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ABSTRACT

Transiting exoplanetary systems are surpassingly important among the planetary sys-
tems since they provide the widest spectrum of information for both the planet and
the host star. If a transiting planet is on an eccentric orbit, the duration of transits
TD is sensitive to the orientation of the orbital ellipse relative to the line of sight.
The precession of the orbit results in a systematic variation in both the duration of
individual transit events and the observed period between successive transits, Pobs.
The periastron of the ellipse slowly precesses due to general relativity and possibly
the presence of other planets in the system. This secular precession can be detected
through the long-term change in Pobs (transit timing variations, TTV) or in TD (tran-
sit duration variations, TDV). We estimate the corresponding precession measurement
precision for repeated future observations of the known eccentric transiting exoplane-
tary systems (XO-3b, HD 147506b, GJ 436b and HD 17156b) using existing or planned
space-borne instruments. The TDV measurement improves the precession detection
sensitivity by orders of magnitude over the TTV measurement. We find that TDV
measurements over a ∼ 4 year period can typically detect the precession rate to a
precision well exceeding the level predicted by general relativity.

Key words: binaries: eclipsing – planetary systems – relativity – methods: observa-
tional – techniques: photometric

1 INTRODUCTION

Since the discovery of the first transiting extrasolar planet
(Charbonneau et al. 2000; Brown et al. 2001), the number
of such systems has increased to more than 301. These tran-
siting extrasolar planets (TEPs) provide unique information
on the properties of the system. Based on the geometry pro-
vided by the transit light curve(s), the inclination, the phys-
ical radius and mass, therefore the density and the surface
gravity can be derived, in addition to the mass of the planet.
Moreover, the time between successive transits can be mea-
sured with an exceedingly high accuracy (∼ 10−6 – 10−7,
relative to the period). The detection of long–term tran-
sit timing variations can be used to learn more beyond the
properties of the parent-star system (Miralda-Escude 2002;
Steffen & Agol 2007). They can be indicative of the presence

⋆ E-mail: apal@cfa.harvard.edu
† E-mail: bkocsis@cfa.harvard.edu
1 See http://exoplanet.eu for up to date information

of other planetary companions (see e.g. Holman & Murray
2005; Agol et al. 2005; Miller-Ricci et al. 2008), co-orbital
companions (Trojans, see Ford & Holman 2007), or satel-
lites (Simon et al. 2007) in the system, could provide in-
formation on the oblateness of the host star, or can be
used to detect the additional prograde periastron precession
predicted by general relativity (GR) (Miralda-Escude 2002;
Heyl & Gladman 2007). Secular variations in the semimajor
axis (and therefore in the transit timing) are also predicted
on the time scale of stellar life due to the anisotropic light
redistribution (a.k.a. Yarkovski-effect, see Fabrycky 2008).
Furthermore, Iorio (2006) has shown that TEP observations
can in principle also test the gravitoelectric correction of
GR by measuring the radial velocity amplitude and tran-
siting periodicity simultaneously, in order to verify that the
third Kepler’s law requires a semimajor axis dependent cor-
rection.

In a pioneer study, Miralda-Escude (2002) derived the
modification of the observed time period between succes-
sive transits Pobs, called transit timing variations (TTVs),
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caused by the standard periastron precession due to GR (e.g.
Misner, Thorne, & Wheeler 1973) and the perturbations of
other planets if present. Recently, Heyl & Gladman (2007)
have extended these studies and estimated the precision of
precession rate measurements for long–term mock obser-
vations of eccentric transiting extrasolar planets (ETEPs).
Both studies restricted to small eccentricities. At that time,
the existence of close eccentric planets was known only
through radial velocity measurements, and no ETEPs had
been observed. Since their publication, four transiting ex-
trasolar planets have been discovered with significant eccen-
tricity: XO-3b (Johns-Krull et al. 2007), HD 147506b (a.k.a.
HAT-P-2, Bakos et al. 2007), GJ 436b (Gillon et al. 2007;
Butler et al. 2004), and HD 17156b (Fischer et al. 2007).
Therefore it is now possible, for the first time, to make
specific predictions for future, long–term measurements of
periastron precession effects for real exoplanetary systems.

In this paper we determine the precision by which re-
peated long–term future ETEP observations will be able to
detect the periastron precession rate for existing systems.
In addition to TTVs, i.e. the slow modulation of Pobs con-
sidered previously (Miralda-Escude 2002; Heyl & Gladman
2007), the periastron precession also changes the time dura-
tions TD of individual transits. We examine whether these
transit duration variations (TDVs) can be used to improve
the sensitivity of periastron precession measurements. We
estimate the precession rate measurement precision for long
term repeated observations of Pobs and TD for the known
ETEPs. Since several of the observed ETEPs have large ec-
centricities, we derive expressions for both TTVs and TDVs
which are applicable for arbitrary eccentricities. We estimate
whether future observations of currently known ETEPs will
be able to reach the sensitivity necessary to test the pre-
diction of GR, using existing or planned space-borne instru-
ments. We refer the reader to a recent independent study
by Jordan & Bakos (2008), of precession rates in eccentric
transiting extrasolar planets.

