
A Model of Successful Patterns

of Progress During the Integration of Software

by

MARY LOU A. LANCHBURY
i?

B.S.. Kansas State University, 1985

A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1986

Approved by:

Major Professor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by K-State Research Exchange

https://core.ac.uk/display/33361123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGEMENTS

I would like to thank Robin Niederee for her help in getting this thesis into a readable
form — especially the tables.

Thanks also to my children. Ben and Naomi, for excusing their mother's absences
from family life while she was trying to finish, and to Tim for his patience and sugges-
tions.

And thanks to Dr. David Gustafson for all the help, suggestions and direction he has
given throughout the course of this research and thesis.

LD

L% Table of Contents

Acknowledgements „ \

Chapter One - Introduction „ 1

Chapter Two - Background 4

2.1 Presentation of Software Development Cycle and Software Life Cycle 4

2.1.1 Requirements Analysis 4

2.1.2 Program Specification „ _ 5

2.1.3 Design g

2.1.4 Coding „ _ g

2.1.5 Unit Testing 6
2.1.6 Integration of Unit Modules „ 7

2.1.6.1 Top-Down Integration 7

2.1.6.2 Bottom-Up Integration 8

2.1.6.3 Sandwich Integration „ 9

2.1.7 Validation
g

2.2 Literature Survey _

2.2.1 Cost Estimation jq
2.2.2 Staffing Levels 12

2.2.3 Scheduling 13
2.3 Background of Data Collected and Used 14

Chapter Three - Analysis Methodology

3.1 Changes by Statement Type 16
3.2 Hierarchical Changes

17
3.3 Complexity Measures _ ^
3.4 Summary 2j

Chapter Four - Model for Ideal Case 22
Chapter Five - Case Studies _ 24
5.1 Successful Case 24
5.2 Unsuccessful Case

, 26
Chapter Six - Successful Case Study vs Proposed Model 28
6.1 Amended Model

28
Chapter Seven - Conclusions „ 3
Bibliography

32
Appendix A - Successful Case Data

35
Appendix B - Unsuccessful Case Data

39
Appendix C - Manager's Model for Progress Evaluation 43

Chapter One

Introduction

Data on patterns of progress during the software development cycle is a rare

thing. While there is some macro data available, detailed data about progress pat-

terns has not been gathered or analyzed. Without historical and detailed data to use

as a guide, estimation of time schedules, delivery dates and software costs has been

"seat of the pants", with poor results. These estimates of time and money are set but

rarely kept. "Seeing" progress during software development is very difficult. Pro-

cedures, techniques, strategies and tools that could provide visibility of progress are

not generally available - particularly for the non-technical project manager. The

ability to evaluate the progress of a project during the different phases of develop-

ment is necessary in order to determine if adjustments to the project's costs and time

schedules are necessary.

Middle- and upper-level managers with no background in software or its

development, are often given responsibility for software projects. Technical personnel

involved with the actual project production and who have background experience

with software and its development, can find it difficult to communicate with the

non-technical personnel about the progress of a project (or for that matter other

aspects of the project). Milestones regarding progress that are comprehensible to the

technical members tend to be incomprehensible to the non-technical members of the

project team. Milestones also occur far enough apart that visibility of progress is

hindered. These non-technical members are often put in charge of project decision

making and they do not have the tools/data necessary to make these decisions

analytically. Therefore, any representation of progress needs to be understandable

and usable by both technical and non-technical personnel alike.

-2-

This thesis presents a model of successful code change patterns during the

integration phase of the software development cycle (the integration phase is defined

and discussed in Chapter 2). Models generally may be based on either an empirical

or a theoretical approach. The empirical approach uses data gathered from previous

projects to evaluate the current project. The theoretical approach is based on assump-

tions about such things as how people solve problems. The model presented here is

empirically derived from a successful project; it is contrasted with failed project data

to highlight those characteristics that empirically and intuitively should distinguish a

successful development pattern from possibly unsuccessful development patterns.

The model does not claim to be the ONLY model of successful patterns during

integration. It is a basis from which to expand both in terms of a larger database to

support it and the addition of other facets for analysis. It also presents a method of

progress evaluation that can be used by ALL personnel. Other successful patterns

very well may exist and future research may uncover them.

The model should enable project personnel, the non-technical personnel in par-

ticular, to visualize the progress of the integration phase of the project in an objective

manner. A factual basis that can be used for decision making about the extension of

deadlines and/or the expansion of budgets is needed. The model should be under-

standable, clear, usable, objective and provide visibility of progress in the form of

patterns developing from the application of change measures to the data. These

characteristics should be applicable for non-technical and technical personnel alike.

While using technical concepts and tools, the results of the model presented in

Chapter 4 are non-technical enough in the presentation of progress evaluation to be

understood and used by personnel who may or may not have a technical background.

Appendix C presents a check-list format of the model to aid managers in the use of

the model.

Chapter 2 introduces the concept of software engineering, the software develop-

- 3 -

ment cycle, the software life cycle and other background information. Chapter 3

discusses the analysis tools chosen for use. After the model is discussed in Chapter

4, case studies are presented in Chapter 5 and then contrasted with the model in

Chapter 6. The model is then revised to a working model in Chapter 6.

It is important that the managers of software projects start to move away from

its current "seat of the pants" methodology into a visible progress methodology.

Hopefully, while the model of progress presented is for only a part of the software

development cycle, it will open the door for development of models of progress for

the other phases.

-4-

Chapter Two

Background

2.1 Presentation of Software Development Cycle and Software Life Cycle

During the past decade software costs have risen dramatically, becoming the

single largest expense in many computer based systems. Software is the system ele-

ment that is most difficult to plan, least likely to succeed on time and within cost,

and the most dangerous to manage. Software engineering techniques involve plan-

ning, analysis, design, implementation, testing and maintenance, and form the basis

of a software engineering methodology that is application-dependent. The main

objectives are 1) a well-defined methodology that addresses a software life cycle of

planning, designing, development and maintenance, 2) a defined set of software com-

ponents that provides documentation of each step in the life cycle and shows tracea-

bility from step to step and 3) a set of milestones [Pressmanl982].

