AN ANALYSIS OF CALVING SEASON STRATEGIES/

by
MARK E. NELSON
B. S., Kansss State University, 1983

A MASTER'S THESIS
submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Agricultural Economics

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1986

Approved by:

${ }_{266}$
All202 965100
TABLE OF CONTENTS
C. 2
LIST OF FIGURES iii
LIST OF TABLES iv
ACKN OWLEDGEMENTS vi
CEAPTERS
I. INTRODUCTI ON 1
II. LITERATURE REVIEW 7
III. METEODOLOGY 11
IV. RESULTS 25
∇. DISCUSSION AND SUMMARY 40
APPENDICES

1. YEARLY BEEF COWHERD COST-RETURN BUDGETS 46
2. FIXED COSTS FOR TRE BEEF COWHERD. 67
3. INPUTS FOR BEEF COWHERD COST-RETURN BUDGETS 70
4. BEEF COWHERD RATIONS. 74
5. COW AND WEANING CALF REVENUE FACTORS. 96
6. BEEF COWHERD BUDGET VARIABLE ANALYSES 101
7. RETAINED OWNERSHIP BUDGETS. 119
BIBLIOGRAPEY 133
8. TDN: COW REQUIREMENTS VS. RANGE AMOUNTS 5
9. 4-5 CWT FEEDER STEER SEASONAL INDEX (KC) 5
10. APR-MAY PRICES AS A PERCENT OF FEB-MAR 30
11. SEP-OCT PRICES AS A PERCENT OF FEB-MAR 31
12. NOV-DEC PRICES AS A PERCENT OF FEB-MAR 32
13. NUMBER OF DAYS WITH $1^{\text {t }}$ OR MORE OF SNOW ON THE GROUND. 92

LIST OF TABLES

1. SAMPLE BEEF COWHERD COST-RETURN BUDGET 13
2. BEEF COWHERD RATION SUMMARY 18
3. CALVING SEASON MANAGEMENT PROGRAMS WITH RETAINED OWNERSEIP 24
4. CALVING SEASON COWHERD PROFITS. 26
5. RETURNS-VARIABLE COSTS WITH RETAINED OWNERSHIP AT 750 LBS. 37
6. CAPITAL INVESTMENTS/COW UNIT FOR BREEDIMG STOCR 69
7. CAPITAL LNVESTMENTS/COW DNIT FOR BUILDINGS \& EQUIPMENT 69
8. HISTORICAL PRICES USED IN THE BEEF COWHERD COST-RETORN BODGETS 70
9. NUTRIENT REQUIREMENTS OF AN 1100 LB BEEF COW. 76
10. NOTRITIONAL VALUES OF GRAZED FORAGES. 76
11. bALANCED RATIONS FOR SPRING CALVING ON NATIVE RANGE 78
12. BALANCED RATIONS FOR FALL CALVING ON NATIVE RANGE 82
13. BALANCED RATIONS FOR FALL CALVING ON FESCOE AND RANGE 86
14. MONTHLY COWHERD RATION SUMMARY. 90
15. POUNDS OF GRASS HAY NEEDED IN THE WINTER, 91
16. CATTLE PRICES USED IN bEEF COWHERD COST-RETURN BUDGETS 99
17. RETURNS MINUS VARIABLE COSTS OF VARIOUS CALVING SEASONS 102
18. RETURNS MINUS TOTAL COSTS OF VARIOUS CALVING SEASONS. 103
19. COW UNIT FEED COSTS OF VARIOUS CALVING SEASONS. 104
20. TOTAL COW ONIT REVENUE OF VARIOUS CALVING SEASONS 105
21. STEER REVENUE OF VARIOUS CALVING SEASONS. 106
22. HEIfER REVENUE OF VARIOUS CALVING SEASONS 107
23. CULL COW REVENUE OF VARIOUS CALVING SEASONS 108
24. STEER PRICES OF VARIOUS CALVING SEASONS 109
25. AVERAGE CALF BREAREVEN PRICES (VARIABLE COSTS). 110
26. AVERAGE CALF BREAKEVEN PRICES (TOTAL COSTS) 111
27. AVERAGE BEEF COWHERD INVESTMENT 112
28. GROSS ASSET TURNOVER 113
29. NET ASSET TURNOVER. 114
30. COW UNIT FEED COSTS AS A PERCENT OF TOTAL REVENUE 114
31. COW UNIT PEED COSTS/TOTAL REVENUE AND PROFITABILITY MEASURES SORTED BY RETURN-VARIABLE COSTS. 115
32. AVERAGE CALF PRICE PER POUND PRODUCED 117
33. AVERAGE CALF PRICES NEEDED TO EQUAL FEB-MAR CALVING PERIOD PROFITABILITY 118
34. STEER GROWER BUDGET 121
35. INPUT PRICES RELD CONSTANT AMONG RETAINED OWNERSHIP BUDGETS 123
36. FEED PRICES FOR BEEF BACKGROUNDING BUDGETS 124
37. STEER PRICES FOR RETAINED OWNERSHIP BUDGETS 125
38. FEB-MAR RETAINED OWNERSHIP; CUMULATIVE RETURNS-VARIABLE COSTS 750 LBS 126
39. APR-MAY RETAINED OWNERSGIP; CUMULATIVE RETURNS-VARIABLE COSTS 8 750 LBS 127
40. SEP-OCT RETAINED OWNERSRIP; CUMOLATIVE RETURNS-VARIABLE COSTS 750 LBS 129
41. NOV-DEC RETAINED OWNERSHIP; CUMULATIVE RETURNS-VARIABLE costs e 750 LBS 131
42. FEB-MAR AND APR-MAY RETAINED OWNERSHIP; CUMULATIVE RETURNS-VARIABLE COSTS (NOV-APR) 132

ACKN OWLEDGEMENTS

I would like to express my sincere appreciation to Dr. Don D. Pretzer for the professional knowledge and guidance he gave the during the preparation of this thesis and for serving as my major professor during graduate program.

In addition, I would like to express my appreciation for the effort of Dr. Larry R. Corah for his knowledge and constructive suggestions while serving as a committee member. Gratitude for their professional expertise is also due Drg. Gerry L. Kuhl, Keith O. Zoelner and Frank K, Brazle.

A special thanks goes to Dr. Orlen Grunewald for his guidance throughout my course work and for serving on my graduate committee.

Finally, I wish to thank my wife, Donita, for her encouraging love and dedicated assistance during the past year.

CHAPTER I

INTRODUCTION

The beef industry is the single largest segment of the Kansas agricultural economy, comprising 51.9 percent of the total value of production in 1984. Since 1930, cattle have averaged over 40 percent of the total value of agricultural production while wheat, the second largest, has averaged just over 27 percent. ${ }^{1}$

The beef cowherd is an integral component of this industry with Kansas annual cow numbers ranging betveen 1.5 to 2 million head, the last twenty years, according to USDA cattle inventory data. Beef cows are well adapted to the Xansas plains because they can effectively utilize the large supply of forage and range that is available. Total range area in Xansas is estimated to be $18,975,000$ acres. Of this total, $16,272,000$ is native grass species, including tall and shortgrass rangelands while the other 2,703, 000 acres is made up of introduced forage species. ${ }^{2}$ Nearly four million acres of this rangearea is located in a 12 county
${ }^{1}$ Robert L. Vossen, Kansas Department of Agriculture, \quad © $D A$, ERS, Topeka, Kansas, 4 December 1985.
${ }^{2}$ U.S. Department of Agriculture, Soil Conservation Service, "Soil and Water Resources Conservation Act", Washington D.C. (1979).
helt in eastern $k a n s a s$, bounded on the north by Riley and Pottawatomie counties and on the south hy Cowley and Chatauqua
 forage for up to 500,000 heef cows. Another potentially large forage source is the crop aftermath that results from the 30.6 million acres of cropland in $K a n s a s$. Although often of low quality this forage can effectively provide adequate nutrition to hreeding herds during certain stages of production.

Cowherd profitahility has always been cyclical in nature. During the early 1970 s when interest rates, fuel costs and other factors of production started to rise many ranchers vere kept afloat hecause of the increased value of their land due to high inflation. Today, while interest rates and other costs of production are still relatively high, inflation has cooled considerahly and the beef industry is currently caught in a severe cost/price squeeze. Now, more than ever, cattlemen must cut costs and determine the most profitahle methods of production. An important factor that should he addressed is time of calving. The calving geason has impact throughout the year, from changing the amount of feed required tomaintain the heef cow to influencing the prices producers receive for their calves. In addition, hecause of the difficulties and costs involved in significantly changing the time when a heef cow calves, the calving season decision not only impacts the profitahility of the cattle operation in the shortrun hut in the longrun as well.

The most significant impact of calving season on production costs occurs as a result of the differing amounts and qualities of feed that a heef cowneeds depending upon her specificstage
of production. 3 Figure 1 shows the average monthly total digestible nutrient (TDN) requirements of an 1100 lb beff cow, calving both during the fall and spring and the pounds of TDN provided by native bluestem range. Matching those stages of production vhere the beef cows needs are highest with those times when range quality is at its highest, for example, by calving in apring, a producer could lower his gearly feed bill.

A study is needed that can provide data about the effects of calving season on supplemental feed requirements. Producers and ag specialists face numerous uncertainties when considering the merits of a particular calving season and objective information about the differing amounts of supplemental feed is necessary to aid them in the decision making process.

Due to the high degree of seasonality in cattle prices, calving season can also impact profitability by influencing when cattleare ready for sale. Many Kanaas cattlemen calve their herds in spring, in order to lower their winter feed bill.
${ }^{3}$ The following discussion of the feed requirements of beef
 bulletin by Larry Corah. Generally, the $365-\mathrm{day}$ cow year is split into four distinct periods, each vith a unique set of nutritional requirements necessary to meet the particular needs of the cow. Period is the 90 days following calving when the cow is lactating at her highest level while trying to maintain maximum calf growth. In addition, during this period the cow must undergo uterine involution, start recycing and rebreed. This is clearly the most important nutritional period. Period 2 occurs during the following 120 days when the beef cov is in the early stages of pregnancy while still lactating and maintaining a calf. The third period lasts for 90 days and is called midgestation, during this time the cow must primarily maintain her developing fetus. It should be noted that this period is where the beef cows nutritional needs are at their lowest level of the year and is a time where low quality forages work extremely vell in beef cow rations. Period 4 is the secondmost important period in the beef cow year. During this 60 day period 70% to 80% of the total fetal growth occurs and the cow must also prepare for lactation.

Figure 2 shows that if a cattleman wishes to wean and sell his calves at seven months of age he will sell in the fall, on average encountering the lowest seasonal prices of the year. clearly, there is reason to analyze calving season and its effects on calf prices and cowherd profitability. To be useful, the analysis of calf prices should focus not only on seasonal indices, but also on the price changes between incrementally larger calf weights. This would better reflect the price relationships faced by producers who consider retaining ownership of their calves after weaning.

It is generally estimated that fifteen to thirty percent of Kansas cowherds calve in the fall with the balance calving primarily in the spring months of February through May. The question of whether to calve in the spring, the fall or a combination of the two has often been asked, but has never been adequately answered. Many of the advantages or disadvantages of one calving season as compared to another or a combination of the two are often subjective and uniquely related to the individual cattle operation. Factors such as the timing of labor use, for example, depend on what other enterprises are employed. While it is an advantage to breed cattle on grass where the natural flushing effect of lush spring grass inproves conception rates, it also makes artificial insemination (AI) more difficultand time consuming since the cattle are scattered acrosasumer pastures. On the other hand, while it is easier to use AI in fall calving herds when cattle are closer at hand for feeding, the winter cold decreases conception rates.

TDN: COW REQ'S VS. RANGE AMOUNT

Figure 2.
4-5 CWT FEEDER STEER SEASONAL INDEX M.F.E1. KANSAS CITY (1979-84)

In sumary, producer decisions on calving season are all too often affected by factors that are subjective in nature and not based on costs of production and revenue generated. Today, with many cow-calf operators financially squeezed, it is more important than ever to conduct an analysis of calving season based solely on coste incurred and incomereceived. This type of analysis could provide producers and ag advisors useful, objective information when selecting a calving season for a particular operation. The analysis should concentrate on feed costg, since they are the single largest cost component and 2) calf prices, because they are the major source of revenue. This does not imply that other factors are not important, but that other factors should not be considered until first, the individual knows the implications that calving season has on costs and returns, and second the individual knows what resources are available and what enterprise combinations will be employed on their particular operation.

The results of this study, while not answering the question of which calving season is best for an individual operation, should provide important data on the relative costs and price relationships that are involved. These relative costs and price relationships can be used by cattlemen and ag advisors to determine what some of the more abjective reasons for a particular calving season actually cost. Producers should combine the results of this study with other factors, such as resources available and competing enterprises employed, when making the decision of calving season for their particular cattle operation.

LITERATORE REVIEW

Evaluation of cost-price relationships between calving seasons is an area were little research has been concentrated. Agricultural research of calving season has, in the past, primarily focussed on production. Today, withmany cattlemen feeling the pinch of a severe cost-price squeeze, it is important to analyze how input and cattle prices affect the profitability of differing calving periods.

An extensive computer search was conducted through Farrell Library at Kansas State Jniversity to obtain sources for a reviev of literature. The file searched was Cain and the search term, calving season, was coded into the computer to aid in the process. In addition, the following indices were also examined for data references pertaining to calving season: The Reader's Guide to Periodical Literature, Biological and Agricultural Index and the Bibliography of Agriculture. Several articles and research papers werefound, but few concentrated on cost and or price relationships.

Marketing is a key element in a cow-calfoperation. Selling calves when prices are seasonally high and buying supplemental feedstuffs when feed prices are low can often spell the
difference between profits and losses. A system of analyzing costs of production and calf prices at each phase of calf production (weaning, backgrounding, grazing, etc.) was used by Pretzer (1984).1 The syatem examined spring calving cowherd profits by subtracting accumulated cowherd costs from calf revenue, as generated by existing calf prices at sale time and calf weight. Data on profitability was calculated for each production stage up to and including the finishing stage. This approach will be utilized as a method of organizing the applicable production options faced by each calving periodand comparing the different calving season management strategies.

Smitb (1982), developed asystematicmethod for selecting profitable combinations of forages, land and cattle types. ${ }^{2}$ The research did not evaluate calving season, but did study the seasonal price changes that occurred as a feeder calf was grazed. This concept will be used to analyze the profitability of the production options from weaning to retained ownership that are applicable to each individual calving period. The decision of when to sell a calf depends not only on the coots currenty invested, but also on the expectations of future price direction. A study is needed that looks at seasonal price cbanges and how they affect different calving seasons. Theresults can then be used to aid producers and ag epecialista when l) choosing a
${ }^{1}$ Don D. Pretzer, "Beef Programs for Profit" (Dillon, Colorado:Great Plains and Western Outlook, July 24-26, 1984).
${ }^{2}$ D. Smith, "An Analysie of Beef-forage Grazing Systems" (MS. thesis, Kansas State University, 1982).
particular calving season and 2) when making the sell at veaning or retain ownership to sell later decision.

Comparisons of the cost-price relationships involved in calving season call for an analysis hased on sound production data. It is in this area that most research regarding calving season has taken place. Production data that examines hov feed and forage resources are utilized by heef cowherds is important to this analysis, since consumption and production data must be calculated and beld constant among calving seasons to better study cost-price effects. A method of determining the amount of range supplementation necessary for a heef cow based on her particular stage of production and the nutritional value of the range vas used at $K a n s a s$ state University by Corah and smith (1978). ${ }^{3}$ This method suhtracted the nutrient requirements of the hef cow from the nutritional value of the range. Nutritional deficits were then made up hy the least cost feed supplement availahle. The approach allows rations to be derived regardless of the cows stage of production or time of calving and will be the method used in this thesis.

Some production data uncovered in the literature review dealt vith comparisons of fall vas sing calving, and can be used as parameters in the development of cowherd hudgeta. For example, Kartchner et al., found that forage consumption of fall calving cow-calf pairs averaged 26% over that of spring pairs. This information is useful when calculating the additional feed
${ }^{3}$ Larry Corah and Ed Smith, "Feed Supplements for Maximum Use of Native Rangen (Manhattan Kansas: Cooperative Extension Service,L-517 (1978]).
supplementation necessary for spring and fall calving cowherds. In addition, research hy Nelsen et al. (1982) and Chestant (1982) emphasized the importance of sound nutritional programs for both spring and fall calving herds.

The literature cited in the bibliography indicates the relatively large amount of information pertaining to hoth, beef cattle production and the effects of calving season on heff cattle production, and legitimizes the coefficients used in this thesis. This production data however, while important, is not directly relevant to the objectives of this thesis and vill not he discussed further in this reviev.

CHAPTER III

METHODOLOGY

The objective of this thesis is to evaluate the impacts of calving season on cowherd profitability. The analysis will concentrate on; 1) cow unit feed costs, since they are the single 1argest cost component, 2) calf prices, because they are the major source of revenue and 3) retained ownershipstrategies, which are an accepted method of increasing cowherd profits or decreasing cowherd losses.

Traditionally, farmers and ag specialists have used the budgeting technique as a method of selecting the most profitable plan from among a number of alternativeg and of testing the profitability of any proposed change in a plan. Budgeting involves testing plans on paper before implementing it to be sure it will improve profit. There are several types of budgeting, each of which is adapted to a particular size and type of planning problem. Whole farm planning and budgeting and cash flow budgeting involve plans for the entire farm or ranch buginess. Enterprise budgeting and partial budgeting are
related, as they are used to analyze only a part of the overall business or asmall change in the wholefarm plan. ${ }^{1}$

This thesis, for evaluating the effects of calving season on annual beef cowherd costreturns, relies on the enterprise hudgeting technique as the primary analytical tool. An enterprise budget is a listing of all estimated income and expenses associated with a secific enterprise to providean estimate of its profitahility. ${ }^{2}$ Enterprise hudgets can be developed for each actual or potential enterprise in a farm plan such as the corn, wheat or cow-calf enterprises. Each is developed on the hasis of a small common unit auch as one acre for crops or one head for livestock. This peraits easier comparison of tbe profit for alternative and competing enterprises.

An enterprise budget for beef cowherds will he developed utilizing the Lotus 123 electronic spreadsheet software program on a Zenith z-150 microcomputer. Eight different cowherd calving season management options (enterprises) will be analyzed. Six of the options are based on gear round native range. The eight options are shown on the beef cowherd cost-return budget, Table 1. The management options are classified into four sixty day calving periods, two each in the spring, fehruary-March and April-May, and two in the fall, September-Octoher and NovemherDecemher. The two fall calving periods are further analyzed by dividing them into weaning at sever months of age or nine months,
$1_{\text {Ronald }}$ D. Kay, Fgrg Management: Planning, Contrgol, and Implementation, (New York: McGraw-Hil1, 1981) pp.60-61.
${ }^{2}$ Ibid.

TRBLE $1 .-5 a w n l e$ beef comerd cost-return budget
1984

	SPRIN6		FRLL		FRLL		FRLL FESCUE	
BORN :	FEP-Mar	PPr-may	SEP-0.T	NOV-DEC	SEP-0.C	NOU-DEC	SEP-0CT	NOV-DEC
1. TOTR VARIAREE COSTS MEANEDt	NOV 1	NOV 1	Ju. 1	SEP 1	may 1	Ju. 15	JUl 1	SEP 1
A. Total Feed costs AGE IN DAYS:	245	184	273	274	212	227	273	274
1. Cow Unit Fred Costs								
a. Native Range b. Fescue Pasture(rent $:$ fert, $/ A C$)	5188.80	5128, 88	\$121.60	\$121.60	5121.60	\$121.60	\$83.29	\$83, 26
	12.80	se.6e	*9.00	se.e8	se.06	60.89	\$71.67	871.67
c. Alfallfa Hay	\$59.87	\$37.69	575. 39	457.48	\$75.39	657.48	\$13.75	\$16.66
d. SBM 44]	50.60	80.86	\$0.60	\$8, 85	\$0.60	49.85	\$8.00	88,00
e. Mineral \& Salt	33.32	\$3.32	63,32	\$3.32	\$3,32	\$3.32	\$3.32	\$3, 32
f. Grain	50.60	50.60	4e.09	30.80	50.00	60.00	\$6.60	00.00
g. Grass Hay	59.72	59.72	513.96	\$12.9	\$18.9	\$16.96	57.21	77,98
Total Com Umit Feed Costs	\$181.72	\$159.53	\$211.27	\$280.21	\$211.27	\$262, 21	\$179.16	\$182.76
2. Bull t Replace, Feed Costs/C-C unit	\$52. 58	\$52.58	\$52.58	45.58	552. 58	\$52.58	\$52.58	452.58
Total Feed Costs	\$234. 38	\$212.11	\$263,56	\$254.79	\$263, 86	t254, 79	\$231, 74	\$235.34
6. Labor	\$25.28	\$25.20	\$33.60	\$33.60	\$33.60	\$33,60	\$33.68	833.60
C. Other Variable Costs (Held Constant)	\$55.85	\$55.85	555. 85	555.85	\$55. 85	455.85	555, 85	\$55.85
D. 1nterest ($=$ Helf of VC \times int. rate)	\$2.2. 66	\$21.25	\$25.61	234.9	tex. 61	\$24.96	\$23.29	\$23.55
TOTAL VRRTARLE COSTS	\$336.21	\$314.41	\$378.92	\$359. 20	\$378.92	\$369.20	\$34.48	\$348.34
11. Total fixed costs (thelc Constant)	\$167.82	\$167.02	\$167, 02	\$167.02	\$167, 82	\$167.t2	\$167. 82	\$167, 22
111. TOTAL COSTS (TVC+TFC)	\$505.23	5481.44	\$545.94	*535.22	5545.94	\$536, 22	\$511.50	\$515.36
	FED-MRR	nPS-MAY	SEP-0CT	NON-DEC	SEP-DCT	NOU-DEC	SEP-OCT	NOU-DEC SEP 1
	NOV 1	NOU 1	M. 1	SEP 1	maY 1	J. 15	Jut	
A Steer hean Hesight	558	423	578	546	464	481	578	546 565
B. Heifer Hean Heright	521	388	545 505	515	438	453	545 585	515
C.Calf Les Produced/Com	488	352	505	477	486	420	505	477
11. PRICES								
A. Steer Price/Oint at Weaning	\$56. 31	\$68.16	\$66.03	\$64. 99	\$71.11	\$66.21	\$66.03	\$64.99
8. Heifer Price/Cut at Heaning	557.62	456.52	\$55.58	\$57.17	559.31	655.60	\$55. 50	\$57.17
C.Cull Cow Price/Cut	\$35.73	\$36.73	\$41.78	\$36.51	\$4t.64	839.65	\$41.78	\$38.51
111. feVemue								
R.Steer Reverue (5)	5164. 12	\$123.64	\$171.74	\$159.68	\$148.48	\$143. 31	\$171.74	\$159, 68
B.Herfer Revence (\$)	\$89.89	\$64.43	590.74	288.33	877,93	${ }^{515.56}$	\$98.74	688. 33
C.Cull Com Revenue (s)	\$68.6e	\$68.6e	368.94	\$63.54	\$73,66	665.42	668,94	*63.54
Totre revenk	\$313.81	5268,68	\$331.42	\$311.55	\$390. 67	\$28. 29	3331.42	\$311.55

*H AMRYSIS 粏

1. REVEHE-YARIRELE COSTS

2. REVENLE-TGTRL CDST
($\$ 191.42$) ($\$ 232.76)(\$ 214.52)(\$ 224.67)(\$ 245.88)(\$ 251.93)(\$ 180.80)(\$ 283.81)$

1II. CALF RRENKEVEX PRICE (Variable Costs) IV.CALF RRERKEVEY PRICE (Total Costs)	$\begin{aligned} & \$ 57.68 \\ & \$ 92.26 \end{aligned}$	$\begin{array}{r} \$ 72.03 \\ \$ 119.44 \end{array}$	$\$ 61.34$ $\$ 94.39$	464.82 $\$ 99.82$	$\begin{array}{r} \$ 75.21 \\ \$ 116.36 \end{array}$	$\begin{aligned} & \$ 72.28 \\ & \$ 112.02 \end{aligned}$	$\begin{array}{r} 554.52 \\ +87.58 \end{array}$	$\begin{aligned} & \mathbf{5 5 9 . 6 5} \\ & \mathbf{5 9 4 . 6 5} \end{aligned}$
V. INESTMENTF	54, 247	\$4,236	54,639	34,634	54,639	\$4,634	\$4,357	\$4,359
RSSET TURNOVER :								
V1. SET (Ln.11.)/1wCSTMET(Ln.V.)	-2.29\%	-3.275	-2.685	-2.83	-3.27\%	-3.415	-1.97x	-2.52%
VII. GROSS (Tot, Rev.)/INVESTMET (Ln.V.)	9.685	8.89x	9.17%	6. 75	B. 585	8.17\%	9.77\%	9.31\%

[^0]| | | | SPFING | | FRLL | | FRLL | | FALL FESCUE | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | INTT | Price | FED-MAR | mpr-may | SEP-0CT | NOU-DEC | SEp-act | MNT-DEC | SEP-dCT | NOV-DEC |
| | | | | | | | | | | |
| i. CJM lant fizd costs | | | | | | | | | | |
| R. Native Rarige | AC | \$12.38 | 6.5 | 8.5 | 9.5 | 9.5 | 9.5 | 9.5 | 6.5 | 6.5 |
| B.Fescue Pasturet | AC | 523.54 | 8.8 | e. 8 | 0.0 | 0.0 | e. 0 | 8.8 | 1.5 | 1.5 |
| C. Mifalfa Hay | tows | 571.08 | 6.84 | 0.53 | 1.06 | 0.81 | 1.06 | 2.81 | 8.19 | e. 23 |
| D. Sex 44x | TONS | \$300.90 | e.ee | 0.88 | 8.60 | 8.63 | 4.60 | 8.83 | 4. 68 | e. 0 |
| E. Mineral 4 Salt | OWT | 55.83 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 0.57 | 8.57 | 0.57 |
| F. Grain | Bu | \$2.55 | 2.e0 | 0.00 | 0.60 | 0.80 | e. 60 | 0.80 | 2.88 | e.e0 |
| 6. Grass Hay | TOMS | 452.89 | e. 19 | e. 19 | e. 21 | 2.21 | 8.21 | 0.21 | 8.14 | e. 15 |
| H. Fescue Fert. | AC | \$24.14 | \$0.28 | se.ee | 50.94 | *0.00 | *0.0e | *0.06 | \$36.21 | \$36.21 |
| 11. LAEDR | | 4.28 | 6.8 | 6.8 | 8.8 | 8.8 | 8.8 | 8.8 | 8. 6 | 8.8 |
| 1I1. REVEME FRCTORS | | BORM : | FEP-MAR | APR-MAY | sep-act | MOU-DEC | SEP-0CT | NON-DEC | spe-0ct | NOW-DEC |
| | | WEANED: | NOV 1 | NOV 1 | Jut 1 | Sep 1 | May 1 | J. 15 | Jul 1 | SEP 1 |
| A.Steer Price/Ort at Heanimg | | | \$56.31 | \$68. 18 | \$66. 83 | \$64.99 | 671.11 | *66. 21 | \$66. 03 | 664.99 |
| B. Steer weight | | | 550 | 483 | 578 | 546 | 464 | 481 | 576 | 546 |
| C.Heifer Price/Cat at Weaning | | | 557.06 | \$56.52 | \$55.58 | \$57.17 | 659.31 | \$55.68 | \$55.50 | \$57.17 |
| D. Heifer weight | | | 521 | 388 | 545 | 515 | 438 | 453 | 545 | 515 |
| E. Days of Age at Sale | | | 245 | 104 | 273 | 274 | 212 | 227 | 273 | 274 |
| F.Cull Con Price/Cat. | | | \$36.73 | \$36.73 | 54.78 | \$38.51 | \$44.64 | \$39.65 | \$41.76 | \$38.51 |

W FACTORS MELD CONSTANT BY CRLVIMG SEASON कt

1. OTHER VRELPELE COSTS

A.Utilities, Fuel 10 Dil	817.37
B.Vet. I Drugs	66.92
C. Marketing \$ Breeding	57.90
D. Repairs, Tools 1 Supplies	\$14.94
E. Auto Expense	51.89
F. Misc.	\$5.83
S. 1eplants	\$1.80
11. BULLDINES \& ERUIPMENT	
A. 1 nuestwent	3316
B.Life	18
Ca ${ }^{\text {P Tax } ~} 1$ Insurance for Bidg/Eqp, Livsth	1.85

VI. BREEDING KERD (PER NERD ENTRIES) (CONSTANT) it
A. \% Calf Crop \% \%
8.\% Steers Weaned for Sale 450
C. 8 Heifers Weaned for Sale 36x
D. $\%$ Heifers theaned for Herd Replacement 15x
E.\% Bull per Cow 4x
F.Average Com Value $\$ 55$ e
6. Average Bull Value $\$ 1,500$
H. Cow Life
I. Bull Life 3
J.Salvage Value/Com \$4e
K. Salvage Valve/Boll \$50e

LCall Cow Weight $118 e$

111. INTEREST RATES	
A. Operating Rate--- (x)	14.50\%
B. Fixed Funds Rate---.--- (x)	12. $25 \times$
IV. NHTIVE RONSE VRLUE/RCLE	\$385
V. FESCUE PASTURE WKUE/RCRE	1591

4t The values in section VI. BREEDING HERD, are generally regarded as industry averages and are held constant throughout the analysis. Bu11 and cow values are estisates which are consistent with Kamsas State University Farw Management Guide (MF-256)
V. FESCUE PASTURE WLUE/RCRE $\$ 591$

* Price for Fescue Pasture $=$ Valve/Acre \times 4\% 月eturn/Acre

A range of 3-5y Returns/Acre are considered typical by Kansas Fare Managesent Associations
NDTE: Sone foreulas used in the Beef Cowhend Cost-return Budget
(1) Calf : iss Produced/Cow: assuming a 965 calf crop $=(455 \times$ steer 1 bs$)+(45 \% \times$ heifer 1 bs$)$
(2) Steer Revenue $=$ steer meaning wt. $* 45 \% \times$ steer price
(3) te.'fer Revenue $=$ hedfer neaning at. \times 36ar x heifer price
(4) Cull Cow Revenue $=$ cull cow wt. $\times 158 \times$ cull cow price
(5) Calf Braakeven Price (variable costs) = varible costs - cull cow revenue / calf 1 bs produced
(6) Calf Breakeven Price (total costs) $=$ total costs - cull cow revence / calf ibs produced
and then evaluating them with vinter fescue pasture, to study how differences in range resources affect profitability.

The budgeting process is a implified representation of reality and vill only address the major variables. In this thesis, cow unit feed costs and calf revenue are the major variables to be analyzed. All other variables will be held constant or held in congtant proportion among all calving seasons, with only prices changing from year to year. ${ }^{3}$ This allows the analysis to better reflect the differences in calving season due only to cow unit feed costs and calf revenue. A sample beff cowherd cost-return budget is located in Table 1 , which provides an overall view of the budget variables and how they are utilized in this analysis. A more detailedexplanation of the variables and how they are used can be found in Appendices 1-5.

Early spring calving is generally recognized to be the typical calving periodinkansas and thus was usedas the control group in this study. The beef cowherd cost-return budget, by evaluating eight different calving season management strategies, allows comparisons between several management options.

1) Spring vs. Fall Calving
2) Early vs. Late Spring calving
3) Early vs. Late Fall calving
4) Weaning Fall calves at 7 mos. of age or 9 mos.
5) Fall calving:all native range vs. supplenental fescue
${ }^{3}$ It is important to note that the cost and price relationships present in any given gear may or may not be typical of the norm. It is for this reason that the analysis will be conducted for each of the ten years 1975 through 1984 . (see appendix 1) Conclusions can then be drawn from price relationships averaged over a ten gear period and not from relationships of a single year.

The nutritional requirements and performance of asimulated 1100 pound hlack haldy cow and her exotic sired calf will he used in all hudgets to prevent genetic differences in cattle from skewing the results. Calves were assumed horn in themiddle of each calving season, for example, on March1, May $1,0 c t o h e r 1$ and Decemher 1.

BEEF COWHERD COST-RETURN BUDGET
The heef cowherd cost-return hudget is made up of three sections; costs, returns and analysis. Costs are divided into two parts, fixed and variahle. Total fixed costa are calculated for each year and held constant among all calving season management options. A sumary of themethodsusedtoderivefixed costsare included in Appendix 2, Fixed Costs for the Beef Cowherd.

Cost早

The primary emphasis inthecost section of the budget is to evaluate differences hetween calving seagong due to the additional feed necessary to supplement the range. For this reason the variahle cost section is split into threedivisions, total feed costs, lahor and other variahle costs. Cow unit feed costs were the major feed cost component and derived hy applying selected feed pricesto the amounts used in therations of each calving system. A complete description of the feed prices used can be found in Appendix 3, Inputs for Beef Cowherd Cost-return Budgets.

The rations for each calving season management strategy were calculated with the assistance of Dr:s Larry Corah and Frank Brazle, extension livestock specialists Kansas state University, and held constant throughout the analysis. The process consisted
of suhtracting the amount of nutrients provided hy the range from the amount of nutrients required hy the cow hased upon her specific atage of production. Any ration deficiencies were met hy the least cost comhination of supplemental feedstuffs. A summary of the quantities of supplemental feed/month in each cowherd ration is in Tahle 2. Possible ration components included native range, fescue pasture, alfalfa and grass hay and soybean meal. Extra grass hay in the hudget represents forage needed to replace range due to anow cover. A detailed explanation of the procedures used and the assumptions made can he found in Appendix 4, Beef Cowherd Rations.

Bull and replacement heifer feed costs, the second feed cost component, is calculated each year and held constant among all calving season management options. By including these costs and holding them constant the analysis could hetter reflect the differences incalving seasondue only to cov unit feed costs and still retain the realism of a complete costreturn budget. Appendix 4 contains therations used in the calculation of this hudget input.

The cost of lahor is another variahle cost, it is made up of a wage rate (see appendix 3) and hours of lahor required hy the particular calving season. Lahor hours/calving season is an area where there is very little reliahle data. Conversations with animal scientists and agricultural economists from Missouri and Kansas revealed that estimates of lahor hours/calving season ranged from 7 - 9 hours for fall calving and 5.5-8 hours for

TABLE 2.--Beef cowherd ration Summary

JAN	244.7	200.4	296.5	274.6	**	99.7
FEB	291.0	181.0	267.8	248.0	**	112.0
MAR	381.5	202.7	213.7	213.5	140.0	
APR	333.7	160.6	166.3	166.3	108.5	10.5
MAY	0.0	0.0	0.0	0.0	0.0	0.0
JUN	0.0	0.0	0.0	0.0	0.0	0.0
JUL	0.0	0.0	0.0	0.0	0.0	0.0
ADG	0.0	0.0	0.0	0.0	0.0	0.0
SEP	0.0	0.0	0.0	0.0	0.0	0.0
OCT	0.0	0.0	217.0	0.0	0.0	0.0
NOV	0.0	0.0	268.9	118.9	0.0	0.0
DEC	115.1	115.1	290.1	290.1	0.0	0.0
	-2366.1	859.8	1720.2	1311.5	320.2	388.0
TOTAL	136.0					

part C
Pounds of grass hay needed in winter
Grass hay needed to replace range due to snow is based on the average number of days with 1^{n} of snow cover or more on the ground. A thirty year average was provided by Dean Bark, Climatologist Ag Exp. Station

Native Range (Manhattan)
snow days
$1^{\text {"or }}$ more SPRING FALL 1 "or more ($\mathrm{SP}-0 \mathrm{C}$) ($\mathrm{NV}-\mathrm{DC}$)

December	5	76.0	85.5	2	50.0	50.0
January	6	81.6	91.8	4	73.2	83.6
February	6	79.8	90.0	4	70.0	81.6
March	5	71.5	81.0	2	36.0	36.0
total	22	308.9	348.3	12	229.2	251.2
AS PED		339.8	383.1		252.1	276.3
10\% Wastage		373.8	421.4		277.3	304.0

* In the fall fescue pasture option, cows are on fescue from October 1 to April 30, and then on native range from May 1 to September 30. Fall fescue was fertilized each year at the rate of $60-30-30$ (lbs NPK).
** In the native range late fall calving option (Nov-Dec), 31 lbs of soybean meal was fed in the month of January and 28 lbs in February.
spring. 4 From those ranges, 6 hours for spring calving and 8 hours for fall calving were selected.

Other variahle costs, are factors seen as heing minutely affected by calving season and thus are held constant to allow the hudget to hetter reflect differences in profitahility due only to cow unit feed costs and calf revenue. These factors were largely derived from $k a n s a s$ Farm Management Association records. 5 A ifsting of the individual variahles are located on the second page of Tahle 1 and a detailed explanation of each is provided in Appendix 3.

The operating interest rates used were provided hy the Manhattan Production Credit Association and were reflective of the average annual interest rates charged for short term operating loans. ${ }^{6}$

Returns

The second major section of the hudget desis with returns. The gross returns to any cow-calf operation are dependent on two variahles, the pounds of heef produced and the price received for the pounds produced. Cattle prices used represent average prices at sale time of Ransas City choice medium framed feeder calves

[^1]and utility yield grade $2-3$ cows. Weaning calf weights vere based on conversations vith Kansas State University Animal Scientista and will he held constant for each year of the study. A more detailed explanation of the prices and calf weights used in the heef cowherd costreturn portion of this thesis are summarized in Appendix 5, Cow and Weaning Calf Revenue Factors.

Analyais

The final section of the heef cowherd costreturn hudget is lahelled analysis and is made up of key cowherd profitahility measures. These measures include calculations of revenue minus variable costs, revenue minus total costs, investment, asset turnover and calculations of hreakeven prices.

Revenue minus total costs, is a measure that represents the returns a producer receives after paying for all of his factors of production. It reflects the total return to his management and investment, and is an indicator of long run profitability.

Revenue minus variahle costs, is a proxy measure of the returns a producer receives after paying all of his "out-ofpocket" costs. This measure does not include fixed costs, which are generally seen as sunk for the producer presently operating. Negative values here indicate severe shortrun profitahility prohlems.

Calf hreakeven prices, are calculated to give an indication of the weighted average pricesfor hothsteersand heifers that a producer would need in order to exactly pay all of his variable or total costs.

Investment is a wasure of the total capital necessary per cow unit to operate a cow-calf farm or ranch.

Thereare two calculations of asset turnover usedin the beef cowherd cost-return budget. Net turnover measures revenue minus total costsas a percent of investment. This can bevieved as a proxy for the opportunity costs of farming as compared to investing a like amount of money at the market rate of interest. Gross turnover is total revenue as a percent of investment. This ratio can also be viewed inversely as the dollars of investment necessary to generate a dollar of gross revenue.

As statedearlier the goal, of this thesis, is to evaluate the impacts of calving geason on covherd profitability. For the typical feeder calf producer, overall cowherd profitability is a function of many variables. This thesis concentrates primarily on two variables; cow feed costs and beef cattle prices. All other factors of production will be held constant. The intent is not to claim that one calving geason is alvays better than another but to determine vhy in this instance one was relatively more profitable. The goal is to evaluate the relationships of key variables and how they affect cowherd profits. From this evaluation, concluaions can be made about these variable relationships which can be used by ag specialists and producers in analyges of individual operations.

Beef cowherd cost-return budgets vill utilize representative prices for each year from 1975 through 1984 . From this body of data, tables consisting of key budget variables representing all of the calving season management options for each of the ten years of this study ill be presented. These can be found in Appendix 6. Among the budget variables to be analyzed are: cow unit feed costs, beef cattle prices, total revenue and each of the
variables in tbe analysis section of tbe beef cowberd cost-return budget.

Because tbe relative levels of prices changefromyear to year, absolute values can often lose tbeir significance. For example, a $\$ 7$ difference between $\$ 2$ and $\$ 9$ is quite large, while a $\$ 7$ difference between $\$ 102$ and $\$ 109$ is relatively less significant. An additional measure is needed to better analyze tbe relationsbips of budget variables between differing calving seasons. Early spring (Feb-Mar) will be used as tbe basis of comparison. Budget variables of each calving season option divided by tbe value of the Feb-Mar calving period allows the relationsbips betveen variables to be evaluated on a percentage basis, unaffected by year to year cbanges in tberelative price level.

Statistical Measures

To analyze relationsbips among variables it is important to know the average value tbat would be expected in any given year and also tbe degree of variability around tbat average value. Reliable conclusions cannot be drawn unless one can be reasonably certain tbat varisble relationsbips vill fall vitbina relatively small range around tbe expected value. In this tbesis, two statistical measures will be utilized when analyzing budget variables. The sample aritbmetic mean, $\bar{x}=\sum_{i=1}^{n} x_{i} / n$ is used toestimate tbeaverage of budget variables over tbe ten year period of the study. 7 While the sample standard deviation,

7 x , n and i are statistical terms which are defined bere. \bar{x} = sample observation, $=$ size of sample, and i represents tbe ith member of tbe sample.
$S=\sqrt{\sum_{i=1}^{n} X_{i}^{2} /(n-1)}$, is used to measure the variation among the gearly values of hudget variahles. A noralal distribution of budget values around the mean, \bar{X}, will be assumed. Certain statistical conclusions ahout the distribution of budget variahles around the average can then he stated.

> In any normal curve, over two thirds of the measurements lie in the interval, +l- one standard deviation (STDEV) around the average, while some 95% are in the interval, $+/-$ two STDEV's. Only 26% of the total frequency lies beyond $+/-$ three STDEV.

Thus, in this thesis values are calculated for a $+/$ - one STDEV around the average to give an indication of the range in which hudget variables would fall two thirds of the time. RETAINED OWNERSGIP ANALYSIS

Retained ownership of calves after veaning is often seen as a strategy that can increase cowherd profits. Depending on weaning time, this strategy can involve programs ranging from drylot hackgrounding to full or intensive grazing of native range. Retained ownership lengthens the time period in which a particular calf crop can be marketed and thus increases the chances of a producer receiving calf prices necessary to earna sufficient return over costs.

Backgrounding and grazing retained ownership options will be analyzed for each calving period. ${ }^{9}$ The complete programs for each calving season are outlined in Tahle 3.

${ }^{8}$ George E. Snedecor and William Cochran, Statistical Methods, (Ames: Iowa State University Press, 1980) p. 39.

${ }^{9}$ Retained ownership of steers was the only production option analyzed. This would he the equivalent to selling your heifers at weaning and replacing them with steers.

For purposes of comparison, each calving season management program is evalugted at a point when the calf weighed 750 lhg , which is a typical weight for feeder cattle to enter the feedlot. This alloved eachstrategy to be compared on the basis of costs and prices incurred in growing a calf to the same production phase. Returns minus variahle costs (ret-vc) for each retained ownership option are added to theret-vc for each appropriate calving season option to illustrate the changes in profits due to lengthening the ownership period. A more detailed explanation of the retained ownership hudgeta can he found in Appendix 7.

TABLE 3.--Calving season management programs vithretained ownership

$\begin{aligned} & \text { Calving } \\ & \text { Season } \end{aligned}$	Date Weaned/ Age at Weaning	Retained Ownership Programs	In/Out Dates
1) Feh/Mar	Hov $1 / 8$ mos.	A) BKG* © 2.25 ADG* B) BKG @ 1.25 ADG (1) Full Graze (2)Int. Graze	Nov $1 /$ May 1 Nov 1/May 1 May $1 / 0 \mathrm{ct} 1$ May 1/Jul 15
2) Apr-May	Nov 1/ 6 mos.	A)BRG © 2.25 ADG B) BKG @ 1.25 ADG (1) Full Graze (2)Int. Graze	Nov $1 / \mathrm{May} 1$ Nov $1 / \mathrm{May} 1$ May $1 / 0 \mathrm{ct} 1$ May 1/Jul 15
3) Sep-0ct	May $1 / 7$ mos.	A)Full Graze B) Int. Graze (1)BKG 2.25 ADG	$\begin{array}{ll} \text { May } 1 / 0 \mathrm{ct} 1 \\ \text { Kay } 1 / \mathrm{Jul} 15 \\ \text { Jul } 15 / \text { Sep } 23 \end{array}$
4)Sep-0ct	Jul $1 / 9$ mos.	A) BKG 2.25 ADG	Jul 1/Sep 15
5) Nov-Dec	Jul 15/ 7.5 mos.	A) BKG 2.25 ADG	Jul 15/Nov 13
6) Nov-DeC	Sep 1/9 mos.	A) BKG \& 2.25 ADG	Sep 1/Dec 1
$A D G=A v e$	Daily Gains (1hs)		

CHAPTER IV

RESULTS

This chapter is a sumary of the major points and primary conclusions drawn from this analysis. The first section examines the relative profitability of the various calving season management strategiea, then certain key budget variables were evaluated to measure their impacts on cowherd profitability. Next, some of the individual management strategies were compared and finally, retained ownership was brought into the analysis to measure its effects.

