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Abstract

Finding the relation between the symmetry transformations in the con-

tinuum and on the lattice might be a nontrivial task as illustrated by the

history of chiral symmetry. Lattice actions induced by a renormalization

group procedure inherit all symmetries of the continuum theory. We give

a general procedure which gives the corresponding symmetry transforma-

tions on the lattice.
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1 Introduction

In 1981 Ginsparg and Wilson formulated a condition [1] to be satisfied by the
lattice Dirac operator in order to have the physical consequences of chiral sym-
metry on the lattice. The derivation of this condition is based on renormalization
group (RG) considerations, but the result is more general. Indeed, the GW re-
lation is satisfied not only by the fixed point [2], but also by the overlap [3] and
the domain-wall operator after dimensional reduction [4]. The Dirac operators
in the latter two cases are not related to RG ideas.

The GW condition is a non-linear relation for the lattice Dirac operator
reflecting the fact that concerning chiral symmetry the physical content of the
classical lattice theory is the same as that in the continuum. It was observed
only many years later that an exact symmetry transformation exists on the
lattice as well [5].

Discretizing a field theory by repeated RG block transformation – or equiva-
lently, by ’blocking out of continuum’ [6] – has the advantage that all symmetries
of the continuum theory will be inherited by the lattice action – even those which
are explicitly broken by the block transformation. The symmetry transforma-
tions are, however, different from those in the continuum. We present here a
general technique and a streamlined procedure to find the form of the symmetry
transformations and the symmetry conditions (like the GW relation).

We have to emphasize that talking about a symmetry transformation on the
lattice we mean a symmetry of the lattice action, i.e. the classical field theory.
In the quantum theory this transformation enters as a change of variable in the
path integral which might induce a non-trivial contribution to the Ward identity
by the integration measure.

Not all internal symmetries of the continuum theory can be kept by the
block transformation. Consider, as an example, the chiral symmetry. For a
continuum action and a block transformation which both have an explicit γ5-
invariance, the resulting lattice action will also be γ5-invariant. But due to the
existence of the chiral anomaly, this action cannot be an acceptable one – it
has to be either non-local or has to describe extra unwanted degrees of freedom
(doublers)[7]. This is what happens in the limit when the coefficient of the
natural block transformation goes to infinity. In this limit the blocking becomes
chiral invariant, but at the same time the corresponding lattice action ceases to
be local [8].

This paper is motivated by some unsolved theoretical problems in lattice
regularized chiral gauge theories. In spite of the great progress during the
last years [9] an important problem remains: the relative weight between the
different topological sectors is undefined. This situation might be related to
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different technical problems. Although the chiral invariant vector theory has
a controlled RG background, the steps towards a chiral theory are not related
to RG anymore. The projectors [10] are introduced by hand and, seemingly
unavoidably, they break CP and T symmetry [11]. Further, the fermion num-
ber anomaly1 enters in an unusual way: the different topological sectors have
different number of degrees of freedom on the lattice. These technical issues
might be related to the problem mentioned above. A different strategy would
be to start with a fermion number violating block transformation, which makes
the relation between the continuum and lattice symmetries non-trivial. The
systematic approach discussed here might be a useful tool in this and similar
problems.

2 Free massless fermions

Since fermions enter quadratically even in the presence of gauge fields, most of
the equations below remain valid in the presence of interactions as well.

The block transformation is a Gaussian integral which is equivalent to a
formal minimization problem:

χDχ = min
ψ,ψ

{

ψDψ +
(

χ− ψω†
)

(χ− ωψ)
}

(1)

where the fermion fields ψx and χn live in the continuum and on the lattice
respectively, ωnx is the blocking matrix, Dxx′ = (γµ∂µ)xx′ and Dnn′ are the
continuum and lattice Dirac operators. For the blocking we take a flat, non-
overlapping averaging

ωnx =

{

1 if x ∈ block n ,
0 otherwise .

(2)

With this choice one has
∑

x ωnxω
†
xn′ = δnn′ , i.e. ωω† = 1.