Two cycles are associated with software production. One is the software

development cycle and the other is the software life cycle. The software development

cycle is a subset of the software life cycle and will be discussed first. Although there

are slight variations on the nomenclature of the phases, the phases in the software

development cycle are as follows:

1. Requirements Analysis
2. Program Specification

3. Design - Preliminary and Detailed
4. Coding

5. Unit Testing

6. Integration of Unit Modules
7. Validation

A definition and general information for each stage follows.

2.1.1 Requirements Analysis

-5-

The requirements analysis phase is the starting point of software development.

This phase is also known as the problem definition phase. During the requirements

analysis phase the user's requirments are carefully examined so that the intent of the

desired system, the properties it should possess, and any constraints on it are

identified. The user's needs versus the user's desires are differentiated.

The purpose of this phase is to identify the problem and specify a solution that

will fulfill the user's needs. The solution also needs to be precise enough to be pro-

duced by the software project team.

Typically, products of this phase include a Software Plan, a preliminary user's

guide, optional prototype development, and quality assurance and verification plans.

These products should be complete enough to answer all questions regarding what

work is to be done and if necessary, serve as a contractual agreement between the

developer and the customer.

2.1.2 Program Specification

The program specification phase is an extension of the requirements analysis

phase. A precise specification for the desired software system is formulated. This

specification is prepared in terms that are understandable and can serve as guides for

designers, coders and testers. It is an interpretation of the requirements documents.

The Software Requirements Specification that is produced should be cross-checked

with the products of the requirements analysis phase to ensure accuracy and correct-

ness. Cross-checking this document with the user is also valuable for verification

purposes.

2.1.3 Design

Design involves analysis of the Software Requirements Specification. The flow

of the data and important algorithms are planned and the system is organized into

modules. The design phase can be broken into two sub-phases: preliminary design

-6-

and detailed design. During preliminary design, the modules are identified and the

software structure or hierarchy is defined. A precise specification of what each of the

modules in the software hierarchy does is done in the detailed design sub-phase.

These specifications are also called module specifications. Some of the areas that are

explicitly specified include module interfaces, externally observable behavior,

input/output parameters, global data accessed, and the project team member respon-

sible for the module. The more formal the specification is, the more likely correct

implementation is to occur.

2.1.4 Coding

During the coding phase of the software development cycle the design is

translated into a machine understandable form. Each module is coded following the

algorithm produced during the design phase and with close attention to the module

specification(s) for that particular module.

Although this phase is the one most associated with system development by the

lay person, it actually only constitutes about 15% of the total development time

expended [Gilbertl983]. It should be a direct follow through of the design phase.

2.1.5 Unit Testing

A critical element of software quality assurance is software testing. Software

testing is the ultimate review of specification, design and coding. It is. at least

psychologically, a destructive process because successful testing discovers errors.

Error free-ness cannot be proved by testing. In this discussion of the software

development cycle, testing is broken into three sections: unit testing, integration of

unit modules and validation.

Individual modules are tested to see that they function properly as an indivi-

dual unit. Control paths should be tested to uncover errors within the boundary of

-7-

the module. The unit test is always white-box oriented. In white-box testing the

internal workings of the module are known and can be tested to assure that they per-

form according to the specifications.

2.1.6 Integration of Unit Modules

This is the phase of the software development cycle which is examined in the

development of the model of progress that is presented in Chapter 3 and for which

the model is designed to analyze.

During this phase unit modules are integrated together into an overall system.

Interfaces are checked for correctness in terms of parameters, affects of global vari-

ables are checked and correctness of variable initialization is checked. These are just

a few of the areas of testing that are done during integration. Integration is a sys-

tematic technique for assembling software while testing to uncover errors associated

with interfaces.

The most important and most time-consuming system errors are interface

errors, i.e.. interaction errors between modules. Experience has shown that software

integration requires a large amount of time because of errors that arise in the transfer

of information between modules.

In the literature there are three approaches to integration. They are:

1. Top-Down Integration

2. Bottom-Up Integration

3. Sandwich Integration

2.1.6.1 Top-Down Integration

To overcome the time problem of integration, most developers use the strategy

of top-down integration and testing. Top-down integration is an incremental

approach to system assembly. The top-down integration process is performed in a

series of steps:

- 8 -

1. The main module is used as a test

driver with modules immediately
subordinate to it being "stubbed" in.

2. Stubbed in modules are replaced

one at a time with actual modules.

3. As each module is integrated,

testing occurs.

4. Regression testing may be done
to make sure new errors have not been
introduced with the replacement of a

stub with an actual module.

Top-down integration offers several advantages. Theoretically, errors are local-

ized to the new modules and interfaces that are being added to replace stubs. The top

level modules provide a test environment for the lower level modules. Since major

control or decision points are encountered early in the system, they are also verified

early in the testing.

Top-down integration sounds fairly uncomplicated but in practice causes loss of

correspondence between specific tests and incorporation of specific modules. No

significant data can flow upwards from the stubs so many tests must be delayed

until replacement of stubs with actual modules occurs. While it seems that errors

would be localized to new modules and interfaces being added, the fact remains that

since many tests must be delayed until this addition, the upper modules may also

still contain errors.

2.1.6.2 Bottom-Up Integration

Bottom-up integration assembles and tests modules starting with modules at

the lowest levels in the software structure or hierarchy. Stubbing is eliminated since

subordinate modules are always available. As individual modules pass their unit

testing, they are combined into sub-groups. The sub-groups are tested and then com-

bined into larger sub-groups until finally the entire system is put together from these

sub-group pieces. Normally each of these sub-group pieces represents a major section

-9-

of the total system. Control and data interfaces require extensive testing with test

cases being carefully chosen. Exhaustive testing of sub-systems is not practical or

feasible because of the increasing complexity of the sub-systems and their interfaces.