The next section of this paper introduces the geometri-
cal description which is the basis of our calculations, and de-
rives the expected transit timings and durations for planets
orbiting a star with an arbitrarily large eccentricity. In § 3,
we utilize our results for the confirmed four ETEP systems,
and give predictions for future observations of periastron
precession with space-borne observations. Our conclusions
are discussed in § 4.

2 TRANSIT TIMINGS AND DURATIONS FOR

ECCENTRIC ORBITS

The reference frame used for the description of exoplane-
tary systems as well as for binary/multiple stellar systems
is fixed to the sky: the plane of the sky is defined by the
(X+, Y+) while Y+ points towards to north. For planetary
transit observations, the line-of-sight lies close to the orbital
plane, i.e. perpendicular to the plane of the sky. The orbit is
given by Cartesian coordinates (ξ, η), where ξ+ is parallel to
X− and η+ oriented toward the observer (see also Fig. 1).
The Lagrange vector or eccentricity vector is given in these
coordinates as (k, h) = (e cosω, e sinω). Let us define the
angle ϕ0 as the angle relative to ξ+ in the orbital plane at

Z

Y
(north)

ξ

(observer, Earth)

η

(west)

X

ω

Figure 1. The geometry of the orbit of the transiting planet. The
plane of the sky is defined by the X+ (west) and Y+ (north) axes
while the Z+ axis points away from the Earth. The orbital plane
is defined by the axes ξ+ and η+, where ξ+ is anti-parallel with
X+ axis, η+ is in the plane of (Y+, Z+) and the angle between
Y+ and η+ is the inclination, nearly 90◦. The major axis of the
orbit is marked by the dotted line.

the instance2 of the transit. From the definitions of (ξ, η),
observing from Earth is equivalent to setting ϕ0 = π/2.

Now let us denote the mean longitude of the planet at
the instance of the transit by λ. For a circular orbit, λ =
ϕ0. From its standard definition in celestial mechanics, it is
straightforward to derive the mean longitude for arbitrary
eccentricities (see Appendix A). The result is

λ ≡ λ(ϕ0, k, h) ≡ λ(ϕ0, e cosω, e sinω) =

= arg

„

k + cosϕ0 +
he⊥
2− ℓ

, h+ sinϕ0 − ke⊥
2− ℓ

«

−

−e⊥(1− ℓ)

1 + e‖
, (1)

where e‖ = k cosϕ0 + h sinϕ0, e⊥ = k sinϕ0 − h cosϕ0 are
the components of the eccentricity vector relative to the line-
of-sight, ℓ = 1−

√
1− e2 is the oblateness of the orbit, and

arg(x, y) = arctan(y/x) if x > 0 and π+ arctan(y/x) other-
wise. Plugging in the observed values of e and ω, equation (1)
provides a simple way of calculating the mean longitude of
the orbit for an arbitrary transit observation. Note that this
formalism omits the direct usage of the mean anomaly, true
anomaly and eccentric anomaly which have no meanings for
e → 0. All of our derived formulae are based on the well–
behaved parameters λ, k, and h, and therefore are valid for
arbitrary eccentricities.

In the following subsections, we derive the expressions
describing TTVs and TDVs, discuss the corresponding ob-
servational implications and estimate the precision of peri-
astron precession observations.

2.1 Modulation of the transit period

The period between successive transits Pobs is modified by a
possible slow precession of the orbital elements. These mod-
ulations are referred to as transit timing variations (TTVs).

2 i.e. at the center of a transit

c© 2008 RAS, MNRAS 000, 1–9
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Table 1. Basic data of the four known eccentric transiting exoplanetary systems: the mass (M⋆) of the parent star, period (P , in days),
eccentricity (e) and the argument of pericenter (ω), the half-duration of a transit event (H, in days) and the impact parameter (b). In the
last two columns, we provide the calculated values of the secular period caused by the GR periastron precession, and the minimum mass
– semimajor axis ratio for a hypothetical exterior perturber at a2 & 3a that would lead to the same magnitude of periastron precession.

.

System M⋆/M⊙ P (d) e ω (degrees) H (d) b Psec (years)
m2/M⊕

(a2/3a)3

HD 147506b 1.298± 0.07 5.63341 0.520± 0.010 179.3± 3.6 0.083 0 19790 ± 740 12.2
XO-3b 1.41± 0.08 3.19154 0.260± 0.017 344.6± 6.6 0.050 0.8 9280 ± 410 15.9
GJ 436b 0.452± 0.013 2.64385 0.150± 0.012 351.0± 1.2 0.065 0.85± 0.02 15180 ± 400 2.6
HD 17156b 1.2± 0.1 21.21725 0.6717± 0.0027 121.23± 0.40 0.098 0.50± 0.12 143000 ± 7900 5.9

We derive the modulation of Pobs due to periastron preces-
sion in two steps. First we demonstrate that the change in
the period between successive transits is simply related to
the change in the mean longitude ∆λ. Then relating the
mean longitude shift to the periastron precession rate we
derive the expected TTV rate.