The minimizing fields ψ0 = ψ0(χ) and ψ0
= ψ

0
(χ) in eq. (1) are given by

ψ0(χ) = A−1ω†χ,

ψ
0
(χ) = χωA−1 (3)

where
A = D + ω†ω. (4)

Inserting eq. (3) into eq. (1) gives the lattice Dirac operator

D = 1− ωA−1ω†. (5)

1We mean here the global vector anomaly of a chiral gauge theory free of gauge anomalies.
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From the equations above it is easy to derive the following useful relations which
will be used repeatedly in this work

ωψ0(χ) = (1−D)χ , ψ
0
(χ)ω† = χ(1 −D) ,

Dψ0(χ) = ω†Dχ , ψ
0
(χ)D = χDω .

(6)

The Ginsparg-Wilson relation can be obtained then from eq. (5) by using
{D, γ5} = 0 and the relations above2:

{D, γ5} = 2Dγ5D . (7)

We formulate now a general statement on the form of infinitesimal symmetry
transformations on the lattice.

Statement
Let δψ and δψ be the change of the corresponding continuum fields under an
infinitesimal symmetry transformation which leaves invariant the continuum
action ψDψ.

Define the infinitesimal change of the lattice fields by

δχ = ωδψ0(χ) , δχ = δψ
0
(χ)ω† . (8)

Then the lattice action χDχ is invariant under this infinitesimal symmetry trans-
formations.

Proof
One can use the explicit equations above to show the statement.

Replace ψ0(χ) by ψ0(χ + δχ) − δψ0(χ) and ψ0
(χ) by ψ

0
(χ + δχ) − δψ

0
(χ)

on the r.h.s of eq. (1), where δψ0(χ) is an infinitesimal continuum symmetry
transformation of ψ0(χ) and δχ is a not yet defined infinitesimal change of
χ. Since ψ0(χ + δχ) − δψ0(χ) = ψ0(χ) + infinitesimallysmall and ψ0(χ) is the
minimum of the r.h.s. of eq. (1), the change of the r.h.s. is quadratically small:

χDχ = ψ
0
(χ+ δχ)Dψ0(χ+ δχ)+

[

(χ−
(

ψ
0
(χ+ δχ)− δψ

0
(χ)
)

ω†
]

[(χ− ω (ψ0(χ+ δχ)− δψ0(χ))] +

quadratically small (9)

where, in the first term on the r.h.s. of eq. (9), we used that δψ0(χ) is a
symmetry transformation in the continuum.

We identify now

δχ = ωδψ0(χ) , δχ = δψ
0
(χ)ω† , (10)

2Note that with our choice of the coefficients in eq. (1) the factor 2 appears in the GW
relation. This is, of course, just a convention.

4



which leads to

χDχ = ψ
0
(χ+ δχ)Dψ0(χ+ δχ) +

+
[

χ+ δχ− ψ
0
(χ+ δχ)ω†

]

[χ+ δχ− ωψ0(χ+ δχ)] (11)

up to quadratically small corrections. Comparing eq. (1) and eq. (11) we obtain

(χ+ δχ)D(χ+ δχ) = χDχ (12)

i.e. eq. (10) is a symmetry transformation of the lattice action χDχ.

3 Symmetry transformations of the lattice ac-

tion, examples

U(1) axial transformation
The standard infinitesimal axial rotation in the continuum reads

δψ0(χ) = iǫγ5ψ0(χ), δψ
0
(χ) = iǫψ

0
(χ)γ5 . (13)

The corresponding lattice transformation has the form

δχ = iǫγ5ωψ0(χ) = iǫγ5(1−D)χ ,

δχ = iǫψ
0
(χ)γ5ω

† = iǫχ(1−D)γ5 , (14)

where we used eq. (8) and eq. (6). These transformations have the well known
form found by Lüscher [5]. Notice, however that the axial transformation in the
continuum is not unique. The following transformation, for example, also leaves
the continuum action invariant

δψ0(χ) = iǫγ5(1− αD)ψ0(χ), δψ
0
(χ) = iǫψ

0
(χ)(1 + αD)γ5 . (15)

The associated lattice transformation reads

δχ = iǫγ5 (1− (1 + α)D) χ

δχ = iǫχ (1− (1− α)D) γ5 . (16)

The α = 1 case3 is special since γ5 and γ̂5 = γ5(1 − 2D), (for which γ̂2
5
= 1)

are candidates to build the lattice L/R projectors for χ and χ, respectively [10].
Notice the asymmetry between the transformations of χ and χ, which is the
source of CP violation in the present formulation of chiral gauge gauge theories
mentioned in the introduction.