This complexity problem is readily visualized in the case of the "big bang" approach

to bottom up integration in which after unit testing, ALL modules are linked and

executed in one single integration step. Isolation of error sources is a true headache in

this case.

2.1.6.3 Sandwich Integration

The sandwich integration strategy [Fairleyl985] is a combination of the top-

down integration strategy and the bottom-up integration strategy. It is predom-

inately top-down but bottom-up strategy techniques are also used. Individual

modules and sub-systems are built using the bottom-up integration strategy.

Integration of the sub-systems into the system in its entirety is done by using the

top-down integration strategy. Thus indiviudal modules and sub-systems are tested

prior to replacement of stubs. The advantages of the top-down integration strategy

are retained while some of the problems are eased.

2.1.7 Validation

Validation is said to succeed when the system performs in the manner that it is

reasonably expected to. Reasonable expectations should have been defined in the

Software Requirements Specification in a section entitled Validation Criteria.

Validation testing occurs after the software is completely assembled as a pack-

age. It consists of a series of black box tests demonstrating requirements conformity.

A test plan and a test procedure are designed. These check that all functional

requirements and performance requirements are met, the documentation is correct

and geared to human understandability, and any other types of requirements are

satisfied (e.g.. maintainability, etc.). The test plan develops the types of tests to be

- 10-

done. The test procedure develops the specific test cases. After each test case is run,

one of two states occur. Either the specifications were met and the function or per-

formance characteristic is accepted or there was a deviation from the specification.

When a deviation is detected it is noted. Most deviations are not correctable prior to

delivery and must be resolved thereafter.

As indicated earlier, two cycles are associated with software production. The

software life cycle is identical to the software development cycle with the addition of

one more phase — the maintenance phase. Maintenance involves the updating of code

and documentation to meet changes in the user's requirements. Resolution of

unresolved deficiences and "bug fixing" are likely to be part of maintenance also.

When updating or fixing becomes too extensive, the software system should be

replaced or the existing system reconfigured.

Previous analysis of the change patterns occurring during the maintenance phase

provided the basis for the research done for the integration phase [Gustafsonl985].

This work analyzed the types of statements being changed during the maintenance

phase. This analysis technique is further discussed in Chapter 2.

2.2 Literature Survey

Generally speaking, the literature tends to emphasize mathematical estimation

models and formulas when looking at management of software development. Cost

estimation, staffing levels and scheduling are some of the areas that are heavily

explored in the literature.

2.2.1 Cost Estimation

Estimating the cost of a software project is one of the hardest tasks in software

development. The major factors influenciing software cost are:

- 11 -

1) Programmer ability

2) Product complexity

3) Product size

4) Available time

5) Required reliability

6) Level of technology [Fairley85]

Harold Sackman [Sackman68] conducted an experiment in 1968 relating to pro-

grammer ability. The goal of the experiment was to find out the influence on pro-

grammer productivity of batch and time-shared access. The results showed a much

wider difference in programmer ability than could be attributed to the machine access

method. He showed that programmer ability is a significant factor in cost estimation

from this experiment.

Frederick Brooks in his book "The Mythical Man-Month" states that utility pro-

grams are much more difficult to write than application programs and systems pro-

grams more difficult than utility programs [Brooks74]. Boehm extends Brooks'

evaluation and produces mathematical equations to ultimately predict programmer

cost for each type of program [Boehm8l]. These equations are empirically derived

from a large database. Boehm's equations are aimed at small to medium sized pro-

jects where the environment is familiar and well understood. Large projects obvi-

ously are more expensive to develop than small ones.

While Boehm's figures can be adapted for total project effort, Putnam directly

addresses the issue of total project effort [Putnam78]. Putnam's model uses linear

programming techniques for projection of development schedules. Putnam feels that

there is a point of nominal schedule compression that cannot be surpassed regardless

of the number of people or resources utilized. Putnam's estimation model is based on

the Rayleigh-Norden [Norden77] curve which shows the distribution of effort over

the software life cycle. The Rayleigh-Norden curve can also be used to mathemati-

cally relate the number of delivered lines of code to effort and development time

[Norden77].

-12-

Software reliability is the probability that a program will perform a required

function under stated conditions for a stated period of time [Fairley85]. Reliability is

often expressed in terms of accuracy, robustness, completeness and consistency of

source code. Boehm addresses the issue of reliability by designating categories of reli-

ability and establishing development effort multipliers for each category [Boehm8l].

Cheung states that program reliability is based in how reliable the modules are

and examines the effect module change has on the reliability of the whole program

[Cheung80]. Musa bases his model of software reliability on execution time

[Musa80]. Littlewood and Verrall present a Bayesian reliability growth model based

on the frequency of failures of a piece of software [Littlewood73]. There is little

consensus on exactly how to measure reliability.

Boehm handles the level of technology issue by again providing effort multi-

pliers based on the level of technology available [Boehm8l].

Number of lines of code has also been used to base cost estimates on. However,

this method is not very reliable and needs to be cross checked with some other

method.

By far, however, the most widely used cost estimation technique is expert judg-

ment. Expert judgment relies heavily on the background experiences of the person(s)

doing the cost estimation [Fairley85].

2.2.2 Staffing Levels

As a project progresses the level of staffing changes. The Rayleigh-Norden curve

is representative of the staffing level at specific points in development [Norden77].

Putnam's model also addresses estimates of staffing as does Boehm's model [Put-

nam78, Boehm8l].

Esterlings productivity model is based on the microscopic characteristics of the

work environment such as number of interruptions in a day, average recovery time

- 13 -

after an interruption, etc. [Esterling80]. He develops an empirical relationship for the

fraction of useful working time per work day per person.

Walston and Felix isolated 29 factors that they felt affected productivity

[Walston77]. They then attempted to show how productivity varies with each factor

by deriving a set of single variable models for effort, project duration, pages of docu-

mentation and staffing levels. These models are functions of the number of lines of

code and are environment- and application-specific. They cannot be applied generi-

cally.