Let P0 be the orbital period, n = 2π/P0 be the mean
angular velocity. The mean longitude of the planet increases
steadily in time, λ = nt+λ0. The variation in the mean lon-
gitude at the transit center would result in a variation in the
transit cadence. During a transit at time t1, the mean longi-
tude is λtr(t1) = nt1 +λ0, and after an observed revolution,
at the instance t2 = t1 + Pobs it is λtr(t2) + 2π = nt2 + λ0.
Therefore the observed period between transits is

Pobs =
2π +∆λ

n
= P0

„

1 +
∆λ

2π

«

(2)

where ∆λ = λtr(t2)− λtr(t1).
In the following we assume that the shift in the mean

longitude is caused by the perihelion shift ∆ω = P0ω̇ per
period, (i.e. we assume a constant eccentricity), then from
the chain rule

∆λ =
∂λ

∂ω
∆ω =

∂λ

∂k

∂k

∂ω
∆ω +

∂λ

∂h

∂h

∂ω
∆ω. (3)

Here ∂k/∂ω = −e sinω and ∂h/∂ω = e cosω, from definition
(see above), and the partial derivatives ∂λ/∂k and ∂λ/∂h
can be found from equation (1) and are given explicitly in
the Appendix (A8–A9). At transit, we get

∂λ

∂ω
=

e2

1 +
√
1− e2

+
p

1− e2
e2 + (2 + e sinω)e sinω

(1 + e sinω)2
. (4)

Combining equations (2)-(4) and defining the secular period
of the periastron precession as Psec = (2π)/ω̇, we get

Pobs = P0 +
P 2
0

2π

∂λ

∂ω
ω̇ = P0 +

∂λ

∂ω

P 2
0

Psec
. (5)

Since ∂λ/∂ω itself is not constant due to periastron pre-
cession, the observed period between transits slowly changes.
Differentiating equation (5) with respect to time, we get

Ṗobs = 2π
∂2λ

∂ω2

P 2
0

P 2
sec

=
4π(1− e2)3/2e cosω

(1 + e sinω)3
P 2
0

P 2
sec

, (6)

since the partial derivative of equation (4) with respect to
ω is

∂2λ

∂ω2
=

2(1− e2)3/2e cosω

(1 + e sinω)3
. (7)

Note that this equation clearly shows that the small ec-
centricity approximation ∂2λ/∂ω2 ≈ e cosω (e.g. used by

Miralda-Escude 2002; Heyl & Gladman 2007) is very im-
precise for moderate to large eccentricites. Depending on
the actual value of ω, equation (7) can result even 6 − 8
times smaller or larger values for ∂2λ/∂ω2 as its first order
approximation for eccentricities 0.5 − 0.7.

We have to mention here that the observed period and
therefore the individual transit timings are also affected by
the light time effect (LTE). Since the precession of an ellip-
tical orbit causes the distance between the host star and the
planet at the transit instances to vary, the light time delay
will change for transit event to transit event. The magni-
tude of this effect can be derived as follows. The distance
between the star and the planet at transit time (i.e. when
λ = ϕ0 = π/2) is

r =
a(1− e2)

1 + e cos v
=

a(1− e2)

1 + e cos(ϕ0 − ω)
=

a(1− e2)

1 + e sinω
. (8)

This difference in the distance implies an additional −r(1−
µ)/c time shift, respective to the barycentric reference frame
of the star–planet system. Here, µ = Mp/(Mp + M⋆) ≪ 1
is the mass parameter, a is the semimajor axis of the orbit
and c is the speed of light. Therefore, the correction in the
observed period is

P+LTE
obs = Pobs −

a

c
(1− e2)

∂(1 + e sinω)−1

∂ω
P0ω̇ =

= Pobs + 2π
a

c

(1− e2)e cosω

(1 + e sinω)2
P0

Psec
, (9)

where we neglected the barycentric correction. Thus, the
variation in this period (corrected for LTE) due to the vari-
ation in ω is

Ṗ+LTE
obs = Ṗobs−4π2(1−e2)

e(e+ e cos2 ω + sinω)

(1 + e sinω)3
a

c

P0

P 2
sec

.(10)

Comparing equation (6) and (10), and assuming that the
motion of the planet is non-relativistic, a/c ≪ P0, we find
that |Ṗ+LTE

obs − Ṗobs| ≪ |Ṗobs|. We conclude that the period
variation due to the LTE is negligible compared to the period
variation caused by the changing geometry.

