygen solubility (Brooks, 1929; Urbin

and Wilson, 1958), increased oxygen utilizing systems in the meat (Urbin and

Wilson, 1961; Snyder, 1964; Bendall, 1972) and occurence of maximal pO^ for Mb

oxidation (Ledward, 1970).

Mb oxidation rates are higher at a certain range of temperatures below the

freezing point. Brown and Dolev (1963) observed a sharp increase at -10" C, a

temperature at which the oxyMb solution (gel) appeared frozen. Freeze

concentration effects on muscle components, catalytic effects of the ice crystals

or favorable orientation of reactants in the partially frozen state with probable

adjustment of the physical proximity of the Mb and oxygen molecules to a distance

more favorable for oxidation reactions to occur, are factors that help to explain

the unfavorable conditions at the temperature around -10° C (Fennema, 1973).

Zachariah and Satterlee (1973) studied the stability of porcine, ovine and

bovine oxyMb in the range of -5 to -28° C. The pigments were least stable at -1

1

to -12° C, temperatures not usually encountered in storage but occuring during

case defrost and causing deterioration of meat surface appearance. Sandberg

(1970) compared frozen display temperatures of -12.2, -20.6 and -28.9° C, and

noted the higher temperature resulted in darker color for both muscles studied

(longissimus and psoas). Psoas major is less stable and its shelf life can be

increased the most if stored at lowest temperature.
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Light is another major factor that affects the oxidation rate of pigments.

Kropf and Hunt (1 984) presented an extensive review of the effects of display

conditions on color of meat. Mention has also been made of the relation of higher

temperature to aerobic microbial growth which contributes to color deterioration

by reducing the oxygen tension on the meat surface (Robach and Costilow, 1962).

Butler et al. (1953) demonstrated that bacteria in their logarithmic growth phase,

when the oxygen demand is highest, cause discoloration of meat. In vacuum

packaged meat, lactobacilli are the predominant bacteria (Ingram, 1962; Ordal,

1962; Pierson et al., 1970); they went from 10
3
/cm

2
to 10

8
/cm

2
in 15 days storage

and represented 90% of the microflora (Pierson et al., 1970).

Packaging . Packaging has become an important factor in meat preservation;

contamination after packaging is reduced and weight loss through evaporation is

prevented. Early studies (Brooks, 1938) reported the effect of relative humidity on

meat color deterioration. Dehydrated meat surfaces became dark and dull in

appearance due to increased heme concentration and structural change, but

hemoglobin apparently oxidized more slowly. Kraft and Ayres (1954) made a

distinction between discoloration due to oxidation of pigments and that due to loss

of water from the tissues. On the other hand, Ledward (1970) found that decreased

water content of semitendinosus muscle led to increased metMb formation, but only

at degrees of dehydration that led to marked discoloration due to causes like heme

concentration and salt concentration which facilitate the oxidation process.

A major consideration in meat packaging is the modificaton of the gaseous

atmosphere surrounding the meat. The gases primarily involved are O- and CO^ in

differing proportions. The shelf life of meat, as shown by color stability and
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the extent and type of microbiological spoilage during storage, is influenced by

the composition of the gaseous atmosphere in the package (Taylor, 1982).

Oxygen availability is probably the most important single factor to prevent

Mb autoxidation. Meat must be maintained either at very low or at high oxygen

tensions. Under refrigeration the respiration process is still active, consuming

oxygen. If there is no exposure to air, e.g., vacuum package, the effective pO
?

is

nearly zero. Residual oxygen will be depleted by enzyme activity, initially at a

faster rate and thereafter at a slower rate over many days, while CO- is formed.

Within 2 or 3 days, less than 0.5%
7
and more than 20% CO will appear in the

vacuum package (Taylor, 1982) and most or all the ferrous Mb will ultimately be in

the deoxy form. Initially metMb is formed from oxyMb; after a few hours metMb is

reduced to deoxyMb. According to Pierson et al. (1970), the rate of reduction is

decreased if the time of aerobic exposure between fabrication and packaging is

increased. Therefore, autoxidation is lessened by reducing or eliminating oxyMb.

Most oxygen should be depleted before reduction of metMb occurs (Watts et al.,

1966). Upon exposure to air, the reduced pigment oxygenates rapidly again

(Landrock and Wallace, 1965), but not so if the package is opened while metMb is

the predominant pigment (Cutaia and Ordal, 196*).

If meat is held under a high oxygen atmosphere, the concentration of

deoxyMb is kept low and redness is maintained because the surface layer of oxyMb

is thicker and masks the layer of brown metMb formed at the limiting depth of
7

penetration (usually about * to 5 mm). This delays the migration of metMb to the

surface (Taylor and MacDougall, 1973). Underneath this layer, unchanged deoxyMb

persists. This occurs within 1 to 3 days with high oxygen permeable wraps, such as

PVC , depending on temperature. In retailing, the stability of meat color is

relatively short with this type of film. Pierson et al. (1970) reported that beef
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packaged in oxygen permeable film (MSAT 80 cellophane) at 0.5° C was

unacceptable after <f days of storage. When packaged in oxygen impermeable

Capran 77K film, there was little difference compared with fresh meat for 10

days. Pirko and Ayres (1957) concluded that in films with low rates of gas

transmission, metMb is converted to deoxyMb because the reducing activity of

muscle is sufficient to keep pigments in the reduced form. These authors also

found that films which resulted in maximum metMb formation on the sixth day of

storage were those of highest oxygen permeability (cellophane MSAT 80,

polyethylene 0.0015 in. and 80 FM 1 pliofilm).

Rikert et al. (1957) obtained better meat color stability in vacuum

packages. Samples flushed with nitrogen or carbon dioxide had better color,

attributed to residual oxygen removal. Nitrogen, as an inert gas, is ideal for gas

packaging. If added to the package after evacuation, thus reducing the pressure on

meat, it resulted in less exudate of retail cuts (O'Keefe and Hood, 1980b).

According to Seideman et al. (1979a) there was no advantage in substituting 100%

nitrogen environment for vacuum, except for less drip loss. Nitrogen does not

affect meat color or inhibit bacteria.

Gas mixtures containing CO_ (with nitrogen or air) are effective in

extending storage life, more so if it is in high concentration. 100% CO_ has also

been used, but less frequently (Kraft and Ayres, 1952; Partman et al. 1970;

Ledward, 1970; O'Keeffe et al. 1975; Ordonez and Ledward, 1977; Seideman et al.

1979a, b,c; 1980). Longer storage was achieved with higher concentration of CO_,

although in general the storage life was similar to that with vacuum packaging. In

these systems oxyMb formation is not possible and metMb is favored. According to

Lopez-Lorenzo et al. (1980), the longer the storage in COjIOj the higher the rate

of Mb oxidation when the samples are subsequently exposed to air. Therefore, their



17

work applied only to wholesale cut storage. For beef (Clark and Lentz, 1973;

Taylor and MacDougall, 1973; MacDougall and Taylor, 1975) and pork slices

(Ordonez and Ledward, 1977) oxygen depressed Mb oxidation.

High pO_ was reported not to increase benefit in color (Rikert et al.,1957).

Zimmerman and Snyder (1969) used these conditions to inhibit respiration and

prevent metMb formation. Beef slices were oxygenated at 5 atm O- for 12 hr and

then wrapped in impermeable film. MetMb was formed on the surface because

respiration seemed to proceed, depleting oxygen on the meat surface. But samples

kept under high pO. for 12 days were still oxygenated, although deterioration

(lipid oxidation and microbiological spoilage) had occured.

Studies on a modified atmosphere packaging system, using head space

enrichment to about 90* O-, resulted in prolonged acceptable color of meat slices

as compared with those stored in air (Daun et al., 1971). Carbon dioxide is used to

suppress bacterial growth when the holding times are prolonged (Clark and Lentz,

1973; Lopez-Lorenzo et al., 1980). CO- does not affect the rate of metMb

formation (Ledward, 1970; Ordonez and Ledward, 1977). The volume of gas mixture

relative to meat affects the concentration of gases during storage because the

gaseous environment will be modified by gases diffused and respired from the meat.

Taylor and MacDougall (1973) followed changes in gas volume and composition of

beef stored in impermeable containers. The initial concentration of SO*
7
was

depleted to approximately 65* within 2 days, where headspace-to-meat ratio was 1

to 5. CO- level only changed slightly.

A mixture of 85* O^ and 15* CO- increased color and shelf life by up to

10 days at 5° C compared with air (Clark and Lentz, 1973). At 1° C, time at 50*

metMb formation was extended to about 13 days (Lopez-Lorenzo et al., 1980).

Several other workers have concluded that mixtures of 75* to 85* O
y
with 25* to



15% CO. are most desirable (O'Keeffe et al., 1975; Ordonez and Ledward, 1977;

Seideman et al., 1979b). Ordonez and Ledward (1970) reported off-colors and

rancidity as negative effects of these environments, but 45 to 50% metMb is

reached before TBA value of 5 is achieved (Lopez-Lorenzo, 1980), which suggests

that rancidity is more critical during longer storage. Color, however, is a more

limiting factor for retail shelf life.

Grinding . When meat is ground, flaked, thinly sliced or chunked the surface

area is increased and more oxygen can penetrate it relative to the meat mass,

which contributes to greater color instability (Hunt and Kropf, 1986).

Color problems have been noted in restructured beef steaks. Huffman and

Cordray (1979) attributed discoloration both in the raw and cooked state to the

addition of salt and other processing effects. Huffman (1980) noted that color

contrast between chunked and flaked portions of steaks was greater when hot

boned meat was used. MetMb formation and reduction in ground beef anaerobically

packaged is affected by storage temperature. Because of the small particles, 0«

diffusion is very high and in the vacuum package the initial pO- allows

autoxidation. Metabolic activity proceeds at a greater rate than in an intact

muscle. This activity enhances the potential to reduce metMb, and is accelerated

by temperature increases (Cutaia and Ordal, 1964). Autoxidation rates seem to be

affected less markedly (Cutaia and Ordal, 1964; Brown and Dolev, 1963).

Ledward et al. (1977) compared the oxidation of ground and intact slices of

beef during storage at 1° C. For intact muscles the rate of metMb formation varied

with sample shape, thin slices being more color stable. The ground meat rates were

similar for all muscles studied, although pH dependent. Grinding diminishes the

reducing system. When the reducing system in intact muscle is depleted, the rate
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of metMb formation is very rapid. Natural catalysts present in beef markedly

accelerate metMb formation at the aerobic surfaces and the natural reducing

systems present fail to maintain the equilibrium level after a certain time.

Aging . O'Keeffe and Hood (1980a; b) have shown fundamental effects of age

post mortem and storage temperature on the color stability of beef. The influence

of O- consumption rate on the depth of oxyMb layer was also reported. Meat aged

for only 3 days has a more unstable color than meat aged for 7 days. It has higher

O- consumption rate compared to 7 days conditioning, which prevents the

formation of a deep layer of oxyMb and, therefore, discolors more rapidly.

However, MacDougall and Rhodes (1972) suggested that both the better

oxygenation and the faster accumulation of metMb of conditioned meat result from

a decrease of the enzymatic activity. A thicker layer of oxyMb forms in

conditioned meat. As the rate of CL, consumption diminishes by the depletion of

the glycolytic cycle, O, can penetrate faster and deeper into the tissue resulting

in a thicker layer of oxyMb. The metMb formed at the O^ penetration limit is not

re-reduced to deoxyMb because such intermediates as NADH are no longer formed.