One of the most common fallacies in estimation of staffing levels is described by

Brooks in "The Mythical Man-Month" [Brooks75]. Managers often believe that if

they fall behind schedule they can catch up by adding more people to the project.

Brooks says that adding people to a late project will make it later.

Expert judgment also appears to be one of the most widely used methods for

estimating staffing levels.

2.2.3 Scheduling

The estimate of the amount of time it will take to complete a project can be

difficult and must often be revised. A number of techniques and models exist to help

estimate a project's completion time.

Basili and Zelkowitz empirically derived equations to predict person-months

and total weeks of effort needed for a project [Basili79]. Their equations are based on

medium to large scale systems.

The program evaluation and review technique (PERT) and the critical path

method (CPM) are scheduling methods that develop a network defining pictorially

the tasks to be accomplished and in what order they need to be done [Pressman82].

Boundary times for a given task are established to help evaluate progress.

-14-

Little of the literature specifically addresses the issue of general management of

the software development cycle. Most models and/or mathematical equations

presented to aid in project management only handle a very specific issue (such as cost

estimation) and in order to be used, require a technically oriented manager. There is

a lot to be said for placing technically oriented people in project management positios.

Past experience shows this is not happening. Thayer, Pyster and Wood [Thayer8l] in

investigating the major problem areas in software project management found that

procedures and techniques for project manager selection are poor. They also found

that success criteria is frequently inappropriate and procedures, techniques, strategies

and aids that provide visibility of progress to the project manager are not available.

Almost all models pertaining to management of software development are very

mathematically and technically oriented. We often tend to forget that software

development is still partially an art and the "art side" needs to be modelled also.

Non-technical management personnel need to be provided with usable and under-

standable models for management of software development. The literature shows

this has not been done.

2.3 Background of Data Collected and Used

The data used for this research consisted of modules and programs written in

the language "C" and implemented on the 8/32 under UNIX. On a daily basis during

the final days of the integration phase "snapshots" of the modules and programs were

taken. For each module and program there exists a collection of versions of the code

that depicts the integration activities.

The modules and programs were developed and written by junior and senior

computer science/information science students enrolled in CMPSC 341 Software

Engineering Project II. This course is a required course in the undergraduate curricu-

lum in the Computer Science Department at Kansas State University. Manhattan.

Kansas. It is a continuation of CMPSC 340 Software Engineering Project L The

- 15-

techniques of software engineering are taught and the application of these techniques

is accomplished through the development of the projects assigned to the students.

There were seven teams for which data is available. From these seven, the two with

the most complete data sets were chosen to evaluate completely and to include in this

research.

-16-

Chapter Three

Analysis Methodology

Once the data was assembled, objective change measures that would show pat-

terns of progress were needed. The patterns of progress needed to be definite and

clear. Non-technical personnel as well as technical personnel need to be able to use

and understand the patterns. After examining the different aspects of the data such

as completeness, style, etc., various change measures were evaluated. The change

measures chosen needed to be reflective of the goals of the model including under-

standability, usability, clearness, exhibition of patterns, and objectivity. Three

change measures were chosen to use in the analysis and definition of the model of

progress for the integration phase. The three change measures chosen were:

1) Changes by statement type

2) Changes within the software
hierarchy or structure

3) Changes in complexity

3.1 Changes By Statement Type

The initial measurement approach selected was to analyze the types of state-

ments being changed. This was a logical starting point since a similar analysis of the

types of statements changing during the maintenance phase suggested this research

[Gustafsonl985].

The types of statements being changed would be reflective of the work done

during the earlier development phases. Statement changes reflective of the goals of

the integration phase (interfaces, etc.) would be indicative of the addressing of

integration phase issues and hopefully their resolution. Statement changes that

reflected poor design or incomplete design specifications would indicate a lack of

- 17-

integration progress since in reality, development would still be continuing.

To accomplish the changes by statement type analysis, a tool was used that had

been developed for analyzing changes during the maintenance phase. This tool com-

pared two source code files for differences using the UNIX utility program "diff".

After the comparison, the lines of the first file were prefixed with code letters indi-

cating change in that line (if a change had occurred).

When a module or program had changed from one version to the next, this tool

was run on the two source code files to identify which statements had been changed.

The file with the prefixed lines was then sorted by statement type. A total count for

occurrences of each statement type was found and the total number of each state-

ment type that was changed was found (i.e., 100 "if" statments of which 8 were

changed). The percentage of change for each statement type was then figured (total

changes of a statement type divided by total number of that same statement type).

These figures showed which types of statements were changed most frequently

during the integration phase. For a given statement type it could be stated that X%

of this type of statement changed during the integration phase of the project.

3.2 Hierarchical Changes

The location of changes within the software hierarchy or structure was also

examined for the data sets. If a pattern in the location of the changes within the

hierarchy could be found, it would be indicative of the technique of integration actu-

ally being used (the actual technique may be different from the intended integration

technique). If no pattern could be found this would reflect a serious disorganization

of the integration phase and a need for corrective action.

To evaluate the location of changes within the software hierarchy, the actual

software hierarchy itself had to be identified. Although hierarchy diagrams for each

project existed, it was felt that a more valid hierarchy would be obtained from the

- 18-

source code itself — a case of what is said to be done versus what is actually done.

To do this a shell program was written using the UNIX utilities "sed" and "awk" to

remove all lines of code that did not contain a module call. The lines of code left

would enable one to build a hierarchy diagram since the module would have different

levels of indentation. The module declarations or headers were flush with the left

margin while any calls made by the module were indented from the left margin.

Consider the following example of a stripped file:

main

sort

search

sort

search

The module "main" calls the modules "sort" and "search". Neither of the modules,

"sort" or "search", make any calls to other modules. Therefore the software hierarchy

could be constructed as follows:

main

I

H H

I I

sort search

This part of the analysis was done by hand although one of the projects currently

being developed by the Spring 1986 CMPSC 341 Software Engineering Project U class

is a tree drawer that would generate a hierarchy structure from the type of file

described earlier. Hierarchy diagrams were built for each change period.