3as well as the α = −1 case
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U(1) vector transformation
The standard infinitesimal vector rotation in the continuum δψ0(χ) = iǫψ0(χ),
δψ

0
(χ) = −iǫψ

0
(χ) implies the lattice transformation

δχ = iǫ(1−D)χ, δχ = −iǫχ(1−D) (17)

while the transformation δψ0(χ) = iǫ(1−αD)ψ0(χ), δψ0
(χ) = −iǫψ

0
(χ)(1−αD)

leads to

δχ = iǫ (1− (1 + α)D)χ

δχ = −iǫχ (1− (1 + α)D) . (18)

For α = 0 the continuum, while for α = −1 the lattice transformation has the
standard form.

Considering finite transformations, note that for α = 0 in eqs. (15), (16) the
transformation exp(itγ5(1 − D)) is not compact (it is not 2π-periodic in t) as
opposed to the corresponding transformation exp(itγ5) in the continuum. On
the other hand, for α = 1 (or α = −1) the lattice transformation exp(itγ̂5)
corresponding to eq. (16) is compact, while its continuum counterpart is not.

Infinitesimal translation
In the continuum we have δψ0(χ) = ǫ∂̂µψ0(χ), δψ0

(χ) = ǫψ
0
(χ)∂̂†µ, where

(

∂̂µ

)

xy
= ∂xµδ(x−y). Our general procedure leads to the lattice transformations

δχ = ǫω∂̂µψ0(χ)

δχ = ǫψ
0
(χ)∂̂†µω

† . (19)

Using [D, ∂̂µ] = 0 it is a simple exercise to show explicitly that the lattice action
is invariant under this infinitesimal translation.

What was shown above remains valid also in the presence of gauge fields.
In the RG approach, eq. (1), the lattice Dirac operator D lives on some lattice
gauge field background V , while on the r.h.s. the continuum Dirac operator D
and the blocking ω are defined on a corresponding continuum gauge field, which
is obtained from V by a similar minimization procedure involving only gauge
fields [12].

4 Generalization to interactive theories: the non-

linear σ model

We illustrate the generalization of the technique used above on the example of
the d = 2 nonlinear sigma model. The equation analogous to eq. (1) reads in
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this case
A(~R) = min

{~S}

(

A(~S) + T
(

~R, ω(~S)
))

(20)

where T is the block transformation, ω(~S) defines the averaging, A(~S) is the

continuum action, while A(~R) is the (fixed point [13]) action on the lattice. For
the averaging one might take the flat, non-overlapping averaging in eq. (2). A
simple example for T is

T = 2κ
∑

n

(

~Rn −
(ω~S)n

|(ω~S)n|

)2

= 4κ
∑

n

(

1− ~Rnω̃(~S)n

)

(21)

where we introduced the notation

ω̃(~S)n =
(ω~S)n

|(ω~S)n|
, ω̃(~S)2 = 1. (22)

For notational simplicity we shall take 4κ = 1. The minimizing field in eq. (20)

is denoted by ~S0 = ~S0(~R). Consider now an infinitesimal symmetry transfor-
mation of the continuum action (infinitesimal translation, for example) acting

on the minimizing field ~S0(~R) → ~S0(~R) + δ~S0(~R). Introduce the notation

ω̃(~S0 + δ~S0) = ω̃(~S0) + δω̃,
(

δω̃, ω̃(~S0)
)

= 0. (23)

Following the procedure used for fermions above, we compensate the change of
the blocking term T by changing the lattice configuration ~R → ~R+ δ ~R

(

δ ~R, ω̃(~S0(~R))
)

+
(

~R, δω̃
)

= 0, (~R, δ ~R) = 0 (24)

where we used eq. (21). The solution of eq. (24) can be written as

δ ~R = δω̃
(

ω̃, ~R
)

− ω̃
(

δω̃, ~R
)

. (25)

If δ~S0(~R) is a symmetry transformation in the continuum, then A(~R + δ ~R) =

A(~R), i.e. δ ~R in eq. (25) is a symmetry transformation on the lattice.
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