In summary, equations (5)-(6), along with equation (4),
give the modulation of the actual observable period between
transit events. These results are valid for arbitrary eccentric-
ities and are independent of the physical mechanism causing
the secular precession of the periastron. We calculate the
secular precession period caused by general relativity (see
e.g., Wald 1984) using

Psec =
c2(1− e2)

3(2πGM⋆)2/3
P

5/3
0 , (11)

c© 2008 RAS, MNRAS 000, 1–9
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where M⋆ is the mass of the parent star, G is Newton’s
gravitational constant. This secular period is of order 104–
105 years for the known ETEP systems (see Table 1 and
Section 3 for more details). We note that if other planets
are also present in these systems, they might also cause ad-
ditional periastron precession of a larger magnitude. The
Yarkovski-effect (Fabrycky 2008) and the tidal circulariza-
tion (see Johns-Krull et al. 2007, and the references therein)
lead to negligible modifications for our purposes, as these ef-
fects are relevant on timescales exceeding 0.1Gyr for these
systems. In the following, we compare the precession mea-
surement sensitivities with the general relativistic rate Psec

given by equation (11).

2.2 Modulation of the transit duration

Here we investigate how the periastron precession affects the
duration of a transit. Let us denote the half duration of the
transit by H = TD/2, which we define as half the time be-
tween the instances when the center of the planetary disk
intersects the limb of the star, i.e. between the center of the
ingress and egress. Note that this is not the time between
the first and last contact. This is important because the
instances of the center of the ingress and egress can be mea-
sured more accurately than their beginning or end. Since we
are interested in estimating the variations of the duration of
the transit to leading order, we perform a first-order calcu-
lation, i.e. assuming a constant apparent tangential velocity
for the planet and neglecting the changes in the impact pa-
rameter due to the elliptical orbit and/or the curvature of
the projection of the orbit due to the inclination. From Ke-
pler’s Second Law and equation (8), one can calculate the
tangential distance ∆x traveled by the planet during time
H ,

∆x = vtanH = an
1 + e sinω√

1− e2
H (12)

(see Appendix B for the derivation of vtan). This can be
related to the impact parameter b and the radius of the star
R⋆ for the geometry of the transit as

∆x

R⋆
=

p

1− b2. (13)

Thus, to leading order,

H =
P0

2π

(

R⋆

a

√
1− e2

1 + e sinω

p

1− b2 +O
"

„

R⋆

a

«3
#)

. (14)

Note that equation (14) depends on ω through the (1 +
e sin ω)−1 term and also implicitly through b,

b =
r cos i

R⋆
=

a

R⋆

1− e2

1 + e sinω
cos i. (15)

The variation in H caused by the variation in the periastron
can be found from equation (14) and (15),

∂H

∂ω
=

e cosω

1 + e sinω
H

1− 2b2

1− b2
. (16)

Note that equation reflects the qualitative expections im-
plied by Kepler’s Second Law. Namely, if an eccentric orbit
advances, the distance between the planet and the star will
change. If this distance decreases, the impact parameter will
also decrease (resulting a longer transit duration) but due

to Kepler’s Second Law, the apparent tangential velocity of
the transiting object will increase (resulting a shorter tran-
sit duration). Therefore at a certain value of the inclination
and/or the impact parameter, the two effects cancel each
other yielding no TDV effect. Equation 16 clearly shows that
it occurs when the impact parameter is b = 1/

√
2 ≈ 0.707.

The long-term variation in the duration of the transit is then

Ḣ =
∂H

∂ω
ω̇ =

√
1− e2e cosω

(1 + e sinω)2
1− 2b2√
1− b2

R⋆

a

P0

Psec
(17)

Comparing equation (6) and equation (17) the TDV effect
relates to the TTV effect as

Ḣ

Ṗobs

=
1 + e sinω

6π

1− 2b2√
1− b2

R⋆

RSch
(18)

where RSch = 2GM/c2 is the Schwarzschild radius of the
star. As an example, note that R⋆/RSch = 2.5 × 105 for
the Sun. Therefore, equation (18) shows that the TDV ef-
fect is always much larger than the TTV effect. In partic-
ular, the ratio is larger for increasing b. In the limit b → 1
equation (17) breaks down because the periastron precession
shifts the orbit out of the transiting region.

2.3 Observational implications

Now, using the results for the TDV and TTV effects,
equation (6) and (17), we can estimate how these timing
and transit duration variations might be observed on long
timescales. In the following we discuss these observational
implications.