The files produced in the changes by statement type analysis were then re-

analyzed. This time a percentage change for each module was found. Percentages for

modules showing the most significant change were then associated with their respec-

tive modules in the hierarchy diagrams. As the changes from one change period or

delta to the next were recorded, the successive hierarchy diagrams were examined for

-19-

integration patterns.

A top-down integration pattern would be associated with top level modules

having the higher percentages of change in the initial change period and these higher

percentage positions appearing at subordinate levels as integration progressed. Also

expected would be a downward growth of the hierarchy as more modules replaced

the stubs.

A bottom-up pattern would show the lowest level modules exhibiting the

higher percentages of change in the initial change period with an upward progression

of the higher percentages of change. The hierarchy would also be expected to grow

both horizontally and upwards as sub-systems were added and additional pieces

were integrated.

A sandwich integration would show an ordered pattern that at first may appear

to have no pattern of integration. Lower modules would exhibit higher percentages

of change in the early change periods. Horizontal and upward growth would also

appear in early diagrams. At some point the entire structure would be available and

the change percentages would go through a top to bottom progression as in the top-

down integration pattern.

Some integration technique should be identifiable for each project from the pro-

gression through the hierarchy in terms of growth and/or percentage of module

change.

3.3 Complexity Measures

A measurement of the complexity of the programs and modules was also used

to look for patterns. Complexity measures are designed to measure the complexity or

understandability of a design/program. Some controversy arises as to what exactly a

particular complexity measure means in terms of what it measures. However, for

this research, complexity measures were chosen for data analysis in order to deter-

-20-

mine patterns of code change and not to provide an understanding of the program's

complexity.

McCabe's cyclomatic complexity measure [McCabel976] and Halstead's software

science measure [Halsteadl977] were chosen as the two complexity measures to use in

the data analysis for several reasons. First, both have been around long enough for

people to be familiar with them and for the complexity measures to have some kind

of visible longevity. Second, and probably most significantly, automated tools were

available to perform the two complexity measures. This eliminated the necessity of

performing these calculations by hand and thus introducing human error. Finally

the two complexity measures have been shown to differ from each other based on the

type of project they are analyzing. [Mata84. Mata86] Thus if one does not show a

pattern, the other might. However, if neither of the complexity measures show a

pattern it would indicate that a pattern very likely did not exist.

Part of the analysis of the complexity measures dealt with inter-module versus

intra-module complexity or the complexity of the whole versus the complexity of the

parts. The inter-module complexity or the complexity of the integrated system

would be evaluated for patterns in accordance with the integration technique (top-

down, bottom-up or sandwich) identified in the hierarchical change analysis. Both

top-down and bottom-up would show a significant increase in overall complexity as

integration progressed. The increase in complexity during a sandwich integration

would not be as significant as the increase during top-down or bottom-up integration

and would level out prior to the end of the integration phase when all modules were

in place.

Intra-module complexity would not be expected to fluctuate significantly

throughout the integration phase. Individual modules have been unit tested prior to

the integration phase beginning and should be stable in complexity.

-21 -

The automated metric tools were run on the programs for each delta or change

period. The results for each complexity measure were examined to note any increase

or decrease in the complexity of the whole program and of the individual modules.

Patterns of increase or decrease in complexity were identified.

An added feature that arises from the different change measure evaluations of

individual modules is the highlighting of modules that may be having significantly

more integration problems than others. This would help isolate problem modules.

The reasons behind the individual module's integration problems could then be

evaluated. Since this evaluation would require action by technical personnel in order

to correctly analyze the reasons for the problem, highlighting of individual modules

with problems is mentioned here; it is not incorporated into the model of successful

patterns since it would be diflicult for non-technical personnel to utilize successfully.

3.4 Summary

The three change measures were all evaluated for patterns (or lack of patterns)

during the integration phase. These patterns were compared with a model for the

ideal case which had been developed based on experience and intuition. From the

patterns identified, a revised model for successful patterns during the integration

phase of software development was built. Unsuccessful trends suggested by the

change measures of the data will be included to aid in delineating lines of progress

since other successful patterns of progress may be found as further research is done.

-22-

Chapter Four

Model for Ideal Case

Before evaluating the data, it was deemed appropriate to fashion a model for the

case of ideal progress during integration. This would give a intuitive foundation to

base our observations on and also a hypothetical model to evaluate results against.

Few changes should be needed to the code during the integration phase of the

software development cycle if the project has been defined and designed precisely

enough including complete module specifications.

The three change measures that had previously been decided upon as the basis

for the model of the integration phase were each evaluated for patterns for the case

of ideal integration.

Regarding types of statements being changed, it was felt that while few changes

should be occurring, those that did would probably be attributable to the actual

integration itself. These types of statements would include subroutine calls and sys-

tem calls. Declaration statements should not be changing since data structures

should have been set much earlier in the design phase of the project. Some looping

structures may show change but this should be traceable to a change in one of the

integration related statements, or to possibly an enhancement related to speed of exe-

cution.

The location of the changes within the hierarchy structure should follow a top-

down approach. This is the method of integration taught in the computer science

curriculum and in particular in the lecture portion of the software engineering project

class.

mcrease
The complexity of the code for the overall system would be expected to

dramatically as individual modules are integrated. However, the complexity of the

-23 -

intra-module code would not be expected to increase or decrease significantly — prob-

ably only very slightly. A small amount of change would be expected. This would

indicate that the same statements were not being repeatedly changed with no progress

occurring.

The model for the ideal case of progress during integration of software dis-

cussed above, presents the change patterns that should occur during successful

integration. These change measure patterns will be compared with the actual data

after its presentation.