PROPITABLLITY

Just as profits are the key to survival in any agricultural operation, revenue minus variable and total costs were the determining factors in judging one calving season management option over another in this study. 1 Table 4 shows that, given a resource base of year round nativerange, early spring calving (February-March) vas the most profitable calving period. Early spring was the only period to average positive returns over variable costs (ret-vc), for the ten years of this analysis.
$1_{\text {Returns minus total costs were not cover in depth }}$ fixed costs were held constant among all calving seasons for each year of the anslysis.

TABLE 4.--Galving season cowherd profits

Standard Deviations

Calving Season

1) Feb-Mar
2) $\mathrm{Sep}-\mathrm{Oct}$
3) Nov-Dec
4) Apr-May
5) $\mathrm{Sep}-0 \mathrm{ct}$
6) Nov-Dec

Age at Average
Weaning
8 mos.
9 mos.
9 mos.
6 mos.
7 mos.
7.5 mos

Ret-VC
\$6.80
(\$6.15)
(\$9.56)
(\$32.64)
(\$34.66)
(\$37.13)

Around the Mean
+1 STDEV -1 STDEV
$\$ 77.21 \quad(\$ 63.62)$
\$64.81
(\$77.10)
\$66.18
(\$85.29)
\$27. 27
(\$92.54)
$\$ 39.52$
$\$ 31.49$
(\$108.85)
(\$105.75)

Other results pertaining to cowherd profitability were that 1) the profitability of beef cowherd ownership has been extremely low over the last ten years, with only one management option averaging positive returns over variable costs and no management option even coming close to covering its total costs. 2) The variability of returns to cowherd ownership have been extremely great for all calving seasor management strategies, as evidenced by the wide range of returns minus variable costs ($+/-$) one gtandard deviation around the mean. And 3) the differences in average profitability between calving seasons add up over time. For example, there is only two months seperating early from late spring calving and the average difference in ret-vc was \$39.43 per head. The difference for 50 cows would be $\$ 1,972$ per year; the difference for 200 cows would be $\$ 7,887$ per year; and for 200 cows over the ten years of this analysis the difference would have been $\$ 78,870$.

MAJOR VARIABLES

Cow unit feed costs:

Beef cow rations were based on the feed necessary to sustain a cow calving during each of the calving periodsinthis analysis and were held constant from year to year. Feed costs were
derived by multiplying tbe applicable yearly feed prices by the fized beef cow rations. As a result, the differences in costs among calving seasons were very consistent, with standard deviations of leas than one percent. Over the ten gears of this analysis, late spring calving had the lowest cow unit feed costs, averaging 10.5% less than the early spring period. Fall calving feed costs on the other hand were higher than early epring, averaging 15.6% and 11.5% more for the sep-oct and Nov-Dec periods respectively than the early spring period. These percentagea are important because they can be used by ag specialiats and producers in transforming the additional feed requirements of one calving season over another into additional dollars/cwt. required in selling prices. For example, with the Feb-Mar cow unit feed coste averaging $\$ 158$ over the ten yeare of this analysis, the 15.6% higher feed costs of the sep-Oct period represent an average $\$ 24.65$ of additional revenue needed to cover the additional feed costs. Assuming that both calves are sold weigbing 550 lbs, the Sep-oct born calf would require a $\$ 4.48$ higher price/cwt. than the early spring born calf. (\$158 $\times 15.6 \%=$ $\$ 24.65 / 5.5 \mathrm{cwt}=\$ 4.48$ more/cwt)

Overall cowberd profits are combination of both costs and revenue, because of tbat, this study developed a measure (CFC/TR) that combines cow unit feed costs (CFC), the major cowherd cost component, with total revenue (TR), the product of beef prices and the pounds of beef sold. Theoretically, the lower the percent cow feed costs are of total revenue, the greater profits vould be. This measure found that hypothesis to be true, but more importantly, allowed guidelines to be formed that equated what
tbat ratio must be in order to meet particular levels of profitability. Returns minus variable and total costs, breakeven prices necessary to cover variable and total costs, and cow unit feed costs divided by total revenue were placed in a table and sorted in descending order by ret-vc. Tbese variables were bigbly correlated and tbe guidelines formed from tbis sorting process are listed below.

CFC/TR	RET-VC	RET-TC
$40 \% \&$ Legs	$\$ 135 \& \sigma_{p}$	Covered
$50 \%-40 \%$	$\$ 40-\$ 134$	$\$ 0-(\$ 140)$
$51 \% \&$ More	Can't Cover	Can't Cover

Fromethis data it can be seen that long run cowberd profitability will be difficult to achieve for any calving season management strategy unless cow unit feed costs are forty percent or less of total cow unit revenue. Tbis measure is significant becanse it can be used by producers and ag specialists ven analyzing individual cow-calf operations. It is a useful measure of overall cowherd economic efficiency witb tbe forty percent level representing a maximum allowable target for individual cowberd profitability.

Cattle Prices:

Overall cattle prices are major determinant of cowherd profits. Steer, beifer and cull cow priceg were evaluated separately, but none proved to bave any significant effects on an individual basis. It appeared tbat fluctuations between tbe prices of stefs, heifers and cull cows in any given year occurred randomly and that bigher tban average steer prices for example, would sometimes be offset by average or lower tban
average prices for beifers and/or cull cows. Because of tbese problems, an aggregated measure of beef prices was utilized when analyzing tbe relationsbips between calving seasons rather than separatepricesfor steers, beifersand cull cows. Tbe measure used was the average price per pound of calf produced, or AP/Pp. ${ }^{2}$

Wben evaluating tbe relationships between calf prices of different calving seasons it is not only important to look at what tbe bistorical price relationsbips have been, but to also measure tbe price relationsbips that would have been necessary for tbem to bave all bad equal returns over tbeir costs. Tbe Feb-Mar calving period was again used as tbe hasis of comparison. First, tbe AP/pp was calculated for each calving season strategy, then the average calf prices needed for eacb of tbe other calving management options to equal tberet-ve for tbe FebMar period were calculated (PN). ${ }^{3}$ Tbe AP/PP's and $P^{\prime} \mathrm{S}^{\prime}$ for eacb calving season vere tben divided by tbe AP/PPfor tbe FebMar calving period in order to put tbese measures on a percentage basis. Tbe resulting price relationsbips for the Apr-May, SepOct and Nov-Dec calving seasons (when veaning e months of age) are sbovn on figures 3-5. Conclusions tbat can be dravnfrom tbese grapbs are:

Figure 3) 3-4 Cwt ve. 4-5 Cwt calves sold on November 1 . Tbe 352 lhs of calf produced in tbe Apr-May time period bas
${ }^{2} A P / P P=T R-c u l l$ cow revenue $/$ lbs of calf produced. Cull cow revenue was omitted so tbe measure could focus solely on calf prices and their effects on cowberd profitability.
${ }^{3}$ The equation used to calculate pN for Apr-May calving is given as an example:PN = ret-vc for Feb-Mar - ret-vc for Apr-May/ tbe lbs of calf produced in Apr-May + tbe AP/PP for Apr-May.
AVG PRICES NEEDED TO EQUAL FEB-MAR

IN3כは3d
historically received a 2.26% higher price than the 482 lbs of Feb-Mar borncalf when both weresoldon November l, butinorder to breakeven with the heavier Feb-Mar calf it would have needed an average premium of 25.52%.

Figure 4) 4-5 Cwt calves sold on July 1 vis. November 1. The 505 lbs of calf born in the Sep-0ct period and sold on July las historically needed a 7.33% price premiun over the 482 ibs of Feb-Mar calf sold November 1, but has actually averaged only a 1.46% price premium. It should be noted though, that the sep-0ct born calf did receive the price premium necessary four out of the ten years of the analysis.

Figure 5) 4-5 Cwt calves sold September 1 vg. November 1. The 477 lbs of calf born in the Nov-Dec period and sold on September 1 has historically needed an 11.63% price premium over the 482 1bs of Feb-Mar calf sold November l, but has actually averaged only a 3.58% premium.

Investment and Asset Turnover:

Investment is measure of the capital necessary to ova and operate a beef cowherd, and because of the acres needed per cow, is strongly influenced by land prices. Investment for spring calving averaged $\$ 4227$ while fall calving herds average $\$ 395$ more at $\$ 4622$, this was largely due to the additional 1.5 acres needed for fall calving herds on native range.

Gross asset turnover is the ratio of total revenue over investment, and averaged between 7.3% and 9.1% for all calving operations. Inverted, this measure can be used to indicate the total assets necessary to gross a dollar of total revenue. This measure averaged from $\$ 13.70: 1$ to $\$ 10.99: 1$, which suggests
that a large amount of capital is necessary to operate a cow-calf program.

Net asset turnover is the measure of returns over total cost divided by total revenue and can be a proxy value for the opportunity cost of ranching. Over the ten years of this analysis, all of the calving season strategies averaged negative returns to investment, $\mathbf{- 1 . 6 4 \%}$ to $\mathbf{- 2 . 5 6 \%}$.

CALVING SEASON STRATEGY COMPARISONS

Fall Galving and Heaning at Z تonths ys. 2 months:

Galves born in the early fall period, reach seven months of age in May, when seasonal prices are generally quite high. Calves born in the late fall period reach geven months of age in July, which is a time when grass quality begins to decife and the resulting late summer calf gains are quite low. For these reasons weaning fall born calves at seven months of age is sometimes seen as an alternative to waning at nine montha of age when the calf is heavier. The question of whether to wesn the fall born calf at seven months of age or nine was seen as an option of the producer when the calf was seven months of age. Thus, in the shortrun, all costs were seen as sunk.

Early Fall: In the September-october calving period, weaning at nine months of age was the more profitable strategy each of the ten gears of this analysis with average returns over variable costs $\$ 28.51$ higher per head than veaning at seven months of age. Although the 406 lbs of calf produced on May laveraged an 8% higher price than the 505 lbs of calf two months later, it was
far short of tbe 19% price premium it would have geeded for hoth calves to have broken even with their variable costs. ${ }^{4}$

Late Fall: In the November-December calving period, weaning at nine months of age was again the more profitahle strategy for each of the ten years of the analysis, with average ret-vc \$27.57 bigher per head than seven month weaning. This was primarily hecause the pricefor the 420 lbs of calf sold on July 15 was on average, equal to the 477 lhs of calf sold on Septemher 1 , resulting in lower overall returns.
Fall Calving. Early Y8. Late: ${ }^{5}$
Little difference in profitahility was found between early and late fall calving strategies, with calves born in the sep-0ct period averaging only $\$ 3.41$ more returns over variahle costs than the Nov-Dec calves. This relative closeness was largely due to the fact that some variahles tended to offset each other. The early fall horn calf, being older, was better equipped to both withstand the winter cold and utilizethegrass in spring, as a result, the sep-0ct calving strategy produced 28 more lhs per cow unit. This advantage in gain was nearly offeet though, by an average selling price 2% lover (July price lover than Sep 1) and an average cow unit feed cost 4.1\% higher.
${ }^{4}$ The average price necessary to hreakeven with variable costr were $\$ 49.73$ and $\$ 61.33$ for the 9 and 7 month old calves respectively. (49.77/61.33 = .8108: во $\$ 49.73$ is 18.91% ($\$ 61.33$)

5In the analysis of early and latefall calving programs, weaning at mine months was assumed since it was shown to he the more profitahle strategy in an earlier section.

Spring Calving. Early Fa, Late:
The calving season strategy comparison indicated early spring was by far the more profitable with average returns minus variable costs $\$ 39.43$ higher than the Apr-May calving period. Although the cow unit feed costs averaged 10.5% less in the late spring, the tvo month older calves born in the Feh-Mar period produced nearly 130 more pounds of beef. The lighter late spring calves would have required a price premium of 25.52% over the heavier early spring calves, but on average received only a 2.26% higher price.

Early Spring ys. Early Fall:

The Feh-Mar and Sep-Oct calving periods were shown to he the two most profitahle calving seasons in this analysis, as measured by ret-vc. Early spring calving achieved the highest profits or least losses six years out of the ten in this study wile early fall calving did the other four. Early spring was deemed the more profitable, heing the only strategy to average positive returns over variahle costs, $\$ 12.94$ more per head than early fall. A closer look at some variahle relationships show that the Sep-0ct period, although producing more pounds, 505 to 482, also encountered 15.64% higher cov unit feed costs. The analysis of hreakeven (over variahle costs) prices revealed that the sep-Oct horn calf sold on July 1 would need a 7.33% higher average price
 premium however, averaged only 1.46% throughout the length of this analysis.

Fall Calving. Year Round Native Range vs. Supplemental Fescue: In this study it was found that hy utilizing supplemental
fescue pasture, cow unit feed costs could be lowered and returns over variable costs increased over the same calving period when using year round native range. In the case of sep-oct calving, cow unit feed costs were decreased $\$ 20.26$ and ret-ve vere increased $\$ 21.60$ per period, which resulted in an average positive return over variahle costs of $\$ 15.45$ throughout the analysis, as opposed to the negative $\$ 6.15$ it earned on year round native range.

RETAINED OWNERSEIP ANALYSIS

The final section of this research dealt with retained overship. Applicahle options from drylot hackgrounding to grazing were analyzed for each calving period witheach option heing evaluated at a point when the calf weighed 750 lhe