Muscle discoloration rate increased with postmortem aging. Gluteus medius

and vastus lateralis muscles were affected most. They produced about 0.5% more

metMb after 7| hr display at 25° C for each day's aging postmortem. This effect is

also apparent at lower temperatures. After 96 hr storage at 5° C, gluteus medius

was similar in discoloration to that after 7i hr at 25° C, ie., approximately 0.5*

additional metMb per day. Postmortem aging and increased penetration of O-, is

related to decay in mitochondrial activity. It also accounts for the increased

variability which occurs within a particular type of muscle (Hood, 1980).



20

Meat is normally aged to improve tenderness and eating quality (Joseph,

1971). In the case of pre-packaged ground beef, centralized processing may result

in lower cost and extended shelf life but product has more age at purchase time.

The bloomed color of conditioned meat is superior because increased (X,

penetration results in a deeper layer of oxyMb, but has a poorer color stability,

because oxyMb is not maintained during subsequent pre-packaging and display

(MacDougall, 1972, cited in Hood, 1980).

Meat aged for 3 to 4 weeks has a more rapid discoloration when exposed to

air than meat aged for 1 week, and is dependent on muscle type if held in

anaerobic environment. Decrease in shelf life was 41, 32 and 35% for psoas major,

gluteus medius and semimembranosus muscles, respectively, after 4 weeks compared

with 1 week of aging. When aged for less than a week, greater instability was

reported for both stable longissimus dorsi or less stable biceps femoris, compared

to longer aging. Age has a combined effect with temperature (O'Keeffe and Hood,

1980b). As pH decreases, the reducing system is affected and the rate of metMb

reduction decreases (Cutaia and Ordal, 1964).

Pre- and postrigor deboning . The effect of muscle sample depth from the

surface in a carcass on the rate of postmortem glycolysis was reported by Tarrant

and MothershiU (1977). A darker muscle color was noted in muscles excised at 1 or

2 hr post mortem then those excised at either 4 or 48 hr. Rigor state has also

been shown to affect color of the finished restructured steak.

Huffman (1980) found the color contrast between chunked and flaked

portions of steaks was greater when hot boned meat was used. Restructured steaks

made from prerigor beef were less desirable in color than steaks from postrigor

beef.
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The rate of chill has a marked influence on postmortem changes in muscle.

Muscles located nearer the surface or with lesser transverse surface area chill at

a faster rate than those located deeper and a gradient of rate of temperature

decline occurs between these two. Deeper in the carcass, the temperature drops

slower and the enzymatic activity remains higher but is depleted more rapidly.

Differing pH decline between and within muscles affects muscle properties such as

water binding capacity. Light scattering is higher at low pH values and the muscle

appears lighter (Huffman, 1980).

Color stability is also affected. MetMb formation was lower in prerigor,

compared to postrigor ground pork stored under aerobic conditions Uudge and

Aberle, 1980). At higher pH values pigment oxidation is less favored and the

reducing enzyme activity is favored.

Prerigor meat generally is darker and may not oxygenate to the same bright

red color as postrigor meat. A faster pH decline of electrically stimulated meat

favors pigment oxygenation, i.e., the increase in oxyMb content (Tang and

Henrickson, 1980; Savell et al., 1978).

The actively respiring mitochondria in prerigor meat prevent extensive

oxygenation of meat exposed to air. If rotenone, a mitochondrial inhibitor, is

added, the meat turns bright red. A similar effect was obtained treating prerigor

samples with pH 5.3 buffer (Cornforth and Egbert, 1985).

Dark cutting beef is associated with a high ultimate pH and reduced C>2

diffusion (Lawrie, 1958). Ashmore et al. (1971; 1972; 1973) studied the functional

capacity of mitochondria isolated from dark cutting muscle and found that they

remain active due to higher pH. However, a decrease in activity occured with time

after death, as compared to meat with normal pH drop , where the rate of

mitochondrial activity loss was higher. They concluded that the color is a cut
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surface phenomena, where the relatively high oxygen consumption rate maintains

the Mb in the deoxy form.

Metmyoglobin reducing systems . The accumulation of metMb at the surface

of fresh beef depends on two opposing mechanisms: (a) the autoxidation of the

reduced pigment in the presence of oxygen (George and Stratman, 1952a; b) and (b)

the enzymatic reduction of metMb to deoxyMb (Stewart et al., 1965a; Ledward,

1970, 1972). The in situ metMb reduction has been studied more from an empirical

approach and the mechanism of reduction in meat and exogenous influencing

factors are not yet well understood (Giddings, 197*).

Dean and Ball (1960) did some early analytical work on the reduction of

surface metMb in vacuum packaged fresh beef cuts and attributed it to "natural

processes". Cutaia and Ordal (196*) assessed oxidation/reduction of Mb at the

surface of fresh beef cuts by means of reflectance spectrophotometry and found

that meat pH and fat content were major factors influencing autoxidation of Mb.

Later the metMb reducing activity (MRA) was studied on induced metMb, either

oxidizing Mb with ferricyanide, K,Fe(CN) (Stewart et al., 1965a; b) or in low

partial pressure (1% OJ atmosphere (Ledward, 1970; 1972; Ledward and

MacFarlane, 1971). The reduction of metMb in either aerobic or anaerobic

conditions, was followed by reflectance spectrophotometry . Reflectance readings

were converted to K/S ratios. Ratios at 572 and 525 nm (metMb) and at 474 and

525 nm (deoxyMb) were obtained. Enzymatic reduction at the surface of ground

beef samples stored 10 to 13 days at 1° C was studied after samples were treated

with ferricyanide solution and the percentage of total pigment reduced one hour

later in anoxic conditions at room temperature (22° C) was determined (Stewart et

al., 1965a; b). Reduction ranged from 20 to 100%. Ledward (1970) used thin (2 mm)
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beef slices which were held for 24 hr in 1% O- atmosphere. The percentage of

metMb formed was determined then and again after an additional 2* hr in air. The

percentage of metMb reduced during the 24 hr was calculated and plotted vs. the

equilibrium metMb concentration. In this experiment the correlation coefficient

between the equilibrium metMb concentration on beef slices stored 7 days in air

and the aerobic MRA (reduction rate from 10 to 25%) was highly significant

(r=-0.94) but not to anaerobic MRA as determined by Stewart et al. (1965a). This

suggests two different mechanisms of reduction. Lanier et al., (1978) studied the

reduction of metMb in ground beef, beef slurries and extracts held in air, nitrogen

or carbon monoxide (CO) air mixtures. Significant metMb reduction occured in

aerobic extracts but not in ground beef or slurries in the presence of ferricyanide.

A nonenzymatic electron transfer was demonstrated in extracts under these

conditions. CO accelerated metMb reduction, even in the presence of air, with the

rate of reduction dependent upon CO concentration. Possible mechanisms for this

enhanced reduction were explored.

Discoloration first becomes apparent at the cut surfaces. With ground meat,

discoloration also takes place in the interior because of higher surface exposure to

oxygen. An anoxic environment develops rapidly as oxygen is depleted, causing

reduction of the pigment (Giddings, 1974).

In vacuum packages, the residual O-, causes metMb formation in a few hours

because the rate of oxidation is greater than enzymatic reduction at low O-

tension (Rikert et al., 1957). After most O- has been converted to CO., the

reducing activity of the muscle prevails (Taylor and MacDougall, 1973) and will

keep the pigment in a reduced state throughout storage.

MetMb reduction in vivo has been studied in association with an anemic

disorder, methemoglobinemia, that results from insufficiency or absence of the
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reductase enzyme in the erythrocytes. Cytochrome b5 is the physiological

intermediate. Such a system has not been demonstrated in mammalian muscle fibers

(Giddings, 197*).

A fraction of the myoglogin in the living cell becomes oxidized at the O.

tension in the interior of the muscle fiber and it is expected that a "reductase"

system exists (Giddings, 197*). Such systems have been studied in bluefin tuna and

mackerel (Al-Shaibani et al, 1977) and dolphin (Shimizu and Matsuura, 1971). But

an artificial mediator, methylene blue, was used in the assay to which there is no

obvious physiological counterpart.

Hagler et al. (1979) purified the first metMb reductase from beef heart that

does not use mediators. This and similar enzymes purified from blue white dolphin

muscle use ferrocyanide or cytochrome b and NADH for reduction of metMb

(Matsui et al., 1975, cited in Livingston and Brown, 1981).

Stewart et al. (1965a) reported that MRA varied among beef ribeye muscles

from different animals and increased with increasing pH (5.1 to 7.1) and

temperature (3 to 35° C). During refrigerated storage, MRA of intact cuts declined

slightly but that of ground beef declined more rapidly. They proposed a mechanism

dependent on the availability of NAD concentrations and oxygen uptake. MRA and

NAD concentrations were highly correlated in ground lamb and beef, but not in

pork.

In situ levels of NADH and other possible non enzymatic reductants are

important factors in regulating rates of metMb reduction. Low O- tension, which

does not inhibit enzymatic metMb reduction directly, may serve to increase the in

situ NADH levels (Livingston and Brown, 1981).

Watts et al. (1966) suggested that the latter may be generated via lactate

dehydrogenase (LDH) which Giddings (197*) considered thermodynamically
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unfavorable. They also reported that NADH is essential for metMb reduction and

that both NADH and succinate are involved in accelerating the reduction by

removal of tissue oxygen via mitochondrial electron transport (essentially anoxic

conditions were observed to be required). The MR A rate was reported to be

increased by treatment of raw ground beef with papain. Saleh and Watts (1968)

found that MRA was increased by addition of substrates having pyridine

nucleotide-linked dehydrogenases plus NAD or NADP, indicating that the substrate

and/or pyridine nucleotide was limiting. The cofactors seemed to be more limiting

since the additon of NAD or NADH alone accelerated MRA. Hall et al. (1972, cited

by Giddings, 197*) found that the rate of reduction of pyridine nucleotides controls

the rate of MetMb reduction. They also reported that the dehydrogenases remain

potentially active in the muscle cell for significant periods postmortem. The

findings that the rate of Mb autoxidation is greater than the rate of reduction at

low Oj pressures was also confirmed on beef slices by Ledward (1970). The high

surface metMb content induced on samples in low O., atmosphere was reduced

slowly when exposed to air, the rates depending upon temperature. MRA was

maximal in anoxia. Low pH accelerated autoxidation and retarded MRA.

NADH loss is known to be accelerated with grinding (Newbold and Scopes,

1971), confirming the findings of Watts et al. (1966) that ground beef rapidly loses

its ability to reduce metMb and the accumulation of metMb is more rapid than in

sliced beef (Ledward and MacFarlane, 1971).

Accumulation of metMb varies markedly from muscle to muscle (Ledward,

1970; 1971) and these variations have been attributed to differences in the activity

of the aerobic MRA naturally present in beef (Ledward, 1972).

According to Greene (1969), if the meat has adequate MRA, anoxic

packaging can prevent metMb formation and lipid oxidation. If antioxidants are



26

added to fresh meat, both pigment and lipid oxidation can be retarded even in

aerobic conditions. Free radicals from lipid oxidation were a major cause of

protein denaturation but they seem to first oxidize the heme (Greene et al. 1971).

Govindarajan and Hultin (1977) reported that the reactions involved in the early

stages of lipid oxidation are important in the oxidation of the meat pigment.