-24-

Chapter Five

Case Studies

Although a large amount of data was available and was analyzed during this

research, there were two teams whose data was chosen for presentation in the case

studies section of this paper. The first team. G3, represents the successful case. They

were able to finish their software development project on time while meeting their

specifications. Their data exhibited identifiable patterns of progress during the

integration phase. The second team. G5, represents the unsuccessful case. This team

did not finish their project and did not seem to be making progress towards comple-

tion. Their data exhibited a randomness which was not identifiable with anything —

especially progress. Thus both ends of the spectrum are represented by the data

presented here.

5.1 Successful Case

Team G3 completed their test coverage project on time meeting their defined

requirements. They had a total of nine individual modules. Four versions were

examined representing the three change periods that occurred during G3's integration

period.

The statement type exhibiting the highest percentage of change during the

integration phase for G3 was subroutine/system calls. Twenty-one (21) percent of

all subroutine/system calls were changed during integration. Assignment statements

also exhibited a fairly significant amount of change with eighteen (18) percent of all

assignment statements changing during integration. However the percentage of

change for assignment statements steadily decreased during the integration phase.

Thirteen (13) percent of if statements were also changed. All other types of state-

ments showed less than thirteen (13) percent change. The pattern of statement

-25-

changes tended to show an increase in the second change period followed by a return

to the same general percentage range as the first change period. Percentages for overall

changes in all statement types are presented in Appendix A. Table 1. The raw data

for types of statements changed is presented in Appendix A. Table 2.

Hierarchical analysis revealed some rather surprising results in that a strict

application of any of the three integration strategies was not used. Instead all

modules were put together into one system similar to the starting point of the

bottom-up "big bang" technique. However, from there on the bottom-up integration

technique was utilized. At first, the lowest level modules exhibited the highest per-

centages of change indicating the occurrence of their integration. This was followed

by an upward pattern through the hierarchy of the higher percentages of change.

Appendix A. Table 3 presents the percentages of change for each delta or change

period. The hierarchy itself was stable during the integration phase.

McCabe's cyclomatic complexity measure (see appendix A. Table 4) remained

relatively stable for both inter-module complexity measures and intra-module com-

plexity measures throughout the integration phase. The intra-module pattern fol-

lowed the expected pattern of stability that was put forth in the proposed model.

The stability of the inter-module pattern is not unreasonable given the integration

technique used.

Halstead's software science measure (see appendix A, Table 4) showed more

change than the McCabe's complexity measure. At the intra-module level, change

ranged from no change at all to a large change - in some cases doubling from one

change period to the next. The inter-module figures showed an increase overall of

about forty (40) percent.

The successful pattern of integration exhibited by G3 showed

subroutine/system calls and assignment statements changing most frequently. A "big

-26-

bang" start in the hierarchy analysis followed by a bottom-up integration strategy

was observed. McCabe's cyclomatic complexity measure showed stability at the

intra-module level and the inter-module level. Halstead's software science measure

did not show any pattern of stability.

5.2 Unsuccessful Case

Team G5 did not complete their test coverage project and did not show any

signs of progress towards integration. They had a total of eleven individual modules

in their project. As with team G3. four versions were examined which represented

three change periods that occurred before team G5's project was abandoned.

Almost every type of statement was changed significantly during G5's integra-

tion phase (see appendix B. Tables 1 and 2). Forty-five (45) percent of the statement

types exhibited a change of thirty (30) percent or more. Assignment statements,

subroutine/system calls, declarations, breaks, and case statements all exhibited per-

centage changes of greater than thirty (30) percent. If statements and while state-

ments showed change percentages between twenty-two (22) percent and twenty-

seven (27) percent. All other statement types had less than a fourteen (14) percent

change. The fact that almost thirty-four (34) percent of all declaration statements

were changed indicates some significant design deficiencies. Appendix B, Table 1

presents the percentage change for each statement type for G5's integration phase.

Appendix B, Table 2 presents the raw data for the statement type changes.

Team G5's statements exhibited a much higher percentage of change overall than

did team G3. The types of statements being changed and their high percentage of

change indicates significant design deficiencies and lack of progress towards project

completion. Team G5 moved from one software development phase to the next prior

to completing that phase. The premature movement into the integration phase was

probably only one in a series of premature phase advancements.

-27-

Changes in the hierarchy also exhibited no pattern. Although the hierarchy

itself was stable, the integration technique, if one was used, escaped identification.

Appendix B, Table 3 presents the module change data.

McCabe's cyclomatic complexity measure (see appendix B, Table 4) shows virtu-

ally no change at all at either the inter-module or intra-module levels. While this

might seem to point to progress, it probably does not. Instead, it indicates that the

same statements are probably being changed over and over with no progress being

made towards integration.

Halstead's software science measure (see appendix B, Table 4) appears relatively

stable at the inter-module level but this can be explained by examining the intra-

module level complexity figures. Fluctuations from one change period to the next can

be seen with both increases and decreases occurring. These increases and decreases

appear to offset each other and give the illusion of inter-module stability.

G5 exhibited a mishmash of inconsistencies and wild variations in change. No

patterns were identifiable probably due to the lack of an integration plan or pro-

cedure. While team G3 was successful and progressed through the integration phase,

team G5 not only wasn't successful or progressing, but must have been working with

an extremely incomplete software development base of prior phases. It was not clear

that their hierarchy structure was workable, their data structures had not been

clearly defined and they appeared not to have any direction towards progress. Team

G5 wandered around lost in their integration phase. It is apparent that G5 should

have returned to their previous phases - particularly their design phase and clarified

essential design issues before progressing on.

-28-

Chapter Six

Successful Case Study vs Proposed Model

The successful case study presented supported the proposed model's assertion

that subroutine/system calls would exhibit the most significant change in statement

types. However the fact that assignment statements also changed significantly was

not foreseen in the proposed model. Further work investigating the reason(s) for the

significant change in assignment statements might prove beneficial.

The location of the changes within the hierarchy structure of the successful case

study did not support the proposed model's top-down integration strategy. It indi-

cated a "big bang" start followed by a bottom-up integration strategy. This strategy

will be referred to hereafter as "G3's big bang integration strategy".