TABLE 5,--Ret-VC with retained ownership at 750 hhs

Management 0ption	Cow/Calf	Ret. Ownership	Total	$\begin{aligned} & \text { Date } \\ & 6750 \end{aligned}$
1) Feb-Mar 2.25 ADG	\$6.80	\$20.88	\$27.68	Jan 28
1.25 ADG	\$6.80	(\$21.72)	(\$14.92)	Apr 10
2) Apr-May 2.25 ADG	(\$32.64)	\$69.01	\$36.37	Apr
1.25 ADG/full graze	(\$32.64)	(\$3.94)	(\$36.58)	Jul
1.25 ADG/int. graze	(\$32.64)	\$15.47	(\$17.16)	Jul
3) Sep-0ct/9 mo. 2.25 ADG	(\$6.15)	\$3.98	(\$2.17)	Sep 15
4)Sep-0ct/7 mo.				
Int.graze/2.25 ADG	(\$34.66)	\$9.46	(\$25.21)	Sep 23
Full graze until 655	(\$34.66)	\$4.46	(\$30.21)	Oct 1
5) Nov-Dec/9 mo. 2.25 ADG	(\$9.56)	\$4.64	(\$4.92)	Dec
```6)Nov-Dec/7.5 mo. 2.25 ADG```	(\$37.13)	\$18.72	(\$18.41)	Nov 13

Tahle 5 points out the fact that retained ownership can improve the overall profitability of most calving season
management strategies. For every calving season in the study, therevas at least one production option that earned positive returng over variahle costs and improved the total returns of the cow-calf operation. It should he noted however, that for retained ownership to he successful, the calves must he managed to gain as fast as poseihle. Backgrounding at $1.251 \mathrm{hs} / \mathrm{day}$ and full season grazing strategies often had low or negative returns over variahle costs.

Comparisons of the various strategies suggested that, although there was increased profitability with nearly every retained ownership option, only the spring calving seasons vere improved enough to significantly cover their variahle costa. In the fehMar calving period, retained ownership earned an average of $\$ 20.88$ per gear, increasing the total returns over variable coste for the complete cattle operation to $\$ 27.68$. The Apr-May calf performed even better, averaging $\$ 69.01$ per year and increasing the total returne over variable costs from ( $\$ 32.64$ ) to $\$ 36.37$, $\$ 8.69$ more than the Feb-Mar period. The superior performance of the late spring horn calf can largely he attrinuted to two factore. Firet, heing a lighter calf going on feed in the fall, it took less feed for it to gainat the samerate as the larger early apring calf, resulting in lower feed costa. Secondy, when fed to 750 1hs, the late spring calf is sold in April when feeder calf prices are seasonally quite high, on the other hand, the Feh-Mar horn calf reached 750 hhs during January when prices are lower on a seasonal hasis.

Further analysis of the spring calving seasons indicated that hy feeding hoth calves until April 25, a time when many
backgrounding programs are typically completed, the early spring calves were then more profitable. The Feb-Mar born calf averaged slightly higher overall returns minus variables coststhan the Apr-May calves, $\$ 55.27$ to $\$ 51.67$, even though the latering calves earned $\$ 35.84$ more in the backgrounding phase.

## CHAPTER $\nabla$

## DISCUSSION AND SUMMARY

The purpose of this thesis was to evaluate the impacts of calving season on cowherd profitability. The budgeting technique was the primary analytical tool with eight different calving geason management options being analyzed. The simulated performance and natritional requirements of a hack baldy cow and her exotic sired calf were comhined with the appropriate yearly input and calf prices to construct hudgets for each of the gears, 1975 through 1984. All factors of production that vere not directly affected hy calving geason vere held congtant or in constant proportion throughoutthe analysis. This framework allowed the study to focus on cow unit feedcosts and calf prices as the major variables and to illustrate the effects different calving seasons would have on the same cov-calf pair.

The results of this analysis, while not answering the question of wich calving season is hest for articular operation, were intended to help in the decision making process. By evaluating certain key variahles, significant relationships were sought that could aid producers and ag specialists in hoth, making the calving season decision and analyzing individual cowcalf operations. It was hoped, that hy knowing the feed cost and
calf price relationships that occur, producers and ag specialists would be hetter equipped to make informed decisions on which calving season is hest for articular farm or ranch.

The completed hudgets supported analyses from industry sources revealing low average returns coupled with high year to year variahility of cowherd profitahility. These results, combined with the high capital investment necessary and low rate of returns to cowherd ownership, imply that there are hoth financial and risk barriers to entry in the cow-calf husiness. The findings suggest that only those producers who are well established and willing to accept low returns to their investment can survive. Highly leveraged operators will face severe financial difficulties at current interest rates. For example, if we assume $14 \%$ interest and average gross returns to investment of $8 \%$, this implies a maximum allowahle leverage ratio of $57 \%$.

Given the same reaource base, year round native range, early spring calving was the most profitable strategy in this analysis. The Feh-Mar calving period was the only calving season to average positive returns over its variable costs. No calving season covered its total costs of production. This was due largely to two factors, large calf size and low cow feed costs. The results indicated that spring calving cowherds, hy hetter matching cow needs with range nutritional value, had lower feed coets than fall calving herds. Early spring calving averaged 11-16\% lover feed costs than the fall periods, while feed costs for the late spring period averaged 21-26\% lower. The larger Feb-Mar calves were able to use these lower feed costs to earn positive returns
to variable costs, while the 130 lbs lighter Apr-May calves lost an average of $\$ \mathbf{3 2} \mathbf{2 . 6 4}$.

In fall calving cowherds, it was found that calf size again played a big role, with the more profitable management atrategies being those weaning the larger nine month old calves as opposed to the lighter seven month old calves. In addition, fall calving cowherd returas were found to be improved with the implementation of a supplemental fescue pasture option. In the case of sep-Oct calving, fescue pasture lowered cow feed costs an average of $\$ 20.26$ and increased average returns over variable costs $\$ 21.60$, from ( $\$ 6.15$ ) to $\$ 15.45$. This finding does not implythat fall calving operations on fescue pasture are the beat overall, but does point out bov changes in forage resources can make significant differences in cowherd profitability. Budgetsfor spring calving cowherds on fescue pasture were notincludedin this analysis, but it is believed that spring calving cattle would have had similar if somethat smaller increases in returns to their variable costs. It should be noted that in this analysis, it was assumed that land in fescue had few alternative uses and thus the opportunity costs were low. In actual practice, the per acrereturns to land in fescuemust out veigh the per acre returns of the most profitable alternative use before it is economically feasible to utilizefercue pasture. The research in this thesis concerning forage resources is limited, but the results do indicate that alternative resources can make significant impacts on cowherd profitability. Further research is necessary in the area of alternative cowherd forages and their effects on cow unit feed costs.

Because cowherd profits are affected by both costs and revenue, the ratio of cow unit feed costs over total revenue was evaluated in this thesis. The analysis indicated that long run profitability for any calving season strategy would be difficult unless cow unit feed costs wereforty percent or less of total cow unit revenue. This measure could be utilized by producers and ag specialists as an excellent indicator of covherd economic efficiency, but further testing with actual farm records is needed before it is used extensively.

Cattle prices were found to be the critical factor in determining overall cowherd profitability, with positive returns for any calving season being dependent upon above average prices. Because fluctuations in the premium structure between steer, heifer and cov prices made analyses of individual prices difficult, the average price per pound of calf produced vas used as the chiefmeasure of cattle prices. Although cattle prices are strongly influenced by seasonal trends and premiums between weight classifications, in this study it was found that these price differentials had less influence on profitability than factors such as cow feed costs and calf weights. Because of this, it is the opinion of this author that producers should concentrate not on matching calving season strategies with seasonal highs in prices, but on organizing a complete marketing plan for the cattle they produce. This plan should begin with a comprehensive analysis of all the market alternatives, from forward contracts to options on cattle futures contracts, that are available to their operation. From there the marketing plan can evaluate these alternatives on regular basis allowing
producers the opportunity to price their cattle throughout the year instead of when their calving season dictates.

Retained ovnership etrategies vere the final section of this study. Comparisons of the various strategies suggested that, although retained ownership can often improve overall profitahility, only the spring calving seasons were improved enough to significantly cover their overall variable costs. This resulted from the spring horn calves heing ahle to take advantage of the seasonally higher prices which occur after a typical over wintering program. The fall calving seasone on the other hand, while often earning positive returns over variahle costs to retained ownership, still did not earn enough to make up for the losses of the cow-calf phase. This is a significant finding, hecause it tends to refute the argument of many fall calving producers that the older fall born calf, will wake up for their increased feed costs and return more than the spring calf when hothare sold in the fall. The results of this study indicated that even after retaining ovnership until the calf weighed 750 lhs, no fall calving strategy was able to cover their average overall variahlecosta. While the feh-Mar horn calf was ahle to average a $\$ 6.80$ return over its variable costs during the cowcalf phase.

Another notahlefinding from the research of retained ovnership was that, to he successful calves must hemanaged to gain as fast as possihle. Backgrounding at $1.25 \mathrm{lhs} / \mathrm{day}$ and full season grazing options often resulted in low to negative returns over variablecosta.

In addition, the results indicated that there vas a definite place in the cattle industry for backgrounding operations. The Apr-May born calves in particular proved to be a profitable cattle enterprise on their own, with average returns over variable costs of $\$ 69.01$ per head. Plus they vere able to cover their total costs of production six years out of the ten in this analysis. 1 Because of the higher returns and the lover capital needs associated with backgrounding, this author believes backgrounding operations may represent one of the few ways that young and highly leveraged operators can survive in the cattle industry. As the cattle feeding industry becomes more concentrated, cattleaen wo can 1) doagood job of assembling, buying and selling, lot sized groups of cattle. And 2) effectively handle the greater health risks of these younger, more fragile animals vill provide a vital service to the industry and in turn be one of the more profitable segments of the beef cattle industry.

The above findings warrant continued research in the area of retained ownership and backgrounding or growing out of calves and yearlings. The key areas of analysis should focus on the price relationships involved throughout the growing phase and not just when the calf is bought or sold. In addition, the feeding or buy/sellmargins should be evaluated for trends and particular levels identified that are necessary for profitability.
${ }^{1}$ Feeding the younger calves was profitable because it took lesafeedfor them to gain at the samerate as larger calves, and thus were more efficient. It is important to remember that the Apr-May born calf entered the backgrounding lot at six months of age, and thus was lighter because of its age and not because of its genetics or health. In practice, backgrounders and potential backgrounders should keep that in mind when buying their cattle.

## APPENDIX 1 BEEF COWEERD COST-RETURN BUDGETS

The actual yearly beef cowherd cost-return budgets used in this thesis are as follows:
** CRLVING SERGON STRATEGIES **
BEEF COWNERD COST-RETURK BUDSET
1984


:- AEVECLE-VARTAEGE CDS"5
( $\$ 24.43) \quad(\$ 65.73) \quad(\$ 47.59)(\$ 57.65) \quad(\$ 78.85) \quad(\$ 84.91) \quad(\$ 13.85) \quad(\$ 36.79)$
\#, REVENE-TOTR COST

$$
(\$ 195.42) \quad(\$ 232.76)(\$ 214.52)(\$ 224.67)(\$ 245.88)(\$ 251.93)(\$ 180.86)(\$ 203.81)
$$

 	557.62 $\$ 32.26$	$\begin{array}{r} \$ 72.63 \\ \$: 19.44 \end{array}$	361.34   594. 39	$\begin{aligned} & \$ 64.82 \\ & \$ 99.00 \end{aligned}$	$\begin{array}{r} \$ 75.21 \\ \$ 116.36 \end{array}$	$\begin{array}{r} \$ 72.28 \\ \$ 112.82 \end{array}$	$\begin{aligned} & \$ 54.52 \\ & \$ 87.58 \end{aligned}$	$\begin{aligned} & \$ 59.65 \\ & 494.63 \end{aligned}$
. SWESTENT,	54, 247	\$4,236	\$4,639	\$4,634	\$4,639	\$4,634	\$4, 357	4, 359
RSSE TIANV的 :								
	-2.29\%	-3.27x	$-2.668$	-2.82x	$-3.27 x$	-3.415	-1.97x	-2.525
	9.68\%	8.89\%	9.17\%	8.75\%	8.58\%	8.17\%	$9.77 \%$	9.31\%

[^2]|  |  | SPRIM |  | FALI |  | FALi |  | FPLi FESCuE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 及 | 29:ce | Fç-mar | APR- WQW | SEP-GCT | NOW-DEC |  | NOV-DEC | SEP-0CT | NOV-DEC |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 9. Wavive ivege AC | \$12. 82 | 8.5 | 3.5 | 9.5 | 9.5 | 9.5 | 9.5 | 6.5 | 6.5 |
| S. Fasicue Fasturet fil | \$23.64 | e. 0 | 2.8 | 2.0 | 0.6 | 0.8 | 8.8 | 1.5 | 1.5 |
| 2. Aifaita tay Taus | \$71.en | 2.84 | e. 53 | 1.06 | e.8: | 1. 05 | 0.81 | 0.19 | 2. 23 |
|  | \$300.08 | 8.20 | 2.89 | e.ee | 8.83 | 2.60 | 8.23 | 2.00 | 6.88 |
|  | \$5. 83 | 0.57 | 6.57 | 0.57 | 0.57 | 0.57 | 0.57 | e. 57 | 8.57 |
| F.Grain $\quad 3 \mathrm{~J}$ | \$2.55 | e.ee | 8.20 | e.e2 | 8.88 | 2.68 | 2.62 | 8.60 | 0.ee |
| 3. Grass nay tens | \$52.e8 | 8.19 | 8.19 | e. 21 | 0.21 | 0. 21 | 0.21 | 2.14 | 8.15 |
| to Esecue Fert. AC | \$24.14 | se.20 | \$0.20 | se.ee | 53.60 | 58.00 | se.00 | \$36. 21 | 136.21 |
| 11. 4802 | \$4.28 | 6.1 | 6.8 | 8.8 | 8. 8 | 8.8 | 8.8 | B. 8 | 8.4 |
| 2I1. REvENE FACTORS | Bopex : | FEP-MAR | APR-MRY | SEP-0CT | NOV-DEC | SEp-act | NOU-DEC | SEp-0CT | NOV-DEC |
|  | HECNED: | NGV 1 | NOV 1 | J. 1 | SEP 1 | NaY 1 | Jl 15 | Ju. 1 | Sep 1 |
| A. Steer Price/Ont at weanirg |  | \$66. 31 | \$68.18 | 466.e3 | \$64.99 | \$71.11 | \$66. 21 | *66. 83 | \$64.99 |
| 3. Siemr weight |  | 558 | 423 | 578 | 546 | 464 | 481 | 578 | 546 |
| C. reifer Price/Owt at heaning |  | \$57.02 | \$56.52 | \$55.50 | \$57.17 | 559.31 | \$55.68 | \$55.58 | \$57. 17 |
| D. - deifer we:ght |  | 521 | 382 | 545 | 515 | 438 | 453 | 545 | 515 |
| E.Cays of Rge at Sale |  | 245 | 184 | 273 | 274 | 212 | 227 | 273 | 274 |
| F.cull Cow orice/tut. |  | \$36.73 | \$35.73 | \$41.78 | \$38.51 | \$44.64 | \$39.65 | \$1. 78 | \$38.51 |


Vh. RREEDING HERD (PER HERD ENTRIES) (CONSTANT) **

1. OTHER VAR:AELE CDSTS
A. $\%$ Calf Crop 90x

	\$17.37	B. \% Steers Weaned for Sale	45 x
B.Vet, 2 Drues	\$6. 92	C. \% Heifers Weaned for Sale	$33 \times$
C. Karketimit \& Breeding	\$7.98	D. \% Heifers Weaned for Herd Replacement	15x
D. Fapares, Toois \& Supplies	\$14.94	E. ${ }_{\text {chell per Com }}$	4x
E. Puto Expense	\$1.39	F.Average Com Value	5558
F, \%15c.	\$5. 83	6. Averape Bull Value	\$1,500
S. Japlants	\$1.80	H. Cow Life	8
It. BUILDINSS \% EDUIPKENT		I. Bull Life	3
R. Investment	\$316	J. Salvage Value/Cow	4480
B.infe	18	K. Salvape Value/Bull	\$500
C. $\%$ Tax : Insurance for Bldq/Eqp, Livstk	1.8x	LuCull Cow Height	1188


III. STEREST RATES		* The values in section VI. BREEDING HERD, are generally regarded as industry averages and are held
R.Operating Rate-...-.-. (x)	14,50x	
2.Fixad Funds Rate---- (s)	12. 255	constant throughout the analysis. Bull and cow values
TV. WhTtVE RAvSE VRLUE/GCRE	\$385	University Fars Kanageent Guide (4F-266)
v. FESCUE PASTUSE VFLLE/ACRE	5591	

[^3]KCTE: Sone formulas used in the Eeef Comherd Cost-return Buoget
(1) Sa!: Lbs Produced/Cow: assucinis a $90 \%$ calf crop $=(45 \% \times$ steer 1 bs$)+(45 \% \times$ heifer 1 bs)
(2) Steer Bevenue $=$ steer meanang wt, $x 45 \% \times$ steer price
(3) Hatfer Reverae $=$ telfer wearitg wh. $x$ 30x $\times$ helfer price

(5) Ca!f Bradivien Frice (variasle scsts) = varible costs - cull cow revenue / calf lbs produced

*F CNVIMS SEASON STRATEGIES *4
BEFF COWERD COST-RETURN BUDAET
1963

	SPR1N6		FRLL		FRLL		FRLL FESCEE	
BOPN :	FEB-Mar	APR-xay	SEp-0cr	NOU-DEC	Spo-oct	NOV-DEC	SEP-aCT	NOV-DEC
I. TOTRL VARTAELE CISTS HEANED:	NOV 1	NOV 1	ML !	Spp !	MaY 1	ric 15	JL 1	SEP 1
A. Total Feed Costs AEE IN CAYSt	245	184	273	274	212	227	273	274
1. Caw lint Faed Costs								
a. Vative Range	\$12d. 38	\$108.88	\$121. 62	\$121.60	\$121. 68	\$121.60	483. 20	883.28
b. Fescue Pasture (rent $\%$ fert,/PC)	80.20	50.88	50.8e	30.02	40.08	\$2.00	575.38	\$75. 38
c. 21 falfa Hay	346. 26	\$29.12	558. 26	\$44.41	\$58.26	\$44.41	\$12.63	\$12. 88
d. S8X 44x	sc. ${ }^{\text {d }}$	\$0.08	se.ee	37,28	50.00	87.88	52.60	40.00
a. Mineral 4 Salt	33.31	33.31	\$3.31	33.31	\$3.31	\$3.31	\$3,31	43.31
f. Oram	\$2.89	92.80	se.e8	52.28	50.20	ง0.00	40.00	9.20
g. 3 rass Hay	18.28	*3.88	59.24	59.24	\$9.24	\$9,24	\$6. 3	\$6,67
Total Com Unit Feed Costs	\$166.57	\$149.43	\$152.41	\$185.65	\$192.41	\$165.65	\$178.60	\$181. 43
2. Bul1 I Replace. Feed Costs/C-C unit	\$46.94	\$46.94	\$46.94	446.94	\$46. 94	\$46. 94	\$45.94	\$46.94
Total Feed Costs	\$2.3.51	\$196. 37	\$239, 35	1232.59	\$239.35	\$233.59	\$225.54	t228, 37
3. Labor	\$27.42	427.42	\$36.55	\$36.55	\$36.55	\$36. 56	\$36.56	\$36. 56
C. Other Variable Costs (theld Constant)	\$55. 32	55.	\$51.32	\$51.32	*51.32	551.32	\$51.32	451. 32
D. Interest ( $=$ Yalf of VC $\times$ int. rate)	\$28. 58	319.46	\$23.15	\$22.67	\$23.15	*22. 67	\$22. 17	\$2. 37
TOTAL VARIABLE COSTS	3312. 93	\$294. 57	\$358. 38	\$343. 14	\$350, 38	3343.14	\$335. 59	\$338. 62
	5179.15	\$172. 15	\$170.15	\$170. 45	\$179.15	\$178. 15	\$178. 15	\$170. 15
	3483. 88	\$464.72	\$520. 53	5513.29	\$520.53	\$513. 29	*565. 74	*596. 77


	BOPN:	$\begin{array}{r} \text { FEB-MRR } \\ M O V: \end{array}$	$\begin{aligned} & \text { AOR-सAYY } \\ & \text { SOV : } \end{aligned}$	$\begin{aligned} & \mathrm{SP}-\mathrm{OCT} \\ & \mathrm{NH} \pm \end{aligned}$	$\begin{gathered} \text { NOU-CEC } \\ \text { SEP } 1 \end{gathered}$	$\begin{aligned} & \text { SEP-aCT } \\ & \text { MAY } 1 \end{aligned}$	xov-bec JL. 15	SEP-act	NOU-DEC Sep
6. Stear 'ean weight		558	483	578	546	464	481	578	546
B. Heifer Hean height		521	389	545	515	438	453	545	515
C. Salf tis $\mathrm{Troduced} / \mathrm{Con}$		482	352	585	477	466	+28	585	477
\%.. prices									
A. Steer Price/Cint at meaning		\$62.26	\$64.98	\$65.71	*58.79	\$76.18	\$65.71	865.71	*58.76
B. Hesfer Price/Cut at Heaning		551.89	552,23	557.21	\$50.34	\$62.75	+57.23	457.21	*50.34
C.Cull 30 m Prece/Cut		\$35.21	\$35.21	\$42. 28	\$38.53	\$43.18	\$41.32	542.28	\$38.53
Iti. Pevenue									
A. 3 tear Revenue (5)		\$154. 89	\$117.84	5170. 91	\$144.23	3158. 98	\$142, 23	3178. 31	\$144.23
3. He:fer Revenue (5)		\$85. 10	559.54	\$93.54	\$77.78	\$82. 45	\$77.58	\$93.54	877.78
2. Call Cow Reverue (5)		\$58.18	\$58.10	\$69.76	\$63.57	\$71.25	468.18	\$69.76	\$63.57
Tith, reveule		\$293.29	\$225.48	\$334.21	\$285. 58	\$312, 60	1287. 91	\$334.21	*235.50
I. REVEUE-VARSARLE COSTS		(\$19.64)	(\$59.09)	(516.17)	(857.57)	(37.78)	(555.23)	( $\mathbf{1} 1.38$ )	( 553.85 )
		(3189.79)	(2229.24	6, 32	7.72	7.93	迷	$171.4$	(\%223, 20)


TV.CMEF ByEnkeven PRITE (Total Costs)	$\begin{aligned} & \mathbf{5 5 2 .} 88 \\ & 568.18 \end{aligned}$	$\begin{array}{r} \$ 67.11 \\ \$ 115.40 \end{array}$	$\begin{aligned} & 555.53 \\ & 569.27 \end{aligned}$	$\begin{aligned} & \mathbf{4 5 8 . 5 5} \\ & 584.19 \end{aligned}$	$\begin{array}{r} \mathbf{6 6 8 . 7 7} \\ \text { } 118.69 \end{array}$	$\begin{array}{r} 565.42 \\ 5155.92 \end{array}$	$352.60$ $386,27$	$\begin{aligned} & \$ 57.61 \\ & \$ 93.25 \end{aligned}$
1. SWESTMET*	\$4,464	\$4,455	54,880	\$4,875	\$4,888	54,876	34,574	\$4,575

scest Tuncver :
x investiart is the gaximal at one tine assuang $: / 2$ the operating costs (less interest), value of the com, share of tuitin , alue of buildings and equipment, and value of grass.
( 6 F FRCTDRS LSED TD CALCUAAFE RUDGRTS $\geqslant 31983$



A. Kative lianze $A C$	\$12.80	8.5	8.5	9.5	9.5	9.5	9.5	6.5	6.5
Q.Fescue Pasture\% AC	\$24.88	0.0	0.2	0.0	8.8	8.8	0.0	1.5	1.5
C. 21 fatfa slay TONS	\$54,86	0.84	0.53	1.85	0.81	1.86	0.81	0.19	3.23
D. 3814 485 TCNS	\$249.00	0.80	0.08	0, 88	0.83	0.60	6.03	0.60	0.80
E.Mineral t Salt CaT	85.81	0.57	2.57	0.57	0.57	0.57	2.57	0.57	2.57
F.arain 8il	\$2.77	0.30	0.03	0.08	0.0e	0.68	2. 88	0.80	2.88
3.Grass 4ay Tovs	\$43,86	0.19	0.19	0.21	0.21	a. 21	3.21	2. 14	a. 15
H.Fescue Fers. AC	\$25.37	50, 02	50. 20	58.80	+0.02	\$8.00	*9.08	\$38.86	\$38.06
71. $\triangle A B D A$	84.57	6.8	6.8	8.8	8.2	8.8	8.8	8. 0	8.8
III. REVENUE FACTORS	309N:	FEB-NAR	MR-mAY	SEP-OCT	NOU-DEL	SEP-aCT	NOU-DEC	SEP-aCT	NOV-DEC
	dEANED:	VOU 1	NOV 1	Juc 1	SEP 1	MAY 1	Jill 15	Ju 1	501
A. Steer Price/Cat at heaning		\$62, 26	\$64, 96	\$65. 71	458.70	\$76.13	\$65. 71	\$65. 71	\$58, 78
3.Steer veight		558	483	578	546	464	481	578	546
C. Heifer Price/Cont at Weaning		\$51.89	\$52. 23	\$57. 21	559.34	\$62.75	557.03	\$57.21	\$50.34
D. Kenfer Meight		521	388	545	515	438	453	545	515
E. Days of Age at Saie		245	184	273	274	212	227	273	274
F. Cull Cow Drice/Curt.		\$35. 21	\$35.21	\$42.28	\$38.53	\$43.18	441.32	442. 28	\$38.53


f. OTHER VARIAELE COSTS
17. GRESDIXG HERD (PER HERO ENTRIES) (CDSTAMT) \#

A, Jtalities, Fuel a Jid	\$17.21	8.\% Steers Weaned for Sale	453
A.Vet, 1 Drugs	57. 25	C. 7 Heifers Weaned for Sale	388
C. Narketing 1 Areeding	36. 39	D. \$ Helfers Heaned for Herd Replacement	158
D. Repairs, Tools \& Supplies	\$13.49	E.s Bull per Cow	43
E. Auto Expense	\$2. 72	F.Average Com Value	1559
F, \%15c.	\$3.26	G.Average Bull value	\$1,500
3. Iaplants	\$1.89	H. Cow Life	8
II. BUILD1MGS 4 ESU1PMENT		L. Bull Life	3
A. Investment	$\$ 323$	J.Salvage Value/Cow	\$400
Q.Life	10	K.Salvage Value/8ull	5598
C.\% Yar : Insurance for Eldg/Eqp, Livsth	1.85	L.Cull Cow height	1108


R. Operating Rate-.......- (\%)	14.158
	12.505
IV. NATIVE TRUTE VRLUE/RCRE	$\$ 411$
V. FESCUE PRSTURE VALVE/ACSE	\$622

* The values in section VI. BREEDIMG HEPD, are gemerally regarded as industry averages and are held comstant throughout the analysis. Bull and cow values are estuates which are consistent with Kansas State Unıversity Fara Manageaent Guide (MF-265)

[^4]NoTE: Sowe formulas used in the Beef Cowherd Cost-return Budget
(1) Calf (3s Produced/Cow: assuaing a 375 calf crop $=(455 \times$ steer 1 bs ) $+(45 \% \times$ heifer lbs)
(2) Staer Revence $=$ staar meaning wî, $* 45 \times$ steer price
(3) Heafer Zevanue $=$ heifar naaning at. $\mathrm{z} 33 \times \times$ heifor price
(4) C6:2 Com 耳evenue $=$ cult com ak. $\times 15 \% \times$ sull con price
. $\mathbb{N}$ Cai ${ }^{F}$ Braalavan 2fice ivariable costs) $=$ varible costs - cull cou revenae / calf lbs produced

** CALVING SEASON STRATEBIES **
EEEF CDWIERO COST-RETURN BUDEET

䀛 CCSTS 料	SpRING		FPLL		FPLL		FRLL FESCNE	
	FEB-*AR	APR-NAY	SEP-aCT	NOU-DEC	SEP-0CT	NOU-DEC	SEP-0CT	NON-DEC
I. TJTRL VARIRALE COSTS HECVED:	NOW 1	NCN 1	J. 1	SEP 1	MAY 1	Ju. 15	Jul 1	SEP 1
A) Total Feed Costs ARE IM MAYS:	245	184	273	274	212	$2 ¢ 7$	273	274
i. Cow Unit Feed Costs								
a. Native Range	\$188.88	\$188. 80	\$121.68	\$12. 60	\$121. 60	\$121.60	\$83. 20	683. 23
3. Fescoe Pasture (rent \% fert./9C)	\$0.29	50.20	50.02	50.80	\$0.80	\$9.09	\$78.98	\$78.38
c. Alfalfa Hay	\$50.71	\$31.92	\$63. 85	548.68	\$63.85	\$40.68	\$11.65	\$14.11
d. 584	+0.08	50.08	58.28	17.38	\$0.88	\$7.38	\$0.00	\$2.09
e. Juneral t Salt	53.31	\$3.31	\$3.31	\$3.31	\$3.31	\$3.31	\$3.31	\$3.31
f. Gram	50.08	50.28	50.30	\$0.02	\$0.08	se. 89	\$0.08	\$0.08
g. Grass hay	49.82	59.22	\$10. 57	510.17	\$18.17	\$12.17	\$6. 69	\$7.33
Total Com Unit Feed Costs	\$171.83	\$153.84	\$196.92	\$191.13	\$198.92	\$191.13	\$183, 82	\$165.93
2. Bu11 t Replace. Feed Costs/C-C unat	\$49.48	\$49,48	\$49.48	449.48	349.48	549.48	\$49.48	\$49.4a
Total Foed Costs	\$221.31	\$282.52	\$248. 49	\$240.61	\$248.48	\$249.61	\$233.30	\$235.41
B. Labor	\$2c. 62	\$22. 62	\$32.16	\$38. 16	\$32.16	\$39.16	\$39. 16	330.16
C. Other Variable Costs (Held Constant)	\$49.34	\$49.34	\$49.34	\$49.34	\$49.34	\$49.34	\$49.34	\$49.34
D. Interest $\{=$ talf of VC $\times$ int. rate)	\$23.89	\$22. 27	\$25. 61	\$25. 38	\$26.61	\$25. 98	\$25.38	\$25. 64
TDTAL MAMIABLE COSTS	\$317.97	\$296. 75	\$354.51	\$346. 28	\$354.51	\$346. 88	\$338.18	6341.54
II. TOTAL FIXED COSTS (Hald Constant)	\$184.31	\$184.31	\$184.31	\$184, 31	\$184, 31	\$184.31	\$184. 31	\$184, 31
\#1. $=3 T \mathrm{TK}$ CNSTS (TVC+TFC)	\$50:. 38	\$481.26	\$533. 82	\$538. 39	\$538.82	\$530. 39	\$522.49	\$535. 85
	FEB-4AR	PPR-MAY	SEP-ECT	NOV-DEC	SEP-ACT	NOU-DEC	SEP-OCT	NON-DEC
WESNED	NOV :	NDV 1	TLI 1	SEP 1	WGY 1	JUL 15	KR. 1	Scp 1
2. Staer Wean harght	590	423	578	546	464	461	578	546
8. Helfer wean Height	521	380	545	515	438	453	545	515
C.caif bs Procuced/Com	482	352	525	477	486	423	585	477
İ. PRICES								
A.Steer Frace/Cit at Neaning	\$64. 25	\$65. 13	466.36	\$69.94	\$79.95	\$68. 35	\$66.36	\$69.94
8. He:fer Price/Cut at heaning	\$56.48	\$55.03	\$56.93	\$61.98	559.28	\$58.21	\$56.93	\$61. 38
C. Casl Cow 3 race/Cut	\$36.82	\$35, 32	\$43.07	\$41.13	\$44.95	\$42.80	\$43.07	\$41.13
\#1. REVENSE								
A Steer Pevenue ( 3 )	\$158. 52	\$119.93	\$172.60	\$171. 84	5148.14	5147.94	\$172. 60	\$171.84
8. Heifer Revenue ( $\$$ )	488.28	362.73	593. 68	\$95.76	\$77.79	\$79.11	593.08	\$95.76
C. Cu11 Cow Revenue (s)	\$68.75	\$62.75	\$71.67	\$67.86	\$74.17	\$70.62	\$71.87	\$67.86
TOTAL SEVEUE	\$387.55	\$243.41	\$336. 75	\$335.47	\$320. 12	\$297.67	3336. 75	\$335.47



:.. FVELLE-TOTR ONS:
( $\$ 193.82$ ) ( $\$ 237.65$ ) ( $\$ 222.07)(\$ 194.92)(\$ 238.72)(\$ 232.72)(\$ 185.74)(\$ 192.38)$

I:1.LALLF 3REANEVEI PRTCE (Variable Costs) IV.CAFS JREAKEVEN PRIEE (Total Costs)	$\begin{aligned} & \$ 53,18 \\ & \$ 91.43 \end{aligned}$	$\begin{array}{r} \$ 66.92 \\ \$ 119.29 \end{array}$	\$56. 29 $\$ 92.56$	$\begin{aligned} & \$ 58.27 \\ & \$ 96.87 \end{aligned}$	$\begin{array}{r} 569.87 \\ \$ 114.47 \end{array}$	$\begin{array}{r} \$ 65.54 \\ \$ 109.39 \end{array}$	$\begin{aligned} & \$ 52.86 \\ & \$ 89.33 \end{aligned}$	$\begin{array}{r} 557.32 \\ \mathbf{5 9 5} .92 \end{array}$
V. TWESTMSXT4	44,738	\$4,728	55,182	45, 178	55,102	45, 178	\$4, 875	44,877
ASSET THAMOVER :								
W. NET (Ln.t.)/TMEETMENT(\%n.V.)	-1.82\%	-2.75x	-1.82x	-1.69\%	-2.53x	-2.42x	-1.605	-1.78\%
Wh. ancsal\%ot. Pev. i/ mivesmert (Ln.V.)	8.76\%	7.425	8.57\%	8.56\%	7.872	7.83x	$9.11 \%$	9. $29 \%$

F invastinent is the naknum at one the assuming $1 / 2$ the operating costs (less interest), value of the com, share af bul;, 7a: ie of builtings and equipment, and value of grass.

Faciurs tiht vary or calvio sehsor plice			SPRING		Fancl		FRLL		FPLL FESCuE	
			FFE-KAR	APR-MAY	SEP-act	NOV-DEC	SEP-0CT	NOU-DEC	SEP-OCT	NOV-DEC
:. con unt fesp cas ${ }^{\text {cs }}$										
A. Kative lange	AC	\$12.80	8. 5	8.5	9.5	9.5	9.5	9.5	6.5	6.5
B.Fescue Pasturat	AC	\$27.28	0.0	0.8	0.0	0.0	2.8	2.8	1.5	1.5
Catalfa Hay	TDVS	\$52.13	0. 84	8.53	1.06	2. $\mathrm{B}_{1}$	1.06	0.81	8.19	8.23
C.SEX 44\%	Tow	\$250.20	0.80	2, 28	2.88	2,03	0. 68	0.23	8.68	8.80
E.rineral t Sait	ant	55.38	2.57	2.57	0.57	2.57	0.57	0.57	2.57	0.57
F.Grain	Bu	\$2.67	2.60	2.20	2.60	2. 28	0.60	0.60	8.20	2.00
3. Srass Hay	Tans	\$48.25	e. 19	2.19	2.21	0.21	9.21	0.21	Q. 14	9.15
H. Fescue Fert.	AC	\$25. 37	50.00	32.20	30.80	58.90	30.03	56.80	\$38.06	\$36.26
2. LAEOT   IIt. REVEMLE FACTDRS		13.77	6.8	6.8	B. 0	B. 0	B. 8	8.8	B. 8	8.8
		60\%N:	FEB-*PR	mpr-MPY	SEP-CCT	NOW-DEC	SEP-0CT	NOV-DEC	SEP-DCT	NOW-DEC
		WEAMED:	NOV 1	NEV 1	Jul 1	SEP 1	MaY 1	JLL 15	JLL 1	SEp 1
A.Steer Price/Cwt at Meaning			764.25	966.13	\$66.36	469.94	\$72.95	\$58.35	\$66.36	469.94
B. Steer Weight			558	423	578	546	464	481	578	546
C. Heifer Price/Cut at Heaning			\$56.48	\$55, 23	\$56. 93	\$61.98	\$59.20	\$58. 21	\$56. 93	\%61.98
D. Jeifer Neight			521	38 e	545	515	438	453	545	515
E. Days of Age at Saie			245	184	273	274	212	227	273	274
F. Oull Com Price/Cut.			335.82	\$36.82	\$43.07	\$41.13	544.95	\$42.88	\$43.07	41.13


		V1. breeding hexo (PER MERD EMTries) (CO	
		A. 8 Calf Crop	908
A. itrlities, Fuel $\mathrm{t}^{\text {dil }}$	\$15.38	B. \% Steers weaned for Sale	15\%
B.vet. I Drugs	\$4.71	C. $x$-eifers Heaned for Sale	30x
C.tarsating : Breeding	\$6.99	D. 5 Heifers deaned for Herd Reolacenent	5x
D. Repairs, Tools ${ }^{\text {S Supplies }}$	\$11.21	E.x Eull per Com	4
E. 9uto Expense	\$2. 21	E.Average Con Vatue	355
F, Misc.	\$6.24	6.fverage Bull Value	\$1,580
3. Ieplants	\$1.02	K. Com Life	8
It. EULLDINES : ECUIPMENT		t. Bull Life	3
A. Investrent	3352	J. Salvage Value/Com	5420
B.Life	12	K. Salvace Value/Bull	5510
C. 8 Tax : Insurance for Bldg/Eqg, Livst'k	1.2x	LCull Con Meight	1120


111. NTEMEST R (TES	
A. Oparating Rate-- (x)	16.23\%
Q.Fixad Funcs \%atem.....- (x)	13.75\%
SV. NATYUE RANKE VRLUE/ACRS	$\$ 448$
V. FESCuE PASTURE VALIE/aCRE	5668

t4 The values in section VI. BREEDING HERD, are generally regarded as industry averages and are held constant throughout the analysis. Bull and cow values are estieates which are consistent with Kansas State University Fara Management Gusde (MF-266)
v. FESCUE PASTURE VALIE/ACRE
$\$ 662$

- Price for Fescue Pasture $=$ Value/Acre $\times 4 x$ Return/Acre

A range of 3-5x , heturns/Acre are considered typical by Kansas Farn Managenent Associations
NDTE: Sowe formulas used in the Deef Cownerd Cost-return Budqet
(1) Calf Ubs Produced/Con: assusing a $92 \pi$ calf crop $=(45 x \times$ steer 1 bs$)+(45 \% \times$ heifer 1 bs$)$
(2) Steer fevence $=$ steer weaning $4 \leqslant$. $x$ 45w $\times$ steer price
(3) Heifer Sevenue $=$ het far neaning wt. $x 30 \% \times$ heifer price
(4) Cull Cow Revenue $a$ cull cou nt. $x: 5 x \times$ cull com ;rice
(5) Sa: f freakeven Price (variable costs) = varible costs - cull cow revenue / calf lbs produced
(\$: Caif Dreakeven Price (total costs) = total costs - call cow reveme / calf lbs produced

H+ CR.VING SEASON STRategies **
GEEF COMERO COST-RETURN BUDGET
1981

iti costs nin	SPRING		FRLL		Ffl		FRLI FESCUE	
gow	FEB-MAR	GPR-MAY	SEP-0CT	NON-DEC	SEP-OCT	MON-DEC	sep-oct	NOV-DEC
I. TOTAL VARIAELE CISTS UEANED:	nov 1	nov 1	Jul 1	Sep 1	WRY 1	Jili 15	J. 1	${ }_{\text {sep }} 1$
A. Total Feed Costs maE IV QRYS:	245	184	273	274	412	227	273	274
1. Cow Unit Feed Costs								
a. Native Range	\$105.48	\$185. 48	5117.88	5117.82	3117.88	\$117.88	\$80. 68	\$80.60
b. Fescue Pasture(runt 8 fert./AC)	\$0.68	50.80	se.08	88.88	50.06	50.80	576.16	\$76.16
c. Alfalfa Hay	549.38	531.28	\$62.18	\$47.41	\$62.18	\$47.41	\$11.34	\$13.74
d. SE14 44x	48.88	50.02	30.80	88.85	54.80	88. 05	50.69	4.00
e. Xineral i Salt	13.15	53.15	33.15	\$3.15	\$3, 15	53.15	3.15	3.15
f. Orain	9.82	50.82	94.20	se.pe	18.60	50.60	40.08	50.80
g. Ôrass Hay	\$10.34	\$10.34	\$11.65	\$11.65	\$11.65	\$11.65	57.67	*8. 41
Total Cow Unit Feed Costs	\$168.27	\$149.97	\$194.79	\$188, 86	\$194.79	\$188.86	5178.92	\$182.05
2. Bull t Replace, Fead Costs/C-C unit	551.22	451.22	\$51.28	\$51.22	351.22	\$51.22	551.22	551.22
Total Feec Costs	\$219.48	\$221.18	\$246. 20	\$248.88	\$246.ed	\$248.88	4230.13	\$233.27
B. Lator	\$22.44	52.44	\$29.92	\$29.92	529.92	\$29.92	\$29.92	\$29.92
C. Other Variable Costs (Held Constant)	\$42.99	542.99	542.99	542.99	942.99	\$42.99	142.99	\$42.99
2. Interest $\mathrm{t}=$ Half of UC $\times$ int. atal	\$22. 66	\$21.21	\$25.37	\$24.93	\$25.37	\$24.90	\$24.11	\$24.36
TOTRL VARIBELE COSTS	5397.58	\$287.82	\$344.28	\$337.88	\$344.28	\$337.88	\$327.15	\$330.53
It. 707\% cixed costs (Held Constant)	\$176.57	${ }^{\$ 178.57}$	\$178.57	\$178.57	3178.57	\$178.57	8178.57	\$178.57
III.-OTR COSTS (TVC+TFC)	\$486. 15	4466.39	\$522. 85	\$516. 45	\$522.85	\$516.45	5595.72	\$599.10
	-tE-MAR	CPR-WGY	sep-act	40v-dec	gSp-0CT	NON-OEC	SEP-0CT	NON-DEC
	NCV 1	nov 1	$\mathrm{rl}, 1$	SEP :	ngy 1	Ju 15	JL1	SEp 1
	558	423	578	546	464	461	578	546
3. reifer hean weight	521	368	545	515	438	453	545	515
C.Ca: ${ }^{\text {L L }}$ Lss Protuces/Con	462	352	585	477	486	428	585	477
11. PRICES								
A. Steer Price/Cus as Heaning	\$64.15	\$66.55	\$67.91	369.22	574.60	369.84	\$67.91	\$69.28
3. Heifer Price/Cut at Heaning	1555.88	\$55.10	559.44	\$62. 87	\$62. 88	\$56.88	559.44	\$63.37
C.Call Cow Price/Cut	\$39.25	\$39.25	\$45.88	544.28	\$44.88	\$45.20	+45.88	\$44. 2
711. Revene								
A. Steer Peverue (s)	5!58. 71	\$120.69	\$176. 63	\$172. 87	5155.76	5149.44	\$176.63	\$172.07
8, heifer Revenue (s)	287.34	\$62.81	597. 18	\$39.81	\$82. 62	578.93	597. 18	\$92.81
Calll Con Revenue (s)	464.76	\$54.76	\$75.70	873.86	574.35	\$74.58	\$75.70	\$73, 86
total reverue	\$3:9.87	\$248.	49.5	55.	3312.44	\$382. 95	\$349.5	335. 94

\#\# AKaLYSIS 排



:ZI.CRF BAERKEvex pRICE (Variable Costs) 2V.CALF BEEAKVEN PXICE (Total Costs)	$\begin{aligned} & \$ 50.38 \\ & \$ 87.43 \end{aligned}$	$\begin{array}{r} \mathbf{5} 63.31 \\ \$ 113.99 \end{array}$	$\begin{aligned} & \$ 53.15 \\ & \$ 88.48 \end{aligned}$	$\begin{aligned} & \$ 55.47 \\ & \$ 92.87 \end{aligned}$	$\begin{array}{r} \mathbf{5 6 6 . 5 7} \\ \mathbf{s 1 1 0 . 5 7} \end{array}$	$\begin{array}{r} 862.65 \\ 5185.13 \end{array}$	$\begin{aligned} & \mathbf{5 4 9 . 7 6} \\ & \$ 85.89 \end{aligned}$	$\begin{aligned} & 553.93 \\ & \$ 91.33 \end{aligned}$
v. awastemt	55, 176	55,167	35,671	55,658	45,671	35,668	5,288	*5,209
ASSET TUMDVER:								
	-1.45\%	-2.28\%	-1. $29 \times$	-1.41x	-1. $94 x$	-2.20x	-1, $07 x$	-1.485
Vit. GROSSCTot. Rev.1/IMESTMENT (Ln.V.)	$7.34 \times$	6.75\%	7.93x	7.785	7.28x	$7.12 x$	3.64\%	8.389

[^5]

:. Con vitt gien cosis

7. *lative Pange $A C$	\$12.48	8.5	8.5	9.5	9.5	9.5	9.5	6.5	6.5
B. Fescue Pasturei AC	\$27,16	0.0	0.0	8.0	2.8	0.8	0.2	1.5	1.5
C.21falfa lay Tow	\$53.56	2.84	a. 53	1.66	8.81	1.\%6	0.81	9.19	9. 23
2.55\% 49x TON6	\$320.00	0.60	0.68	8.29	0.23	6. 68	0.23	0.09	0.68
Extmeral : Salt CNT	45.52	0.57	2.57	0.57	0.57	2.57	0.57	0.57	0.57
F.orein ald	\$2.30	8.20	2.20	0.00	8.e8	0. 28	0.20	2.68	0.09
3. Grass Hay TONS	\$55.31	0.19	a. 19	9.21	0.21	0.21	0.21	8.14	0. 15
H.Fescue Fert. AC	\$23.61	50.80	s0.20	t0.02	50.02	40.00	4.68	\$35.42	\$35. 42
II. $\angle A B C T$	\$3,74	6.8	6.8	8.8	8.1	8.8	8.8	8.8	8.1
III. REvende factoss	80pN	FES-MAR	apr-may	SEp-0CT	WN-DEC	SEP-0.ct	NOV-0EC	SEP-act	NOU-DEC
	1ENVED:	NOV 1	nev 1	Ju. 1	5591	MAY 1	JL. 15	JL. 1	SEp 1
A.Staer Price/Cut at Heaning		\$64.15	\$66.55	\$67.91	\$69.22	\$74.60	\$69.04	\$67.91	\$69.22
8. Steer Weight		558	483	578	546	464	481	578	546
C. Heifer Price/Cut at Weaning		\$55. 88	\$55. 18	\$59.44	\$62.07	\$62.88	*58.06	\$59.44	468.07
0.terifor heizht		521	389	545	515	438	453	545	515
E.Days of Ape at Sale		245	184	273	274	212	227	273	274
\%. Cull Com Price/Dat.		\$39.25	\$39.25	\$45. 88	544. 28	\$44.88	445.20	\$45. 88	544.28



[^6]note: Sowe forwalas used in the Beef Comberd Cost-return Buoget
(1) Calf tos Produced/Com: assuming a $9 \% \mathrm{calf}$ croo $=(455 \times$ steer 1 bs$)+(455 \times$ heifer 1 bs$)$
(2) Steer Teveruy $=$ steer maning $4 t, x 45 x \times$ steer price
(3) Haifer fevenue $=$ heifer weaning $\times t . \times 3$ OK $\times$ heifer arice
(4) Cuil: Com Revenue $=$ cul! com wt. $\times$ ! $5 \% \times$ cull cow price
'5) Calf Irasievan Drice (variable costs) = varible costs - cull com revenue / calf lbs produced
(5) Zä: F Zreakeven Price (tetal costs) $=$ total costs - call con revenue / calf lbs produced
*h CALVING SEASLN STRATEGIES ***
BEEF COMHERD COST-RETURN BUDGET

I.. prices

A. Steer Price/Cut at heanimg	\$78.63	581.53	\$76.47	\$82. 48	\$82.75	\$77, 12	\$76.47	\$62. 48
8. Heifer Price/Cat at Heanirg	\$67.28	\$79.65	\$67, 16	\$78. 89	\$67.23	\$68. 12	\$67, 16	372.69
C.Culi Con Price/Cut	\$45.73	\$45.73	\$44.98	\$48.89	\$44.29	\$43.27	\$44.98	\$48.89
:II. pevevue								
A. Steer feverue ( 5 )	\$194.61	\$147.85	\$198.98	\$288. 65	\$172.78	\$156.93	3196.98	2288. 65
8. Heafer Revenue (s)	\$125.16	\$80.53	\$109.81	\$108. 29	588.34	592.58	\$199.81	\$188. 29
C. Dill Com Reverue (\$)	\$75.45	\$75.45	374.22	\$80.67	\$72.75	571.48	574.23	\$80.67
TOTAL REVENUE	\$375, 22	\$333.85	\$382. 92	\$391.61	\$333.87	\$339.90	\$382. 92	\$391.61

** ANMLYSIS 4*

i. SEVEUE-VARTAgLE COSTS   II. REVELEE-TOTR CDST	$\begin{gathered} 881.36 \\ (885.48) \end{gathered}$	$\begin{gathered} \$ 27.65 \\ (\$ 148.79) \end{gathered}$	$\begin{gathered} \mathbf{8 5 4 . 6 3} \\ \mathbf{s} 113.62) \end{gathered}$	$\begin{aligned} & \$ 69.69 \\ & (998.75) \end{aligned}$	$\begin{gathered} \$ 5.78 \\ (\$ 162.67) \end{gathered}$	$\begin{gathered} \$ 8,98 \\ 5159.47) \end{gathered}$	$\begin{gathered} \mathbf{3 7 3 .} 81 \\ (\$ 94.63) \end{gathered}$	$\begin{gathered} \$ 79.63 \\ (\$ 88.82) \end{gathered}$
	\$45. 19	\$56. 98	\$59.24	\$50. 53	262.91	\$59.61	\$46. 48	\$48.45
IV. ChaFer brekevea paice (Total Costs)	880. 14	\$184.78	\$83.57	\$85. 81	3134,41	199,68	179.81	\$83.73
Evt.	54,930	14,922	*5,395	45,393	45,396	55,393	34,993	\$4,994

AgSE: TJMEVER :

V. NET (Ln, TI, )/LwESTMEM( Ln. V.)	2. 298	-1.01\%	$-2.42 x$	-2.14*	-1.33x	-1.27\%	-2.875	9.848
	9.46\%	8.228	8.73\%	8. 35x	7.87x	7.82\%	9. 498	9.65\%

* Investiment is the saxioum at one time assuang $1 / 2$ the operating costs (less interest), value of the com, share of bull, value of buildings and equipaent, and value of grass.


IIt. TNTEREST RATES		* The values in section VI. BREEDING HERD, are
A. Operating Rate $\longrightarrow$ ( $x$ )	14.46\%	generally regarded as industry averages and are held
B. Fixed Funds Ratem-m (\%)	11.54\%	constant throughout the analysis. Bull and cow values
IV. VATIVE RAMES VALUE/ACOE	$\$ 463$	University Fara Managenent Guide (0F-266)
V. FESCUE PASTURE VALUE/RCRE	\$664	

[^7]NDTE; Scie formulas used in the Beef Cowherd Cost-return Budget
(1) Calf Lis Produced/Cown assuaing a 985 calf crop $=(45 x \times$ steer 1 bs$)+(45 x \times$ heifer 1 bs$)$
(2) Steer Revanse $=$ steer weaning wh. $x 45 \times \times$ steer price

(4) $24:$ Sow Revenue $=6011$ com wh. $x: 5 x \times$ culi com price
(5i) Ca: ${ }^{\text {: }}$ Zreakeven Price (variabie costs) = varible costs - cull cow revenue / calf lbs produced
(6) Calf Ereakeven Price (total costs) = total costs - cull com reverue / calf lbs produced

4+ CALVING gERGON ST3ATEGIES ** BEEF COWERD COST-RETURY BUDGET

\#\#\# COSTS \% \%	SPRING		FPLL		FALL		FRLL FESCDE	
BDEN :	FEE-MAR	APP-MAY	Sep-0ct	NON-DEC	SEP-ACT	NOV-DEC	sep-act	NOU-DEC
I. Ttotal yariamle costs heanedi	MOV 1	Nov 1	Jill 1	SEP 1	maY 1	JUL 15	JUL 1	SEP 1
A. Total Feed Costs ABE IN DAY5:	245	184	273	274	212	227	273	274
1. Con Unit Feed Costs								
a. Native Range	\$108, 88	\$188.80	\$121.60	\$121. 69	\$121.60	\$121.60	583. 29	883.28
b. Fescue Pasture(rent 1 fert./AC)	98.20	88.20	\$0.08	48.80	s0. 20	50.80	\$59.79	\$59.79
c. AIfalfa Hay	536.31	\$22.86	\$45.73	\$34.86	\$45.73	\$34, 86	88.34	\$18.11
d. 591448	se. 28	50.68	58.88	56.79	88.08	66.79	50.28	
e. Mineral 4 Salt	12.53	22.53	52.53	22.53	\$2.53	42.53	\$2. 53	4.53
f. orain	12.08	48.20	sa.e8	50.08	\$2.88	50.09	se. 88	se. 28
9. Trass Hay	57.43	87.43	*8.38	28.38	88.38	\$8, 38	55. 51	\$5.94
Total Com Unit Feed Costs	\$153. 87	\$141.61	\$178.23	\$174. 15	\$178.23	\$174. 15	\$159.37	\$161.66
2. BuI1 I Replace. Feed Costs/c-c unit	\$42. 56	\$42.56	\$42. 56	\$42.56	\$42.56	\$42.56	\$42.56	\$42.56
Totai Feed Costs	\$197.63	\$184.17	\$222, 79	*216. 71	\$22a. 79	2216.71	\$201. 93	\$204. 23
8. Labor	\$21.20	\$21.be	\$28. 88	\$28.00	\$28. 60	\$28.00	528.80	\$28. 89
C. Other Variable Costs (Held Constant)	535.97	\$35.97	\$35.97	\$35.97	\$35.97	\$35.97	\$35.97	\$35.97
D. Interest ( $=$ Malf of UC 1 int. rate)	\$15.63	\$14.81	\$17.48	\$17.23	\$17.48	\$17.23	\$16.33	\$15.47
TOTR VARIABLE COSTS	\$279.23	\$255.95	\$399.24	\$297. 91	\$382. 24	\$297.91	\$282. 23	\$284, 66
II. TOTAL FIXED COSTS (Held Constant)	\$147.39	\$147.39	\$147.39	\$147.39	5147.39	\$147.39	\$147.39	\$147.39
III. TOTAL COSTS (TVC+TFC)	* 417.62	\$433.34	\$449,63	\$445. 38	\$449.63	3445. 38	\$429,62	\$432. 25
** HETMANS t**	FEB-MR	APR-xay	SEP-aCT	NOU-DEC	sep-act	NOU-DEC	SEP-0CT	WOW-DEC
	NDV 1	NOV 1	In 1	SEP 1	May 1	Jil 15	Jle 1	SEP 1
A. Steer Mean Heught	550	483	578	545	464	481	578	546
8. Heifer Mean height	521	380	545	515	438	453	545 595	515
C. Calf Lbs Produced/Com	482	352	585	477	46	428	525	477
II, P9ICES								
A.Steer Price/Cut at Heaming	\$86. 41	592.11	\$87.76	594.54	5189.23	598.72	\$87.76	394.54
B. Heifer Price/Cut at Weaning	575. e8 $^{\text {c }}$	\$86.78	\$80. 18	\$79. 19	\$92.38	\$83.52	\$80, 18	\$79.19
C.Cull Cow Price/Cut	47.12	\$47,12	\$53. 10	\$49.74	556.76	\$58.12	\$53.18	\$49.7
III. REVENUE								
A. Steer Sevenue (s)	*213. 86	\$167.84	*228. 26	1232. 28	5228.07	4213.68	5228.26	\$232. 28
B. Heifer Reverve ( $\mathbf{s}$ )	\$117.35	\$92.89	5131.89	\$122. 35	\$121.39	\$113.50	\$131.69	\$122. 35
C.CuII Cow Revense (s)	\$77.75	\$77,75	\$87. 62	\$82. 87	\$96.95	\$82.70	\$87.62	882.07
tita reverue	5488, \%	\$336.88	5446. 97	\$435.78	\$446. 41	5469.88	6.	4436.78

** ANGIYSTS **

1. REVEMLE-VARIAELE COSTS 15. REVENEETOTAL COST	$\$ 138.73$   ( $\$ 8.66$ )	$\begin{gathered} \$ 80.93 \\ (\$ 66.46) \end{gathered}$	$\begin{gathered} \$ 144.73 \\ (\$ 2.65) \end{gathered}$	$\begin{gathered} \$ 138.79 \\ (38.69) \end{gathered}$	$\begin{gathered} \$ 144.17 \\ (\$ 3.22) \end{gathered}$	$\begin{aligned} & \$ 111.97 \\ & (\$ 35.42) \end{aligned}$	$\begin{gathered} \$ 164.74 \\ \$ 17.36 \end{gathered}$	$\begin{array}{r} 5152.34 \\ 54.65 \end{array}$
111.CALF RRESXEVEX PRICE (Variable Costs)	439.94	\$50.58	\$42. 47	445.21	\$58.58	\$51.21	\$38.51	\$42.43
W.CNLF BREAKVEV כRTCE (Total Cosis)	\$70.52	\$92.40	\$71. 64	\$76.08	\$86.89	*86.27	\$67.68	\$73.30
V. INESTMENT	44,437	\$4,431	14, 952	44,850	\$4,852	\$4,950	44,445	\$4,447

## ASSET THARMER :

	1.585	0.285	1.585	1. 335	1.49x	0.837	2.895	1.885
VIi. SRCSS (Tot, Rev.)/DwESTMENT(Ln, V.)	$10.38 \%$	3.311	$10.77 \%$	10.55x	$10.76 \%$	10.01\%	11.754	11.52x

[^8]| 敖 FACTOES THAT VAR | Y BY | CRLVIMG SERSON＊ | SPRIM |  | FAL |  | FQLL |  | FRLL FESCJE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ant | Price | FEB－39 | APR－MAY | SEP－CCT | NOV－DEC | SEP－OCT | NON－DEC | SEP－DCT | NON－DEC |
|  |  |  |  |  |  |  |  |  |  |  |
| As Hative Range | AC | \＄12．83 | B． 5 | 8.5 | 9.5 | 9.5 | 9.5 | 9.5 | 6.5 | 6.5 |
| B．Fescue Pasturek |  | \＄22． 24 | 2．8 | 0.0 | 4.0 | 2.0 | e． 8 | 0.8 | 1.5 | 1.5 |
| C．Alfalfa Hay | TONS | \＄43．06 | 0.84 | 0.53 | 1.86 | 2.81 | 1.66 | 0.81 | 0.19 | 0.23 |
| D．SEM 44x | TONS | \＄230．80 | 8.69 | 8.00 | 0.69 | 0.23 | 0.09 | 0.83 | 0.68 | 2.00 |
| E．Ninaral 4 Salt | Cil | H． 43 | 0.57 | 0.57 | 0.57 | 0.57 | 8.57 | 0.57 | 0.57 | 0.57 |
| F．Grain | 时 | \＄2． 20 | 0.68 | 0.89 | 2． 29 | 0.09 | 9．0e | 0． 88 | 0.60 | 0.68 |
| 3．Orass Hay | TDNS | \＄39．75 | 0.19 | 3． 19 | 4． 21 | 0.21 | 0．21 | 0.21 | 0.14 | 2． 15 |
| H．Fescue Fert． | AC． | \＄17．62 | \＄0．20 | \＄0． 63 | 50.20 | \＄9．00 | 40． 70 | 32.30 | se6． 43 | \＄26． 43 |
| 17．LABCO |  | \＄3．58 | 6.8 | 6.8 | 8.0 | B． 2 | 8.8 | 8.8 | B． 0 | 8.8 |
| III．REVENLE FACTDR |  | BORN ： | FEB－MAR | PPR－MAY | SEP－DCT | NON－DEC | SEP－OCT | NOV－DEC | SEP－0CT | MO4－DEC |
|  |  | WEANED： | NOV 1 | NDV 1 | JUL 1 | SEP 1 | MAY 1 | J． 15 | JL 1 | SEP 1 |
| A．Steer Price／Cut | at We | eaning | \＄86．41 | \＄92．11 | \＄87．76 | \＄94．54 | \＄189．23 | \＄98．72 | \＄87．76 | \＄94．54 |
| B．Steer Weight |  |  | 558 | 423 | 578 | 546 | 464 | 481 | 578 | 546 |
| C．Heifer Price／Cut | at U | Neaning | \＄75．88 | \＄88．78 | \＄88． 18 | \＄79．19 | 592.38 | \＄83．52 | 509． 18 | \＄79． 19 |
| D．Heifer Weight |  |  | 521 | 399 | 545 | 515 | 438 | 453 | 545 | 515 |
| E．Days of Age at | Sale |  | 245 | 184 | 273 | 274 | 212 | 227 | 273 | 274 |
| F．Cull Con Price／C |  |  | \＄47．12 | \＄47．12 | \＄53．10 | \＄49．74 | \＄58．76 | 550.12 | 453.10 | \＄49．74 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | V1．BREEDING HERD（PER HERD ENTRIES）（CONSTAMT）＊＊ |  |  |  |  |  |
| f．DTMER VARIRBLE COSTS |  |  |  |  | A \％Calf Crop |  |  |  |  | 98x |
| A．Utilities，Fuel \＆Dil |  |  | 59.49 |  | B．x Steer | is Weaned | for Sale |  |  | 45x |
| B．Vet．I Drugs |  |  | \＄5．28 |  | C．$\%$ Helfe | ers Weaned | for Sale |  |  | 36 x |
| C．flarketing i Breading |  |  | \＄5．39 |  | D． 8 ＇delf | ers Leaned | for Herd | Reolace |  | 15\％ |
| D．Repairs，Tools t Supplies |  |  | \＄11．6 |  | E．\％Bull | per Cow |  |  |  | $4 \times$ |
| E．Auto Expense |  |  | \＄1．53 |  | F．Average | Cow val |  |  |  | 558 |
| F．Hisc． |  |  | \＄2．31 |  | 6．Average | e Bull V |  |  |  | \＄1，590 |
| 6．Implants |  |  | \＄1．00 |  | H．COn Lif |  |  |  |  | B |
| II．BUILDINGS ：ECUIPNENT |  |  |  |  | 1．BuIt Lif | ife |  |  |  | － |
| A．Investient |  |  | 5307 |  | J．Salvage | e Value／C |  |  |  | 4480 |
| B．Life |  |  | 18 |  | K．Salvape | je Value／B | all |  |  | 5500 |
| C．\％Tax \＆Insurance for Bldq／Eqp，Livstk |  |  | 1．8\％ |  | L．Cull Co | Cow Weight |  |  |  | 1188 |
| III．IMTEREST RATES |  |  |  |  | ＊The values in section VI，BReEDIMG HERD，are |  |  |  |  |  |
|  |  |  | 12．23x |  | gemerally regarded as industry averages and are held constant throughoat the analysis．Bull and cow values are estirates which are consistent with Kansas State University Fara Management Buide（休－265） |  |  |  |  |  |
| B．Fixed Funds Rate |  |  | 9．8放 |  |  |  |  |  |  |  |
| TV．NATIVE RPNEE VRLIE／RCSE |  |  | $\$ 412$ |  |  |  |  |  |  |  |
| v．FESCUE PASTURE URLUE／CCRE |  |  | \＄556 |  |  |  |  |  |  |  |

[^9]v．7．5：Sote forsulas used in the Beef Cowherd Cost－return Budget
（1）Calf Lbs Procuced／Cow：assuming a $\% \times$ calf crop $=$（ $45 x \times$ steer 1 bs$)+(45 \% \times$ heifer 1 bs$)$
（2）Steer Reverue $=$ steur weaning $w t, \times 458 \times$ steer price
（3）＂／sifor Revenve $=$ heifer meaning wt．$x 30 \% \times$ heifer grice
（4） $\mathrm{Cu}^{*}$ ：Con Revenue $=$ cull cow wt．$\times 15 \times \times$ cull com price
（5）Calf Breakaven Price（variable costs）＝varible costs－cull cow revenue／calf lbs produced
（6）Calf Breaikeven Price（total costs）$=$ total costs - cull cow revenue／calf lbs produced

## ＊＊CALUING SERSON STRATEEIES＊＊

BEEF COMHERO COST－RETURN BNOGET
1976

较 COSTS 㱓	SPRINS		FRLL		FRLL		FRL FESOUE	
	FEB－MR	APR－ WAY	SEP－0CT	NON－6EC	sep－act	NOU－DEC	SEP－0CT	NCN－DEC
I．TOTAL VARIARE CDSTS WEANED：	NOV 1	NOV 1	Jl． 1	SEP 1	may 1	fill 15	JL． 1	SEP 1
A Total Feed Costs faE IN DAYS：	245	184	273	274	212	227	273	274
1．Cow Unat Feed Costs								
d．Mative Range	\＄94． 35	\＄94．35	\＄185． 45	\＄185．45	\＄185．45	\＄185． 45	\＄72． 15	\＄72．15
b．Fescue Pasture（rent t fert．／AC）	92.09	30．88	＊9．03	58．08	50．00	\＄8．68	\＄56， 43	\＄56．43
c．Alfalfa May	\＄38．27	\＄24．89	\＄48．19	\＄36． 74	\＄48．19	\＄36．74	\＄8．79	\＄18．65
d．SBM 44x	\＄2，08	\＄2． 89	\＄2．08	\＄6．20	\＄8．00	\＄6．29	88.08	\＄8．68