Therefore an assumption can be made that the more metabolically active a cut of

fresh meat is, the greater the oxygen consumption by the tissues and the

vulnerability of lipid and Mb to oxidation. Oxalate inhibited both lipid and Mb

oxidation.

Even in color stable muscles such as the longissimus dorsi, the reducing

system becomes depleted in time as compared to psoas major which fails to

maintain the equilibrium needed to maintain color stability (Ledward et al. 1977).

MacDougall (1982) reported that the lighter colored, more denaturated inner

portion of the semimembranosus muscle of beef that was chilled more slowly had

less MRA.

MRA patterns followed that of reduced
2
demand with storage time. A

lower 0~ uptake appears to play a more decisive role in delaying surface

discoloration (Atkinson and Follett, 1973). Pierson et al (1970) reported that the

rate at which the surface metMb of fresh beef underwent reduction upon vacuum

packaging, ie., the rate and extent of reduction of any oxidized pigment in vacuum

and also the rate and extent of subsequent oxygenation when exposed to air,

decreased as time between slicing and vacuum packaging was increased.

Zimmerman and Snyder (1969) also reported that surface oxyMb was first

autoxidized, followed by reduction, when oxygenated fresh beef cuts were wrapped

in gas-impermeable film. Malonic acid, a succinic dehydrogenase inhibitor, retarded

the reduction of metMb. Its effect on MRA was explained based on interference
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with residual oxygen removal rather than pyridine nucleotide reduction. A

combination of factors involved in the gradual loss of MRA in postrigor meat,

especially when exposed to air, include fall in tissue pH, depletion and/or

degradation of substrate and cofactors, oxidative/deteriorative changes and loss of

cofactors and enzymic activities, including ultimate complete disintegration of

mitochondrial particles along with impairment of key enzymatic activities

(Giddings, 1974).

Keeping red meat anoxic, cool, clean and moving, are very important

factors to be observed by the fresh red meat industry to minimize negative effects

of oxygen on tissue components (Giddings, 1974).

Oxygen uptake and diffusion . In the living animal, the external oxygen

required for metabolic activities is supplied by the circulatory system, with the

numerous changes that meat undergoes, O^ availability depends on the surrounding

environment, Mb concentration and the remaining respiratory enzyme activity and

contributes to the state of the Mb (Grant, 1955).

Enzyme degradation rates vary widely under the same storage conditions.

Cheah (1971) showed that a large proportion of intact mitochondria are present in

ox neck muscle after 6 days postmortem storage at 4° C. The succinoxidase system

was found to be significantly more labile. Decreasing tissue pH was considered the

key factor influencing postmortem mitochondrial deterioration. As indicated by

Ashmore et al. (1973), when muscle pH remains high, whether due to excessive

adrenalin injection or to natural causes (dark cutting meat), mitochondrial

respiration remains high and Mb is in the deoxy state.

Oxygen uptake by the meat tissue and the rate of O^ diffusion into the

tissue is regulated by the physical condition at the meat surface (Lawrie, 1958)



28

and determines the O. tension in the tissue fluid. Temperature, ATP turnover rate

and mitochondrial oxidation play an important role in the O- consumption rates in

prerigor beef (Bendall, 1972).

Oxygen uptake is not restricted to the meat surface. Brooks (1929)

demonstrated that the depth of O., penetration in muscle was determined by the

rate of diffusion of O, into the tissue and the consumption of the gas by the

tissue; they are inversely related. Discoloration was restricted to this relatively

thin, superficial zone. The equilibrium depended on temperature, pO,, time and

muscle conditions. Increasing temperature tended to decrease O- penetration while

higher pO, or longer exposure caused a deeper O.. penetration. The O penetration

was rapid initially and then slowed down to a linear rate, attributed to a decrease

in the tissue O. consumption. Morley (1971) reported similar results, but related

with aerobic metabolism of contaminating microorganisms on the meat surface.

The rate of Mb oxidation increased with decreasing pressure and reached a

maximum at low pressure of about k mm O- at 0° C). George and Stratman (1952a;

b) found a maximum of Mb oxidation at a pO
?

of 1 mm Hg with half of the total

ferrous Mb in the deoxy form, while Ledward (1970) found maximal formation of

metMb in fresh beef at pO
?
from 6.0 to 7.5 mm Hg.

When meat is exposed to air, oxygen penetrates gradually into the muscle,

determined by relative rates of diffusion and uptake. Three different color layers

are usually formed. OxyMb layer, formed first on the surface, becomes deeper as

2
diffuses inward. At a few mm below the surface, there is a region where the

pCU is in the optimum range for metMb formation and a brown layer can be seen

in this region. Still further below the surface, where pO, is lower, the potential

for metMb falls, and reduced Mb predominates (Taylor, 1972). The depth of C>2

penetration is proportional to the square root of its partial pressure. With 80% O.



29

at the surface, the oxygenated layer is twice as thick as in air and the metMb

layer at the penetration limit is still far enough from the surface to remain

obscured for several days (Taylor, 1982).

Oxygen consumption rate decreased with age of meat postmortem due to

depletion of substrate and coenzymes and degradation of enzymes involved in

mitochondrial respiration. Decreases in temperature and pH of meat cause

decreased oxygen consumption rates (OCR) (Bendall, 1972; Urbin and Wilson, 1961).

Atkinson and Follett (1973) reported that O, uptake and NAD concentrations of

ground lamb and beef samples were highly correlated; for pork the correlation was

lower. The O. consumption rate was inversely proportional to the rate of

discoloration. Beef, more stable, had the lowest OCR and lamb, less stable, had

higher OCR. MRA and OCR have, therefore, an inverse relationship, and a lower

O^ uptake appears to play a more decisive role in delaying surface discoloration. A

relationship with retail display life was also found. Lamb muscle has a short

display life due to very rapid Mb autoxidation on the meat surface when exposed

to air. Its early postmortem O-, uptake is very high and during maturation, the

decline in O, demand appeared to be related to a corresponding decrease in NAD

concentration. Addition of NAD or NADH caused an increase in O- utilization.

Patterns of O^ uptake differ for different species. It decreases with

maturation. Retail display life depends upon the oxygen demand of the tissue

(Atkinson and Follett, 1973). Differences were observed in the OCR for different

muscles of the same species (Bendall and Taylor, 1972). Zimmerman and Snyder

(1969) studied the effects of respiratory inhibitors on metMb accumulation by using

high O^ pressures and oxidizing sulphydryl groups. MetMb could only be retarded

by this treatment. Bendall and Taylor (1972), have shown a higher postrigor O-
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consumption rate for beef biceps femoris with relatively unstable color than for

beef longissimus dorsi muscle.
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Chapter II

EFFECT OF OXYGEN EXPOSURE DURING PROCESSING ON GROUND

BEEF COLOR STABILITY

Summary

Semimenbranosus muscle (*8 hr postmortem) of 3 beef carcasses was

trimmed, cut and ground in a nitrogen atmosphere, compared to *8 hr exposure of

muscle to air before grinding. Samples stored in vacuum 7 and 1* days were

displayed under natural fluorescent lighting at 3° C for 5 days and these color

traits were measured: % metmyoglobin (metMb), difference of 630 and 580 nm

reflectance (R g3()-
R 5gn'' HunterLab values, saturation index, hue angle and visual

score. MetMb increased faster (p<0.05) for samples processed in air after 1* days

in vacuum, but not for those stored 7 days. Hunter L values of It day samples

were higher (p<0.05) when processed in air; treatment did not affect Hunter a

values. Samples stored 1* days in vacuum oxygenated better and were redder

throughout display (higher R
63n-

R5gn> lo*er visual score, higher Hunter L) than

for 7 days storage. Samples processed in air, had very little oxyMb formation.

Treatment did not affect (p>0.05) aerobic metmyoglobin reducing activity (MRA),

although anaerobic MRA was greater for the nitrogen treatment
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Introduction

The bright red color of ground beef is an important quality characteristic

considered by the purchaser of fresh meat in the retail market. Much ground beef

in the USA is distributed to the retail markets from fabrication operations as

coarse ground and packaged in oxygen impermeable casing. In retail stores the

meat is fine ground and repackaged in an oxygen permeable film.

The development and stability of the bright red color during display depends

on a number of factors that have to be controlled during processing and display.

Failure to achieve the bright red color has been reported in the industry and

represents product loss.

Partial oxygen pressure (p0
2
) is the major factor, besides temperature and

pH, that affects the chemical state of myoglobin (George and Stratman, 1952a; b).

At high p0
2 , oxygenation occurs spontaneously and oxymyoglobin (oxyMb)

predominates (Govindarajan, 1973). Low storage temperature inhibits deoxygenation

of oxyMb by suppressing respiratory enzyme activity (Lawrie, 1974) and favors

oxygen penetration into the tissue (Snyder, 1964). Higher temperatures accelerate

any remaining respiratory activity (MacDougall and Taylor, 1975; Bendall, 1972),

depleting reducing activity and favoring pigment oxidation (discoloration).

Conditions that favor low oxygen uptake have an important role in delaying

surface metMb accumulation. In practical terms, low temperature and minimal

exposure to air during processing and before packaging in anoxic conditions should

be beneficial (Pierson et al., 1970).

Enzymatic metmyoglobin reducing activity (MRA) is another factor

influencing meat surface discoloration (Stewart et al., 1965; Ledward, 1970; 1972).

MRA retention is related to chill rate as muscles chilled slowly have less MRA
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(MacDougall, 1982). MRA is depleted with increasing time postmortem (Atkinson

and Follet, 1973) due to depletion and enzyme degradation (Urbin and Wilson, 1961;

Bendall, 1972). The grinding process affects MRA, depleting it faster. The result is

less stable color and faster discoloration as compared to intact meat slices

(Ledward, 1977; Stewart et al., 1965).

The purpose of this study was to verify if ground beef of better color

stability could be obtained by reducing the exposure of meat to air during

processing.

Materials and Methods

Semimembranosus muscles were excised at 48 hr postmortem from one side

of three chilled beef carcasses from approximately 2 year old bulls, with ultimate

pH of 5.41 to 5.49. The muscles were placed in vacuum bags to minimize oxygen

diffusion into the muscle and immediately transferred to a biological hood, kept at

2 to 4° C. Air was withdrawn from the hood which was then maintained with a

nitrogen atmosphere by flushing with nitrogen several times so that the oxygen

content was not higher than 0.15%, as analyzed by the MOCON - Oxygen Analyzer

LC 7007. The following processing steps were conducted under nitrogen. Excess fat

and about 2.5 cm of the meat surface were trimmed and discarded. The muscle was

cut into approximately 5 cm cubes which were alternately assigned to one of two

treatments to even out the effect of differential chilling rate and muscle

morphology.

Half of the samples were assigned to the nitrogen treatment and mixed and

coarse ground using an Oster grinder, mixed again and 80 to 100 g samples were

taken randomly, formed into patties on styrofoam trays, wrapped in
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polyvinylchloride (PVC) film, placed individually in vacuum bags which were

immediately vacuum sealed after removal from the hood. These packages were

stored in the dark at 3 to 4° C for either 7 or 14 days.

The control group of samples were removed from the hood (cut in cubes),

stored in a thin layer covered with polyvinilchloride (PVC) film in the dark at 3 to

4° C for additional 48 h. All other conditions were similar for both groups.