2.3.1 Transit Timing Variations

Equation (6) shows that the observed period between suc-
cessive transits increases or decreases at a practically con-
stant rate during the observations, Ṗobs. The time of the
mth transit from an arbitrary epoch T0 can be found from
adding up the contributions of the observed m number of
periods

Tm = T0 + Pobsm+Dm2, (19)

where Pobs ≈ P0 denotes the time of the first observed orbit,
D is the transit timing variation factor,

D =
P0Ṗobs

2
= 2πGTV(e, ω)P0

„

P0

Psec

«2

, (20)

where we have introduced the geometrical factor

GTV(e, ω) = (1− e2)3/2
e cosω

(1 + e sinω)3
. (21)

The chance of detecting the periastron precession in-
creases with the geometrical factor GTV(e, ω) which is re-
lated to the alignment of the orbital ellipse with the line
of sight. The optimal value for detecting the precession is
ω = 0 or π for small eccentricities, i.e. the semimajor axis
should be perpendicular to the line of sight. For arbitrary ec-
centricities, the optimal value for ω for the TTV observation
is

ωbest
TV =

3

2
π ± arccos

„

6e

1 +
√
1 + 24e2

«

. (22)

c© 2008 RAS, MNRAS 000, 1–9
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which approaches 0◦ and 180◦ for small eccentricities as ex-
pected, and 270◦ for large eccentricities. In case of e = 0.5,
ωextr = {235.4◦ , 304.6◦}. The least favorable value for ω oc-
curs when GTV(e, ω) = 0, i.e. at ωworst

TV = {90◦, 270◦},.

2.3.2 Transit Duration Variations

Now let us turn to the TDV effect. The observed duration of
the mth transit can be calculated in the same way, namely

Hm = H0 + Fm, (23)

where F is the shift in the transit duration per orbit. This
factor is

F = P0Ḣ = 2πGDV(e, ω, b)H
P0

Psec
, (24)

and

GDV(e, ω, b) =
1− 2b2

1− b2
e cosω

1 + e sinω
. (25)

The optimal orientation ωbest
DV for detecting the TDV ef-

fect for fixed e, b, and P0 can be found by maximizing
HGDV(e, ω, b). The result is

ωbest
DV =

3

2
π ± arccos

„

4e

1 +
√
1 + 8e2

«

. (26)

and the worst orientation is at ωworst
DV = {90◦, 270◦}, just

like for the TTV case. Comparing ωbest
TV and ωbest

DV it is clear
that the most favorable orientation in terms of the two ef-
fects are similar, hence the chance of detecting the periastron
motion through transit timing variations or transit duration
variations is correlated. Both effects go away if the eccen-
tricity is oriented parallel to the line of sight. We also note
that for moderate values of e and small impact parameters,
|GTV| ≈ |GDV| which also implies that the most favorable
geometry for detecting either TTVs or TDVs is similar.

2.4 Error analysis

Next we estimate the parameter measurement precision of
the TTV and TDV effects for future observations. We con-
sider the repeated observation of a particular transiting sys-
tem over a total timespan Ttot, measuring the transit timing
Tm and duration Hm for each transit with respective errors
σ(T ) and σ(H). (We discuss the specific values of σ(T ) and
σ(H) for transit observations in Section 3.1). For simplic-
ity, let us assume that these measurements are equidistant
and in total N independent transits are observed, i.e. the
mth transit is observed if m = 0, d, . . . , (N − 1)d, where
d = Ttot/(NP0).

2.4.1 Transit Timing Variations

Using equation (19), we can fit a second-order polynomial
to these observations with unknown coefficients T0, Pobs and
D by minimizing the merit function

χ2
TV =

X

m=0,d,...,(N−1)d

»

Tm − (T0 + Pobsm+Dm2)

σ(T )

–2

. (27)

The minimization of the above function results in a linear set
of equations in the parameters pi = {T0, Pobs, D}. Assuming

Gaussian errors, the parameter estimation covariance matrix
can be found from the Fisher matrix method (Finn 1992):

〈δpiδpj〉 = (F−1)ij (28)

Here F is the Fisher matrix defined as

Fij =
X

m=0,d,...,(N−1)d

1

σ2(T )

∂T fid
m

∂pi

∂T fid
m

∂pj
(29)

where T fid
m is the fiducial value of Tm given by equation (19).

The marginalized expected squared parameter estimation
error is given by the diagonal elements of the covariance
error matrix σ2(pi) = (F−1)ii. In particular, the resulting
uncertainty of D becomes

σ(D) =

√
180 σ(T )

d2
p

N(N2 − 1)(N2 − 4)

≈
√
180

„

P0

Ttot

«2 „

1 +
5

2N2

«

σ(T )√
N

. (30)

Here, the first equality is valid for arbitrary N , while the sec-
ond is its first order approximation for large N . The leading
order approximation is verified against Press et al. (1992).