e．Aineral \＆Salt	\＄2． 39	\＄2．39	\＄2．39	\＄2． 39	\＄2． 39	\＄2．39	\＄2．39	\＄2． 39
f．Brain	\＄2．08	＋8．08	48.09	se． 28	53.08	\＄8．68	38.08	58.60
g．Srass Hay	\＄7．65	\＄7．65	\＄8．63	\＄8．63	\＄8， 63	\＄8．63	\＄5．68	\＄6．22
Total Cow Unit Feed Costs	\＄142． 66	\＄128．48	\＄164．66	\＄159．40	\＄16t．66	\＄159，49	\＄145． 44	\＄147．85
2．Bull 4 Replace．Feed Costs／C－C unit	541.82	\＄41．22	\＄41．82	\＄41．82	\＄41．82	\＄41． 02	\＄41．82	\＄41．82
Total Feed Costs	1183．68	\＄169．58	4225.68	\＄283．42	\＄205， 68	\＄288． 42	\＄186．46	\＄188．87
8．Labor	\＄17．46	\＄17．46	\＄23． 28	\＄23． 28	\＄23．28	\＄23． 28	\＄23． 28	\＄23．28
C．Other Variable Costs（Held Constant）	\＄29．57	\＄29．57	529．57	\＄29．57	529.57	\＄29．57	\＄29．57	\＄29． 57
D．Interest（ $=$ ralf of VC $\times$ int．rate）	\＄13．36	\＄12．54	\＄14．97	\＄14．66	\＄14．97	\＄14．66	\＄13．86	\＄14．60
TOTAL VARIAELE COSTS	\＄244．07	$\$ 229.87$	\＄273．58	\＄267．94	\＄273．59	\＄257．94	\＄253． 17	\＄255． 71
II．TDTAL FIXED COSTS（Keld Constant）	\＄134．19	\＄134．19	\＄134．19	\＄134．19	\＄134， 19	\＄134．19	\＄134．19	\＄134．19
111．TOTRL COSTS（TVC＋TFC）	\＄378． 26	\＄363．26	\＄487． 69	\＄402． 13	\＄407．69	\＄402． 13	\＄387． 36	\＄389．90
粎 RETLRNS＊＊＊80ヶN ：	FEB－MAR	APR－＊${ }^{\text {a }}$	SEP－0CT	NOV－0EC	SEP－aCT	NOV－DEC	sep－0ct	YOV－CEC
Hekicli	NOV 1	NON 1	Jal 1	SEP 1	MAY 1	JUL 15	镫1	SEP 1
A．Steer Wean Height	558	493	578	546	464	481	578	546
B．Hanfer Wean welght	521	388	545	515	438	453	545	515
C．Calf Las Produced／Cow	482	352	505	477	486	420	585	477
II．PRICES								
A．Steer Price／Cut at Weaning	\＄67．73	\＄71．33	\＄62．38	\＄68．39	463.48	\＄68． 42	\＄62．38	568.39
B．Helfer Price／Cut at Weanang	\＄58． 58	\＄62．84	\＄53．43	\＄59．43	452．96	\＄38，48	453.43	459.43
C．Cull Com Prace／Cut	54.24	\＄48．24	\＄39．25	\＄39．13	\＄39．19	\＄38．91	\＄39．85	\＄39．13
III．Reverie								
A．Steer lievenue（5）	\＄167．63	\＄129．36	\＄162． 34	\＄168．03	\＄132． 55	\＄148．18	5162.84	\＄168．03
B．Heifer Revense（ 5 ）	\＄91．59	\＄71．64	\＄87．36	\＄91．82	\＄69．59	\＄79， 47	\＄87． 36	\＄91．82
C．Oall Cow Revenue（5）	\＄65．48	\＄66． 40	\＄64．43	\＄64．56	\＄54． 66	\＄64． 20	\＄64．43	\＄64．56
TOTAL REVEME	\＄325， 62	\＄267． 39	\＄313．83	\＄324，42	\＄256． 38	\＄291． 77	\＄313，83	\＄324， 42



I．3EVEat－VARIRBLE COSTS	\＄81．55	\＄38．32	\＄48．34	\＄55． 48	（ 86.70$)$	\＄23．83	360.67	\＄68． 71
II．SUENE－TOTR COST	（ $\$ 52.64$ ）	（ 595.87 ）	（393． 55 ）	（\＄77．	\＄148．89）	118．35）	（ 573.52 ）	$(365.46)$


III．CALF 日RERKEVEN PRICE（Variable Costs） IV．CALF BQEAKEVEA PRTCE（＂otal Costs）	$\begin{aligned} & \$ 36.87 \\ & \$ 64.71 \end{aligned}$	$\begin{aligned} & \$ 46.17 \\ & 584.25 \end{aligned}$	$\begin{array}{r} \$ 41.37 \\ \$ 67.92 \end{array}$	$\begin{aligned} & \$ 42.60 \\ & \$ 7 e .70 \end{aligned}$	$\begin{aligned} & \$ 51.45 \\ & \$ 84.51 \end{aligned}$	$\begin{aligned} & \$ 48.47 \\ & \$ 80.40 \end{aligned}$	$\begin{aligned} & \$ 37.35 \\ & \$ 63.98 \end{aligned}$	$\begin{aligned} & \$ 42.03 \\ & \$ 68.14 \end{aligned}$
V．12NESTMEMT	\＄3，599	\＄3，892	34，256	14， 253	\＄4，256	\＄4，253	\＄3，938	43，939
ASSET TURNDVER ；								
	0．389	－6． $73 x$	－0．623	－8． $24 x$	－1．72x	－1．015	－0．155	3．85x
VIL．GROSS（Tot．Rev．）／INESTKENT（Ln．V．）	18．383	8．61x	8． $36 \%$	9． $22 \times$	7．86\％	8．453	9．69\％	9． 958

[^10]| at factors that vary gy craving seasan al |  |  | Spplis |  | FPLL |  | FRLL |  | FQLL FESCUE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NIT | Price | F2B-69R | SPA-MAY | Sep-0ct | NON-TEC | SEp-0CT | NOY-DEC | SEP-0 | NOU-DEC |
|  |  |  |  |  |  |  |  |  |  |  |
| 1. CJ3 Lait Fezo Costs |  |  |  |  |  |  |  |  |  |  |
| A. Hative Range | AC | \$11.18 | B. 5 | 8.5 | 9.5 | 9.5 | 9.5 | 9.5 | 6.5 | 6.5 |
| B.Fescue Pasturet |  | 522.38 | 0.8 | 0.8 | 0.8 | 9.2 | 0.8 | 2.8 | 1.5 | 1.5 |
| C. Mifalfa Hay | TONS | \$45.38 | 8.34 | 0.53 | 1.26 | 8.81 | 1.6\% | 2. 31 | a. 19 | 0.23 |
| D. S8\% 44x | TONS | \$210.40 | 0. 88 | 0.23 | 8.89 | 0.63 | 0.68 | 0. 23 | 2.68 | 2.82 |
| Exhreral : Salt | Cat | \$4.20 | 0.57 | 0.57 | 2.57 | 0.57 | 2.57 | 0.57 | 0.57 | 0.57 |
| F.Grain | BU | 51.99 | 0.88 | 0.80 | 2.08 | 0.08 | 0.88 | 0, 20 | 2. 28 | 2.29 |
| 3.arass Hay | Tows | \$40.94 | 0.19 | 2.19 | e. 21 | 3.21 | a. 21 | a. 21 | 2.14 | 0.15 |
| H. Fescue Fert. | AC | \$17.62 | 50. 38 | \$2.09 | s2.08 | 52.00 | 50.20 | 56.30 | \$26.43 | \$26.43 |
| II. $\angle A B O R$ |  | \$2.91 | 6.8 | 6.8 | 8.8 | 8.0 | B. 8 | B. 0 | 8.0 | B. 0 |
| III. pevene factor |  | bope ; | FEb-wa | APP-KAY | SEP-act | NOU-dEC | SEP-0CT | NON-DEC | sep-act | NOV-DEC |
| .r. Rame fac |  | UEWED: | NOW 1 | NOV I | Jue 1 | Sep 1 | WAY 1 | IL. 15 | J. 1 | SEP 1 |
| A, Steer Price/Out at Heaning |  |  | \$67.73 | \$71. 33 | \$62.30 | \$68.39 | \$63.48 | \$68.42 | \$62.38 | *66, 39 |
| 8. Steer Meight |  |  | 558 | 433 | 578 | 546 | 464 | 481 | 578 | 546 |
| C. Heifer Price/Ot at Neaming |  |  | \$58. 68 | \$62. 34 | \$53.43 | \$59.43 | 552.9 | 458. 48 | 453.43 | \$59.43 |
| D. Heifer Height |  |  | 521 | 388 | 545 | 515 | 438 | 453 | 545 | 515 |
| E. Days of Age at Sale |  |  | 245 | 184 | 273 | 274 | 212 | 227 | 273 | 274 |
| F.Cuft Com Price/Cut. |  |  | 44.24 | 44.24 | \$39. 25 | \$39.13 | \$39.19 | \$38.91 | \$39.05 | 839.13 |

4 FACTORS HELD CONSTONT BY CRLVIMG SEASON 94
V1. BREEDING HERD (PER HERD ENTRIES) (CONGTATT) H

1. OTHER VMAMRELE COSTS


[11. INTEREST RAIES	
A. Dperating Rate - - (x)	11.58x
3. Fixed Funds Satrearlo (k)	9.13x
IV. Sillive rance vrlue/racre	\$354
V. FESCUE PASTUSE VALUE/ACRE	5508

4t The values in section VI. BREEDING HERO, are
generally reanded as industry averages and are held constant throughout the analysis. Bull and cow values are estieates which are consistent with Kansas State University Farn Managenent Buide (0F-266)
v. FESCJE PASTURE VALJE/ACRE

* Price for Fescue Pasture $=$ Value/Acre $x$ 4* Return/Acre

A range of 3-5s Returns/Rcre are considered typical by Kansas Farn Manaqewent Associations
NorE: Sowe forevlas used in the Beef Cowherd Cost-return Budget
(1) Calf Lbs Sroduced/Cow: assaning a 98 x calf crop $=$ ( $455 \times$ steer 1 bs ) + ( $455 \times$ heifer 1 bs )
(2) Steer Revenve $=$ steer weaning wt. $\times 45 \% \times$ steer price
(3) -aifer zevenue $=$ helfer weaning at. $x$ 38x $\times$ heifer price
(4) Call Cow Revenue $=$ cull cow ut. $\times 15 x \times$ cull com price
(5) Galf Breakeven Price (variable costs) = varible costs - cull cow reverne / calf lbs produced
(6) Calf Brasieven Price (total costs) a total costs - cull cou revenue / calf lbs oroduced
*H CRLVING SEASSN STRATEGIES **
BEEF COLHERD CDST-RETURN SNOEET
1977

	SPRING		FALL		FaCL		FRLL FESCuE	
809N	FEb-MRR	fPr-may	sep-0ct	NOV-DEC	SEP-0CT	NOV-DEC	SEP-0CT	NCN-DEC
I. TOTAL VARIABLE COSTS LEANED:	NOV 1	NOV 1	JLl 1	SEp 1	M MY 1	ग4. 15	Je 1	SEP 1
A. Total Fead Costs Age IN Days:	245	184	273	274	212	227	273	274
1. Con Unit Feed Costs								
a. Native Range	598.95	\$98.95	\$181.65	\$101. 65	\$101. 65	\$101. 65	\$69.55	\$69.55
b. Fescue Pasture (rent ( fert./AC)	50.88	*0.29	ง2.09	50.08	40.82	4. 68	\$54.68	454,68
c. Alfalfa Hay	445.49	\$28.63	557. 28	\$43.67	557.28	443.67	\$10.45	\$12.66
d. 589 442	se.08	50.08	40.88	37.28	sa. 08	77.28	59.80	52,00
e. Hineral It Salt	\$2.25	\$2.25	42.25	22.25	\$2, 25	42.25	52.25	52.25
f. Grain	48.80	*2,08	40.88	*2.20	50.69	40.68	40.08	\$2.69
9. Orass Hay	29.53	59.53	510.75	\$18.75	\$18.75	110.75	57.88	57.75
Total Com Unit Feed Costs	\$:48.22	\$131.36	\$171. 92	\$165. 39	\$171.92	\$165.39	\$143.99	\$146.68
2. 80.11 \& Replace. Feed Costs/C-C unit	45.77	\$45.77	\$45.77	45.77	\$45.77	545.77	\$45. 77	\$45.77
Total Feed Costs	\$193.99	\$177.13	\$217.69	\$211.16	\$217.69	s211.16	\$189.76	\$189.65
b. Lator	\$15.68	\$15.68	\$20.82	\$22. 68	\$23. 89	428.as	\$23.88	\$28.80
C. Other Variable Costs (Held Constant)	\$28.29	\$28.89	\$28.89	\$28.89	\$28.89	\$28. 69	\$28.09	*28.09
0. Interest ( $=$ Half of VC $x$ int. rate)	\$13.76	\$12.79	\$15.44	\$15.66	\$15.44	\$15.06	\$13.82	\$13.99
TOTRL VARIABLE COSTS	\$251. 44	\$233.61	\$282. 2	\$275. 11	\$282. 82	\$275. 11	\$252. 47	\$255. 53
II. TOTAL FIXED COSTS (Held Constant)	\$129.52	\$129,52	\$129.52	\$129,52	\$129.52	\$129.52	\$129,52	\$129.52
III. TOTAL COSTS (TVC+TFC)	\$398.96	\$363.13	8411.54	\$444, 63	\$411.54	8424.63	\$381.99	\$385.25


	80p\%	FEB-MPR	ppa-May	56p-0ct	NOV-EEC	SEp-act	NOV-DEC	SEP-OCT	NOV-DEC
	UEENED:	Nov 1	nov 1	תl. 1	SEP 1	MaY 1	J. 15	Je. 1	SEP 1
A. Steer hean Height		550	433	578	546	464	481	578	546
3. Heifer Wean keight		521	389	545	515	438	453	545	515
C.Calf Lbs Procuced/Cow		482	352	525	477	486	420	585	477
11. Prices									
A.Steer Price/Cut at heaning		\$41.56	\$43.87	241.24	\$44. 16	\$45.97	243.14	541.24	944. 15
B. Heifer Price/Cut at Weaning		\$35.49	\$34.96	\$36. 13	137.52	\$36. 87	\$36.62	\$36. 13	\$37. 52
C.Call Cow Price/Cut		\$24.29	\$24.29	\$26.98	\$26.34	\$28.35	\$26. 19	\$26.99	\$26. 34
III. Reveate									
A. Steer Revenue (\$)		\$162.86	578.11	\$187.27	\$184.54	\$85.99	593.38	\$127.27	\$106.50
8. Hesfer Revenve (s)		\$55.47	639.85	\$59.87	557.97	\$48.45	\$49.77	\$59.07	\$57,97
C.Call Cow Reverae (s)		\$40.88	44.8.68	\$44.53	\$43.46	\$46.78	\$43.21	\$44.53	43.45
TOTAL Revenie		\$198,41	\$158. 84	\$218.87	\$209. 93	\$191.2!	3196. 36	\$210.87	\$209.93

tw ANCLYIS **



III.CALF AREAKEVEN PIICE (Variable Costs) IV.CALF ARERKEVEN PRICE (Total Costs)	$\begin{aligned} & 543,85 \\ & 578.73 \end{aligned}$	$\begin{aligned} & \$ 54.92 \\ & \$ 91.68 \end{aligned}$	$\begin{aligned} & \$ 46.99 \\ & 472.52 \end{aligned}$	$\begin{aligned} & 348.52 \\ & 475.65 \end{aligned}$	$\begin{aligned} & \mathbf{2 5 7 . 9 5} \\ & \mathbf{5 9 9 . 8 5} \end{aligned}$	$\begin{aligned} & \mathbf{5 5 5 . 1 7} \\ & \mathbf{5} 85.99 \end{aligned}$	$\begin{aligned} & \mathbf{\$ 4 1 . 1 5} \\ & \mathbf{5 6 6 . 7 8} \end{aligned}$	$\begin{aligned} & 544.42 \\ & \$ 71.54 \end{aligned}$
ข. Inestrevt	33,714	83,7\%	\$4,203	44,250	34, 853	44, 250	43,732	\$3,733
asser tusuover :								
V1. NET (Lr.13.)/TNWESTMEVT(Lh.V.)	-3.13x	-3.75x	-3.32x	-3.17x	-3.883	-3.76x	-2. 818	$-2.92 x$
	7.12\%	6.858	6.833	6.32x	6.35\%	6.238	7.42 x	$7.40 x$

[^11]

I. Cow init Fizo costs

A. Xative Range	AC	\$12.78	B. 5	8.5	9.5	9.5	9.5	9.5	6.5	6.5
B.Fescue Pasture\%	AC	\$18. 48	0.8	0.0	0. 8	B. ${ }^{\text {d }}$	0.8	9.8	1.5	1.5
C.Alfalfa Hay	Tow	\$53.94	0.94	8.53	1.26	8.81	1.36	0.81	8.19	8. 23
D. 58, 45 x	TONS	\$24e, 80	B. 80	0.80	0.68	0.23	0.00	0.03	0.62	0.80
E. Mineral : Salt	वाग	\$3.94	0.57	8.57	0.57	8.51	0.51	0.51	0.51	8.51
F.Grain	BU	\$1.74	8. Be	9. 28	0.60	2.60	0.08	9.60	0.88	e.60
6. Grass Hay	TONS	551.01	B. 19	8.19	8.21	8. 21	0.21	0.21	8.14	4. 15
H. Fescue Fert.	AC	\$17.97	40.80	30, 80	*8.28	se.e2	\$0.82	32.08	\$25.96	\% $25 . \%$
II. $1 / A B C R$		\$2.60	6.3	5.0	B. ${ }^{\text {a }}$	8.8	B. 0	6.8	8.0	8.8
111. Revenue facto		BORN :   WEANED:	$\begin{array}{r} \text { FEB-MAR } \\ \text { MOV } 1 \end{array}$	$\begin{aligned} & \text { APR-HAY } \\ & \text { NON } 1 \end{aligned}$	SEP-0CT   ת. 1	$\begin{aligned} & \text { NOV-DEC } \\ & \text { SEP } 1 \end{aligned}$	$\begin{array}{r} \text { SEP-aCT } \\ \text { MEY } 1 \end{array}$	$\begin{gathered} \text { NOVVDEC } \\ \text { JLU } 15 \end{gathered}$	SEP-OCT Jil 1	$\begin{aligned} & \text { NDV-DEC } \\ & \text { SEP } 1 \end{aligned}$
A, Steer Price/Cut	at Weaning		\$+1.56	\$43.07	541.24	\$44.16	\$45.97	\$43.14	541.24	244. 16
B. Steer Height			558	483	578	546	454	481	578	546
C. Weifer Price/Cut	t at weaning		\$35.49	\$34.96	\$36.13	\$37.52	\$36.87	\$36.62	\$36. 13	837.52
D. Heifer Weight			521	368	545	515	438	453	545	515
E. Days of Age at	Sale		245	184	273	274	212	227	273	274
F. Cull Cow Price/C	Cut.		\$24.29	\$24.29	\$26. 99	\$26. ${ }^{3}$	\$28. 35	\$26.19	\$26.99	426. 34

铁 FACTDRS HELD CONSTANT BY CRLVING SERSEN \#

1. DTHER Variabiz costs

A. lifilities, Fuel \$ Dil	\$7.28
B.Vet. : Drugs	\$3.93
Cofarketing t Breeding	\$4.17
D. Reparrs, Tools \& Supplies	\$8. 29
E. Auto Expense	81.83
F.Misc.	\$1.79
G. Taplants	\$1.89
II. BUILDINES 4 ERUIPMENT	
A. Investment	1289
B.Life	18
C. \% Tax $\%$ Insurance for Bldg/Eqp, Livstk	1.88

VI. BREEDIMG HERD (PER HERD ENTRIES) (CONSTANT) **
A. \% Calf Croo ..... 92
B. \% Steers Weaned for Sale ..... $45 \%$
C. \% Heifers Weaned for Sale ..... 39\%
D. \% Heifers Heaned for Herd Reolacesent ..... 154
E. $x$ Bull per Com ..... 45
F.Average Com Value ..... $\$ 559$
6.Averaģe Bull value ..... 81,580
H. Cow Life ..... 8

1. Bu11 Life ..... 3
J.Salvage Value/Con ..... $\$ 420$
K. Salvage Value/Bull ..... $\$ 538$
L.Cu11 Cow Weight ..... 118

III. Interest rates	
A. Dperating Rate-—— (x)	11.56\%
B. Fined Funds late------ (x)	9. 133
IV. NatIVE RNGEE VALUE/ACRE	3335
v. FESCLE PASTURE VALIE/ACRE	\$462

t* The values in section VI. BREEDING HERD, are generally regarded as industry averages and are held constant throughout the analysis. Buil and cow values are estimates which are consistent with Kansas State University Farm Management Suide (IAF-266)

* Price for Fescue Pasture = Value/Acre $\times 4 \%$ Return/Acre

A range of 3-5x Returns/Acre are considered typical by Kansas Farm Managesent Associations
W0TE: Soue fornulas used in the Beef Cowherd Cost-return Budget
(1) Calf Cbs Produced/Cow: assuaing a $9 \%$ calf crop $=(45 \% \times$ steer 1 bs$)+(45 \% \times$ heifer 1 bs$)$
(2) Steer Revenue $=$ steer weaning wh, $x 45 \% \times$ steer price
(3) Heifer Tevenue $=$ heifer weaning wt. $\times 30 \times \times$ heifer price
(4) Cull Con Revenue $=$ cull cow wt. $x 15 \pm \times$ cull cow price
(5) Calf Breakeven Price (variable costs) $=$ varible costs - cull cow revenue $/$ calf 1 bs produced
(6) Calf Breakeven Price (total costs) $=$ total costs - cull cow revenue / calf lbs produced
** CALUING SEASON STRATEBIES ***
BEEF COMHERD COST-RETURN RUDGET
1976

in Costs m	Spring		FALL		FRLL		FQLL FESCJE	
BORS :	FEB-MAR	APR-MAY	SEp-act	NOU-DEC	SEP-OCT	NON-DEC	SEP-0ct	NOV-DEC
I. total varitale costs heaned;	NOV 1	NOV 1	תL 1	SEP 1	nay 1	Ju. 15	J. 1	SEp 1
A. Total Feed Costs ASE IN DAYS:	245	184	273	274	212	227	273	274
1. Cow Unit Feed Costs								
a. Sative Range	\$92. 65	\$92. 65	\$183.55	\$123.55	\$103,55	\$103.55	\$72.85	2, 85
b. Fescue Pasture(rent \& fert./AC)	48.88	12.88	50.ea	46.80	\$1. 90	49.00	\$58.52	\$58,52
c. Alfalfa Hay	\$4. 69	\$25. 61	\$51.24	\$39.06	\$51.24	\$39,86	59.35	\$11.32
d. S8x $44 \times$	52.60	sa, 00	42.88	\$5.82	*0.00	55.82	s2. 08	4.60
e. Hineral t Salt	2. 214	2.14	2. 14	22.14	2. 14	42.14	se. 14	\$2.14
f. Grain	42.68	sa. 88	48.88	9.80	30.00	se.00	sa. 68	8. 80
g. Arass Hay	\$8, 20	\$8, 28	59.24	59,24	99,24	59.24	\$6. 38	86.67
Total Com Unit Fead Costs	\$143.67	\$128. 58	5166.17	\$159.01	\$166. 17	\$159.01	\$146.93	\$149.49
2. Bull \% Replace. Feed Costs/C-C unit	\$42.27	\$42.27	\$42. 27	54.27	5422	\$4.27 27	\$42.27	\$42.27
Total Feed Costs	\$185.94	\$170. 87	\$288. 43	\$231,28	\$286.43	*201. 28	\$189.28	\$191.76
8. Labor	\$16.56	\$:56.56	\$22. 88	\$22.08	52.88	\$22.08	\$22. 88	122.88
C. Other Variable Costs (Held Constant)	\$27.16	\$27.16	\$27.16	\$27.16	227.15	\$27.16	\$27.16	\$27.16
0. Interest ( $=$ Half of VC $\times$ int. rate)	$\$ 13.44$	\$12.55	\$15.07	\$14,66	\$15.07	\$14.66	\$13.95	\$14.10
total variame casts	\$243.18	\$227.14	\$272.75	\$255.17	\$272. 75	\$255. 17	\$252. 39	2255. 18
II. TOTR FIXED COSTS (Held Constant)	\$127.11	\$127,11	\$127.11	\$127.11	\$127.11	\$127.11	\$127.11	\$127.11
11. TOTAL CLSTS (TVC+TEC)	4370.21	\$354.25	\$399, 86	\$392. 21	*399.86	\$392.28	\$379.58	\$382.21


	BORN :	FEB-MAR	ARR-MAY	SEP-OCT	NON-CEC	SEP-act	NON-DEC	SEP-OCT	NON-DEC
	WERNED:	NON 1	NOV 1	JL 1	SEP 1	NAY 1	J.L. 15	JUL 1	SEP 1
A. Stear Wean Weight		558	423	578	546	464	481	578	546
B. Heifer Wean Weight		521	360	545	515	438	453	545	515
C.Calf Lus Froduced/Cow		482	352	585	477	486	420	585	477
II. PRICES									
A. Steer Price/Cut at Heaning		\$37. 89	\$39.33	\$49.46	\$39.96	\$47.57	548.64	\$49.46	\$39.96
8. Heifer Price/Cust at lieaning		\$32.99	\$30.60	\$34.90	534.56	\$38, 34	\$34.48	\$34.98	\$34.56
C. Cull Cow Price/Dut		\$21.38	\$21.38	228.01	\$23. 84	\$31.69	\$25. 87	\$28. 01	\$23, 84
III. REVENIE									
A.Staer Sevenue (\$)		\$93.78	\$71.32	\$125. 24	\$98. 18	\$99, 33	587. 97	\$105. 24	\$98.18
8. Heifer Revenue (\$)		\$46.44	\$34.88	\$57.06	\$53.48	651.64	\$46.86	457.86	\$53.48
C.Cull Cow Revenve (\$)		\$35.15	\$35.15	\$46. 22	\$39.34	\$52. 29	\$44.34	\$46. 22	\$39.34
TOFR. REvEME		\$177.35	\$141.35	2208.51	\$198.91	\$202. 65	\$179.16	\$288. 51	\$198.91

tef AmRLYSIS 44

1. PEVENE-VARIAEEE COSTS
(\$65.74) (\$85.78) (\$64.23) (\$74.26) (\$70.18) (\$85.01) (\$43.88) (\$64.19)
II. REVENE-TOTAL COST
( $\$ 192.85)(\$ 212.89)(\$ 191.34)(5201.37)(\$ 197.21)(\$ \hat{1} 13.12)(\$ 170.98)(\$ 191.30)$

III. CALF BREAKEVEN PRICE (Variable Costs) IV. CRLF BRENKVEN PR1CE (Total Costs)	$\begin{aligned} & \$ 43.15 \\ & \$ 69.52 \end{aligned}$	354.49   $\$ 98.56$	$\begin{aligned} & \$ 44.83 \\ & \$ 69.98 \end{aligned}$	$\begin{aligned} & 44.32 \\ & \$ 73.92 \end{aligned}$	$\begin{aligned} & \$ 54.31 \\ & \$ 85.63 \end{aligned}$	$\begin{aligned} & 552.54 \\ & 182.78 \end{aligned}$	$\begin{aligned} & \$ 49.89 \\ & \$ 65.95 \end{aligned}$	$\begin{aligned} & \$ 45.19 \\ & 571.81 \end{aligned}$
V. EwEStwent	33,475	13,468	\$3,788	33,785	\$3,788	33,785	43,499	43,580
ASSE: TIPMNER :								
V. Neit (Ln.IL.)/INWESTHETT(Ln V.)	-3.65\%	-4.23\%	-3.31\%	-3.58x	-3.46\%	-3.89\%	-3. 288	-3.58\%
VII, GROSS(Tot. Sev, //1WUESTHEVT (Lnev.)	7.808	5. 988	7.25x	$6.79 \%$	7.69\%	6.48x	$7.85 \%$	$7.36 x$

[^12]| Ha FACTORS THAT WARY BY CRLUNA SESSCN \# |  | SPRIM |  | FRLL |  | FRLL |  | FRL FESCUE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNTT | PRIEE | FEP-WAR | APR-*QY | SEP-OCT | NOW-DEC | Sap-OCT | NOV-OEC: | ¢Ep-act | NOV-DEC |
|  |  |  |  |  |  |  |  |  |  |
| 1. CON U1T FEED COSTS |  |  |  |  |  |  |  |  |  |
| A. Native Range $A C$ | \$12.99 | 8.5 | 8.5 | 9.5 | 9.5 | 9.5 | 9.5 | 6.5 | 6.5 |
| 8.Fescue Pasturet AC, | \$17.16 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 2.8 | 1.5 | 1.5 |
| C. Alfalfa Hay TONS | \$48.25 | 0.34 | 0.53 | 1.66 | 0.81 | 1.66 | 2.81 | 8.19 | 2. 23 |
| 0.5EM 44x TONS | \$179.08 | 0.60 | 0.88 | 9.69 | 0.83 | 8.69 | 8.83 | e. 88 | 0.00 |
| E. Xineral $t$ Salt Cut | \$3.75 | 0.51 | 0.57 | 0.57 | 0.57 | 2.57 | 2.57 | 8.57 | 8.57 |
| F.Grain 㫙 | \$1.36 | 8.08 | 0.69 | 0.00 | 0.00 | 2.60 | 2.60 | 2.08 | 0.69 |
| 6. Grass hay TONS | \$43.86 | 0.19 | 9.19 | 8.21 | 0.21 | 2. 21 | a. 21 | 0.14 | e. 15 |
| H. Fescue Fert. AC | \$21.85 | \$0.38 | 30.20 | 30.28 | 50.86 | 50.08 | 54.80 | \$32.78 | \$32.78 |
| II. LAEOR | \$2.76 | 6.8 | 6.0 | 8.0 | B. 0 | 8. 8 | B. 8 | 8.1 | B. 8 |
| III. REVENE FACTORS | Boper : | FEP-MAR | MPR-maY | SEP-OCT | NOV-IEC | SEp-0ct | NOU-DEC | sep-oct | NOU-DEC |
|  | HENED: | NOV 1 | YOV 1 | Jill 1 | SEP 1 | MGY 1 | Jl. 15 | JuL 1 | SEP 1 |
| A.Steer Price/Cut at Heaning |  | \$37. 89 | \$39.33 | \$40.46 | \$39.96 | 547.57 | 548.64 | \$48. 46 | \$39.96 |
| 3. Steer Height |  | 559 | 483 | 578 | 546 | 464 | 481 | 578 | 545 |
| C. Heifer Price/Cut at Meaning |  | \$38.99 | \$39.68 | \$34.98 | \$34.56 | *38. 34 | 434. 48 | 334. 98 | \$34.56 |
| 0. Heifer lieight |  | 521 | 380 | 545 | 515 | 438 | 453 | 545 | 515 |
| E. Oays of Age at sale |  | 245 | 184 | 273 | 274 | 212 | 227 | 273 | 274 |
| F.Cull Com Price/Cut. |  | \$21.38 | \$21. 30 | \$28. 81 | \$23.84 | \$31.69 | \$26. 87 | \$28.a1 | \$23.84 |



[^13]NOTE; Soue formulas used in the Beef Cowherd Cost-return Budget
(1) Calf Lbs Produced/Cow: assuuing a $98 \%$ calf croo $=(455 \times$ steer 1 bs$)+(45 \% \times$ heifer 1 bs )
(2) Stear Revenue $=$ steer weaning wt. $x 45 x \times$ steer price
(3) Heifer Bevenue $=$ heifer neaning wt. $\times 38 x \times$ heifer price
(4) Cul! Con Revenue $=$ cull com wt. $x 25 x \times$ cull com price
5. Calf Braakeven Price (variable costs) = yarible costs - cull cow revenue / calf lbs produced
(6) Calf Breakeven Price (total costs) $=$ total costs - call com revenue / calf lbs orodaced
** CRLVIMG SERSDN STRATEEIES ***
BEEF COUHERD COST-RETURN BUSSET
1975

\#\# COSTS 理 copn	SPPIMG		FRLL		FALL		FRLL FESCUE	
	FEB-MAR	RPR-WAY	SEP-0CT	NOV-DEC	SEP-OCT	NOV-DEE	sep-act	NOU-DEC
1. TOTAL VARIABLE COSTS MEANEDi	NON 1	NOV 1	תll 1	SEP 1	NAY 1	JUL 15	M1 1	SEP 1
A. Total Feed Costs ABE in dayst	245	184	273	274	212	227	273	274
1. Con Unit Feed Costs								
a. Native Range	\$89.25	\$99.25	\$99.75	\$99.75	599.75	599.75	\$66. 25	\$58. 25
b. Fescue Pasture(rent : fert./RC)	58.08	30.88	30.20	58.08	98, 60	48.80	554, 85	554, 05
c. Alfalfa Hay	548.74	\$25.64	\$51. 38	*39.11	551.38	\$39.11	\$9.36	\$11.34
d. SEN $44 \times$	58.80	*6.88	\$8, 88	55.72	42.00	55.72	59.60	50.30
e. Anneral t Salt	\$2.83	12.03	22. 23	42.03	\$2.83	42.83	\$2. 83	\$2. 03
f. Grain	\$8.00	50.88	50.88	40.88	59.88	50.88	89.08	59.08
g. Grass Hay	88.67	s6. 67	59.77	39.77	39.77	59.77	\$6.43	\$7.85
Total Con Unit Feed Costs	\$140.69	\$125.59	\$162 85	\$156.39	\$162, ${ }^{\text {a }}$	\$156.39	5148.11	\$142.71
2. Aull i Replace. Fred Costs/ $\mathrm{C}-\mathrm{C}$ unit	\$43.43	\$43,43	543.43	\$43.43	\$43.43	\$43.43	\$43.43	443.43
Total Fred Costs	\$184.12	\$169.82	\$286.29	5199.82	\$266, 29	\$199.82	5183.53	\$186. 15
Q. Lavor	\$15.18	\$15.18	\$20.24	\$28.24	528.24	528. 24	\$28.24	\$20.24
C. Dther Variable Costs (held Constant)	\$25. 87	$\$ 25.87$	\$25.87	\$25. 87	\$25.87	\$25. 87	\$25. 87	\$25. 87
D. Interest ( $=$ Half of VC $\times$ int. rate)	\$13.17	\$12.29	\$14.77	\$14.39	\$14.77	\$14.39	\$13.44	\$13.59
TDTAL HAPTARE COSTS	\$238. 34	\$222. 36	\$267. 16	\$258, 32	\$257. 16	\$28a. 32	\$243. 89	5245.84
11. TDTAL F1XED COSTS theld Constant)	\$126.89	\$126.80	\$125.09	\$126.88	\$1265. 80	5126,89	\$1265.80	\$125, 80
111. TOTAL COSTS (TVC+TFC)	\$365. 14	\$349. 16	\$393. 96	\$387. 11	\$393.96	\$387.11	\$359.89	\$372. 64


	B02N :	FEE-KAP	ADS-NAY	$5 \mathrm{P}-10 \mathrm{CT}$	NOV-DEC	SEP-0CT	NOV-DEC	SEP-0CT	W N -1EC
	WEARED:	NOV 1	NOY 1	JUL 1	$\operatorname{sep} 1$	May 1	Jul 15	JLI 1	SEP 1
A. Steer hean Weipht		550	403	578	546	464	481	578	546
8. Helfer Wean heipht		521	388	545	515	438	453	545	515
C. Calf Lis Produced/Cow		482	352	505	477	406	428	585	477
11. PRICES									
A.Steer Price/Cut at Heaning		\$37. 34	\$35.67	\$35. 17	\$34.89	\$33.25	\$32.58	\$35.17	\$34.89
B. Heifer Price/Cut at Weaning		\$28. 99	\$24.65	\$29.25	\$28.93	425.60	\$26. 64	429.25	\$28.93
C. Cull Cow Price/Cot		\$21.44	\$21.44	\$23.88	\$22. 17	\$23. 23	\$21.69	\$23.06	\$22. 17
111. REVENJ									
Austeer Mrvenue (\$)		\$9.42	\$64. 69	\$91.48	\$85. 72	\$69.43	\$72. 52	\$91.48	\$85.72
8. Henfer Revenue (s)		\$45.31	\$28.10	\$47.82	\$44.76	\$33.64	\$35.20	\$47.82	\$44.73
C. Cu1l Cow Revenue (\$)		\$35.38	\$35.38	\$38.88	\$35.5a	\$38.88	\$35.79	\$38, 88	\$35.58
TDTAL REVEME		\$173.10	\$128. 15	\$177.38	\$167.89	\$141. 66	\$142. 51	\$177.38	\$167.08



17. REYENE-TOTAL COST
$(\$ 192.04)(\$ 221.90)(\$ 216.57)(\$ 223.11)(\$ 252.89)(\$ 244.69)(\$ 192.51)(\$ 205.64)$

211. CALF aRERKEVEN PRICE (Variable Costs) IV. CRLF BREAKEVEV PRICE (Total Costs)	$\$ 42.11$   $\$ 68.42$	$\begin{aligned} & \$ 53.87 \\ & \$ 89.85 \end{aligned}$	$\$ 45.33$   578.42	$\$ 46.86$ 573.42	$\$ 56.46$   $\$ 87.78$	553.42   883.59	$\begin{aligned} & \$ 42.57 \\ & \text { \$65. } 66 \end{aligned}$	$\begin{aligned} & \$ 43.83 \\ & \$ 70.39 \end{aligned}$
V. IWESTHENT4	\$3,228	43,220	\$3,512	\$3,509	\$3,512	\$3,589	\$3,301	43,369
ASSET THRNOVER :								
V1. NET (Ln.11. 1/1wnestment (in. V.)	-3.91x	-4.81\%	-4.29x	-4.39\%	-5.32x	-5.89x	-3.835	-4.23x
V11. GROSS(Tot. Rev.)/1NVESTMEVT inn.V.)	7.41\%	6. $83 \%$	6.93\%	6.64\%	5. $85 \%$	5. 94x	$7.37 x$	7.85x

[^14]| 3 FACTORS THat | ay By Ca | SESSON | SPRING |  | FRLI |  | FALL |  | FRLL FESCLE |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Nat | PMIEE | FEP-MAR | APR-XAY | SEP-DCT | NOU-DEC | sep-act | NOV-TEC | SEp-act | NOU-DEC |
|  |  |  |  |  |  |  |  |  |  |  |
| 1. CDW UMIT FEED COSTS |  |  |  |  |  |  |  |  |  |  |
| A. Native Range | AC | \$18.58 | 8.5 | 8.5 | 9.5 | 9.5 | 9.5 | 9.5 | 6.5 | 6.5 |
| B.Fescue Pasturet |  | \$17.39 | 8.8 | 0.1 | 0.0 | 0.8 | 3.0 | 8.8 | 1.5 | 1.5 |
| Contalala Hay | TENS | \$48.31 | 2.84 | ${ }^{\text {a }} .53$ | 1.66 | 2.81 | 1.06 | e. 81 | 0.19 | Q. 23 |
| D. SBX 44x | TONS | \$19\%.20 | 0.60 | 2.80 | 8.60 | 0.63 | 3.80 | 2. 63 | 8.89 | 8.89 |
| E. Wineral tSalt | वा | \$3.56 | 8.57 | 8.57 | 2.57 | 0.57 | 2.57 | 2.57 | 0.57 | 2.57 |
| F.Grain | ) | \$2.27 | 2.80 | 8.88 | 8.08 | 2.00 | 9,00 | 2.02 | 8.80 | 2.60 |
| a. Srass Hay | TONS | \$46.38 | 2.19 | 0.19 | Q. 21 | e.21 | 0.21 | e. 21 | 8.14 | 2.15 |
| H.Fescue Fert. | AC | \$19,03 | \$0.80 | \$3.68 | 50.00 | 82.00 | s8. 80 | 50.80 | \$28.55 | \$28.55 |
| 1. Lager |  | \$2. 53 | 6.8 | 6.8 | 8.8 | 8.0 | 8.8 | 8.8 | 8. 0 | 8.8 |
| 111. REVENE FACTO |  | B08N : | FEB-WAR | APR-MAY | SEP-0CT | NOV-DEC | SEP-OCT | NOV-dEC | SEP-OCT | NOU-DEC |
|  |  | HENED: | NOV 1 | HOV 1 | Jul 1 | SEP 1 | WhY 1 | JH. 15 | J. 1 | SEp 1 |
| A.Steer Price/Cut | t Mean |  | 137.34 | 835.67 | 835.17 | \$34.89 | \$33.25 | \$32.56 | \$35.17 | \$34.89 |
| 8. Sterer Weight |  |  | 558 | 483 | 578 | 546 | 454 | 481 | 578 | 546 |
| C. Heifar Price/Cut | at Mean |  | \$28.99 | \$24.65 | \$29.25 | \$28.93 | \$25. 68 | \$26.64 | \$29.25 | \$28. 93 |
| D. Heifer ieight |  |  | 521 | 388 | 545 | 515 | 438 | 453 | 545 | 515 |
| E. Days of Age at | Sale |  | 245 | 184 | 273 | 274 | 212 | 227 | 273 | 274 |
| F. Cull Cow Price/ | at. |  | \$21.44 | \$21. 44 | 523.88 | se2. 17 | \$23.03 | \$21.69 | +23.23 | \$22.17 |
| (4) FRCTORS HELD CONGTANT BY CRLVING SERSON AI 1. OTHER VARIRELE CDSTS |  |  |  |  | Vt. BREEDING HERD (PER HERT EMTRIES) (CONSTANT) + |  |  |  |  |  |
|  |  |  |  |  | A. $\times$ Calf Croo |  |  |  |  | 99x |
| 1. OTHER VARIARLE COSTS |  |  |  |  | 8. X Stee | rs leaned | for Sale |  |  | 458 |
| A.Utilities, Fuel $10 i 1$ B. Vat. $\%$ Drugs |  |  | 53.11 |  | C. X Heif | ers Heaned | for Sale |  |  | 330 |
| Coxarketing i Breeding |  |  | 4.76 |  | D. X Meif | ers Weaned | for Her | feolace |  | 15x |
| D. Repars, Tools ! Supplies |  |  | 57.88 |  | E. $\times$ Bull | per Cow |  |  |  | $4 \times$ |
| E.Auto Expense |  |  | 51.44 |  | F.Averag | Com Val |  |  |  | \$559 |
| F.Misc. |  |  | \$1.61 |  | 6.Averag | e Bull Val |  |  |  | \$1,580 |
| S. Jeplants |  |  | \$1.200 |  | H. Cow Li |  |  |  |  | 8 |
| 11. SULLIMES \% EQUIPMENT |  |  |  |  | 1.8011 L |  |  |  |  | 3 |
| A. Investnent |  |  | \$286 |  | J.Salvag | Value/C |  |  |  | 5409 |
| B.Life |  |  | 18 |  | K. Salvap | Ve Value/8 |  |  |  | \$509 |
| C. 8 Tax t insurance for $81 \mathrm{dg} / \mathrm{Eqp}$, Livstk |  |  | 1.65 |  | LCull | Ow Merght |  |  |  | 1188 |
| 111. INTEREST RATES |  |  |  |  | *The values in section V1. B2EEDING HERD, are |  |  |  |  |  |
| A. Operating hate- |  |  | 11.788 |  | generall | y regarded | d as indu | stry aver | ages and | are held |
| 8.Fixed Funds Rate--- (x) |  |  | 9.258 |  | constant | throughou | out the ana | lysis. Bu | 111 and 0 | com values |
| fv. Native RRNEE VALUE/ACPE |  |  | \$281 |  | Universi | ty Fara Ma | anageuent | Guide (0) | -256) |  |
|  |  |  | 5425 |  |  |  |  |  |  |  |

[^15]NOTE: Sone forevlas used in the Beef Comherd Cost-return Budget
(1) Calf Lbs Produced/Cow: assuaing a 908 calf crop $=(45 x \times$ steer 1 bs$)+(45 x \times$ heifar 1 bs$)$
(2) Steer Reverve $=$ steer weaning nt. $x 45 \times$ steer price
(3) Heifer Revenue $=$ heifer weaning wt. $\times 33 x \times$ heifer price
(4) Cull Cow Revenue $=$ cull cow it. $x 158 \times$ cull com price
(5) Dalf Brakeven Prica (variable costs) = varibla costs - cull com revenue / calf las produced
(6) Calf Breakeven Price (total costs) = total costs - cull com revenue / calf lbs produced

For farm operator, fixed costs are those that you will incur even if you do not raise any calves. These costs generally include: depreciation, rent (or land charge), interest, taxes and insurance.

In the beef cowherd cost-return budget used in this thesis, the rent or land charge for pasture was entered as a cost of feed and not as a fixed cost. The rent/acre of native hluestem range as reported by the Kansas Crop-livestock Reporting Service was used as the rent charge for nativerange. It was assumed that this charge represented the approximate return to farmand ownership which has historically ranged from 3-5\%.1 In the case of fescue pasture, reliable data on per acre rents were not availahle so the average return/acre was used as a proxy value. Multiplying the average value of dryland crop ground in Southeast Kansas by $4 \%$, the average returis/acrefor fescue pasture was calculated. ${ }^{2}$

Depreciation, interest, taxes and insurance are all largely dependent upon the amount of capital invested. Capital requirements for livestock, livestock equipment and facilities can vary
${ }^{1}$ A 3-5\% return to farmland is consistent with Kansas Farm Management Association estimates. Kansas Farm Management Assn., Dept, of Agricultural Economics and Cooperative Extension Service, Kansas State University, Manhatan, KS.
${ }^{2}$ It is assumed in this thesis that average quality crop ground was necessary to grow a sufficient stand of fescue as required by the fall fescue calving option specified in the beef cowherd cost-return budget. Southeast kansas cropland values were gelected hecause it is in the southeast corner of Kansas where feacue pasture is the most prevalent.
greatly from one producer to another. Values representing the estimated investment in hreeding stock are listed in Table 6. The 1984 estimated new capital investments for huildings and equipment hased on a 100 cow-herd, were adapted from $K S U$ farm Management Guide MF-266.3 (see tahle 7) These fixed costs for hoth huildings/equipment and hreeding livestock vere held constant among all calving season management options in order to hetter illustrate the differences due to cow feed costs and calf revenue.

Fixed costs were calculated as follows:

1. Depreciation/Bldgs. \& Equip.: total value/cow unit divided hy 10 year average 1 ife
2. Interest/Bldgs. \& Equip.: total value/cow unit divided hy 2 then multiplied by the fixedfundsinterestrate
3. Taxes \& Insurance/Bliggs. \& Equip.: total value/cow unit multiplied by $1 \mathbf{z}^{4}$
4. Interest/Breeding Stock: value of the cow and share of hull value multiplied hy the fixed funds interest rate
5. Taxes and Insurance/Breeding Stock: value of the cow and share of bull valuemultiplied hy $1 \%$
6. Depreciation/Breeding Stock: value of the cow and share of hull value minus their salvage values divided hy their useful life
${ }^{3}$ The total investment in huildings and equipment/cow unit in 1984 was indexed hack in time to derive cow unit investments for each of the other nine years of the analysis. It was assumed that the value for huildings and equipment corresponded closely with the value of all land in farms. Given that assumption, the yearly values for buildings and equipment vere calculated hy adjusting the 1984 value hy the percentage change in the value of all land in farme for Bast Central Ransab. For example, the 1983 value of huildings and equipaent was derived hy dividing the value of all land in farms for 1984 hy the value in 1983. The resulting ratio was multiplied by the 1984 value for huildings and equipment to find that value for 1983.
${ }^{4}$ It is assumed that taxes and insurance average approximately $1 \%$ of farm asset values. This estimate is consistent with RSU Farm Management Guides, Department of Economics, Kansas State University, Manhattan, Ks.

TABLE 6.--Capital investments/cow unit for breeding stock


> cow unit share

Cow and Replacement share $\$ 550$ X $100 \%=\$ 550$
Bull $\$ 1000$ X $4 \%=\$ 40$
TOTAL INVESTMENT/COW UNIT $\$ 590$

TABLE 7.--Capital investments/cow unit for huildings/equipment (100 cow-herd) 1984
Facilities
Working Corral and Equipment ..... \$4,000
Holding and Feeding Corral ..... 1,200
Feed Bunks (portahle) $50^{\circ}$ ..... 1,000
Hay Feeders $50^{\circ}$ ..... 500
Shelter 1 pea/20 cows $8^{\circ} \mathrm{X} 10^{\circ}$ ..... 2,000
Waterers (2)600Total Facilities$\$ 9,300$
Feed Storage (Hay Program)
Hay Storage $1.6 \mathrm{~T} / \mathrm{h}$. © $\$ 20 / \mathrm{T}$ ..... \$3,200
Bale Hendifing Equipment ..... 500
Protein Bulk Bin ( 3 T ) ..... 300
Grain Bulk Bin (2T) ..... 500
Range Cube Delivery System ..... 300
Total Peed Storage ..... $\$ 4,800$
Machinery and Trucks
1/2 of Pickup Truck ..... \$4,000
1/2 of $21 / 2 T$ Truck ..... 5,000
1/3 of Small Tractor ..... 5,000
Manure Loader ..... 1,500
Manure Spreader ..... 1,500
Scraper
Total Machinery and Truck
500
$\$ 17,500$
Total Investment/ 100 cow herd ..... $\$ 31,600$
total Investment/COW UNIT ..... \$316

## APPENDIX 3 INPUTS FOR BEEF COHHERD COST-RETURN BUDGETS

TABLE 8. - Historical prices used in the beef cowherd cost-retura budgets

	1984	1983	1982	
1. Native Range	\$12.80	\$12.80	\$12.80	S/Acre
2. Alfalfa Hay	\$71.00	\$54.86	\$60.13	\$/Ton
3. Soybean Meal	\$300.00	\$240.00	\$250.00	\$/Ton
4. Mineral \& Salt	\$5.83	\$5.81	\$5.80	\$/Cvt.
5. Grain	\$2.55	\$2.77	\$2.67	\$/Bu.
6. Grase Hay	\$52.00	\$43.86	\$48.25	\$/Ton
7. Fescue Fertilizer	\$24.14	\$25.37	\$25.37	S/Acre
8. Labor Wage	\$4.20	\$4.57	\$3.77	\$/Hour
9. Utilities, Fuel, Oil	\$17.37	\$17.21	\$15.38	\$/Year
10. Vet. \& Drugs	\$6.92	\$7.25	\$4.71	\$/Year
11. Marketing \& Breeding	\$7.90	\$6.39	\$6.99	S/Year
12. Repairs, Tools, Supplies	\$14.94	\$13.49	\$11.01	S/Year
13. Auto Expense	\$1.89	\$2.72	\$2.21	\$/Year
14. Misc.	\$5.83	\$3.26	\$8.04	\$/Year
15. Implants	\$1.00	\$1.00	\$1.00	\$/7ear
16. Investment/Bldgs \& Equip.	\$316.00	\$323.00	\$350.00	\$/acre
17. Operating Interest Rate	14.50\%	14.15\%	$16.23 \%$	Percent
18. Fixed Funds Interest Rate	12.25\%	12.50\%	$13.71 \%$	Percent
19. Native Range Valne	\$385.00	\$411.00	\$440.00	\$/Acre
0. Fescue Pasture Value	\$591.00	\$622.00	\$682.00	\$/Acre


	1981	1980	1979	
1. Native Range	\$12.40	\$12.90	\$12.80	\$/Acre
2. Alfalfa Hay	\$58.56	\$50.88	\$43.06	\$/Ton
3. Soybean Meal	\$300.00	\$240.00	\$230.00	\$/Ton
4. Mineral \& Salt	\$5.52	\$5.11	\$4.43	\$/Cwt.
5. Grain	\$2.30	\$2.91	\$2.20	\$/Bu.
6. Grase Hay	\$55.31	\$44.63	\$39.75	S/Ton
7. Fescue Fertilizer	\$23.61	\$19.03	\$17.62	\$/Acre
8. Labor Wage	\$3.74	\$3.70	\$3.50	\$/Hour
9. Utilities, Fuel, Oil	\$13.87	\$12.58	\$9.49	\$/Year
10. Vet. \& Drugs	\$4.39	\$4.56	\$5.28	\$/Year
11. Marketing \& Breeding	\$5.79	\$5.79	\$5.30	\$/Year
12. Repairs, Tools, Supplies	\$13.11	\$10.82	\$11.06	\$/Year
13. Auto Expense	\$1.96	\$2.41	\$1.53	\$/Year
14. Misc.	\$2.87	\$3.34	\$2.31	\$/Year
15. Implants	\$1.00	\$1.00	\$1.00	\$/Year
16. Investment/bldgs \& Equip.	\$364.00	\$357.00	\$307.00	\$/Acre
17. Operating Interest Rate	$15.91 \%$	$14.46 \%$	$12.28 \%$	Percent
18. Fixed Funds Interest Rate	12.67\%	$11.54 \%$	$9.88 \%$	Percent
19. Native Range Value	\$490.00	\$463.00	\$412.00	\$/Acre
20. Fescue Pasture Value	\$679.00	\$664.00	\$556.00	\$/Acre

TABLE 8．－－Continued．$⿴ ⿱ 冂 一 ⿱ 一 一 厶 儿$ istorical prices used in the beef cowherd cost－return budgets

	1978	1977	1976	1975
1．Native Range	\＄11．10	\＄10．70	\＄10．90	\＄10．50
2．Alfalfa Hay	\＄45．38	\＄53．94	\＄48．25	\＄48．31
3．Soybean Meal	\＄210．00	\＄240．00	\＄170．00	\＄194．00
4．Mineral f Salt	\＄4．20	\＄3．94	\＄3．75	\＄3．56
5．Grain	\＄1．99	\＄1．74	\＄1．86	\＄2．27
6．Grass Hay	\＄40．94	\＄51．01	\＄43．86	\＄46．38
7．Fescue Fertilizer	\＄17．62	\＄17．97	\＄21．85	\＄19．03
8．Labor Wage	\＄2．91	\＄2．60	\＄2．76	\＄2．53
9．Utilities，Fuel，0il	\＄7．36	\＄7．28	\＄6．97	\＄6．07
10．Vet．\＆Drugs	\＄4．11	\＄3．93	\＄4．01	\＄3．11
11．Marketing \＆Breading	\＄5．47	\＄4．17	\＄3．51	\＄4．76
12．Repairs，Tools，Supplies	\＄7．76	\＄8．09	\＄7．83	\＄7．88
13．Auto Expense	\＄1．52	\＄1．83	\＄1．92	\＄1．44
14．Misc．	\＄2．35	\＄1．79	\＄1．92	\＄1．61
15．Implants	\＄1．00	\＄1．00	\＄1．00	\＄1．00
16．Investment／Bidgg \＆Equip．	\＄259．00	\＄229．00	\＄208．00	\＄206．00
17．Operating Interest Rate	$11.58 \%$	$11.58 \%$	11．70\％	$11.70 \%$
18．Fixed Funds Interest Rate	$9.13 \%$	$9.13 \%$	$9.25 \%$	$9.25 \%$
19．Native Range Value	\＄354．00	\＄335．00	\＄310．00	\＄281．00
20．Fescue Pasture Value	\＄500．00	\＄462．00	\＄429．00	\＄425．00

## Historical Price Sources：

1）Native Range－＂Bluestem Pasture Rents＂，Kansas Crop－Live－ stock Reporting Service（KC－LRS），Kansas State Board of Agriculture Division of Sta－ tistics，USDA．

2）Alfalfa Hay－Average Kansas pricefor thefirst eight marketing months of the previous year＇s hay marketing year，May－December．（KC－LRS）1

3）Soybean Mea1－Average January Soybean Meal Price in Kansas．（KC－LRS）

4）Mineral and Salt－The 1984 price of a $1 / 2$ salt and $1 / 2$ trace mineral mix was obtained from the Manhattan Coop．This price was then indexed back to derive prices for the other nine years of the study．
$1^{1}$ The previous years prices were used because it vas assumed， for example，that the 1983 hay crop would be fed during the winter of 1984.
${ }^{2}$ There is little historical data available pertaining to trace mineral prices．Por purposes of this thesis，a close relationship between stock salt and trace mineral prices was assumed．
5) Grain - Kansas average annual milo price. (KC-LRS)
6) Grass Hay - Average Kansas price of "other hay" for the first eight marketing months of the previous year's hay marketing year, May-December. (RCLRS)
7) Fescue Fertilizer - The 1984 price of a 60-30-30 (N.P.K.) application of fertilizer wae based on conversations with Gary L. Kilgore, Extension Specialist, Crops and Soils, Southeast Ransas. This price vas then indexed back to derive the fertilizer price for each of the ten years of this analyeir. ${ }^{3}$
8) Labor Price - Bourly wages of livestock workers, as quoted for the month of January. (RC-LRS)
9) Utilities, Fuel and 0il - Based on the average costs incurred by farms with beef cowherds, enrolled in Kansas Farm Management Associations for each year of the analysis.
10) Vet, and Drugs - Sameas 9.
11) Marketing and Breeding - Same as 9.
12) Repairs, Tools and Supplies - Same as 9.

Mineral mix prices were derived by multiplying the 1984 wineral mix price by an index of the price changes in yearly stock salt prices as reported by the Ransas Crop-Livestock Reporting Service. For example:
(1) Manhattan Coop 1984 salt price $=\$ 5.00$ and 1984 mineral mix price $=\$ 6.65$ (per cwt. for each)
(2) $\$ 5.00+\$ 6.65=\$ 11.65 / 2=\$ 5.83$ (1984 mineral mix price/cwt.)
(3) 1984 stock salt price $=\$ 3.00 / \mathrm{cwt}$ and 1983 price $=$ $\$ 2.99 / \mathrm{cwt}$
(4) $\$ 2.99 / 3.00=.9967 \times \$ 5.83=1983$ mineral mix price of $\$ 5.81 / \mathrm{cwt}$
${ }^{3}$ Fertilizer vas assumed to be applied in the fall of the previous year, thus 1983 prices were added to the 1984 beef cowherd cost-return budget. Per pound prices of fertilizer vere .23, . 268.12 dollars for $N$ Pand $K$ respectively. Thus for a 60-30-30 fall application in 1984 the total cost summed to $\$ 25.50$. Prices were indexed back based on the index of prices paid by farmers for fertilizer, U.S. Source, "Agricultural Prices," 1975-1984, Crop Reporting Board, ESCS, USDA.
13) Auto Expense - Same as 9.
14) Misc. - Same as 9.
15) Implants - Prices for implants make up a very small part of the total costs of a cowherd operation and have varied little over the past ten years. For these reasons they were held constant throughout this analysis at the price of one dollar as ohtained from the Manhattan Coop.
16) Investment/Bldgs, and Equip. - Based on the values found in KSU Farm Management Guide MF-266. A more detailed explanation can he found in Appendix 2.
17) Operating Interest Rate - Based on the average interest rates on short term operating loans as charged by the Manhattan Production Credit Asqociation and adjusted up by $3 / 4 \%$.
18) Fixed Funds Interest Rate - Based on the average interest rates on intermediate to long term loans as charged by the Manhattan Federal Land Bank and adjusted up $3 / 4 \%$.
19) Native Range Value - Kansas farmland values, pasture in East Central Kansas. (KC-LRS)
20) Fescue Pasture Value - Kansas farmland values, dryland crop ground in Southeast Kansas. (KC-LRS)
${ }^{4}$ Interest rate charges hy both PCA's and FLB's were adjusted up to account for the additional costs of horrowing from them. These costs primarily reflect the cost of shares that horrowers must purchase. Based on conversations with Don Pretzer, Extension Agricultural Economist, Kansas State University, an adjustment factor of $3 / 4 \%$ vas selected.

Beef cow feed costs are the largest single expense faced by the cow-calf operator. Because of that, any management decisions affecting cow unit feed costs warrant careful consideration by the producer. The most significant impacts of calving season on feed costs occur as the result of two factors, the differing amounts and qualities of feed that a heef cow needs hased upon her specific stage of production and the differing qualities of range availahle depending on the time of year.

Generally, the heff cow year is split into four distinct periods, each with a unique set of nutritional requirements necessary to meet the particular needs of the cow. Period is the 90 days following calving when the cow is lactating at her highest level while trying to maintain maximum calf growth. In addition, during this period the cow mot undergo uterine involution, atart recycling and rehreed. Period 2 occurs during the following 120 days when the heef cow is in the early stages of pregnancy vile still lactating and maintaining a calf. The third period lasts for 90 days and is called midgestation, during this stage the cov must primarily maintain its developing fetus. Period 4 is the second most important period in the beef cow year. During this 60 day period, $70 \%$ to $80 \%$ of the total fetal grovth occurs and the cov must slso preparefor lactation. (see table 9)

Typically the cheapest and most common feed source for the Kansas heef cow is native range. While heing a vital source of nutrition for the hef cowherd, ngtive range is also a very
seasonal source. Crude protein levels can very from a high of $16 \%$ in May to a 10 w of $3 \%$ in January. (seetable 10 )

It is because of the abovementioned seasonalities in botb cow nutritional needs and grass quality that calving season management decisions can play such an important part in the overall profitability of a beef cowherd operation. The goal of tbis thesis is not to evaluate the feed requirements of different calving seasons, but to evaluate bow these differences affect overall cow herd profitability. For that reason, beff cow rations will be calculated and then held constant tbroughout the analysig with only feed prices changing from year to year. This vill allow the differences between calving seasons to be measured on a dollar basis and not a quantity basis.

Beef cov rations vere calculated with the assistance of Dr.'s Larry Corah, and Frank Brazle, Extension Livestock Specialists, Kansas State University. The rations were calculated based on the assumption tbat both the spring and fall calving options would be on native range year round. Keeping cattle on native range year round, while typical for many spring calving herds in Eastern Kansas, is seldom practiced with fall calving herds. This assumption allowed tbe analysis of spring vs, fall calving to be evaluated using the same resource base. Permitting more accurate analysis of the differences in profitability due to time of calving and not due to differing feed sources.

The ration building process consisted of subtracting the amount of nutrients provided by the range from the amount of nutrients required by the cow based upon her specific stage of production. Tables were organized on a Lotus 123 electronic


Total Dig. Nutrient (TDN)	lbs/day	13	11	9	10
Crude Protein	1bs/day	2.3	1.9	1.4	1.6
Calcium	grams/day	33	27	17	25
Phosphorus	grams/day	25	22	17	20
Vitamin A	I. ס./day	39000	32000	25000	26000

TABLE 10.--Nutritional values of grazed forages

Bluesten Range
ESOPHAGRAL
PROTEIN

JAN	$3 \%$	$42 \%$	$1.50 \%$	$9.00 \%$	$53 \%$
FBB	$3 \%$	$42 \%$	$1.50 \%$	$9.30 \%$	$47 \%$
MAR	$5 \%$	$40 \%$	$1.50 \%$	$12.40 \%$	$46 \%$
APR	$6 \%$	$41 \%$	$1.60 \%$	$24.0 \%$	$63 \%$
MAY	$16 \%$	$52 \%$	$2.60 \%$	$12.00 \%$	$56 \%$
JUN	$11 \%$	$51 \%$	$2.70 \%$	$9.50 \%$	$52 \%$
JUL	$9 \%$	$50 \%$	$2.20 \%$	$6.70 \%$	$50 \%$
ADG	$7 \%$	$49 \%$	$2.20 \%$	$6.20 \%$	$48 \%$
SEP	$6 \%$	$47 \%$	$1.90 \%$	$16.90 \%$	$53 \%$
OCT	$6 \%$	$46 \%$	$1.80 \%$	$14.30 \%$	$56 \%$
NOV	$5 \%$	$45 \%$	$1.70 \%$	$13.60 \%$	$53 \%$
DEC	$5 \%$	$44 \%$	$1.60 \%$	$12.30 \%$	$52 \%$

Tahle 9 Source: Larry Corah, Extension State Leader, AS\&I, Kansas State Oniversity, Manhattan.

Tahle 10 Source: "Feed Supplements for Maximum Use of Native Range",Larry Corah and Ed Smith, Cooperative Extension Service, Manhattan, Kansas. 1978 L-517
: "Tall Fescue Production and Utilization", Gary Rilgore, Frank Brazle and Marvin Fausett, Cooperative Extension Service, Manhattan, Kansas. 1980 C-622
spreadsheet that contained the monthly nutritional levela of native range (fescue pasture where applicable) on a dry matter basis. Values representing the monthly nutritional requirements of beff cows with differing calving dates wereinputted and subtracted from the range values. The spreadsheet table then calculated the pounds of alfalfa necessary to supplement the range and balance the beef cow ration. ${ }^{1}$ (see tables 11-13)

Jpon completion of the ration balancing tables, they were each evaluated by extension animal scientists and any changes necessary were made in Table 14, the Monthly Beef Cowherd Ration Summary. ${ }^{2}$ The feed amounts specified in the sumary table were then used in the beef cowherd cost-return budget.

A common problem to all cow-calf operations in Kansas is the feeding difficulties associated with snowfall. In this thesis, the problem of snowfall limiting the intake of range was handied by adding an allotted amount of grass hay to the total ration. Grass hay needed toreplacerange (feacue whereapplicable) due to snow cover was based on the average number of days with one inch of snow or more on the ground. A thirty year average of the number of snow days in Ransas was provided by Dean Bark,
${ }^{1} A l f a l f a$ vas used as the first ration supplement because it is a relatively cheaper source of supplementation, and more closely fit the deficiencies of the cow. If alfalfa could not meet all of the beef cow needs, then soybean meal was added to the beef cow ration. Crude protein and TDN levelsfor alfalfa and $S B M$ were derived from the $6 t h$ revised edition of the NRC publication, "Beef Cattle Nutritional Requirements", 1984. These levels are $14 \%$ of $52 \%$ CF and $T D N$ for alfalfa and $49.9 \%$ and $84 \%$ for SBM.
${ }^{2}$ The only changes made occur in the fall calving on fescue option, where, based on field experience, less supplemental alfalfa was used. Rations for spring and fall calving on native range were simply summarized from their respective ration balancing tables.

TABLE 11,--Balanced rations for spring calving on native range

SPRING CALVING (FEB-MAR)			SPRING CALVING (APR-MAY)		
JANUARY-Range Intake lbs		16.50	JANOARY-Range In	ntake lbs	16.50
	PROTEIS	TDN		PROTEIN	TDN
RANGE	0.50	6.93	Range	0.50	6.93
STAGE 4 NEEDS	1.60	10.00	Stage 3 needs	1.40	9.00
DEFICIENCY	1.11	3.07	DEFICIENCY	0.91	2.07
LBS ALPALPA REQ			LBS ALFALFA REQ		
= TEE LARGER OF	7.89	5.90	- the Larger of	6.46	3.98
alpalfa nut.	1.11	4.10	alfalfa NUT.	0.90	3.36
nUt. W/ Alpalpa	1.60	11.03	NUT. W/ Alpalpa	1.40	10.29
TOT DRY MAT LBS			TOT DRY MAT LBS		
$\begin{aligned} & =\text { TRE LARGER OF } \\ & \text { BAY REQ TO } \end{aligned}$	24.39	22.40	- the Larger of HAY REQ TO	22.96	20.48
REPLACE RANGE			REPLACE RANGE		
= TEE LARGER OP	8.53	13.59	$=$ TEE LARGER Of	8.53	13.59