Metmyoglobin Reducing Activity

MRA was determined by the aerobic method using a modification from

Ledward (1972) as described by Sleper et ah, 1983). After 14 days storage, six

PVC wrapped patties of each treatment were removed from the vacuum packages,

excess moisture was wiped from the surface and the patties were placed in an

anaerobic incubator in a 1%
2

environment for 48 hr at 3 to 4° C to induce

metMb formation. The incubator was evacuated and flushed several times with a

gas mixture of 1* oxygen and 99% nitrogen. Gas samples from the incubator were

monitored for oxygen level with the MOCON instrument. Each sample was removed

from the incubator while it was being continuously flushed with the gas mixture to

maintain proper atmosphere in the incubator. Samples were scanned

spectrophotometrically at three different locations for percentage reflectance at

525 and 572 nm with a HunterLab D-54 spectrophotometer. MetMb reduction was

measured by calculating % metMb at 0, 2, 4, 6, 8, 10, 12 and 24 hr air exposure at

3 to 5" C.

The MRA also was determined by the anaerobic method (Stewart et al.,

1965; Sleper et al., (1983). After 14 days storage, six patties of each treatment

were removed from packages and metMb formation was induced chemically with an

excess of 1% potassium ferricyanide solution [K,Fe(CN),] applied on the sample
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surface for 1 min. Excess solution was blotted, and samples were allowed to

oxidize in air for 30 min at room temperature before repackaging in vacuum. The

reduction of metMb under anaerobic conditions was measured at three locations on

the samples immediately after packaging (time 0) and after 30, 60, 90, 120, 150,

1X0, 210, 2*0, 270 and 300 min by reflectance spectrophotometry at 525 and 572

nm and calculating % metMb.

Pigment Oxygenation

Three vacuum packaged patties of each treatment that had been stored for

1* days, were used to evaluate the rate of oxygenation when exposed to air.

Percentage reflectance at 580 and 630 nm and Hunter L, a and b values (Hunter,

1958) with llluminant A were measured immediately after opening the package and

after 1, 2, 3, *, 5, 8, 15, 30 and 60 min. Samples were scanned at three different

locations through the PVC film and remained at room temperature during

evaluation.

The difference of reflectance at 580 and 630 nm (Rg3n" R 58o''
wnicn is

linearly related to the relative proportions of the two pigment forms metMb and

oxyMb on the meat surface, was used as indicator of redness during oxygenation.

Display Color Stability

Semimembranosus muscles from three additional animals (2 steers and 1

heifer) were prepared as described above. Meat cubes assigned to both treatments

were first coarse ground in an Oster grinder, vacuum packaged and stored at 3" C.

After 7 and 1* days of storage, the meat was reground through a fine plate, 3.2

mm plate, formed into patties, placed on styrofoam and wrapped with PVC film.

Five samples of each treatment were allowed to oxygenate one hour at 4° C.
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Reflectance measurements at 525, 572, 580 and 630 nm and Hunter L, a and b

values with Illuminant A were taken at three different locations on each sample

with a Hunterlab D-54 reflectance spectrophotometer and visual scores were taken.

Display study was conducted in an open top case under 970 lux Natural fluorescent

lighting for 24 hr per day at 2 to 4° C for 5 days. Visual color evaluation was done

by a trained 5 member panel who evaluated overall lean color using the KSU beef

color scale (Kropf et al., 1971) to the nearest 0.5 point (1 = very bright red, 2 =

bright red, 3 = slightly dark red or brown, 4 = dark red or brown, 5 = extremely

dark red or brown). Sample scoring, both visually and spectrophotometrically, was

done at (before display), 1, 3 and 5 days of display.

Calculation of MetMb

Calculation of metMb was based on transforming the reflectance values to

K/S ratios using Kubelka-Munk's equation (K/S = (1 - R ) / 2R), which takes into

account the changes in the light flux incident on the sample, expressed by the

absorption and scattering coefficients, respectively (Francis and Clydesdale, 1975).

Ratios of K/S values at 572/525 nm were calculated to determine percentage

metMb. The 572/525 nm ratio is minimal with 100% metMb (oxidation with 1%

K,Fe(CN),. solution) and maximal when only deoxyMb or oxyMb are present, and is

determined experimentally. The ratios we used were 1.40 and 0.56 for 0% metMb

and 100% metMb, respectively (Stewart et al., 1965) and the equation used follows:

K/S 572/525 (0% metMb) - K/S 572/525 (sample)

% metMb = x 100
K/S 572/525 (0% metMb) - K/S 572/525 (100% metMb)
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Differences between percentage reflectance at 630 and 580 nm were used to

indicate muscle redness, larger values being associated with higher oxyMb (brighter

red).

Hunter a and b data were reduced to hue angle, tan" b/a, and saturation

2 2 4
index, (a +b ) . These values along with Hunter L values were suggested as color

attributes to specify a color using the HunterLab system (Setser, 198*).

Statistical Analysis

Data were analysed by analysis of variance procedures for a multi split-plot

design and means were compared by LSD test (SAS Institute, 1979; Cochran and

Cox, 1957)

Results and Discussion

Display Color Stabilility

Table 1 summarizes the results of an analysis of variance of the display

study. A three way treatment, vacuum storage time and display time interaction

(TRT*ST*T; Table 1) was calculated for %metMb (p<0.01) and Hunter a value

(p<0.05) measurements. MetMb increased faster on samples processed in air than in

nitrogen when stored 14 days, but not for samples previously stored in vacuum 7

days. Samples stored for 14 days had greater metMb accumulation at day 3 and 5,

when processed in air (Table 2; Fig. 1).

Hunter a values declined from day to 1, and then remained fairly

constant. The samples stored 7 days in vacuum did not show the lowest Hunter a

values, although they had highest % metMb. Samples stored 14 days had no

significant treatment effect (p>0.05) (Table 2; Fig. 1).
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An interaction (p<0.05) of treatment and storage time (TRT*ST) was

calculated for Hunter L and b and saturation index (Table 1). Hunter L values at

1* days (Table 3) were higher for the nitrogen treatment along with lowest %

metMb shown in Table 2, compared to air with 14 days storage. A treatment effect

was not shown for the 7 days vacuum storage.

The effect of 7 and 14 days vacuum storage x display time (ST*T) was

significant for all parameters measured (Table 4; Fig. 2). Samples stored 14 days

oxygenated better and were redder throughout the display as indicated by higher

R,,
Q

- Rjoq values, lower visual scores up to the 3rd day and higher Hunter L

values. The latter decreased over time. The higher saturation index for 14 day

storage indicates purer red color, ie., less brown metMb pigment. Hue angle

increased for the samples stored 14 days. A higher hue angle should indicate a less

red, more yellow color. This measurement should not be affected by heme pigment

concentration.

Pigment Oxygenation

Table 5 contains a summary of the significance levels of the effects of

processing ground beef in air versus nitrogen on rate of oxygenation and aerobic

and anaerobic MRA.

There was a treatment x time (TRT*T) interaction (p<0.05) on sample

redness (Rg™ - Rjgg)- Samples processed under nitrogen oxygenated better as

shown by a higher number and the value tended to increase in the first 30 minutes

(Table 6). The air treatment samples had very little change with time.

A significant time effect (p<0.01) on Hunter L and a values as well as on

saturation index and hue angle was found. Hunter L increased during oxygenation,

but Hunter a declined, an unexpected result. Hunter b values fluctuated and did
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not follow a pattern. Saturation index and hue angle decreased with time.

2 2 4
Saturation index is (a + b ) ; since b did not change much, it is influenced mostly

by the decrease in a. The decreasing hue angle suggests a purer red color with

more time.

Aerobic and Anaerobic MRA

Aerobic MRA determination resulted in metMb levels that were not

different (p>0.05) for samples processed in nitrogen compared with those in air.

The initial mean metMb concentration of 78.7% was reduced to 54.8% after 24 hr

(Table 7). The metMb concentration of the anaerobic MRA determination declined

from 78.1% to 27.1% (Table 8).

A treatment x time (TRT*T) interaction for anaerobic MRA was noted

(p=0.054). Samples processed under nitrogen initially had lower metMb levels

compared to the air exposed samples (Fig. 4) up through 5 min. Then the

concentration of metMb remained practically constant through 24 hr. This suggests

at least a short time advantage in MRA for samples trimmed, cut and ground in

nitrogen. We are not recommending processing under nitrogen, but these results

support the importance of minimizing air exposure of beef trim, an idea clearly

shown by Pierson et al. (1970).

When meat is vacuum packaged it usually has a layer of oxyMb on the

surface, a thin layer of metMb and most of the pigment in the deoxy form. In the

anoxic package, the residual oxygen is used up with time and a layer of metMb is

formed on the surface for several hours, before all pigment is reduced to deoxyMb

by the enzymatic reducing system. The discoloration pattern of ground beef is not

uniform because of variation of pO, in the meat and the destructive effect of

grinding on the reducing system. This spotty aspect and the fat particles may
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cause variability in the measurements used in this study.

Meat tissue rapidly becomes depleted of oxygen postmortem. Oxygen from

the air diffuses into the tissue surface and deeper. A certain amount is

continuously being utilized by the respiratory enzymes. This utilization is

potentiallly directly related to the temperature, so that oxygen available is

constantly decreasing (Urbin and Wilson, 1961), more so at higher temperatures. If

meat is held at temperatures close to 0° C and the exposure to air is limited

before vacuum packaging, more enzymatic reducing activity is retained and will

keep the meat from metMb development for a longer time during display in aerobic

conditions. This was observed in some of the color traits measured under display

and by anaerobic MRA determination suggesting preservation of a more active

reducing system for samples with less exposure to oxygen during processing.

Loss of MRA though seems to be consequence of both grinding and

incorporation of oxygen, since controlling exposure to air resulted in some

advantages on color stability. Our data tend to suggest that grinding beef causes a

loss of MRA that is independent of the incorporation of oxygen that occurs in

grinding.
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Table 1 - Significance of display color effects of ground beef in air and nitrogen
after 7 and 14 days vacuum storage.

Color trait TRT ST

MetMb (%) ** **

R
63CTR580 n.s. **

Visual score * (.057) #

Hunter L * *-*

Hunter a n.s. *

Hunter b n.s. *-*

Saturation index n.s. **

Hue angle n.s. **

TRT*ST TRT*T ST*T TRT*ST*T

n.s. n.s. ** **

n.s. n.s. ** n.s.

n.s. n.s. ** n.s.

** n.s. ** n.s.

* n.s. ** *

* n.s. ** n-s _

* n.s. ** n.s.

n.s. n.s. ** n.s.

**P<0.01
* P<0.05

n.s. P>0.05

TRT = treatment ST = vacuum storage time T = time
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Table 3 - Effect of processing ground beef in air and nitrogen on Hunter L and b

values and saturation index for samples displayed after 7 and 1* days
vacuum storage.

Color

trait

Vacuum
storage

(days)

Treatment
Air Nitrogen

Hunter L 7

14

10.8a >x 11.0a >x

Hunter b 7

u

25.8a,x

30.9a.y

26.1 a >*

32.8a,y

Saturation index 7

11

32.3a »x

39.2a .y

32.4a ,x

»i.*a.y

abMeans in the same row with same superscript are not different (P>0.05).

xyMeans within treatment with same superscript are not different (P>0.05).
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Table 5 - Significance levels of the effects of processing ground beef in air and
nitrogen on pigment oxygenation, MRA aerobic and anaerobic.