2.4.2 Transit Duration Variations

We can repeat the same calculations as above for the ob-
servation of the half transit duration Hm to measure the
variation factor F . The merit function in this case

χ2
DV =

X

m=0,d,...,(N−1)d

»

Hm − (H0 + Fm)

σ(H)

–2

, (31)

has to be minimized for the same set of observations. This
minimization again leads to a linear set of equations in the
parameters H0 and F . The Fisher matrix method in this
case gives the uncertainty in F as

σ(F ) =

√
12σ(H)

d
p

N(N2 − 1)
≈

≈
√
12

P0

Ttot

„

1 +
1

2N2

«

σ(H)√
N

. (32)

Figure 2 shows the detection significance of the TDV
measurement |F |/σ(F ), if the precession rate in F is given
by the general relativistic formula, equation (24). Here each
transit is assumed to be measured (i.e. d = 1) with a
precision σ(H) = 5 sec for a total observation time of
Ttot = 4years. These assumptions are realistic for the fu-
ture Kepler mission (see § 3.1 below). Other parameters are
M⋆ = M⊙, R⋆ = R⊙, b = 0, and we averaged over the
possible orientations of ω. For other parameters,

|F |/σ(F )

|F0|/σ(F0)
=

1

d

1√
1− b2

„

R⋆

R⊙

« „

M⋆

M⊙

«1/3

·

·
„

σ(H)

5 sec

«−1 „

Ttot

4 yr

«3/2

, (33)

implying that the detection significance can be even better.
Figure 2 clearly shows that the chances of detecting the

precession effects through the TDV effect is encouraging.
The detection significance of the general relativistic preces-
sion of a transiting exoplanet with eccentricity e & 0.2 and
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Figure 2. The significance of detecting the GR periastron preces-
sion |F0|/σ0(F ) through the TDV effect as a function of orbital
period and eccentricity. The transit duration is assumed to be
measured for 4 years each with a 5 sec error, for a Sun-like star
on a non-inclined orbit. Increasing the mass or radius of the star,
or the impact parameter increases the detection significance (see
text).

period P . 5 days, is typically over the 1-σ level. Gener-
ally, equation (30) and equation (32) can be used directly
to check what kind of observations are required to detect
the precession of the periastron through the TTV or TDV
methods, respectively.

3 THE CASE OF XO-3b, HD 147506b, GJ436b

AND HD 17156b

As of this writing, four TEPs are known with a non-zero
eccentricity within 3-σ, namely XO-3b (Johns-Krull et al.
2007), HD 147506b (Bakos et al. 2007), GJ 436bb
(Butler et al. 2004; Gillon et al. 2007), and HD 17156bb
(Fischer et al. 2007; Barbieri et al. 2007). The planet TrES-
1 (Alonso et al. 2004) has also been reported as an object
with non-zero eccentricity, however, it is zero within 2-σ thus
we omit from our analysis. We note here that recently both
GJ 436 and HD 17156 have been suggested to have another
planetary companions (see Ribas et al. 2008; Short et al.
2008). The secular period of the periastron motion are de-
termined by the mass of the star M⋆, the orbital period P0,
and the eccentricity e, while the timing variation constant
D is also affected by the actual argument of pericenter, ω.
The transit duration variation factor F is affected indirectly
by the geometrical ratio a/R⋆ and directly by the impact
parameter b. These parameters are summarized in the first
seven columns of Table 1 for these four ETEP systems. The
derived GR periastron precession period, Psec can be found
in the 8th column of the table.

In addition to the inevitable periastron precession
caused by GR, there might be other sources of perturba-
tions causing periastron precession. The last column gives
the minimum mass to semimajor axis ratio of a hypothet-
ical exterior perturber (e.g. a planet or an asteroid belt),
in Earth mass units, which causes the same periastron pre-
session rate as that caused by the general relativity. This
estimate based on Price & Rush (1979), and is valid for

Table 2. Transit timing variation factor (D, in seconds) and
the number of transits (N20 y,3−σ,2 sec) what should be detected
almost uniformly in a 20 year long timespan, each with an error
of 2 second to confirm the precession within 3-σ.

System D (seconds) N20 y, 3−σ, 2 sec

HD 147506b −(5.9 ± 0.7) · 10−7 6600
XO-3b +(4.3 ± 0.6) · 10−7 1280
GJ 436b +(5.0 ± 0.5) · 10−8 44160
HD 17156b −(6.9 ± 0.8) · 10−8 97 · 106

a2 & 3a and for non-resonant cases. Note that the mini-
mum mass of the perturber scales with the third power of
the semimajor axis ratio to cause a comparable precession
rate as GR. The numbers show that the precession caused
by additional planets in the system, if present, can easily
cause a larger precession rate than GR. In case of orbital
resonances with exterior planets, the precession rate can be
even larger (Holman & Murray 2005; Agol et al. 2005). To
be conservative, we examine whether the precession rate can
be measured to a precision better than that corresponding
to GR.

To obtain a high significance, k-σ detection of the pe-
riastron precession using transit timing variations, we need
kσ(D) ≈ |D|. Using equation (30), the total number of tran-
sits necessary to measure D with this precision is

NTV = 180

»

σ(T )

k|D|

–2 „

P0

Ttot

«4

. (34)

Thus, the number of such required transit observations is
extremely sensitive to the orbital period P0 and the ob-
servation timespan. Table 2 gives the corresponding val-
ues of the transit timing variation factors for the known
ETEP systems and this number of observations, assuming a
Ttot = 20 year long observational timespan, timing precision
of σ(T ) = 2 sec and 3-σ sensitivity of the GR periastron pre-
cession level. The table shows the recently discovered XO-3b
system is a promising candidate to detect the GR periastron
precession through the TTV effect, while the other ETEP
systems require unrealistically many observations. We note
that if other perturbing planets are present in these systems
and lead to a precession rate that is larger by a factor of
10 than the GR precession rate, then the number of detec-
tions (during the same Ttot timespan) is lower by a factor
of 100. It is interesting that the best candidate (by far) is
XO-3b even though its eccentricity is not as large as that of
HD 147506b or HD 17156b.