```
SPRING CALVING (FEB-MAR)
FEBRUARY-Range Intake \(1 \mathrm{~b} \quad 16.50\)
```

	PROTEIN	TDN
RANGE	0.50	6.77
STAGE 4/1 NEEDS	1.95	11.50
DEFICIENCY	1.46	4.74
LBS ALFALFA REQ		
= THE LARGER OF	10.39	9.11
ALFALPA NUT.	1.46	5.40
NUT. W/ ALFALFA	1.95	12.17
TOT DRY MAT LBS		
= TEE LARGER OF	26.89	25.61
HAY REQ TO		
REPLACE RANGE		
= TEE LARGER OF	8.53	13.26

SPRING CALVING (FEB-MAR)
MARCR-Range Intake $1 \mathrm{bs} \quad 16.50$

	PROTEIN	TDN
RANGE	0.83	6.60
STAGE 1 NEEDS	2.30	13.00
DEFICIERCY	1.48	6.40
LBS ALPALPA REQ		
= THE LARGER OF	10.54	12.31
ALPALYA NUT.	1.72	6.40
NUT. W/ ALPALFA	2.55	13.00
TOT DRY MAT LBS		
= THE LARGER OF	27.04	28.81
HAY REQ TO		
REPLACE RANGE		
= THE LARGER OF	14.22	12.94

TABLE 11.--Continued.Balanced rations for spring calving on native range


SPRING CALVING (FEB-MAR)

APRIL-Range	Intake	lbs
		17.60
	PROTRIN	
	TDN	
RANGE	1.06	7.22
STAGE I NEEDS	2.30	13.00
DEFICIENGY	1.24	5.78
LBS ALFALFA REQ		
=THE LARGER OF	8.89	11.12
ALFALFA NUT.	1.56	5.78
NUT. W/ ALFALFA	2.61	13.00
TOT DRY MAT LBS		
= THE LARGER OF	26.49	28.72

SPRING CALVING (FEB-MAR)
MAY-Range Intake lbs 28.60

	PROTEIN	TDN
RANGE	4.58	14.87
STAGE 1 NEBDS	2.30	13.00
DEFI CIENCY	-2.28	-1.87
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	4.58	14.87
TOT DRY MAT LBS		
= THE LARGER OF	28.60	28.60

SPRING CALVING (FEB-MAR)
JUNE-Range Intake lba 29.70

	PROTEIN	TDN
RANGE	3.27	15.15
STAGE 2 NEEDS	1.90	11.00
DEFI CIENCY	-1.37	-4.15
LBS ALPALFA REQ		
= THE LARGER OF	0.00	0.00
ALPALFA NUT.	0.00	0.00
NTT. W/ ALFALFA	3.27	15.15
TOT DRY MAT LBS		
= THE LARGER OF	29.70	29.70

## SPRING CALVING (APR-MAY)

APRIL-Range Intake lbs 17.60

	PROTEIN	TDN
RANGE	1.06	7.22
STAGE 4 NEEDS	1.60	10.00
DEFI CIENCY	0.54	2.78
LBS ALFALFA REQ		
= THE LARGER OF	3.89	5.35
ALFALFA NUT.	0.75	2.78
NUT. W/ ALFALFA	1.81	10.00
TOT DRY MAT LBS		
= THE LARGER OF	21.49	22.95

SPRING CALVING (APR-MAY)
MAY-Range Intake lbs 28.60

	PROTEIN	TDN
RANGE	4.58	14.87
STAGE I NEEDS	2.30	13.00
DEFICIENCY	-2.28	-1.87
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NOT.	0.00	0.00
NUT. W/ ALFALFA	4.58	14.87
TOT DRY MAT LBS		
= THE LARGER OF	28.60	28.60

SPRING CALVING (APR-MAY)
JUNE-Range Intake lbs 29.70
PROTEIN TDN

RANGE	3.27	15.15
STAGE 1 NEEDS	2.30	13.00

DEFICIENCY $\quad-0.97 \quad-2.15$
LBS ALFALFA REQ
$\begin{array}{lll}=\text { THE LARGER OF } & 0.00 & 0.00\end{array}$
ALPALPA NUT. $\quad 0.00 \quad 0.00$
NUT. W/ ALPALFA $3.27 \quad 15.15$
TOT DRY MAT LBS
$\begin{array}{lll}=\text { THE LARGER OF } & 29.70 & 29.70\end{array}$

TABLE 11.--Continued. Balanced rations for apring calving on native range



ADGUST-Range In	Intake lbs	24.20
	PROTEIN	TDN
RANGE	1.69	11.86
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.21	-0.86
LBS ALFALFA REQ		
= the larger of	OF 0.00	0.00
alpalpa nut.	0.00	0.00
NUT. W/ Alpalpa	FA 1.69	11.86
TOT DRY MAT LBS		
= THE LARGER OF	OF 24.20	24.20

SPRING CALVING (FEB-MAR)
SEP-Range Intake lbs 21.00

	PROTEIN	TDN
RANGE	1.26	9.87
STAGE 2 NEEDS	1.90	11.00
DEFI CIENCY	0.64	1.13
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALPA	1.26	9.87
TOT DRY MAT LBS		
= THE LARGER OF	21.00	21.00

SPRING CALVING (APR-MAY)
JULY-Range Intake lbs $\quad \mathbf{2 4 . 2 0}$
PROTEIN TDN
RANGE $\quad 2.18 \quad 12.10$
$\begin{array}{lll}\text { STAGE } 1 & 2.30 & 13.00\end{array}$
$\begin{array}{lll}\text { DEFI CIENGY } & 0.12 \quad 0.90\end{array}$
LBS ALFALPA REQ
$\begin{array}{lll}=\text { THE LARGER OF } & 0.00 & 0.00\end{array}$
alfalfa nut. $\quad 0.00 \quad 0.00$
nut. W/ ALFALFA $2.18 \quad 12.10$
TOT DRY MAT LBS
$=$ THE LARGER OF
24.20
24.20

SPRING CALVING (APR-MAY)
AUGOST-Range Intake lbs 24.20

	PROTEIN	TDN
RANGE	1.69	11.86
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.21	-0.86
LBS ALFALFA REQ		
- THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	1.69	11.86
TOT DRY MAT LBS		
= THE LARGER OF	24.20	24.20

SPRING CALVING (AFR-MAY)
SEP-Range Intake lbs 21.00
PROTETN TDN

	PROTEIN	TDN
RANGE	1.26	9.87
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.64	1.13
LBS ALPALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	1.26	9.87
TOT DRY MAT LBS		
= THE LARGER OF	21.00	21.00

TABLE 11.--Continued.Balanced rations for spring calving on native range


OCTOBER-Range In	Intake 1bs	19.80
	PROTEIN	TDN
RANGE	1.19	9.11
STAGE 3 NEEDS	1.40	9.00
DEFICIENCY	0.21	-0.11
LBS ALFALPA REQ		
= the larger of	F 0.00	0.00
alfalfa nut.	0.00	0.00
NUT. W/ ALfalfa	A 1.19	9.11
TOT DRY MAT LBS		
= THE LARGER OF	F 19.80	19.80


SPRING CALVING	(PEB-MAR)	
NOVEMBER-Range	Intake 1b	18.70
	PROTEIN	TDN
RANGE	0.94	8.42
Stage 3 NEEDS	1.40	9.00
DEFICIENCY	0.47	0.59
LBS ALPALPA REQ		
$=$ THE LARGER OF	0.00	0.00
ALPALPA NUT.	0.00	0.00
NUT. W/ ALpalpa	0.94	8.42
TOT DRY MAT LBS		
= THE LARGER OF	18.70	18.70

SPRING CALVING (APR-MAY)
NOVEMBER-Range Intake lb $\mathbf{1 8 . 7 0}$

	PROTEIN	TDN
RANGE	0.94	8.42
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.97	2.59
LBS ALFALFA REQ		
E THE LARGER OF	0.00	0.00
ALPALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	0.94	8.42
TOT DRY MAT LBS		
= THE LARGER OF	18.70	18.70


SPRING CALVING	(FEB-MAR)		SPRING CALVING	(APR-MAY)	
DECEMBER-Range	Intake lb	17.60	DECEMBER-Range	Intake lb	17.60
	PROTEIN	TDN		PROTEIN	TDN
RANGE	0.88	7.74	Range	0.88	7.74
STAGE 3 NEEDS	1.40	9.00	Stage 3 needs	1.40	9.00
DEFICIENCY	0.52	1.26	DEFICIENCY	0.52	1.26
LBS ALPALFA REQ			LBS ALPALPA REQ		
= THE LARGER OF	3.71	2.42	$=$ THE LARGER OF	3.71	2.42
ALPALPA NUT.	0.52	1.93	alpalpa not.	0.52	1.93
NUT. W/ ALFALFA	1.40	9.68	NUT. W/ ALFALFA	1.40	9.68
TOT DRY MAT LBS			TOT DRY MAT LBS		
- the larger of hay Req to	21.31	20.02	$\begin{aligned} & =\text { THE LARGER OF } \\ & \text { HAY REQ TO } \end{aligned}$	21.31	20.02
REPLACE RANGE			REPLACE RANGE		
= THE LARGER OF	15.17	15.18	- the larger of	15.17	15.18

TABLE 12.--Balanced rations for fall calving on native range


FALL CALVING (SEP-0CT)
JANUARY-Range Intake lbs 18.70

	PROTEIN	TDN
RANGE	0.56	7.85
STAGE 2 NEEDS	1.90	11.00
DEFI CIENCY	1.34	3.15
LBS ALFALFA REQ		
= THE LARGER OF	9.56	6.05
ALFALPA NUT.	1.34	4.97
NUT. W/ ALFALFA	1.90	12.83
TOT DRY MAT LBS		
= THE LARGER OF	28.26	24.75
TAY REQ TO		
REPLACE RANGE		
= THE LARGER OF	9.67	15.40

FALL CALVING (SEP-OCT)
FEBRUARY-Range Intake $1 \mathrm{~b} \quad 18.70$

	PROTEIN	TDN
RANGE	0.56	7.67
STAGE 2 NERDS	1.90	11.00
DEFI CIENCY	1.34	3.33
LBS ALPALFA REQ		
= THE LARGER OF	9.56	6.41
ALFALFA NUT.	1.34	4.97
NUT. W/ ALFALFA	1.90	12.64
TOT DRY MAT LBS		
= THE LARGER OF	28.26	25.11
HAY REQ TO		
REPLACE RANGE		
$=$ THE LARGER OF	9.67	15.03

FALL CALDING (SEP-OCT)
MARCH-Range Intake lbs 18.70

	PROTEIN	TDN
RANGE	0.94	7.48
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.97	3.52
LBS ALFALFA REQ		
= THE LARGER OF	6.89	6.77
ALFALFA NUT.	0.97	3.58
MUT. W/ ALFALFA	1.90	11.06
TOT DRY MAT LBS		
= THE LARGER OF	25.59	25.47
HAY REQ TO		
REPLACE RANGE		
= TEE LARGER OF	16.12	14.67

FALL CALVING (NOV-DEC)
JANUARY-Range Intake lbs 18.70

	PROTEIN	TDN
RANGE	0.56	7.85
STAGE 1 NEEDS	2.30	13.00
1 1b. SBM	0.50	0.84
DEFICIENCY	1.24	4.31
LBS ALFALFA REQ		
THE LARGER OF	8.86	8.28
ALFALFA NUT.	1.24	4.61
NUT. W/ ALFALFA	2.30	13.30
TOT DRY MAT LBS		
HAY REQ TO		
REPLACE RANGE		
= THE LARGER OF	9.67	15.40

FALL CALVING (NOV-DEC)
FEBRUARY-Range Intake $1 \mathrm{~b} \quad 18.70$

	PROTEIN	TDN
RANGE	0.56	7.67
STAGE 1 NEEDS	2.30	13.00
1 Ib. SBM	0.50	0.84
DEFICIENCY	1.24	4.49
LBS ALFALFA REQ		
E THE LARGER OF	8.86	8.64
ALPALFA NUT.	1.24	4.61
NUT. W/ ALFALFA	2.30	13.11
TOT DRY MAT LBS		
HAY REQ TO		
REPLACE RANGE		
E THE LARGER OF	9.67	15.03

FALL CALVING (NOV-DEC)
MARCH-Range Intake lbs 18.70

	PROTEIN	TDN
RANGE	0.94	7.48
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.97	3.52
LBS ALFALFA REQ		
E THE LARGER OF	6.89	6.77
ALFALFA NUT.	0.97	3.58
NUT. W/ ALFALFA	1.90	11.06
TOT DRY MAT LBS		
= THE LARGER OF	25.59	25.47
HAY REQ TO		
REPLACE RANGE		
E THE LARGER OF	16.12	14.67

TABLE 12.--Continued. Balanced rations for fall calving on native range


FALL CALVING (SEP-0CT)
APRIL-Range Intake lbs 19.80

	PROTEIN	TDN
RANGE	1.19	8.12
STAGE 2 NEEDS	1.90	11.00
DEFI CIENCY	0.71	2.88
LBS ALFALFA REQ		
= THE LARGER OF	5.09	5.54
ALFALFA NUT.	0.78	2.88
NUT. W/ ALFALFA	1.96	11.00
TOT DRY MAT LBS		
= THE LARGER OF	24.89	25.34

FALL CALVING (NOV-DEC)
APRIL-Range Intake lbs 19.80

	PROTEIN	TDN
RANGE	1.19	8.12
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.71	2.88

24.89
25.34

FALL CALVING (SEP-OCT)
MAY-Range Intake lbs 28.60

	PROTEIN	TDN
RANGE	4.58	14.87
STAGE 3 NEEDS	1.40	9.00
DEFICIENGY	-3.18	-5.87
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	4.58	14.87
TOT DRY MAT LBS		
- THE LARGER OF	28.60	28.60

FALL CALVING (SEP-OCT)
JUNE-Range Intake lbs 29.70

	PROTEIN	TDN
RANGE	3.27	15.15
STAGE 3 NEEDS	1.40	9.00
DEFI CIENCY	-1.87	-6.15
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	3.27	15.15
TOT DRY MAT LBS		
= THE LARGER OF	29.70	29.70

FALL CALVING (NOV-DEC)
MAY-Range Intake lbs $\quad 28.60$

	PROTEIN	TDN
RANGE	4.58	14.87
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	-2.68	-3.87
LBS ALFALFA REQ		
O THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	4.58	14.87
TOT DRY MAT LBS		
= THE LARGER OF	28.60	28.60

FALL CALVING (NOV-DEC)
JUNE-Range Intake lbs 29.70

	PROTEIN	TDN
RANGE	3.27	15.15
STAGE 2 REEDS	1.90	11.00
DEFICIEAGY	-1.37	-4.15
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	3.27	15.15
TOT DRY MAT LBS		
= THE LARGER OF	29.70	29.70

TABLE 12.--Continued. Balanced rations for fall calving on native range


JULY-Range Intake lbs		24.20
	PROTEIN	TDN
RANGE	2.18	12.10
Stage 3 NEEDS	1.40	9.00
DEFICIENCY	-0.78	-3.10
LBS ALFALFA REQ		
$=$ THE LARGER OF	0.00	0.00
alpalfa Nut.	0.00	0.00
not. W/ alfalpa	2.18	12.10
TOT DRY MAT LBS		
- the Larger of	24.20	24.20

FALL CALVING (SEP-OCT)
AOGUST-Range Intake lbs $\mathbf{2 4 . 2 0}$

	PROTEIN	TDN
RANGE	1.69	11.86
STAGE 4 NEEDS	1.60	10.00
DEFICIENCY	-0.09	-1.86
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	1.69	11.86
TOT DRY MAT LBS		
= THE LARGER OF	24.20	24.20

fall calving (sep-oct)
SEP-Range Intake lbs 23.10

|  | PROTEIN | TDN |  | PROTEIN | TDN |
| :--- | ---: | ---: | :--- | :--- | ---: | ---: |
| RANGE | 1.39 | 10.86 | RANGE | 1.39 | 10.86 |
| STAGE 4 NEEDS | 1.60 | 10.00 | STAGE 3 NEEDS | 1.40 | 9.00 |
| DEFI CIENCY | 0.21 | -0.86 | DEFI CIENCY | 0.01 | -1.86 |
| LBS ALFALFA REQ |  |  | LBS ALFALFA REQ |  |  |
| = THE LARGER OF | 0.00 | 0.00 | IHE LARGER OF | 0.00 | 0.00 |
| ALFALFA NUT. | 0.00 | 0.00 | ALFALFA NUT. | 0.00 | 0.00 |
| NUT. W/ ALFALFA | 1.39 | 10.86 | NUT. W/ ALFALFA | 1.39 | 10.86 |
| TOT DRY MAT LBS |  |  | TOT DRY MAT LBS |  |  |
| = THE LARGER OF | 23.10 | 23.10 | IHE LARGER OF | 23.10 | 23.10 |

TABLE 12.--Continued. Balanced rations for fall calving on native range

fall calving (SEP-OCT)

OCTOBER-Range Intake lbs	22.00	
	PROTEIN	TDN
RANGE	1.32	10.12
STAGE 1 NEEDS	2.30	13.00
DEFICIENCY	0.98	2.88
LBS ALFALFA REQ		
= THE LARGER OF	7.00	5.54
ALFALFA NUT.	0.98	3.64
NUT. W/ ALFALFA	2.30	13.76
TOT DRY MAT LBS		
- THE LARGER OF	29.00	27.54

FALL CALVING (SEP-OCT)

NOVEMBER-Range	Intake lb	20.90
	PROTEIN	TDN
RANGE	1.05	9.41
STAGE 1 NEEDS	2.30	13.00
DEFICIENCY	1.26	3.60
LBS ALFALFA REQ		
= THE LARGER OF	8.96	6.91
ALFALFA NUT.	1.26	4.66
NUT. W/ ALFALFA	2.30	14.07
TOT DRY MAT LBS		
- THE LARGER OF	29.86	27.81

fall calving (nov-dec)
OCTOBER-Range Intake lbs 22.00

	PROTEIN	TDN
RANGE	1.32	10.12
STAGE 4 NEEDS	1.60	10.00
DEFI CIENCY	0.28	-0.12
LBS ALFALFA REQ		
- THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	1.32	10.12
TOT DRY MAT LBS		
= THE LARGER OF	22.00	22.00

FALL CALVING (NOV-DEC)
NOVEMBER-Range Intake $1 \mathrm{~b} \quad 20.90$

	PROTEIN	TDN
RANGE	1.05	9.41
STAGE 4 NEEDS	1.60	10.00
DEFICIENCY	0.56	0.60
LBS ALFALFA REQ		
= THE LARGER OF	3.96	1.14
ALFALFA NUT.	0.56	2.06
NUT. W/ ALFALFA	1.60	11.47
TOT DRY MAT LBS		
- THE LARGER OF	24.86	22.04

FALL CALVING (SEP-OCT)

DECEMBER-Range	Intake 1b	19.80	DECEMBER-Range	Intake 1b	19.80
	PROTEIN	TDN		PROTEIN	TDN
RANGE	0.99	8.71	RANGE	0.99	8.71
STAGE 1 NEEDS	2.30	13.00	STAGE 1 NEEDS	2.30	13.00
DEFICIENCY	1.31	4.29	DEFICIENCY	1.31	4.29
LBS ALFALFA REQ			LBS ALFALFA REQ		
- THE LARGER OF	9.36	8.25	= THE LAARGER OF	9.36	8.25
ALFALFA NUT.	1.31	4.87	ALFALFA NUT.	1.31	4.87
NOT. W/ ALFALFA	2.30	13.58	NUT. W/ ALFALFA	2.30	13.58
TOT DRY MAT LBS			TOT DRY MAT LBS		
$\begin{aligned} & \text { - THE LARGER OF } \\ & \text { HAY REQ TO } \end{aligned}$	29.16	28.05	$\begin{aligned} & =\text { THE LARGER OF } \\ & \text { HAY REQ TO } \end{aligned}$	29.16	28.05
REPLACE RANGE			REPLACE RANGE		
- THE LARGER OF	17.07	17.08	= THE LARGER OF	17.07	17.08

FALL CALVING (NOV-DEC)
DECEMBER-Range Intake 1b 19.80

TABLE 13.--Balanced rations for fall calving on fescue \& range


FALL CALVING (SEP-OCT)		FALL CALVING (NOV-DEC)	
JANDARY-Range Intake lbs	17.60	JANDARY-Range Intake lbs	17.60


	PROTEIN	TDN
FESCDE	1.58	9.33
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	0.32	1.67
LBS ALPALFA REQ		
= THE LARGER OF	2.26	3.22
ALFALPA NUT.	0.45	1.67
NUT. W/ ALFALFA	2.03	11.00
TOT DRY MAT LBS		
= THE LARGER OF	19.86	20.82

FALL CALVING (SEP-OCT)
PEBRUARY-Range Intake lb 17.60

	PROTEIN	TDN
FESCUE	1.64	8.28
STAGE 2 NEEDS	1.90	11.00
DEPICIENCY	0.26	2.72
LBS ALFALFA REQ		
= THE LARGER OF	1.88	5.24
ALPALFA NOT.	0.73	2.72
NUT. W/ ALFALPA	2.37	11.00
TOT DRY MAT LBS		
= THE LARGER OF	19.48	22.84

FALL CALVING (SEP-OCT)
MARCH-Range Intake lbs 18.70

|  | PROTEIN | TDN |  | PROTEIN | TDN |
| :--- | ---: | ---: | :--- | :--- | ---: | ---: |
| FESCUE | 2.32 | 8.69 | PESCUE | 2.32 | 8.69 |
| STAGE 2 NEEDS | 1.90 | 11.00 | STAGE 2 NEEDS | 1.90 | 11.00 |
| DEFICIENCY | -0.42 | 2.31 | DEFICIENCY | -0.42 | 2.31 |
| LBS ALFALFA REQ |  |  | LBS ALFALFA REQ |  |  |
| = THE LARGER OF | 0.00 | 4.44 | = THE LARGER OF | 0.00 | 4.44 |
| ALFALPA NUT. | 0.62 | 2.31 | ALFALFA NUT. | 0.62 | 2.31 |
| NUT. W/ ALFALFA | 2.94 | 11.00 | NUT. W/ ALFALFA | 2.94 | 11.00 |
| TOT DRY MAT LBS |  |  | TOT DRY MAT LBS |  |  |
| = THE LARGER OF | 18.70 | 23.14 | = THE LARGER OF | 18.70 | 23.14 |