TRT T TRT*T

Pigment oxygenation

^630-R580 n.s. n.s. *
Hunter L n.s. ** n.s.

Hunter a n.s. ** n.s.

Hunter b n.s. n.s. n.s.

Saturation index n.s. ** n.s.

Hue angle n.s. ** n.s.

MRA, aerobic

MetMb (%) n.s. ** n.s.

MRA, anaerobic

MetMb (%) * ** * (=.054)

**P<0.01
* P<0.05

n.s. P>0.05
TRT = treatment
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Table 7 - Effect of processing ground beef in air and nitrogen on aerobic
metmyoglobin reducing activity, expressed as % MetMb.

Time (hr) Air Nitrogen Treatment average

80.4 77.0 78.71*

2 61.6 58.1 59.8r'
c

4 62.2 62.1 62.2?

Treatment
Air Nitrogen

80.4 77.0

61.6 58.1

62.2 62.1

59.4 57.4

58.1 57.3

57.2 56.6

56.6 58.8

54.2 55.4

6 59.4 57.4 58.4

57.7

10 57.2 56.6 56.9
12 56.6 58.8 57.7

24 54.2 55.4 54.8'

average 61.2 60.3

Means with same superscript letter are not different (P>0.05).

Ail other comparisons are not different (P>0.05).

bed
bed

cd
bed
d
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Table 8 - Effect of processing ground beef in air and nitrogen on anaerobic
metmyoglobin reducing activity, expressed as % metMb.

Time (min)

1

2

3

»

5

8

15

30

60

24 hr

average

°Means with same superscript letter within a column are not different

(P>0.05).

xv
'Means in the same row between treatments with the same superscript are not

different (P>0.05).

Treatment Treatment
Air Nitrogen average

79.1 g '
x

77.0
d 'X

78.1 g

67.3
£

'y 55.0
C '
X

61.1
f

50.8
e 'y 36.2

b
'
X

43.5
e

45.6
d

'
e>y 30.6

ab
'
x

38.1
d

39-7
cd,y

27.6
a '

x
33.6

cd

36.3
bc'y 26.6

a,x
31.5

bc

26.7
a

'
x

25.7
a 'x 26.2

a

32.4
ab

'y 24.2
a '

X
28.3

ab

3M ab,x
25.2

a '
x

28.1
ab

31.0
ab

'
x

2».5
a 'x 27.8

ab

30.2
ab

'
x

2<f.l
a 'X

27.1
ab

43.1
b

3t.6
a
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Figure 1. Metmyoglobin (metMb) and Hunter a values during display at 3° C of

ground beef processed in air (A) and nitrogen (N) and stored in

vacuum 7 and 14 days.
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Figure 2. Color traits of ground beef, stored 7 and 1* days in vacuum, during
display at 3° C.
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Chapter III

EFFECT OF HOT VERSUS COLD BONING AND VACUUM STORAGE TIME

ON GROUND BEEF COLOR STABILITY

Summary

A surface muscle, cutaneous truncii and a deeper muscle, adductor, of 3

beef carcasses were excised 1 hr (H) and 48 hr (C) postmortem and packaged in

vacuum 7 and 14 days before evaluation of display color stability (visual score, %

metMb, R^g-R^ggi Hunter L, a and b, saturation index and hue angle), anaerobic

MRA and pigment oxygenation. Adductor visual scores indicated a rather dark

color throughout the display, but were less dark after 5 days display (p<0.05) with

14 days vacuum storage. Hunter L values did not change during display for samples

stored 7 days, but after 14 days storage were higher from day 3 of display on

(p<0.05). MetMb of C and H treatment was not different (p>0.05). R,, n-R s(> „

tended higher for H. MRA did not show consistent trends and no difference for

treatment or storage. During oxygenation, C samples became lighter with decreased

Hunter a over time for both 7 and 14 days storage, with no difference between

storage times (p>0.05). Samples stored 7 days tended toward lower lightness.

Saturation index decreased over time and H had higher values than C during most

of the oxygenation. MetMb formation was not different between C and H. Up to 15

min oxygenation, C showed higher R
6 3

-R
5g

suggesting more oxyMb than H.

Cutaneous truncii display visual scores were low (bright red), with C and H not

different, except at day 5 when C was higher (darker). No treatment difference

was found for Hunter a, ^30-^580 an<* saturation index. Seven days storage
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caused darker visual scores from day 3 of display on. Hunter a and saturation index

were higher on days 3 and 5 of display for samples stored 14 days. Treatment

effect of hue angle was significant for C7 (p<0.05) but not for CH, with no

storage time effect (p>0.05). MRA was greatest for C7 and lowest for CI* and H7.

R 630~R 580 decreased over time for both C and H; but slightly less for H. During

oxygenation, R63n-R5gn cnan ged very little for either 7 or 1* days vacuum storage

samples. * metMb increased over time. No treatment effect was found (p>0.05) but

metMb formation tended to be delayed for H samples. Hunter L was not different

(p>0.05) between either treatment or vacuum storage time, although C tended

lighter than H.
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Introduction

Ground beef shares an important portion of the fresh beef market.

Understanding and control of the factors that may extend color stability during

display in oxygen permeable packages at the retail stores is important and should

help to reduce product loss.

Oxygen availability and uptake conditions and temperature are key factors

influencing the chemical state of myoglobin. Low temperatures suppress respiratory

enzyme activity (Lawrie, 197*) favoring oxygen penetration into the tissue (Snyder,

196*) and consequently deeper pigment oxygenation. When the amount of available

oxygen is lowered, either depleted by accelerated enzymatic activity (MacDougall

and Taylor, 1975; Bendall, 1972) due to rise in temperature, or at low pO. (George

and Stratman, 1952; Ledward, 1970), pigment oxidation is favored.

Metmyoglobin (MetMb) is continuously reduced to deoxymyoglobin (deoxyMb)

by enzymes present in muscle (Stewart et al., 1965; Ledward, 1970; 1972; Hagler

et al., 1979). This activity varies greatly among muscles due to their anatomical

location, function and structure which influence the oxygen consumption of the

oxidative enzymes and the rate of oxymyoglobin (oxyMb) conversion to deoxyMb.

DeoxyMb is readily oxidized to metMb, favoring discoloration, especially when

reducing activity is used up (Ledward et al., 1971; Hood, 1980; O'Keeffe and Hood,

1982; Billaut et al., 1984).

Metmyoglobin reducing activity (MRA) declines with time postmortem. Aged

meat has poor color stability although it oxygenates faster (Atkinson and Follet,

1973; Ledward et al., 1977; O'Keeffe and Hood, 1980). Prerigor meat is darker,

oxygenates less (Conforth and Egbert, 1985) and forms less metMb (3udge and

Aberle, 1980). MRA is also less active as a consequence of slow chill rate
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(Huffman, 1980; MacDougall, 1982) and grinding (Stewart et al., 1965; Ledward et

al., 1977), because of substrate depletion and enzyme dagradation (Urbin and

Wilson, 1961; Saleh and Watts, 1968; Bendall, 1972).

Two muscles of different locations on the carcass, shape, functionality and

myoglobin content (cutaneous truncii and adductor) were used to evaluate the

effect of hot and chilled processing which differ in oxygen exposure during

processing, and of 7 versus 1* day vacuum storage time on muscle reducing

activity and related characteristics of ground beef.

Materials and Methods

Cutaneous truncii (Ct) and adductor (A) muscles of three young beef cattle

(1 Hereford and 1 Simmental steer and 1 Brahman x Hereford heifer) were excised

from the left side at 1 hr post mortem (hot boned, H) and at 48 hr from the right

side (conventionally chilled, C). The pH decline of both muscles was measured at 1,

8 and 24 hr using a probe electrode. The 24 hr pH ranged from 5.71 to 5.90 for the

adductor and 5.86 to 6.21 for the cutaneous truncii. Excess fat was trimmed and

the meat coarsely ground (12.7 mm plate), mixed, and samples were taken

randomly, vacuum packaged and stored for either 7 or 14 days in the dark at 2 to

3° C. Coarse ground samples for pigment oxygenation and MRA studies were

formed into patties and wrapped in polyvinylchloride (PVC) film prior to vacuum

overwrap packaging. After storage, samples used for display were reground through

a 3.2 mm plate and repackaged in PVC flm.
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Display Color Stability

After vacuum storage for 7 and IH days, samples were reground through a

3.2 mm plate (Oster grinder), formed into patties and rewrapped in PVC film. Two

patties of each treatment were allowed to oxygenate one hour before first color

evaluation. Display study was conducted in an open top case under 970 lux Natural

fluorescent lighting for 2* hr per day at 2 to 4° C for 5 days. Coded samples

randomly distributed were evaluated visually by a 5 member panel for overall lean

color using the KSU 5 point scale (Kropf et al., 1971) to the nearest 0.5 (1 = very

bright red, 2 = bright red, 3 = slightly dark red, <t = dark red or brown, 5 =

extremely dark red or brown) at the beginning of display (time 0) and at 1, 3 and 5

days of display. Spectrophotometry reflectance measurement taken at the same

intervals included those at 525, 572, 580 and 630 nm and Hunter L, a and b values

(Hunter, 1958) for Uluminant A were taken with a Hunterlab D-54 reflectance

spectrophotometer.

Hunter a and b data were also converted to hue angle (tan b/a) and

2 2 I
saturation index [(a + b ) ]. These values along with L are the recommended color

attributes to specify a color using the HunterLab system (Setser, 1978).

Metmyoglobin Reducing Activity

MR A was determined by an aerobic method using a modification from

Ledward (1972) as described by Sleper et al., (1983). At 7 and H days of vacuum

storage, four patties of each muscle treatment combination (AH7, AH14, AC7,

AC14, CtH7, CtHH, CtC7 and CtCl<t) were removed from the vacuum package,

excess moisture on the PVC wrap wiped off and patties placed in an anaerobic

incubator with a 1% oxygen environment for *8 hr at 3 to t° C, to induce metMb

formation. The incubator was evacuated and flushed several times with a gas
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mixture of i% oxygen and 99% nitrogen. Gas samples taken from the incubator

were analysed with the MOCON instrument to monitor the oxygen content. Each

sample was removed from the incubator (time 0) under continous gas mixture

flushing to maintain proper atmosphere in the incubator and scanned

spectrophotometrically at two different locations for percentage reflectance at

525 and 572 nm. MR A in an oxygen permeable package was determined by

calculating % metMb at 2, 4, 8 and 24 hr air exposure, at 3 to 4° C.

Pigment Oxygenation

Five patties of each treatment, at 7 and 14 days of vacuum storage were

used in this study. Percentage reflectance at 580 and 630 nm and Hunter L, a and

b values (1958) for Illuminant A were measured immmediately after opening the

vacuum package (time 0) and after 5, 10, 15, 30 and 60 minutes at 3 different

locations). Samples were scanned through the PVC film and kept at room

temperature (24° C) during evaluation. The reflectance difference at 580 and 630

nm (RgoQ - R59Q' was used as an indicator of redness.

Calculation of MetMb

Concentration of metMb was calculated from K/S ratios as described in

Chapter II.