Let us now turn to the observational constraints for the
detection of transit duration variations. Using equation (32),
the total number of required observations within Ttot is

NDV = 12

»

σ(H)

k|F |

–2 „

P0

Ttot

«2

. (35)

Note that NDV is not as sensitive to the P0/Ttot ratio as
NTV, and implies that a smaller number of observations is
typically necessary.

In Table 3 we present the values of the transit duration
variation factor, F , and the number of required observations
to reach the same 3-σ confidence for detecting the GR peri-
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Table 3. Transit duration variation factor (F , in seconds) and
the number of transits (N2 y, 3−σ, 2 sec) what should be detected
almost uniformly in a 4 year long timespan, each with an error of
2 sec to confirm the precession within 3-σ.

System F (seconds) N4 y, 3−σ, 2 sec

HD 147506b −(1.8± 0.3) · 10−2 20
XO-3b −(5.4± 0.6) · 10−3 70
GJ 436b −(4.1± 0.5) · 10−3 85
HD 17156b −(3.2± 0.2) · 10−3 8970

astron precession3. Here we assumed a shorter observation
timespan, Ttot = 4 year (i.e. shorter compared to the 20 year
long timespan necessary for the detection of the TTV ef-
fect), the same timing precision of σ(H) = 2 sec and the
same level of detection, 3-σ. The best known ETEP system
for TDV detection is therefore HD 147506b, but the number
of necessary observations is feasible for XO-3b and GJ 436b
as well.

3.1 Photometric detection

The precision for measuring the transit timing and transit
duration for a photometric observation can be estimated as
follows. Since the time of the ingress (TI) and the time of the
egress (TE) – i.e. when the center of the planet crosses the
limb of the star inwards or outwards, respectively – defines
both the time of the transit center and the half duration like

T =
1

2
(TE + TI), (36)

H =
1

2
(TE − TI), (37)

moreover TI and TE can be treated as uncorrelated vari-
ables, therefore the uncertainties of the transit time and half
duration would be nearly the same, i.e. σ(T ) ≈ σ(H). We
have estimated these uncertainties for the four distinct plan-
ets using Monte-Carlo simulations by fitting transit light
curves on mock data sets. We have used the observed plane-
tary parameters as an input for these artificial light curves.
The fit was performed assuming quadratic limb darkening
(see Mandel & Agol 2002) in the Sloan z′ band. The mock
light curves were sampled with ∆τ1 = 1 sec cadence and an
additional Gaussian noise of σ1(m) = 1mmag was added.
The resulting uncertainties, σ1,1(T ) and σ1,1(H) for the four
planets are presented in Table 4. Since the depth of the four
transits are nearly the same (see the appropriate normalized
radii, p = Rp/R⋆, all between 0.068 . p . 0.085), the un-
certainties σ1,1(T ) and σ1,1(H) are almost the same for the
four cases. Using these normalized values, one can easily es-
timate the uncertainties for arbitrary sampling cadence ∆τ
and photometric precision σ(m) using

σ(T ) ≈ σ1,1(T )
σ(m)

1mmag

r

∆τ

1 sec
, (38)

3 Note that since the measurement of the TDV effect relies on
fitting 2 parameters, instead of 3 parameters for the TTV effect,
the 3-σ confidence corresponds to a higher confidence level for the
TDV effect.

Table 4. Uncertainties of the transit time and transit duration
measurements for the four known ETEPs, assuming Sloan z′-
band photometric data taken with a 1 sec cadence and 1mmag
photometric precision.

System σ1,1(T ) (sec) σ1,1(H) (sec)

HD 147506b 5.3 4.8
XO-3b 6.9 4.7
GJ 436b 6.7 8.4
HD 17156b 5.4 6.1

σ(H) ≈ σ1,1(H)
σ(m)

1mmag

r

∆τ

1 sec
. (39)

For comparison, note that the expected photometric preci-
sion of the Kepler space telescope (see Borucki et al. 2007)
is 1mmag for observing a light curve of a bright, Mv = 8.8
star with a 1 sec sampling cadence. Since the star XO-3
has almost the same apparent magnitude, it is clear, the
transit durations would be detected with an accuracy of
σ(H) ≈ 5 sec if this star was in the field of Kepler. There-
fore, equation (32) and Table 3 shows that the transit du-
ration variations would be detectable for HD 147506(b) or
XO-3(b)–like systems due to the GR periastron precession,
within 3-σ confidence with a Kepler–type mission within ap-
proximately 3 or 4 years, respectively.