```
-Ration supplements are alfalfa and SBM (if needed)
-Fall calving range intake increased .1% for Jan & Feb, and . 2%
 for all other months except May,June,July & August. (Source: Corah)
-All values in pounds (dry matter basis)
```

TABLE 13.--Continued.Balanced rations for fall calving on fescue \& range


FALL CALVING (SEP-OCT)			FALL CALVING (NOV-DEC)		
APRIL-Range Intake lbs		19.80	APRIL-Range Intake lbs		19.80
	PROTEIN	TDN		tein	TDN
FESCJE	4.83	12.55	FESCUE	4.83	12.55
Stage 2 NEEDS	1.90	11.00	Stage 2 NEEDS	1.90	11.00
DEFICIENCY	-2.93	-1.55	DEFICTENCY	-2.93	-1.55
LBS ALFALFA REQ			LBS ALFALFA REQ		
- The Larger of	0.00	0.00	$=$ the Larger of	0.00	0.00
ALFALFA NUT.	0.00	0.00	ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	4.83	12.55	NOT. W/ ALFALFA	4.83	12.55
TOT DRY MAT LBS			TOT DRY MAT LBS		
$=$ THE LARGER OF	19.80	19.80	$=$ THE LARGER OF	19.80	19.80

FALL CALDING (SEP-OCT)

MAY-Range Intake lbs	$\mathbf{2 8 . 6 0}$	
	PROTEIN	TDN
RANGE	4.58	14.87
STAGE 3 NEEDS	1.40	9.00
DEFICIENCY	-3.18	-5.87
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NOT. W/ ALFALFA	4.58	14.87
TOT DRY MAT LBS		
= THE LARGER OF	28.60	28.60

FALL CALVING (SEP-OCT)
JONE-Range Intake lbs 29.70

	PROTEIN	TDN
RANGE	3.27	15.15
STAGE 3 NEEDS	1.40	9.00
DEFICIENCY	-1.87	-6.15
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
SUT. W/ ALFALFA	3.27	15.15
TOT DRY MAT LBS		
= THE LARGER OF	29.70	29.70

FALL CALVING (NOV-DEC)
JUNE-Range Intake lbs 29.70

	PROTEIN	TDN
RANGE	3.27	15.15
STAGE 2 NEEDS	1.90	11.00
DEFICIENCY	-1.37	-4.15
LBB ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	3.27	15.15
TOT DRY MAT LBS		
= THE LARGER OF	29.70	29.70

FALL CALVING (SEP-OCT)

JULY-Range Intak	ke lbs	24.20
	PROTEIN	TDN
RANGE	2.18	12.10
STAGE 3 NEEDS	1.40	9.00
DEFI CIENCY	-0.78	-3.10
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALPALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	2.18	12.10
TOT DRY MAT LBS		
- THE LARGER OF	24.20	24.20

FALL calving (NOV-DEC)
JULY-Range Intake lbs $\quad 24.20$

	PROTEIN	TDN
RANGE	2.18	12.10
STAGE 3 NEEDS	1.40	9.00
DEFICIENCY	-0.78	-3.10
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	2.18	12.10
TOT DRY MAT LBS		
= THE LARGER OF	24.20	24.20

FALL CALVIMG (NOV-DEC)
ADGUST-Range Intake lbs $\mathbf{2 4 . 2 0}$

	PROTEIN	TDN
RANGE	1.69	11.86
STAGE 3 NEEDS	1.40	9.00
DEFI CIENCY	-0.29	-2.86
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NUT. W/ ALFALFA	1.69	11.86
TOT DRY MAT LBS		
= TEE LARGER OF	24.20	24.20

FALL CALVING (NOV-DEC)
SEP-Range Intake lbs 23.10

	PROTEIN	TDN
RANGE	1.39	10.86
STAGE 3 NEEDS	1.40	9.00
DEFICIENCY	0.01	-1.86
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALFA NUT.	0.00	0.00
NOT. W/ ALFALFA	1.39	10.86
TOT DRY MAT LBS		
=THE LARGER OF	23.10	23.10

TABLE 13.--Continued.Balanced rations for fall calving on fescue \& range

fall caliving (sEp-OCT)

fall calving (sep-oct)
NOVEMBER-Range Intake $1 \mathrm{~b} \quad 20.90$

	PROTEIN	TDN
FESCUE	2.84	11.05
STAGE 1 NEEDS	2.30	13.00
DEFICIENCY	-0.54	1.95
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALPA NUT.	0.00	0.00
NUT. W/ ALFALFA	2.84	11.05
TOT DRY MAT LBS		
= THE LARGER OF	20.90	20.90

FALL CALVING (SEP-OCT)
DECEMBER-Range Intake Ib 19.80

	PROTEIN	TDN
FESCUE	2.44	10.21
STAGE 1 NEEDS	2.30	13.00
DEFICIENCY	-0.14	2.79
LBS ALFALFA RBQ		
= THE LARGER OF	0.00	5.36
ALFALFA NUT.	0.75	2.79
NUT. W/ ALFALFA	3.19	13.00
TOT DRY MAT LBS		
= THE LARGER OF	19.80	25.16

FALL CALVING (NOV-DEC)
OCTOBER-Range Intake lbs 22.00
PROTEIN TDN

FESCUE	3.15	12.25
STAGE 4 NEEDS	1.60	10.00

DEFICIENCY $\quad \mathbf{- 1 . 5 5}-\mathbf{- 2 . 2 5}$

LBS ALFALFA REQ
$\begin{array}{lll}=\text { THE LARGER OF } & 0.00 & 0.00\end{array}$
ALPALFA NUT. $\quad 0.00 \quad 0.00$
nut. W/ Alfalya $\quad 3.15 \quad 12.25$ TOT DRY MAT LBS
$=\begin{array}{lll}\text { THE LARGER OF } & 22.00 & 22.00\end{array}$

FALL CALVING (NOV-DEC)
NOVEMBER-Range Intake $1 \mathrm{~b} \quad 20.90$

	PROTEIN	TDN
FESCUE	2.84	11.05
STAGE 4 NEEDS	1.60	10.00
DEFICIENCY	-1.24	-1.05
LBS ALFALFA REQ		
= THE LARGER OF	0.00	0.00
ALFALPA NUT.	0.00	0.00
NUT. W/ ALPALFA	2.84	11.05
TOT DRY MAT LBS		
= THE LARGER OF	20.90	20.90

FALL CALVING (NOV-DEC)
DECEMBER-Range Intake Ib 19.80
PROTEIN TDN

FESCUE	2.44	10.21
STAGE		

$\begin{array}{lll}\text { DEFICIENCY } & -0.14 & 2.79\end{array}$
LBS ALFALFA REQ
$\begin{array}{llll}=\text { THE LARGER OF } & 0.00 & 5.36\end{array}$
ALFALFA NUT. $\quad 0.75 \quad 2.79$
nut. W/ Alpalpa $\quad 3.19 \quad 13.00$
TOT DRY MAT LBS
$=\begin{array}{lll}\text { THE LARGER OF } & 19.80 & 25.16\end{array}$

TABLE 14.--Monthly cowherd ration summary


ALFALFA NEEDS: LBS/DAY/MONTH (dry matter hasis)

JAN	7.9	6.5	9.6	$8.9 * *$	3.2	4.5
FEEB	10.4	6.5	9.6	$8.9 * *$	4.0	5.0
MAR	12.3	6.5	6.9	6.9	3.5	3.5
APR	11.1	5.4	5.5	5.5	0.0	0.0
MAY	0.0	0.0	0.0	0.0	0.0	0.0
JUN	0.0	0.0	0.0	0.0	0.0	0.0
JUL	0.0	0.0	0.0	0.0	0.0	0.0
AUG	0.0	0.0	0.0	0.0	0.0	0.0
SEP	0.0	0.0	0.0	0.0	0.0	0.0
OCT	0.0	0.0	7.0	0.0	0.0	0.0
NOV	0.0	0.0	9.0	4.0	0.0	0.0
DEC	3.7	3.7	9.4	9.4	0.0	0.0

ALFALPA NEEDS: LBS/MONTH (dry matter hasis)

JAN	244.7	200.4	296.5	274.6	99.7	139.5
FEB	291.0	181.0	267.8	248.0	112.0	140.0
MAR	381.5	202.7	213.7	213.7	108.5	108.5
APR	333.7	160.6	166.3	166.3	0.0	0.0
MAY	0.0	0.0	0.0	0.0	0.0	0.0
JUN	0.0	0.0	0.0	0.0	0.0	0.0
JUL	0.0	0.0	0.0	0.0	0.0	0.0
ADG	0.0	0.0	0.0	0.0	0.0	0.0
SEP	0.0	0.0	0.0	0.0	0.0	0.0
OCT	0.0	0.0	217.0	0.0	0.0	0.0
NOV	0.0	0.0	268.9	118.9	0.0	0.0
DEC	115.1	115.1	290.1	290.1	0.0	0.0
LBS.	1366.1	859.8	1720.2	1311.5	320.2	388.0
FED	1517.8	955.4	1911.4	1457.2	352.2	426.8
TAGE	1686.5	1061.5	2123.8	1619.2	387.4	469.5

* In the fall fescue pasture option, cows are on fescue from October 1 to April 30, and then on native range from May 1 to September 30. Fall fescue was fertilized each year at the rate of $60-30-30$ (lhs NPK).
** In the native range late fall calving option (Nov-Dec), 1 lb of soyhean meal was fed per day in the months of January and Fehruary, this sums to 31 and 28 lhs per month respectively.

Climatologist, Kansas Agricultural Experiment Station. (Figure 6) The average annual snow daye for both Manhattan and Southeast Kansas were then arbitrarily spread over the months of December through March. The pounds of grass hay necessary to replace range was determined hy taking the pounds of total digestible nutrients (TDN) and crude protein provided by the range for each month and then calculating the pounds of grass hay needed to equal each of those nutrient levels. The larger of the two amounts was then entered into the total cov ration. ${ }^{3}$ Table 15 shows the pounds of grass hay/month needed for spring and fall calving on native range and for both early and late fall calving on fescue.

	snow			snov days		
	$1^{\prime \prime}$ or	SPRING	FALL	$1^{\prime \prime}$ or more	SEP-OCT	NOV-DEC
December	5	76.0	85.5	2	50.0	50.0
January	6	81.6	91.8	4	73.2	83.6
Fehruary	6	79.8	90.0	4	70.0	81.6
March	5	71.5	81.0	2	36.0	36.0
Totals	22	308.9	348.3	12	229.2	251.2
As fed		339.8	383.1		252.1	276.3
10\% waste		373.8	421.4		277.3	304.0

Bull and replacement beifer feed costs make up the second component of total cow unit feed costs. These costs are not
${ }^{3}$ an example is now provided. Range intake for a spring calving cow in the month of January is 16.5 lhs, and provides .5 and 6.93 lbs of crude protein and TDH respectively. (table 11) Dividing .5 by $5.8 \%$ and $6.93 \mathrm{by} 51 \%$ results in 8.6 and 13.6 lhs of grass hay necessary to replace the crude protein and TDN in native range. The 13.6 lhs, the larger of the two is then multiplied by 6 days and 81.6 pounds of $g r a s s$ hay is then added to the total ration for the month of January.


directly affected by calving beason and can vary from producer to producer dependingupon how he manages his bulls and replacement heifers. Yet these costs are an important part of total beef cow unit feed costs and because of this, were calculated and held constant among all calving season management options with only feed prices changing from year to year. This allowed the study to better evaluate feed costs between covs of differing calving seasons and not reflect differences in bull and heifer management.

Replacement heifers were assumed weaned at 7 months of age weighing 422 pounds and bred to calve at 24 months of age weighing 950. The average weight then was 686 pounds, and it was this weight of heifer that therations were calculatedfor. The difference between the 24 and 7 months results in a period of 17 months of replacement heifer ownership that must correspond to a 12 month cow unit budget. In order to adapt replacement heifer ownershiptime to the 12 month covear, a conversion factor of $1.42(17 / 12)$ vas used. The management program used for heifers called for them to be on range from May through September and drylotted from October through April. Thus the five months spent on grass was converted to 7.1 months ( $5 \times 1.42$ ), or 213 days, and the 7 months of drylot resulted in 9.9 monthe ( 297 dayb).

The nutritional requirements of a 686 lb replacement heifer were obtained from 1984 NRC beef cattle nutritional requirements and vere 9.35 lbs of TDF and 1.35 lbs of crude protein per day, based on a daily dry matter (DM) intake of 16.5 pounds.

Replacement heifer rations used vere ${ }^{4}$ :
Native range: 7.1 months $x .875$ head/acre $=6.2$ acres
Drylot rations consisted of $6,9 \& 1.5$ pounds of alfalfa, grass hay and milo per day respectively.


Total pounds were then adjusted to an as fed basis plus five percent feed waste and converted to tons and bushels.

Total replacement heifer feed costs were ${ }^{5}$ :
Native range: 6.2 acres $x$ yearly pasture rent = range cost Alfalfa : 1.03 tons xalfalfaprice/ton =alfalfacost
Grass hay : 1.54 tons $x$ grass hay price/ton = hay cost
Milo : 9.45 bu zmilo price/bushel = milo cost Total Cost

Total cost $x .15$ heifer replacement/cow unit = cow unit share of total replacement heifer feed costs

Bulls were assumed to weigh an average of 1600 pounds. According to 1984 NRC requirements their nutritional needs based on 40 pounds of $D M$ intake were 2.2 and 16.6 pounds of crude protein and TDN respectively. Bull management, rations and total feed costs were calculated the same as that for replacement heifers. 40 pounds of grass hay were found to provide all required nutrients of the bull while in drylot.

Bull rations used were:
Native range: 5 months $x 1.56$ head/acre $=7.8$ acres
Grass hay : $40 \mathrm{lbs} \times 210 \mathrm{days}=84001 \mathrm{bs}$ (DM)
${ }^{4}$ Bull and heifer rations were based on conversations with Larry Corah, Extension State Leader, Animal Science and Industry, Kansas State University.
${ }^{5}$ Yearly prices were obtained from Appendix 3.

Total bull feed costs were:
Native range : 7.8 x yearly pasture rent $=$ range cost
Grasa bay: 4.85 tons $x$ hay price/T: hay cost
Total cost
Total cost $x .04$ bull share/cow unit $=$ cow unit sbare of total bull feed costs

Cow unit sbares of both bull and replacement heifer feed coats were tben ammed to derive total bull and replacement heifer feed costs as used in the beefcow cost-return budget.

Gross revenue for any cow-calf operation is dependent on two factors, the pounds of heef produced and the price received for those pounds.

To be accurate, an analysis of calving season must hold constant factors of production that are not directly affected by calving season. In order to eliminate genetic differences in cattle from affecting the results, the simulated performances of an 1100 1h Hereford $x$ Angus cow and her exotic sired calf were used for every calving eason management option in this study. These simulations were hased on conversations with Kansas State University Extension Animal Scientists. ${ }^{1}$

At hirth, bulls and heifers were assumed to weigh 70 and 65 pounds respectively. The formula used to calculate veaning weights was:
weaning weight = hirth weight + (days of age xestimated average daily gains).

Estimated average daily gains were hased primarily on the environmental conditions and grass quality encountered hyeach calving season.

Estimated average daily gains vere: Spring

	steers	heifers		steers	heifers
Feh-Mar	1.96	1.86	Sept-0ct	1.86	1.76
Apr-May	1.81	1.71	Nov-Dec	1.81	$1.71^{2}$

[^16]Days of age for each calving season management option were derived after the weaning date was selected. November las chosen for hoth spring calving options because it vas asamed that all spring calves are weaned in the fall regardless of date of birth. In the case of the two fall calving options, May 1 and July 15 were selected because both calves would then be approximately seven months of age. In addition, May 1 allows the option of selling the calves to go on grass and July 15 is generally regarded as a time when grass quality begins to deteriate at a rapid rate, with lower gains being the result. July 1 and September 1 were selected becauseat that tiae each calf would be nine months of age and proper management dictates that calves be weaned to allow the cow to prepare for parturition and lactation.

After determining the formula coefficients, the weaning weights for each calving season option were calculated. ${ }^{3}$

Calving Season	Date Weaned	Days of Age	Steers	Heifers
Feh-Mar	Nov. 1	245	550	521
Apr-May	Nov. 1	184	403	380
Sep-0ct	May 1	212	464	438
Sep-0ct	July 1	273	578	545
Nov-Dec	July 15	227	481	453
Nov-Dec	Sep. 1	274	546	515

These average daily gains were selected based on $K$ SU Range Research Station data that suggest August-September ADG's are $77 \%$ of the $A D G^{\prime} s$ from May-July.
${ }^{3}$ It should be noted that the weaning veights selected were not the actual weights used to calculate gross revenue. A $90 \%$ calf crop consisting of half steers and half heifers and the retention of $15 \%$ of gour calf crop for herd replacement was assumed. These assumptions, mean that $45 \%$ of the steer weight, $30 \%$ of the beifer weight and $15 \%$ of the cull cow weight were used in the calculation of gross revenue.

It should he noted that the weaning weight formulas used in this theais result in the folloving adjusted 205 day weaning weights.

	Spring		Fall		
	steers	heifers		steers	heifers
Feh-Mar	472	446	Sept-0ct	451	426
Apr-May	441	416	Nov-Dec	441	416

The weaning weights, once selected were held constant throughout the analysis with only calf prices changing from year to year. This was to 1) reflect the fact that with proper management yearly weaning weights should he constant if not increasing, and 2) allow a hetter analyais of year to year changes in calf prices.

Calf prices used were monthly average prices situated around the calf sale date. For example,the Novemher lale date price, was a four week ( month) average gale price consisting of the last wo weeks of Octoher and the first wo weeks of November. These averages represented the prices of Kanas city choice medium framed steers and heifers.

The last component of gross revenue is that resulting from cull covesales. Cull cows were assumed to weigh 1100 lbs for each calving season alternative, and to be sold at the time of weaning. Price calculations were the sameag that for feeder calves.

TABLE 16.--Cattle prices used in beef cowberd cost-return budgets STEER PRICES

$\begin{aligned} & \text { Calving } \\ & \text { Season } \end{aligned}$	$1 f$	1984	1983	1982	1981	1980	Feeder Calves
FEB-MAR/8	550	\$66.31	\$62.26	\$64.05	\$64.15	\$78.63	5-6 CWT
APR-MAY/6	403	\$68.18	\$64.98	\$66.13	\$66.55	\$81.53	4-5 CWT
SEP-0CT/9	578	\$66.03	\$65.71	\$66.36	\$67.91	\$76.47	5-6 CWT
NOV-DEC/9	546	\$64.99	\$58.70	\$69.94	\$69.22	\$82.48	5-6 CWT
SEP-0CT/7	464	\$71.11	\$76.10	\$70.95	\$74.60	\$82.75	4-5 CWT
NOV-DEC/7.5	5481	\$66.21	\$65.71	\$68.35	\$69.04	\$77.12	4-5


FEB-MAR/8	550	$\$ 86.41$
$\mathrm{APR}-\mathrm{MAY} / 6$	403	$\$ 92.11$
$\mathrm{SEP}-0 \mathrm{OT} / 9$	578	$\$ 87.76$
$\mathrm{NOV}-\mathrm{DEC} / 9$	546	$\$ 94.54$
$\mathrm{SEP}-\mathrm{OCT} / 7$	464	$\$ 109.23$
$\mathrm{NOV}-\mathrm{DEC} / 7.5$	481	$\$ 98.72$

$\begin{array}{lllll}1979 & 1978 & 1977 & 1976 & 1975\end{array}$
$\begin{array}{lllll}1979 & 1978 & 1977 & 1976 & 1975\end{array}$
$\begin{array}{lllll}1979 & 1978 & 1977 & 1976 & 1975\end{array}$

$\$ 67.73$	$\$ 41.56$
$\$ 71.33$	$\$ 43.07$
$\$ 62.30$	$\$ 41.24$
$\$ 68.39$	$\$ 44.16$
$\$ 63.48$	$\$ 45.97$
$\$ 68.42$	$\$ 43.14$

$\$ 37.89$
$\$ 37.34$
5-6 CWT
$\$ 39.33$
\$35.67
$\$ 35.17$
$4-5$
-6
CWT
39.96
\$34.89
5-6 CWT
$\$ 47.57 \quad \$ 33.25 \quad 4-5 \quad$ CWT
$\$ 40.64$
$\$ 32.58$
4-5 CWT

HEIFER PRIGES

Calving   8eason	Calf	Wt. 1984	1983	1982	1981	1980	R.   Fee   Cal	C.   der   ves
FEB-MAR/8	521	\$57.00	\$51.89	\$ 56.48	\$55.88	\$67.28	5-6	CWT
APR-MAY/6	380	\$56.52	\$52.23	\$55.03	\$55.10	\$70.66	3-4	CWT
SEP-0CT/9	545	\$55.50	\$57.21	\$56.93	\$59.44	\$67.16	5-6	CWT
NOV-DEC/9	515	\$57.17	\$50.34	\$61.98	\$60.07	\$70.09	5-6	CWT
SEP-0CT/7	438	\$59.31	\$62.75	\$59.20	\$62.88	\$67.23	4-5	CWT
NOV-DEC/7.	5453	\$55.60	\$57.03	\$58.21	\$58.08	\$68.12	4-5	CW T


FEB-MAR $/ 8$	521	$\$ 75.08$	$\$ 58.60$	$\$ 35.49$	$\$ 30.99$	$\$ 28.99$	$5-6$	CWT
APR-MAY $/ 6$	380	$\$ 80.78$	$\$ 62.84$	$\$ 34.96$	$\$ 30.60$	$\$ 24.65$	$3-4$	CWT
$\mathrm{SEP}-0 \mathrm{CT} / 9$	545	$\$ 80.18$	$\$ 53.43$	$\$ 36.13$	$\$ 34.90$	$\$ 29.25$	$5-6$	CWT
$\mathrm{NOV}-\mathrm{DEC} / 9$	515	$\$ 79.19$	$\$ 59.43$	$\$ 37.52$	$\$ 34.56$	$\$ 28.93$	$5-6$	CWT
$\mathrm{SEP}-0 \mathrm{CT} / 7$	438	$\$ 92.38$	$\$ 52.96$	$\$ 36.87$	$\$ 38.84$	$\$ 25.60$	$4-5$	CWT
$\mathrm{NOV}-\mathrm{DEC} / 7.5$	453	$\$ 83.52$	$\$ 58.48$	$\$ 36.62$	$\$ 34.48$	$\$ 26.64$	$4-5$	CWT

TABLE $16 .--C o n t i n u e d$. Cattle prices used in beff covherd cost-return budgets

CULL COW PRICES

Calving	Sale   Date	1984	1983	1982	1981	1980
Season						
Spring	Nov 1	$\$ 36.73$	$\$ 35.21$	$\$ 36.82$	$\$ 39.25$	$\$ 45.73$
SEP-OCT	Jul 1	$\$ 41.78$	$\$ 42.28$	$\$ 43.07$	$\$ 45.88$	$\$ 44.98$
NOV-DEC	Sep 1	$\$ 38.51$	$\$ 38.53$	$\$ 41.13$	$\$ 44.28$	$\$ 48.89$
SEP-OCT	May 1	$\$ 44.64$	$\$ 43.18$	$\$ 44.95$	$\$ 44.88$	$\$ 44.09$
NOV-DEC	Jul 15	$\$ 39.65$	$\$ 41.32$	$\$ 42.80$	$\$ 45.20$	$\$ 43.27$


		1979	1978	1977	1976	1975
Spring	Nov 1	$\$ 47.12$	$\$ 40.24$	$\$ 24.29$	$\$ 21.30$	$\$ 21.44$
SEP-OCT	Jul 1	$\$ 53.10$	$\$ 39.05$	$\$ 26.99$	$\$ 28.01$	$\$ 23.08$
NOV-DEC	Sep 1	$\$ 49.74$	$\$ 39.13$	$\$ 26.34$	$\$ 23.84$	$\$ 22.17$
SEP-OCT	May 1	$\$ 58.76$	$\$ 39.19$	$\$ 28.35$	$\$ 31.69$	$\$ 23.03$
HOV-DEC	Jul 15	$\$ 50.12$	$\$ 38.91$	$\$ 26.19$	$\$ 26.87$	$\$ 21.69$

* It should be noted that weaning dates for the $F B B-M A R$ and APR-MAY calving perioda vere November 1. The weaning dates for SEP-OCT at 7 and 9 month weaning were May 1 and July 1 respectively and for the $N O \nabla-D E C$ calving seasons, the veaning dates for 7.5 and 9 months were July 15 and September 1.

The tables of budget variables formed from the beef cowherd cost-return budgets used in this thesis are as follows:

TABLE 17, --Returns minus variable costs (Ret-VC) of various calving seasons

	SPRING		FALL		fall		FALL FESCOE	
Born	FEB-MAR	APR-MAY	SEP-OCT	NOV-DEC	SEP-OCT	NOV-DEC	SEP-OCT	NOV-DEC
Weaned:	nov 1	Nov 1	Jul 1	SEP 1	MAY 1	JUL 15	JUL 1	SEP
1975	(\$65.24)	(\$94.20)	(\$89.78)	(\$93.32	(\$70	(\$117.81)	(\$65.71)	(\$78.84)
1976	(\$65.74)	(\$85.78)	(\$64.23)	(\$74.26)	(\$70.10)	(\$86.01)	(\$43.88)	(\$64.19)
1977	(\$53.03)	(\$75.56)	(\$71.15)	(\$65.18)	(\$90.81)	(\$88.75)	(\$41.60)	(\$45.60)
1978	\$81.55	\$38.32	\$40.34	\$56.48	(\$6.70)	\$23.83	\$60.67	\$68.71
1979	\$138.73	\$80.93	\$144.73	\$138.79	\$144.17	\$111.97	\$164.74	\$152.04
1980	\$81.96	\$27.65	\$54.83	\$69.69	\$5.78	\$8.98	\$73.81	\$79.63
1981	\$3.30	(\$39.56)	\$5.24	(\$1.94)	(\$31.84)	(\$34.94)	\$22.37	\$5.41
1982	(\$9.51)	(\$53.34)	(\$17.76)	(\$10.62)	(\$54.41)	(\$48.41)	(\$1.43)	(\$6.08)
1983	(\$19.64)	(\$59.09)	(\$16.17)	(\$57.57)	(\$37.78)	(\$55.23)	(\$1.38)	(\$53.05)
1984	(\$24.40)	(\$65.73)	(\$47.50)	(\$57.65)	(\$78.85)	(\$84.91)	(\$13.05)	(\$36.79)
Average	\$6.80	(\$32.64)	(\$6.15)	(\$9.56)	(\$34.66)	(\$37.13)	\$15.45	\$2.12
STDEV	\$70.41	\$59.90	\$70.96	\$75.73	\$74.18	\$68.62	\$68.74	\$75.12
+STDEV	\$77.21	\$27.27	\$64.81	\$66.18	\$39.52	\$31.49	\$84.20	\$77.24
-STDEV	(\$63.62)	(\$92.54)	(\$77.10)	(\$85.29)	(\$108.85)	(\$105.75)	(\$53.29)	(\$72.99)

Differences in RET-VC for PEB-MAR vs. Other calving seasons with various sized cowherds

Born :   Weaned:	SPRING	FALL		FALL		FALL FESCOE	
	APR-MAY	SEP-OCT	NOV-DEC	SEP-OCT	NOV-DEC	SEP-OCT	nov-dec
	NOV 1	JUL 1	SEP I	MAY I	JUL 15	JUL 1	SEP I
RET-VC vs. FEB-MAR							
per cow	(\$39.43)	(\$12.94)	(\$16.36)	(\$41.46)	(\$43.93)	\$8.66	(\$4.67)
50 covs	(\$1,972)	(\$647)	(\$818)	(\$2,073)	$(\$ 2,196)$	\$433	(\$234)
100 cows	$(\$ 3,943)$	$(\$ 1,294)$	(\$1,636)	$(\$ 4,146)$	$(\$ 4,393)$	\$866	(\$467)
200 cows	$(\$ 7,887)$	$(\$ 2,589)$	(\$3,271)	$(\$ 8,292)$	$(\$ 8,785)$	\$1,731	(\$935)
500 cows	$(\$ 19,717)$	$(\$ 6,472)$	$(\$ 8,178)$	\$20,731)	$(\$ 21,963)$	\$4,328	$(\$ 2,337)$
200 covs							
for ten yrs.	$(\$ 78,868)$	(\$25,886)	(\$32,712)	(\$82,924)	$(\$ 87,852)$	\$17,312	$(\$ 9,348)$

TABLE 18, --Returns minus total costs (Ret-TC) of various calving seasons

	SPRING		FALL		FALL		FALL FESCUE	
Born	FEB-MAR	APR-MAY	SEP-0CT	NOV-DEC	SEP-OCT	NOV-DEC	SEP-0CT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15	JUL 1	SEP
1975	(\$192.04) (\$221.00) (\$216.57) (\$220.11) (\$252.89) (\$244.60) (\$192.51) (\$205.64)							
1976	(\$192.85) (\$212.89) (\$191.34) (\$201.37) (\$197.21) (\$213.12) (\$170.98) (\$191.30)							
1977	(\$182.55) (\$205.09) (\$200.67) (\$194.70) (\$220.33) (\$218.27) (\$171.12) (\$175.12)							
1978	(\$52.64)	(\$95.87)	(\$93.85)	(\$77.71)	(\$140.89)	(\$110.36)	(\$73.52)	(\$65.48)
1979	(\$8.66)	(\$66.46)	(\$2.66)	(\$8.60)	(\$3.22)	(\$35.42)	\$17.36	\$4.65
1980	(\$86.48) (\$140.79) (\$113.62) (\$98.75) (\$162.67) (\$159.47) (\$94.63) (\$88.82)							
1981	$(\$ 175.27)(\$ 218.13)(\$ 173.33)(\$ 180.51)(\$ 210.41)(\$ 213.51)(\$ 156.20)(\$ 173.16)$							
1982	(\$193.82) (\$237.65) (\$202.07) (\$194.92) (\$238.72) (\$232.72) (\$185.74) (\$190.38)							
1983	$(\$ 189.79)(\$ 229.24)(\$ 186.32)(\$ 227.72)(\$ 207.93)(\$ 225.38)(\$ 171.53)(\$ 223.20)$$(\$ 191.42)(\$ 232.76)(\$ 214.52)(\$ 224.67)(\$ 245.88)(\$ 251.93)(\$ 180.08)(\$ 203.81)$							
1984								
AVERAGE	$(\$ 146.55)(\$ 185.99)(\$ 159.50)(\$ 162.91)(\$ 188.02)(\$ 190.48)(\$ 137.90)(\$ 151.23)$							
STDEV	\$69.84	\$61.94	\$68.90	\$74.76	\$73.91	\$69.08	\$67.36	\$75.01
+STDEV	(\$76.72)	(\$124.05)	(\$90.59)	(\$88.15)	\$114.10)	(\$121.40)	(\$70.53)	(\$76.21)
STDEV	(\$216.39)	$247.93)$	\$228.40)	\$237.66)	261.93	259.56	\$205. 26	\$226.24)

TABLE 19.--Cow unit feed costs (CPC) of various calving seasons

	SPRING		fall		FALL		Fall fescoe	
Born	FEB-MAR	APR-MAY	SEP-0CT	NOV-DEC	SEP-0CT	NOV-DEC	SEP-0CT	Nov-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15	JUL 1	SEP
1975	\$140.69	\$125.59	\$162.85	\$156.39	\$162.85	\$156.39	\$140.11	\$142.71
1976	\$143.67	\$128.60	\$166.17	\$159.01	\$166.17	\$159.01	\$146.93	\$149.49
1977	\$148.22	\$131.36	\$171.92	\$165.39	\$171.92	\$165.39	\$143.99	\$146.88
1978	\$142.66	\$128.48	\$164.66	\$159.40	\$164.66	\$159.40	\$145.44	\$147.85
1979	\$155.07	\$141.61	\$178.23	\$174.15	\$178.23	\$174.15	\$159.37	\$161.66
1980	\$163.81	\$147.91	\$188.90	\$183.14	\$188.90	\$183.14	\$171.19	\$173.87
1981	\$168.27	\$149.97	\$194.79	\$188.86	\$194.79	\$188.86	\$178.92	\$182.05
1982	\$171.83	\$153.04	\$198.92	\$191.13	\$198.92	\$191.13	\$183.82	\$186.93
1983	\$166.57	\$149.43	\$192.41	\$185.65	\$192.41	\$185.65	\$178.60	\$181.43
1984	\$181.72	\$159.53	\$211.27	\$202. 21	\$211.27	\$202. 21	\$179.16	\$182.76
average	\$158.25	\$141.55	\$183.01	\$176.53	\$183.01	\$176.53	\$162.75	\$165.56
STDEV	\$14.18	\$12.14	\$16.62	\$15.94	\$16.62	\$15.94	\$17.39	\$17.65
+STDEV	\$172.43	\$153.69	\$199.63	\$192.47	\$199.63	\$192.47	\$180.15	\$183.21
-STDEV	\$144.07	\$129.41	\$166.39	\$160.59	\$166.39	\$160.59	\$145.36	\$147.91
differences in								
cow unit		(\$16.70)	\$24.76	\$18.28	\$24.76	\$18.28	\$4.50	\$7.31

COW UNIT FEED COSTS AS A \% OF FEB-MAR

	SPRING		FALL		FALL		FALL FESCOE	
Born	FEB-MAR	APR-MAY	SEP-0CT	NOV-DEC	SEP-0CT	NOV-DEC	SEP-OCT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15	JUL 1	SEP 1
1975	100.00\%	89.27\%	115.75\%	111.16\%	115.75\%	$111.16 \%$	99.59\%	101.44\%
1976	100.00\%	$89.51 \%$	115.66\%	110.68\%	115.66\%	$110.68 \%$	102.27\%	104.05\%
1977	$100.00 \%$	88.63\%	115.99\%	$111.58 \%$	115.99\%	111.58\%	97.15\%	99.10\%
1978	100.00\%	90.06\%	$115.42 \%$	111.73\%	$115.42 \%$	111.73\%	101.95\%	103.64\%
1979	100.00\%	91.32\%	114.94\%	112.30\%	$114.94 \%$	112.30\%	102.77\%	104.25\%
1980	100.00\%	90.29\%	115.32\%	111.80\%	$115.32 \%$	$111.80 \%$	104.51\%	106.14\%
1981	100.00\%	$89.12 \%$	115.76\%	112.24\%	$115.76 \%$	$112.24 \%$	106.33\%	108.19\%
1982	100.00\%	$89.06 \%$	115.77\%	111.23\%	$115.77 \%$	$111.23 \%$	106.98\%	108.79\%
1983	100.00\%	$89.71 \%$	115.51\%	111.45\%	115.51\%	$111.45 \%$	107.22\%	108.92\%
1984	100.00\%	$87.79 \%$	$116.26 \%$	$111.28 \%$	116.26\%	$111.28 \%$	98.59\%	100.57\%
AVERAGE	100.00\%	$89.48 \%$	115.64\%	111.55\%	115.64\%	111.55\%	$102.74 \%$	104.51\%
STDEV	0.00\%	$0.96 \%$	0.37\%	0.50\%	0.37\%	0.50\%	$3.55 \%$	3.48\%
+STDEV	100.00\%	$90.44 \%$	116.01\%	112.04\%	116.01\%	112.04\%	106.28\%	107.99\%
-STDEV	100.00\%	88.517	115.27\%	111.05\%	115.27\%	111.05\%	99.19\%	101.02\%

TABLE 20.--Total cow unit revenue of various calving seasons

	SPRING		FALL		FALL	
Born	FEB-MAR	APR-MAY	SEP-OCT	NOV-DEC	SEP-0CT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15
1975	\$173.10	\$128.16	\$177.38	\$167.00	\$141.06	\$142.51
1976	\$177.36	\$141.35	\$208.51	\$190.91	\$202.65	\$179.16
1977	\$198.41	\$158.04	\$210.87	\$209.93	\$191.21	\$186.36
1978	\$325.62	\$267.39	\$313.83	\$324.42	\$266.80	\$291.77
1979	\$408.96	\$336.88	\$446.97	\$436.70	\$446.41	\$409.88
1980	\$375.22	\$303.86	\$382.92	\$391.61	\$333.87	\$330.90
1981	\$310.87	\$248.26	\$349.52	\$335.94	\$312.44	\$302.95
1982	\$307.55	\$243.41	\$336.75	\$335.47	\$300.10	\$297.67
1983	\$293.29	\$235.48	\$334.21	\$285.58	\$312.60	\$287.91
1984	\$313.81	\$248.68	\$331.42	\$311.55	\$300.07	\$284.29
AVERAGE	\$288.42	\$231.15	\$309.24	\$298.91	\$280.72	\$271.34
STDEV	\$80.77	\$68.77	\$85.06	\$87.09	\$86.19	\$80.01
+8TDEV	\$369.19	\$299.92	\$394.30	\$386.00	\$366.91	\$351.35
-STDEV	\$207.64	\$162.38	\$224.17	\$211.82	\$194.53	\$191.33
revenue	FEB-MA	(\$57.27)	\$20.82	\$10.49	(\$7.70)	(\$17.08)

tOTAL REVENUE AS A \% OF FEB-MAR
SPRING FALL FALL

| Born : | FEB-MAR <br> NOV 1 | APR-MAY <br> NOV I | SEP-OCT <br> JUL 1 | NOV-DEC | SEP 1 | SEP-OCT |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | NAY I | NOV-DEC |
| ---: | :--- |
| WUL |

TABLE 21.--Steer revenue of various calving seasons

	SPRIMG		FALL		FALL	
Born :	FEB-MAR	APR-MAY	SEP-0CT	NOV-DEC	SEP-OCT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15
1975	\$92.42	\$64.69	\$91.48	\$85.72	\$69.43	\$70.52
1976	\$93.78	\$71.32	\$105.24	\$98.18	\$99.33	\$87.97
1977	\$102.86	\$78.11	\$107.27	\$108.50	\$95.99	\$93.38
1978	\$167.63	\$129.36	\$162.04	\$168.03	\$132.55	\$148.10
1979	\$213.86	\$167.04	\$228.26	\$232.28	\$228.07	\$213.68
1980	\$194.61	\$147.85	\$198.90	\$202.65	\$172.78	\$166.93
1981	\$158.77	\$120.69	\$176.63	\$170.07	\$155.76	\$149.44
1982	\$158.52	\$119.93	\$172.60	\$171.84	\$148.14	\$147.94
1983	\$154.09	\$117.84	\$170.91	\$144.23	\$158.90	\$142.23
1984	\$164.12	\$123.64	\$171.74	\$159.68	\$148.48	\$143.31
AVERAGE	\$150.07	\$114.05	\$158.51	\$154.12	\$140.94	\$136.35
STDEV	\$41.42	\$33.21	\$43.87	\$46.24	\$44.96	\$42.11
+STDEV	\$191.49	\$147.25	\$202.38	\$200.36	\$185.90	\$178.46
-STDEV	\$108.64	\$80.84	\$114.64	\$107.88	\$95.98	\$94.24
REVENUE	FEB-MAR	(\$36.02)	\$8.44	\$4.05	(\$9.12)	(\$13.72)

STEER REVENUE AS A \% OF FEB-MAR
SPRING
Born Weaned: NOV 1 NOV 1 JUL 1 SEP 1 MAY 1 JUL 15

1975	$100.00 \%$	$70.00 \%$	$98.98 \%$	$92.75 \%$	$75.12 \%$	$76.30 \%$
1976	$100.00 \%$	$76.05 \%$	$112.22 \%$	$104.69 \%$	$105.92 \%$	$93.80 \%$
1977	$100.00 \%$	$75.94 \%$	$104.29 \%$	$105.48 \%$	$93.32 \%$	$90.78 \%$
1978	$100.00 \%$	$77.17 \%$	$96.67 \%$	$100.24 \%$	$79.07 \%$	$88.35 \%$
1979	$100.00 \%$	$78.11 \%$	$106.73 \%$	$108.61 \%$	$106.64 \%$	$99.92 \%$
1980	$100.00 \%$	$75.97 \%$	$102.20 \%$	$104.13 \%$	$88.78 \%$	$85.78 \%$
1981	$100.00 \%$	$76.02 \%$	$111.25 \%$	$107.12 \%$	$98.10 \%$	$94.12 \%$
1982	$100.00 \%$	$75.66 \%$	$108.88 \%$	$108.40 \%$	$93.45 \%$	$93.33 \%$
1983	$100.00 \%$	$76.47 \%$	$110.92 \%$	$93.60 \%$	$103.12 \%$	$92.30 \%$
1984	$100.00 \%$	$75.34 \%$	$104.64 \%$	$97.29 \%$	$90.47 \%$	$87.32 \%$
AVERAGE	$100.00 \%$	$75.67 \%$	$105.68 \%$	$102.23 \%$	$93.40 \%$	$90.20 \%$
STDEV	$0.00 \%$	$2.15 \%$	$5.31 \%$	$5.92 \%$	$10.64 \%$	$6.34 \%$
+STDEV	$100.00 \%$	$77.82 \%$	$110.99 \%$	$108.15 \%$	$104.04 \%$	$96.54 \%$
-STDEV	$100.00 \%$	$73.52 \%$	$100.37 \%$	$96.31 \%$	$82.77 \%$	$83.86 \%$

TABLE 22.--Heifer revenue of various calving seasons
"

SPRING

Born   Weaned:	FEB-MAR   NOV 1	APR-MAY   NOV 1	SEP-OCT   JUL 1	NOV-DEC   SEP 1	SEP-OCT   MAY 1	NOV-DEC   JUL 15
1975	$\$ 45.31$	$\$ 28.10$	$\$ 47.82$	$\$ 44.70$	$\$ 33.64$	$\$ 36.20$
1976	$\$ 48.44$	$\$ 34.88$	$\$ 57.06$	$\$ 53.40$	$\$ 51.04$	$\$ 46.86$
1977	$\$ 55.47$	$\$ 39.85$	$\$ 59.07$	$\$ 57.97$	$\$ 48.45$	$\$ 49.77$
1978	$\$ 91.59$	$\$ 71.64$	$\$ 87.36$	$\$ 91.82$	$\$ 69.59$	$\$ 79.47$
1979	$\$ 117.35$	$\$ 92.09$	$\$ 131.09$	$\$ 122.35$	$\$ 121.39$	$\$ 113.50$
1980	$\$ 105.16$	$\$ 80.55$	$\$ 109.81$	$\$ 108.29$	$\$ 88.34$	$\$ 92.58$
1981	$\$ 87.34$	$\$ 62.81$	$\$ 97.18$	$\$ 92.81$	$\$ 82.62$	$\$ 78.93$
1982	$\$ 88.28$	$\$ 62.73$	$\$ 93.08$	$\$ 95.76$	$\$ 77.79$	$\$ 79.11$
1983	$\$ 81.10$	$\$ 59.54$	$\$ 93.54$	$\$ 77.78$	$\$ 82.45$	$\$ 77.50$
1984	$\$ 89.09$	$\$ 64.43$	$\$ 90.74$	$\$ 88.33$	$\$ 77.93$	$\$ 75.56$
AVERAGE	$\$ 80.91$	$\$ 59.66$	$\$ 86.68$	$\$ 83.32$	$\$ 73.32$	$\$ 72.95$
STDEV	$\$ 23.95$	$\$ 20.21$	$\$ 25.54$	$\$ 24.83$	$\$ 24.61$	$\$ 22.95$
+STDEV	$\$ 104.86$	$\$ 79.87$	$\$ 112.22$	$\$ 108.15$	$\$ \$ 7.93$	$\$ 95.90$
-STDEV	$\$ 56.97$	$\$ 39.45$	$\$ 61.13$	$\$ 58.49$	$\$ 48.71$	$\$ 49.99$
REVENUE		FEB-MAR	$(\$ 21.25)$	$\$ 5.76$	$\$ 2.41$	$(\$ 7.59)$

GEIFER REVENUE AS A \% OF FEB-MAR

SPRING

Born	FEB-MAR	APR-MAY	SEP-OCT	NOV-DEC	SEP-OCT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	may 1	JU. 15
1975	100.00\%	62.02\%	105.547	$98.65 \%$	74.24\%	79.89\%
1976	100.00\%	72.01\%	117.80\%	110.24\%	105.37\%	$96.74 \%$
1977	100.00\%	71.842	106.49\%	104.51\%	$87.34 \%$	$89.72 \%$
1978	$100.00 \%$	78.22\%	95.38\%	100.25\%	75.987	$86.77 \%$
1979	100.00\%	78.47\%	$111.71 \%$	104.26\%	103.442	96.72\%
1980	100.00\%	$76.60 \%$	104.42\%	102.98\%	84.01\%	88.04\%
1981	100.00\%	71.91\%	111.27\%	$106.26 \%$	94.60\%	90.37\%
1982	100.00\%	71.06\%	105.44\%	108.47\%	$88.12 \%$	89.61\%
1983	100.00\%	73.42\%	115.34\%	95.91\%	$101.66 \%$	95.56\%
1984	100.00\%	72.32\%	101.85\%	99.15\%	87.47\%	84.81\%
average	100.00\%	72.79\%	$107.52 \%$	103.07\%	90.22\%	89.82\%
STDEV	0.00\%	4.69\%	6.64\%	4.58\%	10.91\%	5.42\%
+STDEV	100.00\%	77.48\%	114.16\%	107.64\%	101.13\%	95.25\%
-STDEV	100.00\%	68.09\%	100.88\%	98.49\%	79.31\%	84.40\%

TABLE 23.--Cull cow revenue of various calving seasons

SPRING
Born : FEB-MAR APR-MAY Weaned: NOV 1 NOV 1 $1975 \quad \$ 35.38 \quad \$ 35.38$ $1976 \quad \$ 35.15 \quad \$ 35.15$ 1977 \$40.08 \$40.08 1978 \$66.40 \$66.40 $1979 \quad \$ 77.75 \quad \$ 77.75$ $1980 \quad \$ 75.45 \quad \$ 75.45$
$1981 \quad \$ 64.76 \quad \$ 64.76$
$1982 \quad \$ 60.75 \quad \$ 60.75$
$1983 \quad \$ 58.10 \quad \$ 58.10$
$1984 \quad \$ 60.60 \quad \$ 60.60$

FALL
SEP-OCT NOV-DEC SEP-OCT NOV-DEC JUL 1 SEP 1
\$36.58
\$38.00 $\$ 35.79$
$\$ 38.08 \quad \$ 36.58$
$\$ 39.34 \quad \$ 52.29 \quad \$ 44.34$
$\$ 46.22 \quad \$ 39.34$