Since the proposed model's location of changes in the hierarchy pattern was not

supported, neither was the inter-module complexity pattern. The inter-module com-

plexity pattern for the proposed model showed complexity increasing as integration

progressed. The successful case study exhibited a smaller increase in overall complex-

ity than was expected from the proposed model. Relative stability was also observed

in the successful case study.

Intra-module complexity patterns for the proposed model were supported by

the successful case. Individual modules exhibited stable complexity patterns in both

the successful case study and the proposed model.

6.1 Amended Model

After comparison of the proposed model and the successful case study, an

amended model for successful patterns of integration was developed.

Subroutine/system calls are still the statement type expected to exhibit the

most significant change. Further analysis may support the inclusion of significant

-29-

changes in assignment statements. At this point changes in assignment statments

will be included as a note to but not part of the model. Other statement types

should exhibit little or no change during the integration phase.

Declaration statements including define statements should be representative of

data structures that were thought out and defined in earlier phases. These statement

types should show very little or no change during the integration phase. Likewise

decision structure statements such as case statements and if statements, and returns,

breaks, and else statements should show little or no change during integration. These

statement types represent the algorithmic structure of the project which should have

been defined in an earlier phase.

The change percentages for comment statements should be relatively low. The

comments should be reflective of the overall algorithm and debugging should be

aligning the code with the comments.

A stable hierarchy should evolve during the integration phase. An identifiable

integration technique should be found. However, which integration technique used

will be dependent upon the situation and the project team members. Top-down

integration strategy, bottom-up integration strategy, sandwich integration strategy or

the G3 big bang integration strategy might be identifiable.

The pattern of the complexity measures for the inter-module measures will be

dependent upon the integration strategy identified in the location of change in the

hierarchy analysis. The top-down integration strategy and the bottom-up integration

strategy would exhibit dramatic increases in inter-module complexity. Sandwich

integration strategy would indicate a visible increase early with a leveling off as

integration progresses. The G3 big bang integration strategy would exhibit inter-

module stability throughout the integration phase.

Intra-module complexity should remain relatively stable throughout the

integration phase regardless of the integration strategy identified.

-30-

Chapter 7

Conclusions

The proposed model for successful patterns during integration utilizes patterns

for three change measures to show integration progress or lack of progress for the

programs/modules of the project. First, the types of statements being changed are

analyzed. Subroutine/system calls should show the highest percentage of change

with the changing of assignment statements not indicating an unreasonable behavior.

The changing of a high percentage of declarations would indicate a need for the

return to earlier phases of development to complete or re-do work there. High per-

centages of change in other types of statements would not be indicative of progress in

the integration phase according to this model.

Second, the software hierarchy or structure should become stable. The progres-

sion of change in the modules in the hierarchy should have an identifiable pattern

that can be associated with one of the integration strategies discussed in previous

chapters. An inability to identify a pattern of integration or an unstable software

hierarchy would indicate lack of progress in integration.

Finally, depending on the integration strategy identified in the second part of

the model, a pattern in the increase/decrease of the complexity measures should be

apparent. Using McCabe's cyclomatic complexity measure and Halstead's software

science measure, complexity measures for inter-module and intra-module complexity

are obtained. Inter-module complexity should increase significantly with the use of a

top-down integration strategy or a bottom-up integration strategy and increase with

a leveling off when the sandwich integration strategy is used. Using the G3 big bang

integration strategy, inter-module complexity should remain relatively stable.

Intra-module complexity should remain stable with little or no change for all

integration strategies. One or the other of the two complexity measures should

- 31 -

exhibit a pattern of stability. If neither exhibit stability patterns then the progress

of integration is not visibly occurring.

Since none of the patterns in the proposed model require extensive technical

analysis in order to show progress during integration, the model can be used by non-

technical project personnel as well as members of management and technical person-

nel. Patterns are easily recognizable by most people. Recognizing the patterns out-

lined for this model will enhance the visibility of progress during a project's integra-

tion phase and enable non-technical and technical project personnel to make rational,

data-based decisions about, and projections for, software projects. Appendix C

presents a check-list for the model to aid in its use by managers.

Future work to identify models of patterns for the other phases of the software

development cycle is needed to build an overall model of patterns of progress for

software development. Another area for future research is the examination of the

changing of assignment statements to see if the exhibited trend of decreasing percen-

tages holds. A search for a theoretical/logical explanation for this high percentage of

change for assignment statements would also be valuable. It is necessary to do

further change measure analysis of the integration phase in order to lend credence to

the proposed model or to refute it. Evaluation of additional change measures may

also expand the proposed model.

As more detailed historical data is gathered about the different software

development phases, it is important to remember that there is a need to move to a

system for project decision making that is understandable and usable by ALL person-

nel involved in the software development of the project.

-32-

BIBLIOGRAPHY

[Bailey8l] John W. Bailey, and Victor R. Basili.

"A Meta-Model for Software Development Resource
Expenditures", Int. Conf. on Software Engineering

(5th. 19810. pp 107 - 116.

[Basili79] Victor R. Basili and Marvin V. Zelkowitz,

"Measuring Software Development Characteristics in the

Local Environment". Computers and Structures, Vol. 10,

1979, pp 39 - 43.

[Boehm8l] Barry Boehm, Software Engineering Economics,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[Brooks75] Frederick P. Brooks. Jr.. The Mythical
Man-Month, Addison-Wesley, Reading, MA. 1975.

[Cheung80] Roger C. Cheung. "A User-Oriented Software
Reliability Model", IEEE Transactions on Software
Engineering. Vol. SE-6, No. 2. March 1980, pp 118 - 125.

[Doerflinger85] C.W. Doerflinger and V. R. Basili.

"Monitoring Software Development Through Dynamic
Variables". IEEE TOSE. Vol. 11. No. 9, September 1985.

pp 978 - 985.

[Esterling80] R. Esterling, "Software Manpower Costs: A
Model", Datamation. March 1980. pp. 164 - 170.