4 SUMMARY

The first four eccentric transiting exoplanetary systems have
been discovered during 2007. The precession of an eccentric
orbit causes variations both in the transit timings and tran-
sit durations. We estimated the significance of measuring the
corresponding observable effects compared to the inevitable
precession rate of general relativity. We applied these calcu-
lations to predict the significance of measuring the effect for
the four known eccentric transiting planetary systems. Our
calculations show that a space-borne telescope is adequate
to detect the change in the transit durations to a high signif-
icance better than the GR periastron precession rate within
a 3 – 4 year timespan (in a continuous observing mode). The
same kind of instruments would need more than a decade
to detect the corresponding transit time variations to this
sensitivity even for the most optimistic known system.

The CoRoT mission has already found two transiting
planets (see Barge et al. 2008; Alonso et al. 2008) and there
are two known planets in the planned field-of-view of the
Kepler mission (see O’Donovan et al. 2006; Pál et al. 2008).
Our results suggest that if an eccentric transiting planet is
found in the Kepler or CoRoT field, these missions will be
able to measure the periastron precession rate to a very high
significance within their mission lifetime or with the support
of ground-based observations on a longer time scale. This
will provide an independent test of the theory of general
relativity and will also be useful for testing for the presence
of other planets in these systems.
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727

Steffen, J. H. & Agol, E., 2007, ASP Conf. Ser, 366, 158
Wald, R. M., 1984 General Relativity, The University of
Chicago Press

APPENDIX A: MEAN LONGITUDE AT THE

TRANSIT INSTANCES

The derivation of equation (1) goes as follows. According to
Kepler’s equation, E − e sinE = M = λ − ω, one can write

λ = ω + E − e sinE. The only thing what is to be done is
to calculate the eccentric anomaly E for the instance when
the orbiting body intersect the semi-line with the argument
angle ϕ0. The latter means that the true anomaly v of the
body is v = ϕ0 − ω, by definition. The relation between the
eccentric and true anomaly is

tan
E

2
=

r

1− e

1 + e
tan

v

2
, (A1)

which is equivalent with

cosE =
e+ cos v

1 + e cos v
, (A2)

sinE =

√
1− e2 sin v

1 + e cos v
. (A3)

Using the addition theorem, the sine and cosine of the angle
ω + E can be written as:

cos(ω + E) = cosω
e+ cos(ϕ0 − ω)

1 + e cos(ϕ0 − ω)
−

− sin ω

√
1− e2 sin(ϕ0 − ω)

1 + e cos(ϕ0 − ω)
, (A4)

sin(ω + E) = sinω
e+ cos(ϕ0 − ω)

1 + e cos(ϕ0 − ω)
+

+cosω

√
1− e2 sin(ϕ0 − ω)

1 + e cos(ϕ0 − ω)
. (A5)

Thus, the mean longitude itself is going to be

λ = ω + E − e sinE = arg [cos(ω + E), sin(ω + E)]−

−e

√
1− e2 sin v

1 + e cos v
. (A6)

If both arguments of the above arg[·, ·] function is multiplied
by the always positive common denominator 1 + e cos(ϕ0 −
ω), one gets after some simplification:

ω + E = arg

»

k + cosϕ0 +
h(k sinϕ0 − h cosϕ0)

1 +
√
1− e2

,

h+ sinϕ0 − k(k sinϕ0 − h cosϕ0)

1 +
√
1− e2

–

. (A7)

Putting all terms together and replacing the appropriate
terms by e⊥ = k sinϕ0−h cosϕ0, e‖ = k cosϕ0+h sinϕ0 and

ℓ = 1−
√
1− e2, we get equation (1). The partial derivatives

of equation (1) become

∂λ

∂k
= − h

2− ℓ
− (1− ℓ)

h+ (2 + e‖) sinϕ0

(1 + e‖)2
, (A8)

∂λ

∂h
= +

k

2− ℓ
+ (1− ℓ)

k + (2 + e‖) cosϕ0

(1 + e‖)2
. (A9)

APPENDIX B: TANGENTIAL VELOCITY AND

POSITION AT THE TRANSIT

It is known from the theory of the two-body problem that
the angular momentum of a body orbiting around a mass of
GM = µ and having an orbit with the semimajor axis of a
and eccentricity e is C =

p

µa(1− e2). Since C = rvtan for
all points, the tangential velocity would be

vtan =
C

r
=

p

µa(1− e2)
1 + e cos(ϕ0 − ω)

a(1− e2)
(B1)
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Using Kepler’s Third Law, i.e. µ = n2a3, the above equation
can be reordered to

vtan = an
1 + e cos(ϕ0 − ω)√

1− e2
. (B2)

For ϕ0 = π/2, equation (B2) becomes

vtan = an
1 + e sinω√

1− e2
. (B3)
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