Total Pigment

Total pigment concentration was determined by Hornsey's acidified acetone

procedure (1956) and ppm haematin was converted to mg/g wet weight applying the

conversion factor (0.026) used by Franke and Solberg (1971).
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Statistical Analysis

Data were analysed by analysis of variance procedures for a

multi split-plot design and means were compared by LSD test (SAS Institute, 1979;

Cochran and Cox, 1957).

Results and Discussion

The total heme pigment concentration of the adductor muscle muscles from

the three carcasses was 7.91, 6.35 and 7.99 and for the cutaneous truncii was 2.97,

2.24 and 2.22 mg/g.

Adductor Muscle

Table 1 summarizes the results of analysis of variance of adductor muscle (A) color

traits, including a 5 day display study, aerobic metMb reducing activity (MRA) and

rate of oxygenation.

Display effects. The interaction of vacuum storage time and display time

(ST*T) was significant (p<0.05) for visual score, % metMb, Hunter a and b values,

saturation index and hue angle (Table 1). MetMb % increased over display time for

both A7 and AW samples (p<0.05). The trend of the A7 samples was for a higher

metMb formation rate (Table 2; Fig. 1) than for A14 samples.

Adductor visual scores indicated rather dark color from the beginning of

the display. These became more discolored over display time for both A7 and A14

samples but Alt beef was less dark at the end of display (p<0.05) (Table 2; Fig. 2).

Hunter L values for A7 remained unchanged (p<0.05) from day 1 to day 5 of

display and for A14 were unchanged from day 3 to 5. Samples stored 14 days
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started out with higher L values but had lower lightness at day 5 (p<0.05) (Table 2;

Fig. 2).

Hunter a values slowly decreased over time for A7 (p<0.05), but AH had no

change in values throughout the display (p<0.05). Samples stored in vacuum 1* days

had higher a values than those stored for 7 days from the 3rd day of display on

(p<0.05) (Table 2; Fig. 2). AH samples tended to increase in Hunter b values with

time and AH had higher b values than A7 at day 3 and 5 of display.

Saturation index had opposite trends. A7 decreased and AH increased. Hue

angle decreased over display time, with no significant storage time effect.

A treatment, chilled (C) versus hot boning (H), versus display time

interaction (CH*T) was calculated for metMb, Rgn3"R5go
and hue angle (P<0 -05 *

(Table 1). H samples formed less metMb at and 1 day of display, but more at 3

and 5 days than C samples (Table 2; Fig. 1). Redness, as expressed by the

difference between % R at 630 nm and 580 nm, decreased (p<0.05) up to day 3 of

display for both treatments. C samples tended to be redder than the H throughout

the display, but the difference was not significant (p>0.05) (Table 2).

Hue angle of C samples decreased up to day 3 of display but practically

remained unchanged for the H treatment at day 1, 3 and 5 of display. Overall

treatment means were not different (p>0.05).

A treatment versus vacuum storage time interaction (CH*ST) was calculated

for Hunter L (Table 1). C samples from both 7 and H days vacuum storage had

higher L values (p<0.01) (Table 3), but no vacuum storage time effect was found

for either C or H samples.

Metmyoglobin reducing activity . A three way interaction (p<0.01) was found

between treatment, vacuum storage time and time of reduction in air (CH*ST*T)
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(Table 1). The means did not show consistent trends. Overall, there was not much

difference between C and H treatments at either 7 or 14 days storage except at 1

hr (Table 4). Since adductor muscle is located deeper in the carcass, its exposure

to oxygen while remaining on the carcass is minimal and little difference was

expected between treatments.

Pigment oxygenation. A three way interaction of C versus H treatments,

vacuum storage time and time of oxygenation (CH*ST*T) was calculated (p<0.01)

for Hunter L, a and b values, saturation index and hue angle (Table 1). C samples

became lighter (higher L value) over time (p<0.05), both from 7 and 14 days

storage, but lightness was not different when storage times were compared

(p<0.05). Hunter L values of H14 treatment increased faster during the first 5 min

and then was slower up to 60 min. Compared to C, H samples had lower L values,

ie., were darker at both storage times. Samples stored 7 days (C7 and H7) tended

to have lower lightness, but were not different after 60 min.

Comparing C and H from either 7 or 14 days storage, H samples showed lower

L values (p<0.05), ie., were darker, as expected, but the difference was smaller

for samples stored 14 days (Table 5; Fig. 4).

Hunter a values decreased over time for both C and H treatments at either

7 or 14 days. C7 and C14 were not different, whereas H14 had a fast decrease

during the first 5 min and then remained practically unchanged, following the

opposite trend as L value (Table 5; Fig. 4). Hunter a values were higher for

samples stored 7 days than for the 14 day samples, this difference being significant

only during the first 15 min of oxygenation.

Hunter b values were not different over time for either C7 or C14 (p>0.05).

H7 values were higher with more variation than for H14 (Table 6).



71

Saturation index decreased over time up to 10 min of oxygenation (p<0.05)

for both C and H treatments. C means were not different for 7 and 1* days

storage (p>0.05). From 7 day storage samples, C had lower saturation index during

the first 10 min; thereafter the means were not different (p>0.05). However, from

14 days H tended to have lower means (Table 5).

Hue angle decreased (p<0.05) over time for either treatment. Storage time

effect was not different for C. H14 samples tended to have higher hue angle than

H7 samples. With 7 days storage, H means did not follow a constant pattern, and

were different (higher) only at 15 and 60 min (Table 5).

Interaction (p<0.01) of treatment (C versus H) versus oxygenation time

(CH*T) was found for redness (R
63fj-

R 5gn'- For * metMb there was a significant

interaction (p<0.05) of vacuum storage time versus oxygenation time (ST*T) (Table

1).

Seven day storage (A7) showed a trend of forming less metMb during the

pigment oxygenation study than A14, but the difference was not significant (Table

6; Fig. 3). Up to 15 min oxygenation, C samples had higher R (:-in"R 5xn>
' e- > were

brighter red than H samples. For both C and H treatments redness did not increase

after 5 min, and started decreasing at 30 min (Table 6).

Cutaneous truncii Muscle

Table 7 summarizes the results of analysis of variance of cutaneous truncii

(Ct) color traits, including a 5 day display study, aerobic metMb reducing activity

(MRA) and rate of oxygenation.

Display effects. A three way interaction of treatment, vacuum storage time

and display time (CH*ST*T) was found (p<0.01) for Hunter b values (Table 7).



72

Hunter b tended to increase over time, except for C7 samples, where the means

tended to decrease but were not different from the day 1 of display on (p<0.05)

(Table 8). C and H treatments, of either 7 or 1* days vacuum storage were not

different except on day of display when C7 was higher. Means of C7 and CU

were not different, except on day 5 of display, when C14 was higher (p<0.05). H7

means were higher than H14 means throughout the entire display time (p<0.05).

Hunter b is of limited value in defining meat color.

A treatment (C versus H) x display time interaction (CH*T) was calculated

(p<0.05) for visual score, R
630-R5g0 , Hunter L and a and saturation index (Table

7).

Visual scores were low at the beginning of the display indicating bright

red color and then the scores increased over time for both C and H treatments.

The means between C and H were not different, except for the last day of display

when C had darker color (higher score) (Table 8; Fig. 2).

Hunter a, R63n-R5grj
and saturation index decreased over time (p<0.05)

except for saturation index of H samples which were not different (p>0.05) over

time. For all traits, there was no overall difference (p>0.05) between

treatments, but H samples tended to have higher values. This difference was

significant (p<0.05) at day 3 and 5 of display for Hunter a values.

Visual score, Hunter a and saturation index had a vacuum storage time

versus display time interaction (p<0.05) (Table 7). Visual scores indicated darker

color at days 3 and 5 of display for 7 day samples (Table 8; Fig. 2). Hunter L did

not change over time (p<0.05). Hunter a from 7 and 14 days vacuum storage (Table

8; Fig. 2) and saturation index from 7 day samples decreased over time. They were

higher on day 3 and 5 of display for 14 days storage than for 7 day storage.

Interaction of C and H treatments versus vacuum storage time was
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significant (p<0.05) for hue angle (Table 7). Hue angle was different at 7 days

between C and H samples (p<0.05) but not for the 14 day storage samples. Means

between storage time were not different for either C or H samples (Table 9).

Table 10 shows that % metMb formed on the sample surface during display

increased (p<0.05) with display time (Fig. 1), with no significant treatment or

vacuum storage time effect.

Metmyoglobin reducing activity . An interaction (p<0.01) of CH*ST*T was

found for aerobic MR A (Table 7). C7 samples formed highest % metMb during

incubation in 1% oxygen environment, followed by C14 (Table 11). H7 and H14

formed about half of that of C7 which also showed greatest reducing activity

because after 24 hr approximately 50% of the initial metMb concentration was

reduced. About i of the total metMb was lost between 1 and 24 hr for hot, 14 day

storage sample.

Pigment oxygenation . An interaction of CH*ST*T was found (p<0.05) for

saturation index determined during oxygenation (Table 7). The saturation index

decreased over time for H7 and H14 and for C14. For C7 it remained practically

unchanged. At either 7 or 14 days storage the treatment effect was not

significant. C samples were not different between 7 and 14 days storage time. H7

samples had higher values only up to the first 5 min; thereafter, the means were

not different (Table 12).

R 630"R 580 had '"^actions (p<0.01) of both treatment (C or H) and storage

time with display time (Table 7), but consistent and meaningful trends were not

found for this measurement which should be related to oxyMb concentration and to

bright red color.
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A significant treatment (C or H) versus oxygenation time interaction (CH*T)

was found for metMb, Hunter L, a and b values (p<0.01) (Table 7). MetMb % of

both C and H increased over time. Although the C samples tended to form more

metMb (less MRA), there was no significant (p>0.05) treatment effect (Table 12;

Fig. 3).

Hunter L and b values increased with oxygenation time for either C or H.

Lightness was not different (p>0.05) between treatments, but C tended to have

higher means (lighter). After 30 min oxygenation, Hunter b values of C were higher

(p<0.05) (Table 12; Fig. 4).

A CH*ST interaction (p<0.05) was found for Hunter L (Table 7). C7 and C14

had slightly higher values than H7 and HI 4 but the difference was not

significant. Me ans btween vacuum storage time for either C or H were not

different (p>0.05) (Table 13).

Hue angle during oxygenation, averaged over C and H treatments and vacuum

storage time, decreased with time.

In the display study, the ground adductor muscle packaged in PVC was dark

in color initially and remained dark during the 5 days of display. The cutaneous

truncii showed a more desirable color early in display and relatively low metMb

levels on the surface compared to the adductor. No well defined effect of hot

compared to cold processing was found for the adductor. After five days of

display, cutaneous truncii processed chilled after remaining on carcass 48 hr had a

darker color than if hot boned and processed. For each muscle, the sample vacuum

stored 14 days showed some indications of more desirable traits than those vacuum

stored for 7 days.

Aerobic MRA determinations for the adductor were inconclusive and did not

show treatment or storage effects. Cutaneous truncii MRA studies showed a higher
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metMb level initially and after 2H hr aerobic exposure for cold processed compared

to hot processed.

Results of pigment oxygenation studies are largely inconclusive and do not

relate strongly to display and MRA results. The cold processed adductor showed a

higher R
630-R5gn ratio than for hot processed, but other traits were not clearly

affected. Storage for 14 day with adductor samples resulted in higher metMb at 5

min or longer oxygenation times. For cutaneous truncii muscle, the hot processed

samples tended to have less metMb early in the oxygenation study.