$\$ 44.53 \quad \$ 43.46$
$\$ 64.43 \quad \$ 64.56$
$\$ 87.62 \quad \$ 82.07$
$\$ 74.22 \quad \$ 80.67$
$\$ 75.70 \quad \$ 73.06$
$\$ 71.07 \quad \$ 67.86$
$\$ 69.76 \quad \$ 63.57$
$\$ 68.94 \quad \$ 63.54$
$\$ 46.78 \quad \$ 43.21$
$\$ 64.66 \quad \$ 64.20$
$\$ 96.95 \quad \$ 82.70$
$\$ 72.75 \quad \$ 71.40$
$\$ 74.05 \quad \$ 74.58$
$\$ 74.17 \quad \$ 70.62$
$\$ 71.25 \quad \$ 68.18$
$\$ 73.66 \quad \$ 65.42$

FALL MAY 1 JUL 15
$\$ 64.06 \quad \$ 61.47 \quad \$ 66.46 \quad \$ 62.04$
$\$ 15.90 \quad \$ 16.40 \quad \$ 16.87 \quad \$ 15.48$
$\$ 79.95 \quad \$ 77.87 \quad \$ 83.33 \quad \$ 77.52$
$\$ 48.16 \quad \$ 45.07$
$\$ 49.58 \quad \$ 46.57$
$\begin{array}{llll}\$ 6.62 & \$ 4.03 & \$ 9.01\end{array}$
coll cow revenus as a $\%$ Of feb-mar
SPRING
fall
FALL

Born :   Weaned:	$\begin{gathered} \text { PRB-MAR } \\ \text { NOV I } \end{gathered}$	$\begin{array}{r} \text { APR-MAY } \\ \text { NOV I } \end{array}$	$\begin{gathered} \text { SBP-OCT } \\ \text { JUL I } \end{gathered}$	$\begin{array}{r} \text { NOV-DEC } \\ \text { SEP } 1 \end{array}$	$\begin{array}{r} \text { SEP-OCT } \\ \text { MAY I } \end{array}$	$\begin{array}{r} \text { NOV-DEC } \\ \text { JUL } 15 \end{array}$
1975	100.00\%	100.00\%	107.63\%	103.39\%	$107.41 \%$	101.16\%
1976	100.00\%	100.00\%	131.49\%	111.92\%	148.76\%	126.15\%
1977	100.00\%	100.00\%	111.10\%	108.43\%	116.727	107.817
1978	100.00\%	100.00\%	97.03\%	97.23\%	97.38\%	96.697
1979	100.00\%	100.00\%	112.69\%	105.56\%	124.69\%	106.37\%
1980	100.00\%	100.00\%	$98.37 \%$	106.92\%	96.42\%	94.63\%
1981	100.00\%	100.00\%	116.89\%	112.82\%	114.35\%	115.16\%
1982	100.00\%	100.00\%	116.99\%	111.70\%	$122.09 \%$	116.25\%
1983	100.00\%	100.00\%	120.07\%	109.41\%	122.63\%	$117.35 \%$
1984	100.00\%	100.00\%	113.76\%	104.85\%	121.55\%	107.95\%
AVERAGE	100.00\%	100.00\%	$112.60 \%$	107.22\%	117.20\%	108.95\%
STDEV	0.00\%	0.00\%	10.13\%	4.75\%	$15.11 \%$	9.91\%
+ STDEV	100.00\%	100.00\%	122.73\%	$111.97 \%$	132.317	118.86\%
-STDEV	100.00\%	100.00\%	102.47\%	102.48\%	102.09\%	99.05\%

TABLE 24.--Steer prices of various calving seasons

	SPRING		FALL		FALL	
Born	FEB-MAR	APR-MAY	SEP-OCT	NOV-DEC	SEP-OCT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	Jul 15
1975	\$37.34	\$35.67	\$35.17	\$34.89	\$33.25	\$32.58
1976	\$37.89	\$39.33	\$40.46	\$39.96	\$47.57	\$40.64
1977	\$41.56	\$43.07	\$41.24	\$44.16	\$45.97	\$43.14
1978	\$67.73	\$71.33	\$62.30	\$68.39	\$63.48	\$68.42
1979	\$86.41	\$92.11	\$87.76	\$94.54	\$109.23	\$98.72
1980	\$78.63	\$81.53	\$76.47	\$82.48	\$82.75	\$77.12
1981	\$64.15	\$66.55	\$67.91	\$69.22	\$74.60	\$69.04
1982	\$64.05	\$66.13	\$66.36	\$69.94	\$70.95	\$68.35
1983	\$62.26	\$64.98	\$65.71	\$58.70	\$76.10	\$65.71
1984	\$66.31	\$68.18	\$66.03	\$64.99	\$71.11	\$66.21
AVERAGE	\$60.63	\$62.89	\$60.94	\$62.73	\$67.50	\$62.99
StDEV	\$16.74	\$18.31	\$16.87	\$18.82	\$21.53	\$19.46
+STDEV	\$77.37	\$81.20	\$77.81	\$81.55	\$89.03	\$82.45
-STDEV	\$43.90	\$44.58	\$44.07	\$43.91	\$45.97	\$43.54
PRICE vE	-MAR	\$2.25	\$0.31	\$2.09	\$6.87	\$2.36

STEER PRICE AS A Z OF FEB-MAR
SPRING FALL
FALL

Born :   Weaned:	$\begin{gathered} \text { FEB-MAR } \\ \text { NOV } 1 \end{gathered}$	$\begin{gathered} \text { APR-MAY } \\ \text { NOV } 1 \end{gathered}$	$\begin{array}{r} \text { SEP-OCT } \\ \text { JUL } 1 \end{array}$	$\begin{array}{r} \text { NOV-DEC } \\ \text { SEP } 1 \end{array}$	SEP-OCT MAY 1	$\begin{gathered} \text { NOV-DEC } \\ \text { JUL } 15 \end{gathered}$
1975	100.00\%	95.537	94.19\%	93.44\%	$89.05 \%$	$87.25 \%$
1976	100.00\%	103.80\%	106.78\%	$105.46 \%$	125.55\%	107.26\%
1977	100.00\%	103.63\%	99.23\%	106.26\%	110.61\%	103.80\%
1978	100.00\%	105.32\%	91.987	100.972	$93.73 \%$	101.02\%
1979	100.00\%	106.60\%	101.567	$109.41 \%$	126.41\%	$114.25 \%$
1980	100.00\%	103.69\%	$97.25 \%$	104.90\%	105.24\%	98.08\%
1981	100.00\%	$103.74 \%$	105.86\%	107.90\%	116.29\%	107.62\%
1982	100.00\%	103.25\%	103.617	$109.20 \%$	110.77\%	106.717
1983	100.00\%	104.37\%	105.54\%	94.28\%	122.237	105.547
1984	100.00\%	102.82\%	$99.58 \%$	$98.01 \%$	107.24\%	$99.85 \%$
AVERAGE	100.00\%	103.27\%	100.567	102.98\%	$110.71 \%$	$103.14 \%$
STDEV	$0.00 \%$	2.937	5.05\%	5.96\%	12.617	7.25\%
+STDEV	100.00\%	106.21\%	105.617	108.95\%	123.32\%	110.39\%
-STDEV	100.00\%	$100.34 \%$	$95.51 \%$	$97.02 \%$	$98.10 \%$	$95.89 \%$

TABLE 25.--Average calf breakeven prices (variable costs)

	SPRING		FALL		FALL		FALL FESCUE	
Born	FEB-MAR	APR-MAY	SEP-OCT	NOV-DEC	SEP-OCT	NOV-DEC	SEP-OCT	NOV-DEC
Weaned:	nov 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15	Jul 1	SEP 1
1975	\$42.11	\$53.07	\$45.33	\$46.86	\$56.46	\$53.42	\$40.57	\$43.83
1976	\$43.15	\$54.49	\$44.83	\$47.30	\$54.31	\$52.54	\$40.80	\$45.19
1977	\$43.85	\$54.92	\$46.99	\$48.52	\$57.95	\$55.17	\$41.15	\$44.42
1978	\$36.87	\$46.17	\$41.37	\$42.60	\$51.45	\$48.47	\$37.35	\$40.03
1979	\$39.94	\$50.58	\$42.47	\$45.21	\$50.58	\$51.21	\$38.51	\$42.43
1980	\$45.19	\$56.98	\$50.24	\$50.53	\$62.91	\$59.61	\$46.48	\$48.45
1981	\$50.38	\$63.31	\$53.15	\$55.47	\$66.57	\$62.65	\$49.76	\$53.93
1982	\$53.18	\$66.98	\$56.09	\$58.27	\$69.07	\$65.54	\$52.86	\$57.32
1983	\$52.88	\$67.11	\$55.53	\$58.55	\$68.77	\$65.42	\$52.60	\$57.61
1984	\$57.60	\$72.03	\$61.34	\$64.02	\$75.21	\$72.28	\$54.52	\$59.65
AVERAGE	\$46.52	\$58.56	\$49.73	\$51.73	\$61.33	\$58.63	\$45.46	\$49.29
STDEV	\$6.65	\$8.35	\$6.62	\$6.95	\$8.40	\$7.69	\$6.55	\$7.20
+STDEV	\$53.17	\$66.91	\$56.35	\$58.69	\$69.73	\$66.32	\$52.01	\$56.48
-STDEV	\$39.86	\$50.21	\$43.11	\$44.78	\$52.93	\$50.94	\$38.91	\$42.09
BE(VC) vs.	FEB-MAR	\$12.05	\$3.22	\$5.22	\$14.81	\$12.12	(\$1.05)	\$2.77

CALF BREAKEVENS (vC) AS A \% OF fEB-MAR

SPRING
FALL
Born : FEB-MAR APR-MAY Weaned:
1975
1976
1977
1979
1980
1981
1982
1983

|  |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| AVERAGE | $100.00 \%$ | $125.91 \%$ | $107.09 \%$ | $111.36 \%$ | $132.01 \%$ | $126.28 \%$ | $97.76 \%$ | $105.95 \%$ |
| STDEV | $0.00 \%$ | $0.62 \%$ | $2.66 \%$ | $1.82 \%$ | $4.59 \%$ | $3.39 \%$ | $3.06 \%$ | $2.4 \% \%$ |
| +STDEV | $100.00 \%$ | $126.53 \%$ | $109.75 \%$ | $113.18 \%$ | $136.61 \%$ | $129.67 \%$ | $100.82 \%$ | $108.41 \%$ |
| -STDEV | $100.00 \%$ | $125.29 \%$ | $104.43 \%$ | $109.54 \%$ | $127.42 \%$ | $122.89 \%$ | $94.70 \%$ | $103.49 \%$ |

fall fescue
SEP-OCT NOV-DEC JUL 1 SEP 1
96.34\% 104.08\%
94.55\% 104.73\%
$93.84 \%$ 101.30\%
101.30\% 108.57\%
$96.42 \% \quad 106.23 \%$
$102.85 \% 107.21 \%$
$98.77 \%$ 107.05\%
99.40\% 107.78\%
$99.47 \% 108.94 \%$
94.65\% 103.56\%
05.95\%
$2.46 \%$
$103.49 \%$

TABLE 26.--Average calf breakeven prices (total costs)

FEB-MAR APR-MAY SEP-0CT NOV-DEC SEP-OCT NOV-DEC

1975	$\$ 68.42$	$\$ 89.05$	$\$ 70.42$	$\$ 73.42$


1976	$\$ 69.52$	$\$ 90.56$	$\$ 69.98$
1977	$\$ 70.73$	$\$ 91.68$	$\$ 72.62$


1978	$\$ 64.71$	$\$ 84.25$	$\$ 67.92$
1979	$\$ 70.52$	$\$ 92.40$	$\$ 71.64$


1980	$\$ 80.14$	$\$ 104.78$	$\$ 83.57$
1981	$\$ 87.43$	$\$ 113.99$	$\$ 88.48$

$1982 \quad \$ 91.43 \quad \$ 119.29$
$1983 \quad \$ 88.18 \quad \$ 115.40$ $1984 \quad \$ 92.26 \quad \$ 119.44$

SPRING FALL
Born Weaned: NOV 1 NOV I JUL 1 SEP 1 MAY 1 JUL 15

FALL
$\$ 73.92$
$\$ 75.65$
$\$ 70.70$
$\$ 76.08$
$\$ 85.81$
$\$ 92.56 \quad \$ 96.87$
$\$ 89.20 \quad \$ 94.19$
$\$ 94.39 \quad \$ 99.00$

FALL PESCUE
SEP-OCT NOV-DEC JUL 1 SEP 1

$\$ 87.70$	$\$ 83.59$	$\$ 65.66$	$\$ 70.39$
$\$ 85.63$	$\$ 82.78$	$\$ 65.95$	$\$ 71.81$
$\$ 89.86$	$\$ 85.99$	$\$ 66.78$	$\$ 71.54$
$\$ 84.51$	$\$ 80.40$	$\$ 63.90$	$\$ 68.14$
$\$ 86.89$	$\$ 86.27$	$\$ 67.68$	$\$ 73.30$
$\$ 104.41$	$\$ 99.68$	$\$ 79.81$	$\$ 83.73$
$\$ 110.57$	$\$ 105.13$	$\$ 85.09$	$\$ 91.33$
$\$ 114.47$	$\$ 109.39$	$\$ 89.33$	$\$ 95.92$
$\$ 110.69$	$\$ 105.90$	$\$ 86.27$	$\$ 93.25$
$\$ 116.36$	$\$ 112.02$	$\$ 87.58$	$\$ 94.63$

$\$ 80.08 \quad \$ 83.85 \quad \$ 99.11$
$\$ 10.52 \quad \$ 11.05 \quad \$ 13.28$
$\begin{array}{rrrrrr}\$ 90.60 & \$ 94.90 & \$ 112.39 & \$ 107.54 & \$ 86.46 & \$ 92.86 \\ \$ 69.56 & \$ 72.80 & \$ 85.83 & \$ 82.69 & \$ 65.15 & \$ 69.94\end{array}$
$\$ 1.74 \quad \$ 5.52 \quad \$ 20.77$
$\$ 16.78$
(\$2.53)
\$81. 40
$\$ 11.46$
$\$ 3.07$

CALF BREAREVENS (TC) AS A \% OF FEB-MAR
SPRING
Born

1975	$100.00 \%$
1976	$100.00 \%$
1977	$100.00 \%$
1978	$100.00 \%$
1979	$100.00 \%$
1980	$100.00 \%$
1981	$100.00 \%$
1982	$100.00 \%$
1983	$100.00 \%$
1984	$100.00 \%$

130.15\%
$130.26 \%$
129.62\%
130.20\%
$131.03 \%$
130.75\%
130.38\%
$130.47 \%$
$130.87 \%$ 101.16\% $106.82 \%$
$129.46 \%$ 102.31\% $107.31 \%$

AVERAGE	$100.00 \%$	$130.32 \%$	$102.30 \%$	$107.11 \%$	$126.58 \%$	$121.52 \%$
STDEV	$0.00 \%$	$0.50 \%$	$1.43 \%$	$0.95 \%$	$2.56 \%$	$1.82 \%$
+SIDEV	$100.00 \%$	$130.82 \%$	$103.73 \%$	$108.06 \%$	$129.14 \%$	$123.34 \%$
-STDEV	$100.00 \%$	$129.81 \%$	$100.87 \%$	$106.16 \%$	$124.02 \%$	$119.70 \%$

FALL fescue
SEP-0CT NOV-DEC JUL 1 SEP I
95.97\% 102.88\%
94.86\% 103.29\%
$94.42 \%$ 101.15\%
98.75\% 105.30\%
95.97\% 103.94\%
99.59\% 104.48\%
$97.32 \%$ 104.46\%
$97.70 \%$ 104.917
$97.83 \%$ 105.75\%
$94.93 \%$ 102.57\%
$96.73 \% \quad 103.87 \%$
$1.41 \%$
$98.50 \% 105.28 \%$
$94.97 \%$ 102.47\%

TABLE 27.-Average beef cowherd investment


## SPRING <br> FALL <br> FALL FESCUE

Born : FEB-MAR APR-MAY SEP-OCT NOV-DEC SEP-OCT NOV-DEC

1975	$\$ 3,228$	$\$ 3,220$	$\$ 3,512$	$\$ 3,509$	$\$ 3,301$	$\$ 3,302$
1976	$\$ 3,475$	$\$ 3,468$	$\$ 3,788$	$\$ 3,785$	$\$ 3,499$	$\$ 3,500$
1977	$\$ 3,714$	$\$ 3,706$	$\$ 4,053$	$\$ 4,050$	$\$ 3,732$	$\$ 3,733$
1978	$\$ 3,899$	$\$ 3,892$	$\$ 4,256$	$\$ 4,253$	$\$ 3,938$	$\$ 3,939$
1979	$\$ 4,437$	$\$ 4,431$	$\$ 4,852$	$\$ 4,850$	$\$ 4,445$	$\$ 4,447$
1980	$\$ 4,930$	$\$ 4,922$	$\$ 5,396$	$\$ 5,393$	$\$ 4,993$	$\$ 4,994$
1981	$\$ 5,176$	$\$ 5,167$	$\$ 5,671$	$\$ 5,668$	$\$ 5,208$	$\$ 5,209$
1982	$\$ 4,738$	$\$ 4,728$	$\$ 5,182$	$\$ 5,178$	$\$ 4,875$	$\$ 4,877$
1983	$\$ 4,464$	$\$ 4,455$	$\$ 4,880$	$\$ 4,876$	$\$ 4,574$	$\$ 4,575$
1984	$\$ 4,247$	$\$ 4,236$	$\$ 4,639$	$\$ 4,634$	$\$ 4,357$	$\$ 4,359$
AVERAGE	$\$ 4,231$	$\$ 4,223$	$\$ 4,623$	$\$ 4,620$	$\$ 4,292$	$\$ 4,294$
STDEV	$\$ 640$	$\$ 640$	$\$ 709$	$\$ 708$	$\$ 652$	$\$ 652$
+STDEV	$\$ 4,871$	$\$ 4,862$	$\$ 5,331$	$\$ 5,328$	$\$ 4,944$	$\$ 4,946$
-STDEV	$\$ 3,590$	$\$ 3,583$	$\$ 3,914$	$\$ 3,911$	$\$ 3,640$	$\$ 3,641$
INV. vs. FEB-MAR	$(\$ 8)$	$\$ 392$	$\$ 389$	$\$ 61$	$\$ 63$	

INVESTMENT AS A Z OF FEB-MAR
SPRING
FALL
FALL FESCDE
Born : FEB-MAR APR-MAY SEP-OCT NOV-DEC SEP-OCT NOV-DEC

1975	$100.00 \%$	$99.75 \%$	$108.80 \%$	$108.71 \%$	$102.26 \%$	$102.29 \%$
1976	$100.00 \%$	$99.80 \%$	$109.01 \%$	$108.92 \%$	$100.69 \%$	$100.72 \%$
1977	$100.00 \%$	$99.78 \%$	$109.13 \%$	$109.05 \%$	$100.48 \%$	$100.51 \%$
1978	$100.00 \%$	$99.82 \%$	$109.16 \%$	$109.08 \%$	$101.00 \%$	$101.03 \%$
1979	$100.00 \%$	$99.86 \%$	$109.35 \%$	$109.31 \%$	$100.18 \%$	$100.23 \%$
1980	$100.00 \%$	$99.84 \%$	$109.45 \%$	$109.39 \%$	$101.28 \%$	$101.30 \%$
1981	$100.00 \%$	$99.83 \%$	$109.56 \%$	$109.51 \%$	$100.62 \%$	$100.64 \%$
1982	$100.00 \%$	$99.79 \%$	$109.37 \%$	$109.29 \%$	$102.89 \%$	$102.93 \%$
1983	$100.00 \%$	$99.80 \%$	$109.32 \%$	$109.23 \%$	$102.46 \%$	$102.49 \%$
1984	$100.00 \%$	$99.74 \%$	$109.23 \%$	$109.11 \%$	$102.59 \%$	$102.64 \%$
AVERAGE	$100.00 \%$	$99.80 \%$	$109.24 \%$	$109.16 \%$	$101.45 \%$	$101.48 \%$
STDEV	$0.00 \%$	$0.04 \%$	$0.22 \%$	$0.24 \%$	$1.01 \%$	$1.01 \%$
+STDEV	$100.00 \%$	$99.84 \%$	$109.46 \%$	$109.39 \%$	$102.45 \%$	$102.49 \%$
-STDEV	$100.00 \%$	$99.76 \%$	$109.01 \%$	$108.92 \%$	$100.44 \%$	$100.47 \%$

TABLE 28.--Gross asset turnover (TR/Investment)

	SPRING		FALL		FALL		FALL FESCUE	
Born	FEB-MAR	APR-MAY	SEP-OCT	NOT-DEC	SEP-0CT	NOV-DEC	SEP-0CT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15	JUL 1	SEP 1
1975	$7.41 \%$	6.03\%	6.93\%	6.64\%	5.89\%	5.94\%	7.37\%	7.05\%
1976	7.00\%	5.98\%	7.25\%	6.79\%	7.09\%	6.48\%	7.85\%	7.34\%
1977	7.12\%	$6.05 \%$	6.837	6.82\%	6.35\%	6.23\%	7.42\%	7.40\%
1978	10.08\%	8.61\%	8.96\%	9.22\%	7.86\%	8.45\%	9.69\%	9.95\%
1979	10.92\%	9.312	10.77\%	10.56\%	10.76\%	10.012	11.75\%	11.52\%
1980	9.46\%	8.02\%	8.78\%	8.95\%	7.87\%	7.82\%	9.49\%	9.66\%
1981	$7.94 \%$	6.75\%	$7.93 \%$	7.70\%	7.282	$7.12 \%$	8.647	$8.38 \%$
1982	8.76\%	7.42\%	$8.57 \%$	8.56\%	$7.87 \%$	7.83\%	9.117	9.09\%
1983	8.737	$7.45 \%$	8.837	$7.83 \%$	$8.38 z$	7.882	$9.42 \%$	8.357
1984	9.60\%	8.09\%	9.17\%	8.75\%	8.50\%	8.17\%	9.77\%	9.137
AVERAGE	$8.70 \%$	$7.37 \%$	8.40\%	8.187	7.797	7.59\%	9.05\%	8.79\%
STDEV	1.337	1.16\%	1.20\%	1.26\%	$1.34 \%$	$1.21 \%$	1.32\%	1.38\%
+SIDEV	10.03\%	8.537	9.61\%	9.44\%	9.12\%	8.80\%	10.37\%	10.17\%
-STDEV	7.37\%	6.21\%	7.20\%	6.92\%	6.45\%	6.38\%	7.73\%	7.41\%
GROSS TURNOVER								
vs FEB-	ar	-1.33\%	-0.30\%	-0.52\%	-0.92\%	-1.11\%	0.35\%	0.09\%

ASSET TURNOVER
TOTAL REVENUE/INVESTMENT AS A \% OF FEB-MAR

SPRING FALL
Born : Weaned:

1975	$100.00 \%$	$81.38 \%$	$93.52 \%$	$89.61 \%$	$79.49 \%$	$80.16 \%$	$99.46 \%$	$95.14 \%$
1976	$100.00 \%$	$85.43 \%$	$103.57 \%$	$97.00 \%$	$101.29 \%$	$92.57 \%$	$112.14 \%$	$104.86 \%$
1977	$100.00 \%$	$84.97 \%$	$95.93 \%$	$95.79 \%$	$89.19 \%$	$87.50 \%$	$104.21 \%$	$103.93 \%$
1978	$100.00 \%$	$85.42 \%$	$88.89 \%$	$91.47 \%$	$77.98 \%$	$83.83 \%$	$96.13 \%$	$98.71 \%$
1979	$100.00 \%$	$85.26 \%$	$98.63 \%$	$96.70 \%$	$98.53 \%$	$91.67 \%$	$107.60 \%$	$105.49 \%$
1980	$100.00 \%$	$84.78 \%$	$92.81 \%$	$94.61 \%$	$83.19 \%$	$82.66 \%$	$100.32 \%$	$102.11 \%$
1981	$100.00 \%$	$85.01 \%$	$99.87 \%$	$96.98 \%$	$91.69 \%$	$89.67 \%$	$108.82 \%$	$105.54 \%$
1982	$100.00 \%$	$84.70 \%$	$97.83 \%$	$97.72 \%$	$89.84 \%$	$89.38 \%$	$104.00 \%$	$109.77 \%$
1983	$100.00 \%$	$85.34 \%$	$101.15 \%$	$89.69 \%$	$95.99 \%$	$90.26 \%$	$107.90 \%$	$95.65 \%$
1984	$100.00 \%$	$84.27 \%$	$95.52 \%$	$91.15 \%$	$88.54 \%$	$85.10 \%$	$101.77 \%$	$95.10 \%$
AVERAGE	$100.00 \%$	$84.66 \%$	$96.77 \%$	$94.07 \%$	$89.57 \%$	$87.28 \%$	$104.24 \%$	$101.03 \%$
STDEV	$0.00 \%$	$1.21 \%$	$4.35 \%$	$3.25 \%$	$7.76 \%$	$4.15 \%$	$4.92 \%$	$4.42 \%$
+STDEV	$100.00 \%$	$85.86 \%$	$101.12 \%$	$97.32 \%$	$97.33 \%$	$91.43 \%$	$109.16 \%$	$105.46 \%$
-STDEV	$100.00 \%$	$83.45 \%$	$92.42 \%$	$90.82 \%$	$81.82 \%$	$83.13 \%$	$99.31 \%$	$96.61 \%$

TABLE 29.--Net asset turnover (Rev-TC/Investment)
м

SPRING FALL FALL
Born Weaned: FEB-MAR APRMAY SEP-0CT NOP 1 MAY 1 JUL 15 JUL 1 SEP Weaned: NOV 1 NOV 1 JUL 1 SEP 1 MAY 1 JUL 15 JUL 1 SEP 1

1975	$-3.91 \%$	$-4.81 \%$	$-4.29 \%$	$-4.39 \%$	$-5.32 \%$	$-5.09 \%$	$-3.83 \%$	$-4.23 \%$
1976	$-3.65 \%$	$-4.23 \%$	$-3.31 \%$	$-3.58 \%$	$-3.46 \%$	$-3.89 \%$	$-3.00 \%$	$-3.58 \%$
1977	$-3.13 \%$	$-3.75 \%$	$-3.32 \%$	$-3.17 \%$	$-3.80 \%$	$-3.76 \%$	$-2.81 \%$	$-2.92 \%$
1978	$0.38 \%$	$-0.73 \%$	$-0.62 \%$	$-0.24 \%$	$-1.72 \%$	$-1.01 \%$	$-0.15 \%$	$-0.05 \%$
1979	$1.50 \%$	$0.20 \%$	$1.50 \%$	$1.38 \%$	$1.49 \%$	$0.83 \%$	$2.09 \%$	$1.80 \%$
1980	$0.09 \%$	$-1.01 \%$	$-0.42 \%$	$-0.14 \%$	$-1.33 \%$	$-1.27 \%$	$-0.07 \%$	$-0.04 \%$
1981	$-1.45 \%$	$-2.28 \%$	$-1.29 \%$	$-1.41 \%$	$-1.94 \%$	$-2.00 \%$	$-1.07 \%$	$-1.40 \%$
1982	$-1.82 \%$	$-2.75 \%$	$-1.82 z$	$-1.69 \%$	$-2.53 \%$	$-2.42 \%$	$-1.60 \%$	$-1.70 \%$
1983	$-2.09 \%$	$-2.98 \%$	$-1.84 \%$	$-2.69 \%$	$-2.28 \%$	$-2.64 \%$	$-1.64 \%$	$-2.77 \%$
1984	$-2.29 \%$	$-3.27 \%$	$-2.60 \%$	$-2.82 \%$	$-3.27 \%$	$-3.41 \%$	$-1.97 \%$	$-2.52 \%$
RAGE	$-1.64 \%$	$-2.56 \%$	$-1.80 \%$	$-1.88 \%$	$-2.42 \%$	$-2.47 \%$	$-1.41 \%$	$-1.74 \%$
EV	$1.80 \%$	$1.61 \%$	$1.70 \%$	$1.79 \%$	$1.81 \%$	$1.70 \%$	$1.72 \%$	$1.86 \%$
DEV	$0.16 \%$	$-0.95 \%$	$-0.11 \%$	$-0.08 \%$	$-0.61 \%$	$-0.76 \%$	$0.31 z$	$0.12 \%$
DEV	$-3.43 \%$	$-4.17 \%$	$-3.50 \%$	$-3.67 \%$	$-4.22 \%$	$-4.17 \%$	$-3.12 \%$	$-3.60 \%$

NET TURNOVER
$\begin{array}{llllllll}\text { vs FEB-MAR } & -0.92 \% & -0.16 \% & -0.24 \% & -0.78 z & -0.83 z & 0.23 \% & -0.10 \%\end{array}$

TABLE 30.--Cow unit feed costs as a percent of total revenue (CFC/TR)


## SPRING

Born
FEB-MAR APR-MAY SEP-OCT NOV-DEC SEP-OCT NOV-DEC Weaned: NOV 1 NOV 1 JUL 1 SEP 1 MAY 1 JUL 15 JUL 1 SEP 1

1975	$81.28 \%$	$97.99 \%$	$91.81 \%$	$93.65 \%$	$115.45 \%$	$109.74 \%$	$78.99 \%$	$85.46 \%$
1976	$81.00 \%$	$90.98 \%$	$79.69 \%$	$83.29 \%$	$82.00 \%$	$88.75 \%$	$70.47 \%$	$78.30 \%$
1977	$74.70 \%$	$83.12 \%$	$81.53 \%$	$78.78 \%$	$89.91 \%$	$88.75 \%$	$68.28 \%$	$69.97 \%$
1978	$43.81 \%$	$48.05 \%$	$52.47 \%$	$49.13 \%$	$61.72 \%$	$54.63 \%$	$46.34 \%$	$45.57 \%$
1979	$37.92 \%$	$42.04 \%$	$39.88 \%$	$39.88 \%$	$39.93 \%$	$42.49 \%$	$35.66 \%$	$37.02 \%$
1980	$43.66 \%$	$48.68 \%$	$49.33 \%$	$46.77 \%$	$56.58 \%$	$55.35 \%$	$44.71 \%$	$44.40 \%$
1981	$54.13 \%$	$60.41 \%$	$55.73 \%$	$56.22 \%$	$62.34 z$	$62.34 \%$	$51.19 \%$	$54.17 \%$
1982	$55.87 \%$	$62.87 \%$	$59.07 \%$	$56.97 \%$	$66.28 \%$	$64.21 \%$	$54.59 \%$	$55.72 \%$
1983	$56.79 \%$	$63.46 \%$	$57.57 \%$	$65.01 \%$	$61.55 \%$	$64.48 \%$	$53.44 \%$	$63.53 \%$
1984	$57.91 \%$	$64.15 \%$	$63.75 \%$	$64.90 \%$	$70.41 \%$	$71.13 \%$	$54.06 \%$	$58.66 \%$
AVERAGB	$58.71 \%$	$66.17 \%$	$63.08 \%$	$63.46 \%$	$70.62 \%$	$70.19 \%$	$55.77 \%$	$59.28 \%$
STDEV	$15.55 \%$	$18.82 \%$	$16.27 \%$	$17.25 \%$	$20.81 \%$	$20.04 \%$	$13.16 \%$	$15.36 \%$
+STDEV	$74.26 \%$	$85.00 \%$	$79.35 \%$	$80.71 \%$	$91.43 \%$	$90.22 \%$	$68.93 \%$	$74.64 \%$
-STDEV	$43.16 \%$	$47.35 \%$	$46.81 \%$	$46.21 \%$	$49.80 \%$	$50.15 \%$	$42.61 \%$	$43.92 \%$

TABLE 31.--CFC/TR and profitability weasures sorted by Ret-VC

CALVING SEASON	$\begin{gathered} \text { COW FEED } \\ \text { COSTS / } \\ \text { TOTAL } \\ \text { REVENUE } \end{gathered}$	TOTAL RETURNS   - Var. costs	TOTAL RETURNS - TOTAL COSTS	$\begin{gathered} \text { BREAKEVEN } \\ \text { PRICES } \\ \text { VARIABLE } \\ \text { COSTS } \end{gathered}$	$N$ CALF OVER TOTAL cosTs	YEAR
F:S-0/J1	$35.66 \%$	\$164.74	\$17.36	\$38.51	\$67.68	1979
F:N-D/S1	$37.02 \%$	\$152.04	\$4.65	\$42.43	\$73.30	1979
S-0/J1	39.88\%	\$144.73	(\$2.66)	\$42.47	\$71.64	1979
S-0/M1	39.93\%	\$144.17	(\$3.22)	\$50.58	\$86.89	1979
$\mathrm{N}-\mathrm{D} / \mathrm{Sl}$	39.88\%	\$138.79	(\$8.60)	\$45.21	\$76.08	1979
F-M/N1	37.92\%	\$138.73	(\$8.66)	\$39.94	\$70.52	1979
N-D/J15	42.49\%	\$111.97	(\$35.42)	\$51.21	\$86.27	1979
$\mathrm{F}-\mathrm{M} / \mathrm{N} 1$	43.66\%	\$81.96	(\$86.48)	\$45.19	\$80.14	1980
$\mathrm{F}-\mathrm{M} / \mathrm{N} 1$	43.81\%	\$81.55	(\$52.64)	\$36.87	\$64.71	1978
A-M/N1	42.04\%	\$80.93	(\$66.46)	\$50.58	\$92.40	1979
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{S} 1$	44.40\%	\$79.63	(\$88.82)	\$48.45	\$83.73	1980
$\mathrm{F}: \mathrm{S}-0 / \mathrm{J} 1$	44.71\%	\$73.81	(\$94.63)	\$46.48	\$79.81	1980
$\mathrm{N}-\mathrm{D} / \mathrm{S} 1$	46.77\%	\$69.69	(\$98.75)	\$50.53	\$85.81	1980
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{S} 1$	45.57\%	\$68.71	(\$65.48)	\$40.03	\$68.14	1978
$\mathrm{F}: \mathrm{S}-0 / \mathrm{J} 1$	$46.34 \%$	\$60.67	(\$73.52)	\$37.35	\$63.90	1978
$\mathrm{N}-\mathrm{D} / \mathrm{S} 1$	$49.13 \%$	\$56.48	(\$77.71)	\$42.60	\$70.70	1978
$\mathrm{S}-0 / \mathrm{J} 1$	49.33\%	\$54.83	(\$113.62)	\$50.24	\$83.57	1980
$\mathrm{S}-0 / \mathrm{J} 1$	52.47\%	\$40.34	(\$93.85)	\$41.37	\$67.92	1978
A-M/N1	48.05\%	\$38.32	(\$95.87)	\$46.17	\$84.25	1978
A-M/N1	48.68\%	\$27.65	(\$140.79)	\$56.98	\$104.78	1980
N-D/J15	$54.63 \%$	\$23.83	(\$110.36)	\$48.47	\$80.40	1978
F:S-0/J1	51.19\%	\$22.37	(\$156.20)	\$49.76	\$85.09	1981
N-D/J15	55.35\%	\$8.98	(\$159.47)	\$59.61	\$99.68	1980
S-0/M1	56.58\%	\$5.78	(\$162.67)	\$62.91	\$104.41	1980
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{S} 1$	54.19\%	\$5.41	(\$173.16)	\$53.93	\$91.33	1981
$\mathrm{S}=0 / \mathrm{Jl}$	55.73\%	\$5.24	(\$173.33)	\$53.15	\$88.48	1981
$\mathrm{F}-\mathrm{M} / \mathrm{FL}$	54.13\%	\$3.30	(\$175.27)	\$50.38	\$87.43	1981
F:S-0/J1	$53.44 \%$	(\$1.38)	(\$171.53)	\$52.60	\$86. 27	1983
F:S-0/J1	$54.59 \%$	(\$1.43)	(\$185.74)	\$52.86	\$89.33	1982
$\mathrm{N}-\mathrm{D} / 81$	$56.22 \%$	(\$1.94)	(\$180.51)	\$55.47	\$92.87	1981
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{Sl}$	55.72\%	(\$6.08)	(\$190.38)	\$57.32	\$95.92	1982
S-0/M1	$61.72 \%$	(\$6.70)	(\$140.89)	\$51.45	\$84.51	1978
$\mathrm{F}-\mathrm{M} / \mathrm{N} 1$	55.87\%	(\$9.51)	(\$193.82)	\$53.18	\$91.43	1982
$\mathrm{N}-\mathrm{D} / \mathrm{S} 1$	$56.97 \%$	(\$10.62)	(\$194.92)	\$58.27	\$96.87	1982
$F: S-0 / \mathrm{J} 1$	54.06\%	(\$13.05)	(\$180.08)	\$54.52	\$87.58	1984
$\mathrm{S}-0 / \mathrm{J} 1$	57.57\%	(\$16.17)	(\$186.32)	\$55.53	\$89.20	1983
$\mathrm{S}-0 / \mathrm{J} 1$	59.07\%	(\$17.76)	(\$202.07)	\$56.09	\$92.56	1982
$\mathrm{F}-\mathrm{M} / \mathrm{N} 1$	56.79\%	(\$19.64)	(\$189.79)	\$52.88	\$88.18	1983
$\mathrm{F}-\mathrm{M} / \mathrm{N} 1$	$57.91 \%$	(\$24.40)	(\$191.42)	\$57.60	\$92.26	1984

Note: | $\mathrm{F}-\mathrm{M} / \mathrm{N} 1$ | $=$ Born FEB-MAR / Weaned Nov 1 |
| :--- | :--- |
| $\mathrm{~A}-\mathrm{M} / \mathrm{N} 1$ | $=$ Born APR-MAY / Weaned Nov 1 |
| $\mathrm{~S}-0 / \mathrm{J} 1$ | $=$ Born SEP-OCT / Weaned Jul 1 |
| $\mathrm{~S}-0 / \mathrm{M1}$ | $=$ Born SEP-0CT / Weaned May 1 |
| $\mathrm{~N}-\mathrm{D} / \mathrm{S} 1$ | $=$ Born NOV-DEC / Weaned Sep 1 |
| $\mathrm{~N}-\mathrm{D} / \mathrm{J} 15$ | $=$ Born NOV-DEC / Weaned Jul 15 |
| $\mathrm{~F}: \mathrm{S}-0 / \mathrm{J} 1$ | $=$ Born SEP-OCT / Weaned Jul 1 (FESCUE) |
| $\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{Sl}$ | $=$ Born NOV-DEC / Weaned Sep 1 (FESCUE) |

TABLE 31.--Continued. CFC/TR and profitability measures sorted by Ret-VC

$\begin{aligned} & \text { CALVING } \\ & \text { SEASOK } \end{aligned}$	COW FEED COSTS / TOTAL REvenue	TOTAL TOTAL   RETURNS RETURNS   - VAR. - TOTAL   COSTS COSTS	BREAKEVE PRICES VARTABLE COSTS	$\begin{aligned} & \text { N CALF } \\ & \text { OVER } \\ & \text { TOTAL } \\ & \text { COSTS } \end{aligned}$	YEAR
S-0/M1	$62.34 \%$	(\$31.84) (\$210.41)	\$66.57	\$110.57	1981
N-D/J15	$62.34 \pi$	(\$34.94) (\$213.51)	\$62.65	\$105.13	1981
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{Sl}$	58.66\%	(\$36.79) (\$203.81)	\$59.65	\$94.63	1984
S-0/M1	$61.55 \%$	(\$37.78) (\$207.93)	\$68.77	\$110.69	1983
$\mathrm{A}-\mathrm{M} / \mathrm{N} 1$	60.417	(\$39.56) (\$218.13)	\$63.31	\$113.99	1981
F:S-0/J1	$68.28 \%$	(\$41.60) (\$171.12)	\$41.15	\$66.78	1977
F: S-0/J1	70.47\%	(\$43.88) (\$170.98)	\$40.80	\$65.95	1976
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{Sl}$	$69.97 \%$	(\$45.60) (\$175.12)	\$44.42	\$71.54	1977
S-0/J1	63.75\%	(\$47.50) (\$214.52)	\$61.34	\$94.39	1984
N-D/J15	$64.21 \%$	(\$48.41) (\$232.72)	\$65.54	\$109.39	1982
$\mathrm{F}-\mathrm{M} / \mathrm{N} 1$	$74.70 \%$	(\$53.03) (\$182.55)	\$43.85	\$70.73	1977
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{Sl}$	$63.53 \%$	(\$53.05) (\$223.20)	\$57.61	\$93.25	1983
$\mathrm{A}-\mathrm{M} / \mathrm{N} 1$	$62.87 \%$	(\$53.34) (\$237.65)	\$66.98	\$119.29	1982
S-0/M1	66.28\%	(\$54.41) (\$238.72)	\$69.07	\$114.47	1982
N-D/J15	64.48\%	(\$55.23) (\$225.38)	\$65.42	\$105.90	1983
N-D/S1	65.01\%	(\$57.57) (\$227.72)	\$58.55	\$94.19	1983
$\mathrm{N}-\mathrm{D} / \mathrm{Sl}$	$64.90 \%$	(\$57.65) (\$224.67)	\$64.02	\$99.00	1984
A-M/N1	63.46\%	(\$59.09) (\$229.24)	\$67.11	\$115.40	1983
F:N-D/Sl	$78.30 \%$	(\$64.19) (\$191.30)	\$45.19	\$71.81	1976
S-0/J1	79.69\%	(\$64.23) (\$191.34)	\$44.83	\$69.98	1976
$\mathrm{N}-\mathrm{D} / \mathrm{Sl}$	78.78\%	(\$65.18) (\$194.70)	\$48.52	\$75.65	1977
$\mathrm{F}-\mathrm{M} / \mathrm{Nl}$	81.28\%	(\$65.24) (\$192.04)	\$42.11	\$68.42	1975
F : $\mathrm{S}-\mathrm{0} / \mathrm{Jl}$	78.99\%	(\$65.71) (\$192.51)	\$40.57	\$65.66	1975
$\mathrm{A}-\mathrm{M} / \mathrm{N} 1$	64.15\%	(\$65.73) (\$232.76)	\$72.03	\$119.44	1984
$\mathrm{F}-\mathrm{M} / \mathrm{NL}$	81.00\%	(\$65.74) (\$192.85)	\$43.15	\$69.52	1976
S-0/M1	$82.00 \%$	(\$70.10) (\$197.21)	\$54.31	\$85.63	1976
$\mathrm{s}-0 / \mathrm{Jl}$	$81.53 \%$	(\$71.15) (\$200.67)	\$46.99	\$72.62	1977
$\mathrm{N}-\mathrm{D} / \mathrm{S} 1$	$83.29 \%$	(\$74.26) (\$201.37)	\$47.30	\$73.92	1976
$\mathrm{A}-\mathrm{M} / \mathrm{Nl}$	$83.12 \%$	(\$75.56) (\$205.09)	\$54.92	\$91.68	1977
$\mathrm{F}: \mathrm{N}-\mathrm{D} / \mathrm{Sl}$	$85.46 \%$	(\$78.84) (\$205.64)	\$43.83	\$70.39	1975
S-0/M1	70.41\%	(\$78.85) (\$245.88)	\$75.21	\$116.36	1984
$\mathrm{N}-\mathrm{D} / \mathrm{J} 15$	$71.13 \%$	(\$84.91) (\$251.93)	\$72.28	\$112.02	1984
$\mathrm{A}-\mathrm{M} / \mathrm{NL}$	$90.98 \%$	(\$85.78) (\$212.89)	\$54.49	\$90.56	1976
N-D/J15	$88.75 \%$	(\$86.01) (\$213.12)	\$52.54	\$82.78	1976
N-D/J15	$88.75 \%$	(\$88.75) (\$218.27)	\$55.17	\$85.99	1977
S-0/J1	$91.81 \%$	(\$89.78) (\$216.57)	\$45.33	\$70.42	1975
S-0/M1	89.91\%	(\$90.81) (\$220.33)	\$57.95	\$89.86	1977
$\mathrm{N}-\mathrm{D} / \mathrm{Sl}$	93.65\%	(\$93.32) (\$220.11)	\$46.86	\$73.42	1975
A-M/N1	$97.99 \%$	(\$94.20) (\$221.00)	\$53.07	\$89.05	1975
N-D/J15	$109.74 \%$ (	(\$117.81) (\$244.60)	\$53.42	\$83.59	1975
S-0/M1	115.45\%	(\$126.10)(\$252.89)	\$56.46	\$87.70	1975

TABLE 32.--Average calf price per pound produced (AP/PP Cwt)*

	SPRING		FALL		FALL	
Born	FEB-MAR	APR-MAY	SEP-0CT	NOV-DEC	SEP-0CT	NOV-DEC
Weaned:	NOV 1	NOV 1	JUL 1	SEP 1	MAY 1	JUL 15
1975	\$28.57	\$26.36	\$27.58	\$27.34	\$25.38	\$25.41
1976	\$29.50	\$30.17	\$32.14	\$31.78	\$37.03	\$32.10
1977	\$32.85	\$33.51	\$32.94	\$34.90	\$35.57	\$34.08
1978	\$53.78	\$57.10	\$49.39	\$54.48	\$49.79	\$54.18
1979	\$68.72	\$73.62	\$71.16	\$74.35	\$86.07	\$77.90
1980	\$62.19	\$64.89	\$61.13	\$65.19	\$64.32	\$61.79
1981	\$51.06	\$52.13	\$54.22	\$55.11	\$58.72	\$54.37
1982	\$51.20	\$51.89	\$52.61	\$56.10	\$55.65	\$54.06
1983	\$48.79	\$50.39	\$52.37	\$46.54	\$59.45	\$52.32
1984	\$52.53	\$53.43	\$51.98	\$51.99	\$55.77	\$52.11

Average prices as a \% Feb-Mar
SPRING FALL FALL
APR-MAY SEP-OCT NOV-DEC SEP-OCT NOV-DEC NOV 1 JUL 1 SEP 1 MAY 1 JUL 15

1975	$92.25 \%$	$96.54 \%$	$95.69 \%$	$88.84 \%$	$88.93 \%$
1976	$102.26 \%$	$108.92 \%$	$107.70 \%$	$125.52 \%$	$108.80 \%$
1977	$102.02 \%$	$100.27 \%$	$106.24 \%$	$108.30 \%$	$103.76 \%$
1978	$106.17 \%$	$91.83 \%$	$101.30 \%$	$92.58 \%$	$100.75 \%$
1979	$107.13 \%$	$103.55 \%$	$108.19 \%$	$125.26 \%$	$113.37 \%$
1980	$104.34 \%$	$98.29 \%$	$104.81 \%$	$103.41 \%$	$99.35 \%$
1981	$102.10 \%$	$106.19 \%$	$107.93 \%$	$115.00 \%$	$106.49 \%$
1982	$101.35 \%$	$102.75 \%$	$109.57 \%$	$108.68 \%$	$105.58 \%$
1983	$103.27 \%$	$107.32 \%$	$95.39 \%$	$121.83 \%$	$107.22 \%$
1984	$101.71 \%$	$98.94 \%$	$98.97 \%$	$106.15 \%$	$99.20 \%$


AVERAGE	$102.26 \%$	$101.46 \%$	$103.58 \%$	$109.56 \%$	$103.34 \%$
STDEV	$4.03 \%$	$5.30 \%$	$5.35 \%$	$12.70 \%$	$6.73 \%$
+STDEV	$106.28 \%$	$106.77 \%$	$108.93 \%$	$122.25 \%$	$110.08 \%$
-STDEV	$98.23 \%$	$96.16 \%$	$98.23 \%$	$96.86 \%$	$96.61 \%$

[^17]TABLE 33.--Average calf prices needed to equal FEB-MAR calving period profitahility (PN)*

	SPRING	FALL		FALL		FALL FESCUE	
Born	APR-MAY	SEP-0CT	NOV-DEC	SEP-OCT	HOV-DEC	SEP-0CT	NOV-DEC
Weaned:	Nov 1	JUL 1	SEP 1	MAY 1	JUL 15	JUL 1	SEP 1
1975	\$34.59	\$32.44	\$33.23	\$40.37	\$37.93	\$27.68	\$30.19
1976	\$35.86	\$31.84	\$33.56	\$38.11	\$36.93	\$27.81	\$31.45
1977	\$39.91	\$36.53	\$37.45	\$44.88	\$42.59	\$30.68	\$33.34
1978	\$69.38	\$57.55	\$59.73	\$71.52	\$67.93	\$53.52	\$57.17
1979	\$90.04	\$69.97	\$74.33	\$84.73	\$84.27	\$66.01	\$71.56
1980	\$80.32	\$66.50	\$67.76	\$83.08	\$79.16	\$62.74	\$65.68
1981	\$64.31	\$53.84	\$56.21	\$67.37	\$63.48	\$50.45	\$54.67
1982	\$64.34	\$54.24	\$56.34	\$66.71	\$63.32	\$51.01	\$55.38
1983	\$61.60	\$51.68	\$54.49	\$63.91	\$60.79	\$48.75	\$53.55
1984	\$65.17	\$56.55	\$58.96	\$69.18	\$66.52	\$49.73	\$54.59

PRICES NEEDED TO EQUAL FEB-MAR AS A Z OF FEB-MAR PRICES

| SPRING | FALL |  | FALL |  | FALL FESCUE |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| APR-MAY | SEP-OCT | NOV-DEC | SEP-OCT | NOV-DEC | SEP-OCT | NOV-DEC |
| NOV 1 | JUL 1 | SEP 1 | MAY 1 | JUL 15 | JUL 1 | SEP 1 |
|  |  |  |  |  |  |  |
| $121.04 \%$ | $113.55 \%$ | $116.29 \%$ | $141.30 \%$ | $132.74 \%$ | $96.87 \%$ | $105.67 \%$ |
| $121.55 \%$ | $107.91 \%$ | $113.75 \%$ | $129.16 \%$ | $125.16 \%$ | $94.25 \%$ | $106.60 \%$ |
| $121.50 \%$ | $111.20 \%$ | $114.00 \%$ | $136.62 \%$ | $129.65 \%$ | $93.38 \%$ | $101.50 \%$ |
| $129.01 \%$ | $107.00 \%$ | $111.07 \%$ | $132.99 \%$ | $126.30 \%$ | $99.52 \%$ | $106.30 \%$ |
| $131.03 \%$ | $101.83 \%$ | $108.18 \%$ | $123.31 \%$ | $122.64 \%$ | $96.06 \%$ | $104.13 \%$ |
| $129.14 \%$ | $106.93 \%$ | $108.95 \%$ | $133.58 \%$ | $127.28 \%$ | $100.88 \%$ | $105.60 \%$ |
| $125.94 \%$ | $105.44 \%$ | $110.09 \%$ | $131.95 \%$ | $124.32 \%$ | $98.80 \%$ | $107.07 \%$ |
| $125.66 \%$ | $105.94 \%$ | $110.02 \%$ | $130.28 \%$ | $123.67 \%$ | $99.62 \%$ | $108.16 \%$ |
| $126.24 \%$ | $105.91 \%$ | $111.68 \%$ | $130.9 \% \%$ | $124.58 \%$ | $99.91 \%$ | $109.74 \%$ |
| $124.06 \%$ | $107.65 \%$ | $112.24 \%$ | $131.68 \%$ | $126.62 \%$ | $94.66 \%$ | $103.92 \%$ |

Born :
Weaned:
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984

AVERAGE	$125.52 \%$	$107.33 \%$	$111.63 \%$	$132.19 \%$	$126.30 \%$	$97.40 \%$	$105.87 \%$
STDEV	$3.50 \%$	$3.20 \%$	$2.51 \%$	$4.70 \%$	$3.02 \%$	$2.70 \%$	$2.32 \%$
+STDEV	$129.02 \%$	$110.53 \%$	$114.14 \%$	$136.89 \%$	$129.32 \%$	$100.09 \%$	$108.19 \%$
-STDEV	$122.02 \%$	$104.13 \%$	$109.12 \%$	$127.49 \%$	$123.27 \%$	$94.70 \%$	$103.55 \%$

[^18]In the analysis of retained ownership strategies, the hudgeting technique was again the primary analytical tool. A hudget for retained ownership programs was constructed utilizing the Lotug 123 electronic spreadsheet software program on a Zenith Z-150 microcomputer. The budget format was similar to that of the beef cowherd cost-return hudget and an example is illustrated in Table 34.

A more detailed explanation of the factors used to calculate the retained ownership hudget is now appropriate. Rations and steer performance were based on conversations with gansas state University Extension Animal Scientists, Dr. Larry Corah and Dr. Gerry Kuh1. Ration prices were hased on Kansas monthly average feed prices over the time periods in which each retained ownership program took place. Labor hours for each program were derived from KSU Farm Management Guides. Wages repreaented hourly pay received hy livestock workera as quoted for the month of January hy the Kansas Crop-Livestock Reporting Service. All other variahlecosts andfixedcosts werehasedon the average of costs incurred by farms with beef backgrounding operations entolled in Kansas Farm Management Aasociations for each year of the analysis. Steer prices were monthly average prices around the sale date for choice medium framed feeder steers from Kansas City. Tahles $35-37$ summarize the feed prices, calf prices and variahle and fixed costs used in the retained ownership hudgets. Tahles $38-42$ combine the returns minus variahle costs for the retained ownership phase with those of the cow-calf phase and
show the total returns for each calving season management strategy.

## PROGRAM: compares steer grower budgets for

 various starting veights \& rates of gain| CALF DATA |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Calving Season | FEB-MAR | FEB-MAR | APR-MAY | APR-MAY |
| Date Weaned | NOV 1 | NOV 1 | NOV 1 | NOV 1 |
| Age in Months | 8 | 8 | 6 | 6 |
| Date On Feed | Nov 1 | Nov 1 | Nov 1 | Nov 1 |
| Date off Feed | APR 25 | APR 25 | APR 25 | APR 25 |
| PRODUCTION DATA |  |  |  |  |
| Starting Weight | 550 | 550 | 403 | 403 |
| Expected ADG | 1.25 | 2.25 | 1.25 | 2.25 |
| Days On Hand | 175 | 175 | 175 | 175 |
| Lbs. Produced | 219 | 394 | 219 | 394 |
| Ending Weight | 769 | 944 | 622 | 797 |
| Purchase Price | \$66.31 | \$66.31 | \$68.18 | \$68.18 |
| Sale Price | \$63.96 | \$61.45 | \$67.13 | \$63.96 |
| Death Loss \% | 1.5\% | 1.5\% | 2.5\% | 2.5\% |
| Cost data |  |  |  |  |
| 1.Labor | \$7.35 | \$7.35 | \$7.35 | \$7.35 |
| 2. Feed | \$138.91 | \$160.21 | \$111.06 | \$128.06 |
| 3. Repairs-Tools-Supplies | \$4.91 | \$4.91 | \$4.91 | \$4.91 |
| 4.Vet.-Medicine-Drugs | \$6.60 | \$6.60 | \$6.60 | \$6.60 |
| 5.Marketing | \$3.01 | \$3.01 | \$3.01 | \$3.01 |
| 6.Gas-Fuel-0il | \$3.01 | \$3.01 | \$3.01 | \$3.01 |
| 7.0tilities | \$2.48 | \$2.48 | \$2.48 | \$2.48 |
| 8.Auto Expense | \$0.49 | \$0.49 | \$0.49 | \$0.49 |
| 9.Misc. | \$2.50 | \$2.50 | \$2.50 | \$2.50 |
| 10.Interest (Calf \& 1/2 VC) | \$31.67 | \$32.42 | \$24.35 | \$24.95 |
| A. Total variable costs | \$200.93 | \$222.99 | \$165.76 | \$183.36 |
| B. TOTAL FIXED COSTS | \$51.28 | \$51.28 | \$51.28 | \$51.28 |
| C. TOTAL COSTS ( $\mathrm{A}+\mathrm{B}$ ) | \$252.21 | \$274.27 | \$217.04 | \$234.64 |


RETURNS				
a.Feeder Sales	\$491.71	\$579.93	\$417.35	\$509.62
b.Feeder Cost	\$364.71	\$364.71	\$274.77	\$274.77
c. Death Loss	\$5.47	\$5.47	\$6.87	\$6.87
D.GROSS RETURNS ( $\mathrm{a}-(\mathrm{b}+\mathrm{c}$ ) )	\$121.54	\$209.76	\$135.72	\$227.99


ANALYSIS

| E.RETURNS-VARTABLE COSTS (D-A) | $(\$ 79.39)$ | $(\$ 13.23)$ | $(\$ 30.04)$ | $\$ 44.63$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| F.RETURNS-TOTAL COSTS (D-C) | $(\$ 130.67)$ | $(\$ 64.51)$ | $(\$ 81.32)$ | $(\$ 6.65)$ |
| G.FEED COST/CWT. GAIN | $\$ 63.50$ | $\$ 40.69$ | $\$ 50.77$ | $\$ 32.52$ |
| H. SELL BREAKEVEN/VAR. COST | $\$ 73.58$ | $\$ 62.27$ | $\$ 70.85$ | $\$ 57.50$ |
| I.SELL BREAKEVEN/TOTAL COST | $\$ 80.25$ | $\$ 67.71$ | $\$ 79.10$ | $\$ 63.93$ |
| J.ACTVAL MARGIN (Sel1-Buy) | $(\$ 2.35)$ | $(\$ 4.86)$ | $(\$ 1.06)$ | $(\$ 4.22)$ |
| X.BE/VC MARGIN | $\$ 7.27$ | $(\$ 4.04)$ | $\$ 2.67$ | $(\$ 10.68)$ |
| L. BE/TC MARGIN | $\$ 13.94$ | $\$ 1.40$ | $\$ 10.92$ | $(\$ 4.25)$ |

-budget input factors

calf data					
Date Born	:	FEB-MAR	FEB-MAR	APR-MAY	APR-MAY
Date Weaned	:	NOV 1	NOV 1	NOV 1	NOV 1
Age in Montbs	:	8	8	- 6	NOV 6
Date On Feed	:	NOV 1	NOV 1	Nov 1	Nov 1
PRODUCTION DATA					
Starting Weight	:	550	550	403	403
Expected ADG	:	1.25	2.25	1.25	2.25
Days On Hand	:	175	175	175	175
Purchase Price	:	\$66.31	\$66.31	\$68.18	\$68.18
Sale Price	:	\$63.96	\$61.45	\$67.13	\$63.96
Deatb Loss \%	:	1.5\%	\% 1.5\%	\% 2.5\%	2.5\%

cost data

I. FEED	(UNIT \& PRICE)		AMOUNT	AMOUNT	AMOUAT	AMOUNT
			(Pounds fed per day)			
a.Alfalfa Hay	(Tons)	\$80.00	16.3	12.4	12.7	9.7
b. Milo	(Cwt)	\$4.80	0.5	6.0	0.2	4.5
c. P-V-M Supp.	*(Cwt)	\$11.40	1.0	1.0	1.0	1.0
d.Processing		\$0.25				

II.MISC. COST FACTORS (Held Constant)

A. VARIABLE COSTS				
a.Labor Hours $\quad \$ 4.20$	1.75			
b.Repairs-Tools-Supplies	\$4.91			
c. Vet.-Medicine-Drugs	\$6.60			
d. Marketing	\$3.01			
e.Gas-Fuel-0il	\$3.01			
f. Utilities	\$2.48			
g.Auto Expense	\$0.49			
b. Misc.	\$2.50			
i. Operating Interest Rate	14.50\%			
B. FIXED COSTS	\$51.28			
III. STEER PRICES				
A. January 15	\$68.42	\$67.85	\$70.59	\$69.10
B. February 15	\$69.08	\$68.70	\$72.20	\$69.08
C.Marcb 15	\$65.78	\$63.52	\$72.12	\$65.78

* Protein-Vitamin-Mineral Supplement

NOTE: Variable costs (b-h) \& fixed costs were based on tbe average of costs incured by farms with heef backgrounding operations, enrolled in KS Farm Management Associstions for each year of tbe analysis.
:Feed prices vere ohtained from KS Crop-Liv. Rep. Ser. data. :Livestock prices are monthly average prices around tbe sale date for choice medium framed feeder steers from Kansas City. :Rations \& steer performance vere besed on conversations with Kansas State University Animal Scientists.

TABLE 35.--Input prices held constant among retained ownership budgeta

Year	1984	1983	1982	1981	1980
1. Range Rent	\$12.80	\$12.80	\$12.80	\$12.40	\$12.90
2. Mineral-Salt Price	5.83	5.81	5.80	5.52	5.11
3. Wages	4.20	4.57	3.77	3.74	3.70
4. Repairs-Tools-Supplies	4.91	5.83	6.11	5.40	5.20
5. Vet.-Medicine-Drugs	6.60	6.05	6.02	6.29	5.70
6. Marketing	3.01	3.98	5.22	2.87	4.08
7. Gas-Fue1-0il	3.01	3.65	3.12	4.11	2.90
8. Utilities	2.48	2.53	2.74	2.50	1.80
9. Auto Expense	0.49	0.56	0.54	0.45	0.54
10. Misc.	2.50	2.07	6.90	2.61	0.93
11. P-V-M Price	11.40	9.12	9.49	11.40	9.12
12. Operating Interest Rate	14.50\%	14.15\%	16.23\%	15.91\%	14.46\%
13. Fixed Costs	51.28	60.03	56.06	51.04	33.03

## Year

1. Range Rent
2. Mineral-Salt Price
3. Wages
4. Repairs-Tools-Supplies
5. Vet,-Medicine-Drugs
6. Marketing
7. Gas-Fuel-0il
8. Utilities
9. Auto Expense
10. Misc.
11. P-V-M Price
12. Operating Interest Rate
13. Fixed Costs

1979 $\$ 12.80$
4.43
3.50
5.59
4.87
2.09
$\begin{array}{lllll}1.29 & 1.04 & 1.45 & 1.70 & 1.48\end{array}$
$\begin{array}{lllll}1.98 & 1.59 & 1.54 & 2.06 & 1.79\end{array}$
$\begin{array}{lllll}1.98 & 1.59 & 1.54 & 0.06 & 0.50 \\ 0.46 & 0.46 & 0.53 & 0.66 & 0.50\end{array}$
$\begin{array}{lllll}2.27 & 1.29 & 0.57 & 0.73 & 0.61\end{array}$
$8.74 \quad 7.98 \quad 9.12 \quad 6.46 \quad 7.37$
$12.28 \% \quad 11.58 \% \quad 11.58 \% \quad 11.70 \% 11.70 \%$
$\begin{array}{lllll}30.40 & 27.76 & 25.53 & 24.89 & 24.28\end{array}$

TABLE 36 . - Feed prices for beef backgrounding budgets


	1984	1983	1982	1981	1980
Feb-Mar/Alfalfa	\$80.00	\$86.00	\$61.50	\$56.00	\$72.00
Feb-Mar/Milo	4.80	4.82	4.29	3.87	5.22
Apr-May/A1falfa	\$80.00	\$86.00	\$61.50	\$56.00	\$72.00
Apr-May/Milo	4.80	4.82	4.29	3.87	5.22
Sept-0ct/A1falfa	\$74.00	\$65.33	\$53.50	\$60.33	\$56.50
Sept-0ct/Milo	4.51	5.19	4.13	4.41	5.02
Nov-Dec/7.5 mo./A1f.	\$77.20	\$72.00	\$53.50	\$59.20	\$62.20
Nov-Dec/7.5 mo./Milo	4.29	5.11	3.98	4.16	5.16
Nov-Dec/9 mo./A1falfa	\$80.66	\$79.00	\$53.50	\$58.66	\$68.17
Nov-Dec/9 mo. Milo	4.03	5.05	3.88	3.83	5.29
	1979	1978	1977	1976	1975
Feb-Mar/Alfalfa	\$52.33	\$56.17	\$39.83	\$61.50	\$53.42
Feb-Mar/Milo	3.85	3.37	3.12	3.36	3.96
Apr-May/Alfalfa	\$52.33	\$56.17	\$39.83	\$61.50	\$53.42
Apr-May/Milo	3.85	3.37	3.12	3.36	3.96
Sept-Oct/A1falfa	\$49.33	\$38.33	\$43.50	\$51.83	\$47.75
Sept-0ct/Milo	4.10	3.30	2.63	4.13	4.54
Nov-Dec/7.5 mo./A1f.	\$49.90	\$42.80	\$41.90	\$54.00	\$48.50
Nov-Dec/7.5 mo./Mi ${ }^{\text {c }}$	4.00	3.32	2.72	3.78	4.32
Nov-Dec/9 mo./Alfalfa	\$50.17	\$47.50	\$41.00	\$55.83	\$48.67
Nov-Dec/9 mo./Milo	3.89	3.31	2.74	3.50	4.19
* Feb-Mar backgrounding takes place Nov-Apr   Apr-May backgrounding takes place Kov-Apr   Sep-0ct backgrounding takes place Jul-Sep   Nov-Dec/7.5 mos. backgrounding takes place Jul-Nov   Nov-Dec/9 mos. backgrounding takes place Sep-Dec					

TABLE $37,--S t e e r$ prices for retained ownership budgets
PORCEASE PRICES
Galving Season Management Strategies

19841983

1982
FEB-MAR
APR-MAY
SEP-OCT/7 mo.
SEP-OCT/9 mo.
NOV-DEC/7.5 mo.
NOV-DEC/9 mo.
$\$ 66.31$
\$62.26
$\$ 64.05$
\$68.18
\$71.11
$\$ 66.03$
\$66.21
$\$ 64.98 \quad \$ 66.13$
$\$ 76.10 \quad \$ 70.95$
$\$ 64.99$

$$
\$ 65.71 \quad \$ 66.36
$$

$\$ 65.71 \quad \$ 68.35$
$\$ 58.70 \quad \$ 69.94$
1981
1980

$\$ 64.15$	$\$ 78.63$
$\$ 66.55$	$\$ 81.53$
$\$ 74.60$	$\$ 82.75$
$\$ 67.91$	$\$ 76.47$
$\$ 69.04$	$\$ 77.12$
$\$ 69.22$	$\$ 82.48$

FEB-MAR
APR-MAY
SEP-OCT/7 mo.
SEP-OCT/9 \#o.
NOV-DEC/7.5 mo.
NOV-DEC/9 mo.
$\$ 86.41$
$\$ 92.11$
$\$ 109.23$
$\$ 87.76$
$\$ 98.72$
$\$ 94.54$
1978
1977
$\$ 67.73 \quad \$ 41.56$
$\$ 43.07$
$\$ 45.97$
$\$ 41.24$
$\$ 43.14$
$\$ 44.16$

1975
$\$ 37.89 \quad \$ 37.34$
$\$ 39.33 \quad \$ 35.67$
$\$ 47.57 \quad \$ 33.25$
$\$ 40.46 \quad \$ 35.17$
$\$ 40.64 \quad \$ 32.58$
$\$ 39.96 \quad \$ 34.89$

SALE PRICES
Calving Season Management Strategieg

## 1984

1982
1981
1980
FEB-MAR/1.25 ADG \$66.62
FEB-MAR/2.25 ADG $\$ 69.40$
APR-MAY/1.25 ADG $\$ 62.00$
APR-MAY/2.25 ADG $\$ 66.80$
SEP-OCT/7 mo. $\quad \$ 63.15$
SEP-OCT/9 mo. $\$ 63.36$
\$64.55
$\$ 65.34$
$\$ 65.84$
$\$ 65.30$
$\$ 60.56$
$\$ 66.30$
$\$ 57.63$
$\$ 57.31$
$\$ 60.24$
$\$ 61.30$
\$67. 26
$\$ 65.57$
\$66.93

NOV-DEC/7.5 mo.
NOV-DEC/9 mo.

1979
1978
1977
1976
1975

FEB-MAR/1.25 ADG	\$66.30	\$83.35	\$53.09	\$39.79	\$43.19
FEB-MAR/2.25 ADG	\$76.65	\$72.85	\$44.31	\$36.22	\$38.14
APR-MAY/1.25 ADG	\$75.50	\$55.37	\$39.32	\$39.89	\$37.04
APR-MAY/2.25 ADG	\$67.47	\$82.56	\$52.37	\$38.30	\$41.39
SEP-OCT/7 mo.	\$79.46	\$62.73	\$39.77	\$34.17	\$39.30
SEP-OCT/9 mo.	\$79.75	\$62.33	\$39.62	\$35.38	\$38.69
NOV-DEC/7.5 mo.	\$79.39	\$61.75	\$39.16	\$35.30	\$38.88
NOV-DEC/9 mo.	\$80.28	\$64.31	\$39.37	\$35.59	\$39.55

TABLE 38.--Feb-Mar retained ownership; cumulative returns-variable costs e 750 lbs

OPTION 1	COH/CALF	BACKGROUND $2.25 / \mathrm{ADG}$	$\begin{aligned} & \text { CUMULATIVE } \\ & \text { RET-VC } \end{aligned}$
1975	(\$65.24)	\$2.80	(\$62.44)
1976	(\$65.74)	(\$15.32)	(\$81.06)
1977	(\$53.03)	\$36.16	(\$16.87)
1978	\$81.55	\$90.25	\$171.80
1979	\$138.73	\$7.16	\$145.89
1980	\$81.96	(\$27.79)	\$54.17
1981	\$3.30	\$16.31	\$19.61
1982	(\$9.51)	\$31.16	\$21.65
1983	(\$19.64)	\$29.16	\$9.52
1984	(\$24.40)	\$38.90	\$14.50
Average	\$6.80	\$20.88	\$27.68
STDEV	\$70.41	\$32.93	\$80.26
+STDEY	\$77.21	\$53.81	\$107.94
-STDEV	(\$63.62)	(\$12.05)	(\$52.59)

OPTION 2

	COW/ CALF	BACKGROUND $1.25 / \mathrm{ADG}$	$\begin{aligned} & \text { CUMULATIVE } \\ & \text { RET-VC } \end{aligned}$
1975	(\$65.24)	(\$0.04)	(\$65.28)
1976	(\$65.74)	(\$37.81)	(\$103.55)
1977	(\$53.03)	\$66.31	\$13.28
1978	\$81.55	\$117.84	\$199.39
1979	\$138.73	(\$122.77)	\$15.96
1980	\$81.96	(\$108.15)	(\$26.19)
1981	\$3.30	(\$19.15)	(\$15.85)
1982	(\$9.51)	(\$17.25)	(\$26.76)
1983	(\$19.64)	(\$41.90)	(\$61.54)
1984	(\$24.40)	(\$54.23)	(\$78.63)
RAGE	\$6.80	(\$21.72)	(\$14.92)
EV	\$70.41	\$72.36	\$84.70
DEV	\$77.21	\$50.65	\$69.78
DEV	(\$63.62)	(\$94.08)	(\$99.62)

OPTION 1 Calf born MAR 1 and weaned NOV 1 @ 550 lbs. Backgrounded @ 2.25 ADG until JAN 28

OPTION 2 Calf born MAR 1 and weaned NOV 1 \& 550 lbs. Backgrounded © 1.25 ADG until APR 10

TABLE 39. --Apr-May retained ownership; cumulative returns-variable costs © 750 lbs

OPTION 1	COW/ CALF	BACKGROUND 2.25/ADG	$\begin{aligned} & \text { CUMULATIVE } \\ & \text { RET-VC } \end{aligned}$
1975	(\$94.20)	\$56.02	(\$38.18)
1976	(\$85.78)	\$16.33	(\$69.45)
1977	(\$75.56)	\$120.68	\$45.12
1978	\$38.32	\$210.44	\$248.76
1979	\$80.93	(\$0.43)	\$80.50
1980	\$27.65	\$3.31	\$30.96
1981	(\$39.56)	\$76.41	\$36.85
1982	(\$53.34)	\$84.43	\$31.09
1983	(\$59.09)	\$65.20	\$6.11
1984	(\$65.73)	\$57.68	(\$8.05)
AVERAGE	(\$32.64)	\$69.01	\$36.37
STDEV	\$59.90	\$62.53	\$86.18
+STDEV	\$27.27	\$131.54	\$122.55
-STDEV	(\$92.54)	\$6.48	(\$49.80)


OPTION 2		FULL		
		BACKGROUKD	GRAZE	CUMULATIFE
	COW/ CALF	1.25/ADG	1.45/ADG	RET-VC
1975	(\$94.20)	\$29.37	\$26.09	(\$38.74)
1976	(\$85.78)	(\$10.35)	(\$31.10)	(\$127.23)
1977	(\$75.56)	\$77.31	(\$17.92)	(\$16.17)
1978	\$38.32	\$156.97	\$15.83	\$211.12
1979	\$80.93	(\$69.46)	(\$67.90)	(\$56.43)
1980	\$27.65	(\$66.03)	\$31.91	(\$6.47)
1981	(\$39.56)	(\$3.13)	(\$9.85)	(\$52.54)
1982	(\$53.34)	(\$1.77)	\$2.06	(\$53.05)
1983	(\$59.09)	(\$20.43)	(\$33.12)	(\$112.64)
1984	(\$65.73)	(\$30.04)	(\$17.83)	(\$113.60)
AVERAGE	(\$32.64)	\$6. 24	(\$10.18)	(\$36.58)
STDEV	\$59.90	\$68.08	\$30.42	\$96.34
+STDEV	\$27.27	\$74.32	\$20.24	\$59.77
-STDEV	(\$92.54)	(\$61.84)	(\$40.60)	(\$132.92)

OPTION 1 Calf born MAY 1 and weaned NOV 1 \& 403 lbs. Backgrounded e 2.25 ADG until APR 3

OPTION 2 Calf born MAY 1 and weaned NOV 1 @ 403 1bs .
Backgrounded @ 2.25 ADG until APR 25
Grazed @ 1.45 ADG full season (2 ADG early) until JUL 3

TABLE 39.--Continued.Apr-May retained ownership; cumulative returns-variable costs e 750 lbs

OPTION 3	COW/CALF	INTENSIVE		
		BACKGROUND	GRazE	CUMULATIVE
		1.25/ADG	2.0/ADG	RET-VC
1975	(\$94.20)	\$29.37	\$42.96	(\$21.87)
1976	(\$85.78)	(\$10.35)	(\$13.04)	(\$109.17)
1977	(\$75.56)	\$77.31	(\$0.32)	\$1.43
1978	\$38.32	\$156.97	\$34.24	\$229.53
1979	\$80.93	(\$69.46)	(\$46.61)	(\$35.14)
1980	\$27.65	(\$66.03)	\$52.49	\$14.11
1981	(\$39.56)	(\$3.13)	\$10.32	(\$32.37)
1982	(\$53.34)	(\$1.77)	\$22.04	(\$33.07)
1983	(\$59.09)	( $\$ 20.43$ )	(\$12.67)	(\$92.19)
1984	(\$65.73)	( $\$ 30.04$ )	\$2.93	(\$92.84)
AVERAGE	(\$32.64)	\$6.24	\$9.23	(\$17.16)
STDEV	\$59.90	\$68.08	\$29.86	\$95.94
+STDEY	\$27.27	\$74.32	\$39.09	\$78.78
-STDEV	(\$92.54)	(\$61.84)	(\$20.63)	(\$113.09)

OPTION 3 Calf born MAY 1 and weaned NOV 1 e 403 lbs . Backgrounded 2.25 ADG until APR 25 Grazed e 2.0 ADG intensive until JUL 3

TABLE 40.--Sep-Oct retained ownership; cumulative returns-variable costs @ 750 Ibs

OPTION 1	COW/CALF	BACKGRODND	cumulative
		2.25/ADG	RET-VC
1975	(\$89.78)	\$21.42	(\$68.36)
1976	(\$64.23)	(\$33.74)	(\$97.97)
1977	(\$71.15)	\$1.20	(\$69.95)
1978	\$40.34	\$45.00	\$85.34
1979	\$144.73	\$10.81	\$155.54
1980	\$54.83	\$17.50	\$72.33
1981	\$5.24	\$7.80	\$13.04
1982	(\$17.76)	\$16.48	(\$1.28)
1983	(\$16.17)	(\$44.45)	(\$60.62)
1984	(\$47.50)	(\$2.23)	(\$49.73)
average	(\$6.15)	\$3.98	(\$2.17)
STDEV	\$70.96	\$26.25	\$83.10
+STDEV	\$64.81	\$30.23	\$80.93
-STDEV	(\$77.10)	(\$22.27)	(\$85.26)


OPTION 2	$\begin{array}{c}\text { INTENSIVE } \\ \text { GRAZE }\end{array}$			$\begin{array}{c}\text { BACKGROUND } \\ \text { COH/CALF }\end{array}$
	$1.75 /$ ADG			

RET-VC\end{array}\right)\)

OPTION 1 CaIf born OCT 1 and weaned JUL 1 @ 578 lbs. Backgrounded e 2.25 ADG until SEP 15

OPTION 2 Calf born OCT 1 and weaned MAY 1 @ 464 lbs . Grazed 1.75 ADG Intensive until JUL 15 Backgrounded @ 2.25 ADG until SEP 23

TABLE 40.--Continued.Sep-Oct retained ownership; cumulative returns-variable costs 655 lbs

OPTION 3		FULL	
		GRAZE	CJMULATIVE
	COW/ CALF	1.27/ADG	RET-VC
1975	(\$126.10)	\$45.92	(\$80.18)
1976	(\$70.10)	(\$46.78)	(\$116.88)
1977	(\$90.81)	(\$0.35)	(\$91.16)
1978	(\$6.70)	\$71.31	\$64.61
1979	\$144.17	(\$38.85)	\$105.32
1980	\$5.78	\$28.12	\$33.90
1981	(\$31.84)	\$6.13	(\$25.71)
1982	(\$54.41)	\$7.45	(\$46.96)
1983	(\$37.78)	(\$42.88)	(\$80.66)
1984	(\$78.85)	\$14.48	(\$64.37)
AVERAGE	(\$34.66)	\$4.46	(\$30.21)
STDEV	\$74.18	\$38.91	\$73.94
+STDEV	\$39.52	\$43.36	\$43.73
-STDEV	(\$108.85)	(\$34.45)	(\$104.15)

OPTION 3 Calf born OCT 1 and weaned MAY 1 § 464 lbs. Grazed 1.27 ADG Full season until OCT 1 ( 655 LBS)

TABLE 41.-Nov-Dec retained ownership; cumulative returns-variable costs 750 lbs

OPTION 1	COW/ CALF	BACRGROUND	CUMULATIVE
		2.25/ADG	RET-VC
1975	(\$117.81)	\$43.56	(\$74.25)
1976	(\$86.01)	(\$22.69)	(\$108.70)
1977	(\$88.75)	\$5.50	(\$83.25)
1978	\$23.83	\$43.77	\$67.60
1979	\$111.97	\$8.62	\$120.59
1980	\$8.98	\$43.99	\$52.97
1981	(\$34.94)	\$15.78	(\$19.16)
1982	(\$48.41)	\$17.73	(\$30.68)
1983	(\$55.23)	\$0.26	(\$54.97)
1984	(\$84.91)	\$30.70	(\$54.21)
AFERAGE	(\$37.13)	\$18.72	(\$18.41)
STDEV	\$68.62	\$22.03	\$74.58
+STDEV	\$31.49	\$40.75	\$56.17
-STDEV	(\$105.75)	(\$3.31)	(\$92.98)


OPTION 2	COW/ CALF	BACKGROUND $2.25 / \mathrm{ADG}$	$\begin{aligned} & \text { CURULATIVE } \\ & \text { RET-VC } \end{aligned}$
1975	(\$93.32)	\$33.17	(\$60.15)
1976	(\$74.26)	(\$24.22)	(\$98.48)
1977	(\$65.18)	(\$10.68)	(\$75.86)
1978	\$56.48	\$33.43	\$89.91
1979	\$138.79	(\$4.24)	\$134.55
1980	\$69.69	(\$15.88)	\$53.81
1981	(\$1.94)	(\$5.53)	( $\$ 7.47$ )
1982	(\$10.62)	(\$14.21)	(\$24.83)
1983	(\$57.57)	\$28.25	(\$29.32)
1984	(\$57.65)	\$26.34	(\$31.31)
AVERAGE	(\$9.56)	\$4.64	(\$4.92)
STDEV	\$75.73	\$22.85	\$74.85
+STDEV	\$66.18	\$27.49	\$69.94
-STDEV	(\$85.29)	(\$18.20)	(\$79.77)

OPTION 1 Calf born DEC 1 and weaned JUL 15 @ 481 lbs . Background e 2.25 ADG until NOV 13

OPTION 2 Calf born DEC 1 and weaned SEP 1 e 546 1bs. Background e2.25 ADG until DEC 1

TABLE 42.--Feb-Mar and Apr-May retained ownership; cumulative returns-variable costs (November-April)

FEB-MAR	COW/CALF	BACRGROUND 2.25/ADG	$\begin{aligned} & \text { CUMULATIVE } \\ & \text { RET-จC } \end{aligned}$
1975	(\$65.24)	\$54.13	(\$11.11)
1976	(\$65.74)	\$22.60	(\$43.14)
1977	(\$53.03)	\$132. 22	\$79.19
1978	\$81.55	\$226.10	\$307.65
1979	\$138.73	(\$48.25)	\$90.48
1980	\$81.96	(\$37.46)	\$44.50
1981	\$3.30	\$69.02	\$72.32
1982	(\$9.51)	\$54.63	\$45.12
1983	(\$19.64)	\$24.97	\$5.33
1984	(\$24.40)	(\$13.23)	(\$37.63)
AVERAGE	\$6.80	\$48.47	\$55.27
STDEV	\$70.41	\$82.21	\$100.68
+STDEV	\$77.21	\$130.68	\$155.95
-STDEV	(\$63.62)	(\$33.74)	(\$45.41)
APR-MAY		BACKGRODND	CUMULATIVE
	COW/CALF	2.25/ADG	RET-VC
1975	(\$94.20)	\$85.95	(\$8.35)
1976	(\$85.78)	\$46.36	(\$39.42)
1977	(\$75.56)	\$147.92	\$72.36
1978	\$38.32	\$256. 26	\$294.58
1979	\$80.93	\$8.82	\$89.75
1980	\$27.65	\$20.37	\$48.02
1981	(\$39.56)	\$92.25	\$52.69
1982	(\$53.34)	\$83.41	\$30.07
1983	(\$59.09)	\$57.21	(\$1.88)
1984	(\$65.73)	\$44.63	(\$21.10)
AVERAGE	(\$32.64)	\$84.31	\$51.67
STDEV	\$59.90	\$72.43	\$95.12
+STDEV	\$27.27	\$156.74	\$146.79
-STDEV	(\$92.54)	\$11.88	(\$43.45)

FEB-MAR Calf born MAR 1 and weaned NOV 1 lbs. Backgrounded 2.25 ADG until APR 25

APR-MAY Calf born MAY 1 and weaned NOV 1 @ 403 lbs . Backgrounded e 2.25 ADG until APR 25

## BIBLIOGRAPEY

Barnett, F. L., S. C. Pransen, and G. L. Posler. "Performance of Cool-Season Perennial Grasses In Eastern Kansas." Bulletin 623, Manhattan, Agricultural Experiment Station, Kansas State University, Octoher, 1978.

Brazle, F. $\mathrm{K}_{\mathrm{A}}, \mathrm{Marvin}$ R. Pausett, and Gary L. Kilgore. "Tall Fescueproductionand Utilization." Bulletinc-622, Manhattan, Cooperative Extension Service, Kansas State University, Octoher, 1980.

Buller, o., L, Langemeier and S. Schohert. "Lahor Requirements for Livestock Enterprises on Kansas Farmes" Contribution No. 82-93-D, Department Report, Agricultural Experiment Station, Kanhattan, Kansas State University, Novemher, 1981.

Buller, Orlan, RalphF. Munyan, and Gerry Posler. "Computer Programs of Forage Management and Utilization(FMUPI and FMUPII). "Department Paper 82-191-D, Department of Economics, Manhattan, Kansas Agricultural Experiment Station, Kansas State University.

Cassidy, Henry J.. Using Econometrics: A Beginner's Guide. Reston: Reston Puhlishing Company, 1981.

Chestnut, D. M. B.."The Effect of Weaning Date onthe Performance of Autumn-Calving, Single-Suckled Cows." British Society of Animal Production, 34 (1982): 71-78.

Chicago Board of Trade. Commodity Trading Manual. Chicago: Education and Puhlication Services Department, CBT, 1982.

Cooperative Extension Service. "Beef Profit Conference Proceedings." Manhattan, Kansas State University, 1983.
$\qquad$ . "Beef Profit Conference Proceedings." Manhattan, Kansas State University, 1984.
$\qquad$ - "Ninth Annual Beef Cattle Conference Proceedings: Surviving the Drought and Low Cattle Prices." Salina, Kansas State and Oklahoma State Universities, Novemher, 1983.
$\qquad$ - "Tenth Annual Beef Cattle Conference Procedings: Salina, Kansas State and Oklahoma State Universities, November, 1984.

Corah, Larry R. "Cow Herd Nutrition." Bulletin C -582 , Manhattan, Cooperative Extension Service, Kansas State University, December, 1977.

Corah, Larry and E. Smith. "Feed Supplements for Maximum Use of Native Range." Manhattan, Kansas State University Cooperative Extension Service, L-517, August, 1978.

Department of Agricultural Economics and Cooperative Extension Service. "The Annual Report." Vol. 1975-1984, Xansas Farm Management Association, Manhattan, Kansas State University.

Doll, John P., andFrank Orazem. Production Economica (Theory with Application). 1st ed. Columhus, Ohio, Grid, Inc., 1978.

Earle, George. "They Go Full Bore on Fall Calving." Farm Journal, Septemher, 1983, Beef 6-8.
"Early Weaning is the Key to Fall Calving." Successful. Farming, October, 1974 , BIO.

Extension Agricultural Economics and Animal Sciences and Industry. "Beef Lender Conference." Proceedings 1984, Manhattan, Kansas State University.
"Fall Calves Play 'Catchup' With Spring Ones." Successful Farming, March, 1975, B2.

Giacomini, A.. "An Analysis of the Capital Structure of Single Proprietor Kansas Commercial Farms." Masters Thesis, Manhattan, Kansas State University, 1979.

Henderson, J. M. and R. E. Quandt, Microeconomic. Theory: A Mathematical Approach. Third Edition, McGraw-Hill, Inc., 1980.

Johnson, R. L., A. D. Dayton and J. H. McCoy. "The Basis for Feeder Cattle at Selected Ransas Locations." Bulletin 634, Kansas Agricultural Experiment Station, Manhattan, Kansas State University, June, 1980.

Kansas Cooperative Extension Service, Department of Economics. "Xansas Farm Management Eandhook." Ransas State University, Manhattan.

Kansas State Board of Agriculture, Crop and Livestock Reporting Service. "The 64th Annual Report and Farm Facts." Topeka, Ransas, 1981.
$\qquad$ . "The 65 th Annual Report and Farm Facts." Topeka, Kansas, 1982.
$\qquad$ . "The 66th Annual Report and Farm Facts." Topeka, Kansas, 1982-1983.

Kartchner, R.J., L. R. Rittenhouse and R. J. Raleigh. Forage and Animal Management Implications of Spring and Fall Calving." Journal of Animal Science, Vol. 48, No. 3, 1979.

Kay, Ronald D.. Planning Control and Implementation: Farm Management. Texas A \& M University, 1981.

Kilgore, Gary L. . "Bermudagrasa Eatablishment And Management." Bulletin C-613, Manhattan, Cooperative Extension Service, Kansas State University, March, 1980.
."Summer Annual Forages In Southeast Kansas." Bulletin C-541, Manhattan, Cooperative Extension Service, Kansas State University, December, 1975.

Kimple, K., R. Price, A. Dayton and J. McCoy. "The Live Gattle Basis at Selected Locations in Kansas - An Important Variable of Successful Hedging." Bulletin 621, Agricultural Experiment Station, Manhattan, Kanbas State University, July, 1978.

Lambert C., L. Corah and O. Grunewald. "Factors Affecting Prices of Calves and Yearlings in Kansas." Cooperative Extension Service, Manhattan, Kansas State University, MF-667, January, 1983.

Lambert C. and M. B. Sands. "Xansas Steer Futurities." Cooperative Extension Service, Manhattan, Kansas State University, MF-712, April, 1984.

Launchhaugh, J. L. and C. E. Owenaby. "Ransas Rangelands." Research Bulletin 622, Manhattan, Agricultural Experiment Station, Kansas State University, Octoher, 1978.

Launchhaugh, J.L., C. Owenshy and J. Brethour, E. Smith.
"Intensive - Early Stocking Studies on Kansas Ranges." Report of Progress 441, Agricultural Experiment Station, Manhattan, Kansas State University, Octoher, 1983.

McCoy, John H., et al. Gattle Price Marging. Agricultural Extension Service, Bulletin 499, Manhattan, Kansas State University, April, 1967.
$\qquad$ - Gattle Price Marging. Agricultural Extension Service, Bulletin 608, Manhattan, Kansas State University, May, 1977.-

Nelson, T. C., et al.. "Simulated Effect of Calving Season and Winter Hay Feeding Level on Cow Herd Productivity." Journal $_{\text {F }}$ of Animal Science, Vol. 54, No. 1, 1982.

Pine, Wilfred and $K$. Z. Johnson. "Trends in Land $\nabla$ alues in Kansas." Bulletin 625, Agricultural Experiment Station, Manhattan, Kansas State University, Decemher, 1978.

Pretzer, Don D.. "Cash Rental Ratea hy Crop Reporting Districts." Extension Agricultural Economics, Manhattan, Kansas State University, 1977-1984.

Pretzer, Don D.. Presentation of "Beef Programs for Profit." Manhattan, Kansas State University, 1984.

Purcell, Wayne. Agricultural Marketing: Systems, Coordinations Cash and Future Prices. Virginia Polytechnic Institute and State University, 1979.
"Rawsons Compare Fall and Spring Calving." Succeseful Farming, Octoher, 1974, B18.

Smith, David R.. "An Analysis of Beef-Forage Grazing Systems". Masters Thesis, Manhattan, Kansas State University, 1982.

Smith, EdF.. "Growing Cattle on Grass." Bulletin 638, Agricultaral Experiment Station, Manhattan, Ransas State University, Octoher, 1981.

Snedecor, George W. and William G. Cochran. Statisticel Methods. Seventh Edition, Ames, Iowa State University Press, 1980.
U.S. Department of Agriculture, Soil Conservation Service. "Soil andWater Resources Conservation Act." Scs National Inventory Estimates, Washington, D. C., April, 1979.

Welty R.. "Developing Year-Round Systems For Beef Cattle In Eastern Kansas." Unpuhlished Masters Report, Manhattan, Kansas State University, 1979.

Williams, Ed and Donald B . Farris. "Economics of Beef Cattle Systems - From Weaning Age to Slaughter." College Station, Texas Agricultural Experiment Station, Department Information Report No. 74-3, 1974 .
AN ANALYSIS OF CALVING SEASON STRATEGIES
by
MARK E. NELSON
B. S., Kansas State University, ..... 1983
AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of therequirements for the degree
MASTER OF SCIENCEDepartnent of Agricultural Economics
RANSAS STATE UNIVERSITY
Manhattan, Kansas

The purpose of this thesis was to evaluate the impacts of calving season on covherd profitahility. The budgeting technique was the primary analytical tool used in this study witheight different management options heing analyzed. Cow feed costs and calf prices were the major variahles. All other factors of production that vere not directly affected by calving season were held constant or in constant proportion throughout the analysis. By analyzing these key variahles, significant relationships were sought that could aid producers and ag specialists concerning the calving season decision and analyzing individual cow-calf operations.

The completed hudgets revealed low average returns coupled with high year to year variahility in its analysis of cowherd profitability. These results, comhined with the high capital investment necessary and low rates of return to cowherd ownership, imply that there are both financial and risk barriers to entry in the cattle business.

Early spring calving was the most profitable calving period in this analysis. Feb-Mar was the only calving season to average positive returns over its variable costs while no calving season could cover its total costs of production.

The reaults indicated that spring calving cowherds, hy better matching cov needs with range nutritional value, had lower feed costs than fall calving herds. Early spring feed costs averaged $11-16 \%$ lower than the fall periods while feed costs for the late apring period (Apr-May) averaged 21-26\% lover. The Feh-Mar horn calves, being heavier at sale time, utilized the
lower feed costs to earn positive returns to variable costs, while the 130 lbs lighter Apr-May calves lost an average of $\$ 32.64$.

It was found that, in fall calving herds, calf sizeagain played an important role. The more profitable management strategies were those weaning the larger nine month old calves as opposed to the lighter seven month old calves. In addition, fall calving cowherd returns were found to be significantly improved with the implementation of a supplemental fescue option. In the case of Sep-0ct calving, supplemental fescue pasture lowered cow feed costs an average of $\$ 20.26$ and increased average returins over variable costs $\$ 21.60$, from (\$6.15) to \$15.45.

Because cowherd profits are affected by both costs and revenue, the ratio of cow unit feed costs over total revenue was evaluated. This measure showed that long run profitability would be difficult unless cow unit feed costs wereforty percent or less of total cow unit revenue.

Cattle prices were found to be the critical factor in determining overall cowherd profitability, with positive returns for any calving season being dependent upon above average prices. In this analysis it was found that, although cattleprices are strongly influenced by seasonal trends and premiums between weight classifications, these price differentials had less influence on profitability than factors such as cow feed costs and calf weights. This finding implies that producers should concentrate not on matching calving season strategies with seasonal highs in prices, but on organizing a complete marketing plan for the cattle they produce.

Retained ownership was the final section of this study. Comparisons of the various calving season manement strategies suggested that, although retained ownership can often improve overall profitability, only the spring calving sessons were improved enough to gignificantly cover their overall variable costs. This resulted from the spring born calves being able to take advantage of the seasonally higher prices which occur after a typical overwintering program. In addition, hecause of the higher returns and lower capital requirements, backgrounding operations may represent one of the few ways that young and highly leveraged operators can survive in the heef cattle industry.


[^0]:    * Investaent is the maxisur at one time assuring $1 / 2$ the operating costs (less interest), value of the con, share of bel!, value of buildings and equipuent, and value of grass.

[^1]:    ${ }^{4}$ Based on conversations vith Don Pretzer, Mike Sands and Larry Corah, Kansas State University and Victor Jacohs, University of Missouri, Columhia, 1985.

    5xansas Cooperative Extension Service, Department of Economics, Kansas Farm Management Handhook, Kansas State University, Manhattan.
    ${ }^{6}$ A fixed funds interest rate was also included in the hudget to represent the average annual interest rate charged on long term loans, primarily land. This was hased on rates provided hy the Kanhattan Federal Land Bank.Both rates are detailed in Appendix 3.

[^2]:    1 Invericaht as the maxisus at ohe that assuxing i/2 the operating costs (less interest), value of the cow, share of Lain, value of bulitings anc equipment, and valve of grass.

[^3]:    * Price for Fescue Fasture $=$ Value/Rcre $\times 45$ Retum/Acre

    A range of $3-5 x$ Returns/Acre are considered typical by Kansas Fars Managewent Associations

[^4]:     A range of 3-5x ,ieturns/Acre are considened typical by Kansas Fara Manaçement Associations

[^5]:    - Anvestuent is the eaxisua at one tian assuang $1 / 2$ the operating costs tless interest), value of the com, share of ball, value of suifdings ard equi;aent, and value of grass.

[^6]:    - Price for Fescue Pasture $=$ Value/Acre $\times 4 \times$ Return/Acre

    A range of 3-5x Meturns/Acre are considered typacal by Mansas fare Managenent Associations

[^7]:    * Price for Fescue Pasture $=$ Value/Acre $\times 4 x$ Retum/Acre

    A range of 3-5x Returns/Acre are considered typical by Kansas Farn Nanagement Associations

[^8]:    * Irwestment is the maxiaur at one time assuaing $1 / 2$ the operating costs (Iess interest), valve of the com, share of buli, value of buildings and aquianent, and value of grass.

[^9]:    ＊Price for Fescue Pasture $=$ Value／Rcre $x$ 4x Return／Acre
    A range of 3－5x Returns／Acre are considered typical by Kansas Fara Manaqesent Associations

[^10]:    ＊Investwent is the saximum at one time assuaing $1 / 2$ the operating costs（Iess interest），value of the com，share of suli；value of boildinģs and eouipment，and value of srass，

[^11]:    * Imvestoent is the maxigus at one tiee assuming $1 / 2$ the operating costs (less interest), valae of the com, share of bull, value of buildings and equipaent, and value of grass.

[^12]:    + Investment is the maxiauz at one time assuming $1 / 2$ the oderating costs (less interast), value of the com, share of bull, value of balldings and equipsent, and value of grass.

[^13]:    * Price for Fescue Pasture $=$ Value/Acre $x$ 4x Return/Acre

    A range of 3-5x Returns/Acre are considered typical by Kamsas Fara Managetext Associations

[^14]:    F Investwent is the maxinua at one tiwe assuming 1/2 the ooerating costs (1ess interest), value of the com, share of bu11, vaiue of buildings and equipaent, and value of grass.

[^15]:    - Praca for Fescue Pasture = Value/Acre $\times 48$ Return/Acre

    A range of $3-5 x$ Returns/Acre are considered typical by Kansas Fare Managesent Associations

[^16]:    ${ }^{1}$ Larry Corah, Extenaion State Leader, Animal Scienceand Industry and Keith Zoelner, Extension Specialist, AS \& I, Kansas State University.
    ${ }^{2}$ After July these average daily gains deciine to 1.39 and 1.32 pounds per day respectively. This is due to the lower grass quality that occurs during the late summer months.

[^17]:    * $A P / P P=T R-C u l l$ cow revenue / lbs of calf produced

[^18]:    * PN = Ret-VC for FEB-MAR - Ret-VC for the other calving season / the lbs of calf produced in the other calving period + the AP/PP of the other calving season