We expected no advantages for hot processing of the adductor muscle,

because it has a very limited exposure to oxygen while on the intact carcass.

Therefore, removing it hot in order to reduce oxygen exposure had little

advantage. We expected to see a more dramatic and consistent advantage for

removing the cutaneous truncii hot and minimizing its exposure to oxygen. However

we only had trends and limited evidence that this was true.
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Table 1 - Significance levels of effects of hot vs. chilled boning, 7 and 14 days
vacuum storage and display or test times, on ground adductor muscle
color stability.

CH ST CH*T ST*T CH*ST CH*ST*T

Display

Visual score n.s. n.s. **

MetMb (%) n.s. n.s. **

R
63CTR580 n "s - *

Hunter L *

Hunter a n.s.

Hunter b n.s.

Saturation

index n.s.

Hue angle n.s. n.s. n.s.

MRA

MetMb (%) n.s. n.s. ** **

Rate of oxygenation

R 630"R 580 n -s - n - s - **

MetMb (%) n.s. n.s. ** n.s.

Hunter L * * ** **

Hunter a n.s. * ** **

Hunter b n.s. n.s. ** **

Saturation

index n.s. * ** **

Hue angle n.s. n.s. ** **

n.s. #* n.s. n.s.

* * n.s. n.s.

** n.s. n.s. n.s.

n.s. n.s. ** n.s.

n.s. ** n.s. n.s.

n.s. ** n.s. n.s.

n.s. ** n.s. n.s.

* * n.s. n.s.

***P<0.01

**P<0.05
n -s-P>0.05

CH = treatment (chilled x hot boning)
ST = vacuum storage time (7 x 14 days)

T = time
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Table 2 - Effects of hot or chilled boning, after 7 and 14 days vacuum storage,
on ground adductor muscle color stability during display at 3°C.

Display (days)Color

trait

Vacuum
storage

(days)

MetMb (%) 7

14

Visual score 7

14

Hunter a 7

14

Hunter b 7

14

Saturation index 7

14

Hue angle 7

14

treatment

MetMb C
H

R
630-580 C

H

Hue angle C
H

7.6
a 'x 31.8

b
'
x

84.8
c 'y 79.3

C,X

11.0
a 'x 27.7

a 'x 68.8
b 'x 83.0

b
'
x

2.8
a 'x 3.3

b
'
x

4.4
C '
X

4.8
d -y

2.9
a

'
x

3.3
,x

4.2
C 'X 4.3

C
'
X

25.1
b

'
x

25.1
b

'
x

18.8
a '

x
17.6

a
'
x

24.9
a,x

24.7a '
x

23.4a ' 5
'

23.0
a

' y

13.7
a 'x 19.5

b 'x 20.4
b

'
x

17.8
ab ' x

13.3
a 'x 18.9

b 'x 23.9
b 'y 26.1

b 'y

28.6
b

'
X

31.8
b 'x 27.8

ab
'
x

25.0
ab 'x

28.2
a 'x 31.1

ab 'x 33.5
ab

' y 34.9
b 'y

1.7
C 'X 1.0

b 'x u.5
a

?
x

0.6
a 'x

17C,x KOab,x 06ab,y 05 a,x

12.5
a 'x

6.0
a 'x

34.3b '
x

25.2 b '
x

72.7C 'X

80.9 C '
X

78.1 c 'x

84.2C 'X

14.5
C 'X

10.8
C,X

9.0b 'x

7.0
b 'x

5.2
a 'x

3.5
a 'x

4.6
a

'
x

3.2
a 'x

1.6
C

'
X

1.8
C '
X

1.0
b 'x

1.0
a,x

0.6
a,x

0.5
a

'
x

0.6
a

'
x

0.5
a

'
x

abed
Means in same row with the same superscript are not different (P>0.05).

'Means between treatments or storage time within display day with same
superscript are not different (P>0.05).

C = chilled, H = hot boned
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Table 3 - Effects of hot or chilled boning, after 7 and IH days vacuum storage,
on Hunter L values of ground adductor muscle during display at 3°C.

Vacuum
Storage Treatment
(days) Chilled Hot boned

7

1*

33>x

33.3
b '
x

26.6
a '
x

27.9
a '
x

Means with the same superscript between treatments are not different (P>0.05).

Means between storage time with same superscripts are not different (P>0.05).
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Table * - Effects of hot or chilled boning of ground adductor muscle, after 7
and 14 days vacuum storage, on % MetMb reduction at 3°C.

Time (h)Treatment
traits

Vacuum
storage

(days)

Chilled 7

Chilled It

Hot boned 7

Hot boned It

24

6K7a,m,x 904c,m,x g ^_ 7
c,m,x 729b,m,x 661ta,m,x

89.4
b >m >y 89.4

b
'
m

'
x

84.9
b

'
m

'x 82.1
b 'm '

x
72.2

a 'm '
x

90.1
c 'n 'x 83 2

b
'
m

'
x

79 i
ab

'
m 'x 72 2

a 'm '
x 78 5

ab >m ,x

91.4
c '
m

'
x

95.7
d

'
m

'
x

86.1
bc '

m,x
83.1

b 'm '
x

7l.9
a >m >x

Means in the same row with same superscript are not different (P>0.05).

xy
Means between storage time within treatment with same superscript are not
different (P>0.05).

Means with same superscripts between treatments are not different (P>0.05).
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Effects of hot or. chilled boning of ground adductor muscle, after 7 and 14 days
vacuum storage, during oxygenation.

Color
Vacuum

Treat- storage
merit (days)

Time (min)

trait 5 10 15 30 60

7

11

7
It

7

14

7

14

Hunter b C 7

C 14

H 7

H 14

Saturation C 7
index C 14

H 7

H 14

Hue angle c 7

c 14

H 7

H 14

34.7
1"

21.3

32.2
1

99 3<*f"»*

lg
_'

7
a,m,x

20.5a '
m

>x

32 _

d,m,x

32#3
c,m,x 270 i

37.0
d

>
n 'x 35.0^

7C,m,x n -, ~b

26.4

23.2'

10.1"'"'* 10.7'

106a,m,x IJU
J

H.8^c '
m

'
x
I5.9

di

ll.l
b

'
m 'x 8.5'

33(;
c,m,x

3^.
c,m,x

38.8
d 'n ''

c,m,x
36.4'

3 ;

c,m,x

28.5

2.3

n,x
^o.l

c,n
'
x

41.5c »
n

»
x

*f0.5
c,n

»
x *1.0c »

n
»
x

n,x
^
^c,m,x

4i] 2
c »

n
'
x *K7c,m '

x
4o!7c '

m,x

m,x 26*5 c,m 'x 33*5^im »
x

3l'2^>
m,x

34*l
e,rn *'

m,y 36 ;2
c .m »y 35!7c 'm 'x 36!8c 'm '

v 36!2c 'm 'x

m,x 93 7^fm >
x ?2 3

ab»m »x 22 5
ab,nn,x 20 5a,m,x

n,x 234a tn >
x 22"7 a,rn '

x 219a 'm »
x 208a,m,x

n »y 291 c,n,x 216a '3,rT1
'
x 239^'m, y I9*8a »

m,x

m,X 2o"4a »
m

»
x 21*0a '

m,x I9'5a »
m

>
x iR*7a Jm >

x

m,x
n,x

y
,m,x

ga,m,x .Q ^a,m,x ,q -ja,n,x

10>'m '
x

lo!4
a

'
n 'x lo!8

a 'n '
x

j. -,a,m,x tn oD »
n1 >y s na '

m »x

m,x ',a,m,x o'.a.m.x <,'n a,m,x

10.2"' 1 "''

10.1
a

'
n

'
x

13 . 5
c,n,y

gn a,m,x g6 8.1° 8.0°

ab.m.xm,X -yc ndJJ
flll,A y^ ^U,IM,X y . oil, HI,

A

~* j- =1

n,x 25'5a t
n

»
x 24*8a '

m
'
x 24*2a,n '

x 23*5 a,m '
x

n.y
32*l

c,n,y
23!l

a '
m

'
x

26!2
b,m

'y 2K4a '
m 'x

,m,x
2i'Q

aD
>
m

»
x 22'6ab 'm 'x 2l'l

a,m,x 20*3a,m,x

2 2
D

>
n

»
x

2*2b,m,x

2;
a,m,x

30c,m,x 2.6b '
n

'y 2.4ab '
n '>'

2
2b,m,x

2*^b,m,x

2; 5
c,n,x

2 .3
a,n,x

2 Qa,m,x

2*oa
b,m,x

2 ;
a,m,x

1.8

1.8?> r

2A b,n,x

23a,n,y 2.2a '
m,x

Means with the same superscript in a row are not different (P>0.05).

nMeans of treatments within vacuum storage time and oxygenation time, with same
superscript, are not different (P>0.05).

x^Means of vacuum storage time within

superscript, are not different (P>0.05).

treatment and oxygenation time, with same
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Table 6 - Effects of hot or chilled boning of ground adductor muscle, after 7 and
n6 days vacuum storage, during oxygenation.

Color
traits

Vacuum
Treat- storage

ment (days)

Time (min)

10 30 60

MetMb (%) 7

11

H.3^'y 15.1=* 15.2
c >y 13J>

C# 14.3^'
x

12.2
a

'
x

I0.5
b

'
x

ll.l
bc 'x 11.2

C '
X

11.2
C 'X 10.9

b '
x

9.8
a 'x

g4a,x ,.9a,x 6
^a,x 156a,x ma,x 23 g

b,x

05a,x
7-1

ab,x 17^bc,y 18 .7
bc,x

i 9 .

bc,x 26.9C '
X

abc.Means with same superscript in a row are not different (P>0.05).

xyMeans with same superscript between treatment or vacuum storage time within

oxygenation time are not different (P>0.05).

chilled, H = hot boned.
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Table 7 - Significance levels of effects of hot or chilled boning, after 7 and 1*
days vacuum storage, on ground cutaneous truncii muscle color stability.

CH ST T CH*T ST*T CH*ST CH*ST*T

Display

Visual

score n.s. * *-*

MetMb (%) n.s. n.s. **

R630~R580 n.s. * **

Hunter L n.s. n.s. **

Hunter a n.s. * **

Hunter b n.s. * **

Saturation

index n.s. ** *#-

Hue angle * * **

MRA

MetMb (*) * + **

Rate of oxygenation

ft* n.s. n.s,

n.s. n.s. n.s.

n.s. n.s. n.s

** n.s. n.s,

* (5.3) n.s. n.s

* n.s. #*

*** n.s. n.s,

n.s. * n.s,

V
63CTK580 n -5

-
n -s

- " "" **

MetMb (%) n.s. n.s. ** ** n.s. n.s.

Hunter L n.s. * ** ** n.s. *

Hunter a n.s. n.s. ** ** n.s. n.s.

Hunter b n.s. * ** ** n.s. n.s.

Saturation

index n.s. n.s. ** ** n.s. n.s.

Hue angle n.s. * ** n.s. n.s. n.s.

***P<0.01

**P<0.05
n-s

-p>0.05

CH = treatment (chilled x hot boning)
ST a vacuum storage time (7x1* days)

T = time
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Table 8 - Effects of hot or chilled boning after 7 and 14 days vacuum storage,
and display time, on ground cutaneous truncii color stability during
display at 3°C.

Treatment
Color or storage

(days)

Display (days)
trait 1 3 5

Visual score C
H

1.5
a

'
x

1.6
a 'x

2.0a '
x

1.9
a

'
x

3.0b 'x

2.6 b '
x

3.8C>V

3.3C >X

R 630"R580 C
H

21.3
C '
X

18.0
C 'X

15.7b 'x

15.0bc 'x
9.0a '

x

U_9ab,x
5.8a '

x

8.9a '
x

Hunter a C
H

26.4J;'

X

23 _ 9
b,x

22. 6
bc,x

22.3
ab

'
x

17.8
ab

'
x

20.9
ab

' y
14.4

a 'x

Saturation index C
H

30.4
C

'
X

26.8
a 'x

26.4
bc 'x

26.2
a '

x
23.1

ab
'
x

25.9
a 'X

20.0
a

'
x

23.0
a 'X

Visual score 7

u
1.6

a 'x

1.6
a 'x

,_9
a,x

2.0
a 'X

3.i
b >y

25b,x
4.0

C 'y

3.1
c 'x

Hunter L 7

14
45.8

a 'x

48.1
b -y

47.4
a >y

44.7
a 'x

44.5
a

'
x

43.5
a 'x

45.9
a -y

43.4
a 'x

Hunter a 7

14

24.1^'
x

26.3
b

'
x

21.1
b 'x

23 ,g
ab,x

16.2
ab

'
x

225ab,y
12.7

a
'
x

19.4
a -y

Saturation in dex 7

14

27.3
C '
X

29.8
a,x

24.7bc 'x

27.8a '
x

2 l_ 2
ab,x

27.7a >y

18.0a 'x

25.3a -y

storage*treatment

Hunter b 7

7

14

14

C
H

C
H

156b,n,s

102a,m,s

IH 3
a,m,s

n ;g
a,m,t

13 .
a,m,s

12 _ 5
b,m,s

14
_'

3
a,m,s

H ;g
ab,m,

13.4a,m,s

13.8 b '
m

'
s

155a,m,s
t
16ifc,m,t

12.3a '
m

'
s

12
.gb,m,s

15 ;,a,ni,t

16!l
b 'm '

t

mn
Means in same row with the same superscript letter are not different (P>0.05).

Means of treatments within vacuum storage time in a column with same
superscript are not different (P>0.05).
"Means of vacuum storage time or treatment for any color trait with same

^superscript in a column are not different (P>0.05).
Mean of vacuum storage time within a treatment in a column with same
superscript are not different (P>0.05).
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Table 9 - Effects of hot or chilled boning, after 7 and 14 days vacuum storage,
on hue angle of ground cutaneous truncii muscle during display at 3°C.

Vacuum
Storage Treatment
(days) Chilled Hot boned

7

14

1.0
a 'x

1.2
a 'x

1.3
b 'x

K3a,x

Means of treatments with same superscript are not different (P>0.05).

Means in a column with same superscript are not different (P>0.05).
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Table 10 - Metmyoglobin of ground cutaneous truncii muscle during display at
3°C.

Display

(days) % MetMb (X)

2.5a

1 17.8
b

3 32.5
C

5 46.6
d

abed Means with different superscript are significant (P<0.05).
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Table 11 - Effects of hot vs. chilled boning of ground cutaneous truncii muscle,
at 7 and 14 days vacuum storage, on % MetMb reduction at 3°C.

Vacuum
storage Time (h)

Treatment (days) 1 2*82*
Chilled 7 95.5

c 'n 'y 59.8
b

'
n,x

5*.3
ab,n

'
x
54.9

ab,n
'x *7.5

a 'n '
x

Chilled 1* 68.6
b

'
n 'x 67.1

ab
'
n,x

63.9
ab

'
n,x

60.2
a

'
m

'x 60.*
a

'
n

' y

Hot boned 7 *5.5
b

'
m 'x 3*.9

a,m,x
31.6

a,m,x
31.5

a,m,x
32.0

a,m 'x

Hot boned 14 57.7
b

'
m ' y 56.3

b
'
m

' y 51.5
b 'm,y 55.*

b,m
'y 43.3

a 'm 'y

at>c,.
Means with same superscript letter in a row are not different (P>0.05).

xy
Means of vacuum storage time with same supercript within treatments are not
different (P>0.05).

Means of treatments with same superscript within vacuum storage time are not
different (P>0.05).
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Table 12 - Effects of hot or chilled boning of ground cutaneous truncii muscle, after 7

and 14 days vacuum storage during oxygenation.

Color
Traits

Treat-
ment

Time (min)

10 15 30 60

R 630"R580 C 14.6

H 15.7
b,x

15.8

16.6

bc,x

bc,x
16.0

bc 'x

16.9
C,X

16.

5

1"

16.8
C

16.6^'
x

16.0
bc 'x

15.2
ab

'
x

14.7
a 'x

MetMb (%)

Hunter L

Hunter a

Hunter b

14.0
a

'
A

1.4
a

>
x

47.0
a 'x

43.0
a 'x

C 19.8

H 22.

2

L

b,x

7.5
a

6.7
a

15.4

1.7

50.6

45.6

18.8

21.3

a,x

a,x

b,x

b,x

ab,x

c,x

7.8°'*

8.0
b

'
x

15.5

6.4

51.2

49.0

18.6

19.5

ab,x

b,x

c,x

ab,x

b,x

8.4
ab 'x

76ab,x

15.3

8.0
ab,x

51.2'

49.4
C

b,x

19.1

18.7

S.9

7.3

ab,x

ab,x

bc,x

ab,x

16.3
a,x

10.7
bc

'
x

52.1

50.2

b,x

c,x

ab,x
19.2

18.2
a 'A

9.6
c >y

71 ab,x

19.8
15.6'

51.4

49.3

a,x

c,x

b,x

c,x

a,x
18.2
17.7"

9.5
C ')'

7.1
ab

'
x

R630~R 580

storage time

15.3'
a,x

14

16.5 b '
x

16.5:
b,x

15.0
a '

x
16.0

b 'x 16.3
b,x

16.5 b '
x

16.8
b

'
x

16.3ab '
x

16.3b 'x
15.4a '

x

14.4a '
x

storage x treatment

Saturation 7 C 21.3
b,x 'm 20.2

ab
'
x

'
m

20.7ab 'x '
m

2 1.0
ab

'
x

'
m

21.6 b 'x 'm 2 l.l
ab 'x '

m
index 7 H 28.8

c 'y '
m

28.9
c 'y,n 21.3

b 'x,m 20.0
a 'x '

m
19.3

a
'
x 'm 19 3

a,x
'
m

14 C 21.3
c

'
x

'
m

20.5
at>c

'
x 'm 20.2

ab 'x 'm 21.1
bc,x

'
m

21 4
c '

x
'
m

20 l
a

'
x

'
m

14 H 2o!6
b 'x '

n
2l!7

c 'x 'm 20.6
b 'x '

m 200b 'X 'm 197
ab

'
x

'
m 18*8a 'X '

m

abc
Means in the same row with the same superscript letter are not different (P>0.05).

Means of treatments within vacuum storage time in a column with some superscript
are not different (P>0.05).

xy
Means of vacuum storage time or treatment with same superscript are not different

(P>0.05).

chilled, H » hot boned.
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Table 13 - Hue angle values of ground cutaneous truncii muscle during
oxygenation.

Time (min) Hue angle

2 9
a

5 2A b

10 2.3C

15 2.2CU
30 2.1

ab

60 2.0
a

abcMeans with same superscript letter are not different (P>0.05).
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Figure 1. MetMb on the surface of ground adductor muscle chilled (AC), hot
boned (AH) or after 7 (A7) and U (A14) days vacuum storage or of
cutaneous truncii (C) during display at 3° C.
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Figure 2. Visual scores of ground adductor (A) and cutaneous truncii (C) for
samples stored 7 or 1* days and of cutaneous truncii processed hot
(CH) and chilled (CC) during display at 3° C.
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Figure 3. MetMb (%) for ground adductor after 7 (A7) and 1* (Al*) days
storage and of cutaneous truncii of chilled (CO and hot (CH)
treatment during oxygenation.
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Figure k. Hunter L and a values during oxygenation of ground adductor (A)
muscle hot (H) and chilled (C) boned, with 7 and H days vacuum
storage.
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Two studies evaluated the effect of oxygen exposure on ground beef color

stability. First, semimenbranosus muscle (48 hr postmortem) of 3 beef carcasses

was trimmed, cut and ground in a nitrogen atmosphere, compared to 48 hr exposure

of muscle to air before grinding. Samples stored in vacuum 7 and 14 days, were

displayed under natural fluorescent lighting at 3° C for 5 days and these color

traits were measured: % metmyoglobin (metMb), difference of 630 and 580 nm

reflectance (R63n-R5gn'> HunterLab values, saturation index, hue angle and visual

score. MetMb increased faster (p<0.05) for samples processed in air after 14 days

in vacuum, but not for those stored 7 days. Hunter L values of 14 day samples

were higher (p<0.05) when processed in air; treatment did not affect Hunter a

values. Samples stored 14 days in vacuum oxygenated better and were redder

throughout display (higher R
g3o-

R
5go'

lower visual score, higher Hunter L) than

for 7 days storage. Samples processed in air, had very little oxyMb formation.

Treatment did not affect (p>0.05) aerobic metmyoglobin reducing activity (MRA),

although anaerobic MRA was greater for the nitrogen treatment. In the second

study, a surface muscle, cutaneous truncii and a deeper muscle, adductor, of 3

beef carcasses were excised 1 hr (H) and 48 hr (C) postmortem and packaged in

vacuum 7 and 14 days before evaluation of display color stability (visual score, %

metMb, Rg30"R580' HunterI-ab, saturation index and hue angle), anaerobic MRA

and pigment oxygenation. Adductor visual scores indicated a rather dark color

throughout the display, but were less dark after 5 days display (p<0.05) with 14

days vacuum storage. Hunter L values did not change during display for samples

stored 7 days, but after 14 days storage were higher from day 3 of display on

(p<0.05). MetMb of C and H treatment was not different (p>0.05). R63Q-R5go

tended higher for H. MRA did not show consistent trends and no difference for

treatment or storage. During oxygenation, C samples became lighter with decreased

Hunter a over time for both 7 and 14 days storage, with no difference between



storage times (p>0.05). Samples stored 7 days tended toward lower lightness.

Saturation index decreased over time and H had higher values than C during most

of the oxygenation. MetMb formation was not different between C and H. Up to 15

min oxygenation, C showed higher R
630

-R
5g

suggesting more oxyMb than H.

Cutaneous truncii display visual scores were low (bright red), with C and H not

different, except at day 5 when C was higher (darker). No treatment difference

was found for Hunter a, R^o^gn and saturation index. Seven days storage

caused darker visual scores from day 3 of display on. Hunter a and saturation index

were higher on days 3 and 5 of display for samples stored 1* days. Treatment

effect of hue angle was significant for C7 (p<0.05) but not for CI*, with no

storage time effect (p>0.05). MRA was greatest for C7 and lowest for CI* and H7.

R 630~R580 decreased over time for both C and H; but slightly less for H. During

oxygenation, R^g-Rjgg changed very little for either 7 or 1* days vacuum storage

samples. % metMb increased over time. No treatment effect was found (p>0.05) but

metMb formation tended to be delayed for H samples. Hunter L was not different

(p>0.05) between either treatment or vacuum storage time, although C tended

lighter than H.