[Fairley85] Richard E. Fairley, Software Engineering
Concepts, McGraw-Hill Book Company, New York, NY
1985.

[Gehring] Philip F. Gehring and Udo W. Pooch, "Toward a
Management Philosophy for Software Development", from
Advances in Computer Programming Management . Rullo (ed)
Hayden.

[Gilbert83] Philip Gilbert. Software Design and
Development. Science Research Associates, Inc..

Chicago, IL, 1983.

[Gustafson85] David A. Gustafson. Austin Melton, Chyuan
Samuel Hsieh, "An Analysis of Software Changes During
Maintenance and Enhancement", Conference on Software
Maintenance. Washington. D.C., November, 1985.

[Halstead77] Maurice Halstead, Elements of Software
Science, Elsevier, 1977.

- 33 -

[Howden82] William E. Howden, "Contemporary Software

Development Environments", Communications of the ACM.
Vol. 25. No. 5, May 1982. pp 318 - 329.

[Itakura82] Minoru Itakura and Akio Takayanagi.

"A Model for Estimating Program Size and its

Evaluation", 6th Int. Conf . on Software Engineering,

1982, pp 104 - 109.

[Littlewood73] Bev Littlewood and J. L. Verrall, "A
Bayesian Reliability Growth Model for Computer
Software", Journal of the Royal Statistical

Society (series C), Applied Statistics,

Vol. 22. No. 3, 1973, pp. 332 - 346.

[Mata84] Ramon Toledo Mata. "A Factor Analysis of

Software Complexity Metrics". PhD Thesis, Kansas State

University, Manhattan. Kansas 1984.

[Mata86] Ramon Toledo Mata and David A. Gustafson.
"A Factor Analysis of Software Complexity Measures",
submitted for publication.

[McCabe76] Thomas J. McCabe, "A Complexity Measure", IEEE
Transactions on Software Engineering, Vol. SE-2. No. 4.

December 1976, pp. 308 - 320.

[Musa80] John D. Musa. "Software Reliability Measurement",
The Journal of Systems and Software, vol. 1, no. 3,

1980, pp. 223 - 241.

[Norden77] Peter V. Norden. "Project Life Cycle Modelling:
Background and Application of the Life Cycle Curves".
First Software Life Cycle Management Workshop,
August 1977. pp. 217 - 306.

[Page82] J. Page, "Evaluation of Management Measures of
Software Development Vol. 1 : Analysis Summary", NASA,
September 1982, N83 - 13836.

[Pressman82] Roger S. Pressman, Software Engineering - A
Practitioner's Approach, McGraw-Hill Book Company,
New York, NY, 1982.

[Putnam77] Lawrence H. and Ray W. Wolverton. Quantative
Management: Software Cost Estimating. IEEE cat EHO 129-7
New York. 1977.

[Putnam78] Lawrence Putnam. "A General Empirical Solution
to the Macro Software Sizing and Estimating Project",
IEEE Transactions on Software Engineering, vol. 4,

no. 4. 1978, pp. 345 - 361.

-34-

[Putnam79] Lawrence Putnam and Ann Fitzsommons, "Estimating

Software Costs", Datamation, Sept - Nov. 1979.

[Putnam80] Lawrence H. Putnam, "The Real Metrics of Software
Development", EASCON 80 Record, IEEE cat 80CH 1578-4,

New York, 1980, pp 310 - 322.

[Shooman79] Martin L. Shooman, "Tutorial on Software
Gist Models", Workshop on Quantative Software Models.
IEEE cat TH0067-9. pp 1 - 19.

[Szulewski8l] P. A. Szulewski, M. H. Whitworth, P. Buchan
and J. B. DeWolf , "The Measurement of Software Science

Parameters in Software Design", Perf. Eval. Review,
Vol. 10, No. 1, Spring 1981, pp 89 - 94.

[Walston77] C. Walston and C. Felix, "A Method of
Programming Measurement and Estimation",

IBM Systems Journal, vol. 16, no. 1, 1977,

pp. 54 - 73.

[Warburton83] R. D. H. Warburton, "Managing and
Predicting the Costs of Real-Time Software",
IEEE TOSE, Vol. 9, No. 5, September 1983,

pp 562 - 568.

[Weinberg82] G. M. Weinberg, "Overstructured Management
of Software Engineering", 6th Int. Conf. on Software
Engineering, pp 2 - 9.

[Weiss85] D. M. Weiss and V. R. Basili. "Evaluating
Software Development by Analysis of Changes:
Some Data from the Software Engineering Laboratory",
IEEE TOSE, Vol. SE-11. No. 2, February 1985, pp 157 - 168.

- 35-

APPENDLX A
DATA FOR TEAM G3

TABLE 1

STATEMENT CHANGES BY CHANGE PERIOD - Team G3
STATEMENT TYPE PERIOD 1 PERIOD 2 PFRIOD 3 OVFR AT T

Subroutine Call^ 14 7% oz,.y ,0 lO.J 70 Z 1 .Z70

Begin/End 11.1% 21.1% 5.0% 12.3%
Assignment 33.3% 14.3% 10.9% 18.9%
If 13.0% 20.0% 4.3% 12.7%
Else 20.0% 13.3% 6.7% 11.1%
Do 0.0% 20.0% 0.0% 7.1%
Return 0.0% 0.0% 0.0% 0.0%
While 18.2% 9.1% 9.1% 12.1%
Declarations 15.2% 2.3% 4.1% 7.2%
Include 0.0% 0.0% 0.0% 0.0%
Comments 0.0% 33.3% 0.0% 6.5%
Break 0.0% 0.0% 0.0% 0.0%
Case 0.0% 0.0% 0.0% 0.0%

-36-

TABLE 2
Raw Data for Types of Statements Changed - Team G3

changes total loc

Assignment 24 127
Begin/End 14 114
Subroutine Calls 48 226
If 9 71
Else 5 45
Do 1 13
Return 6
While 4 33
Declarations 10 138
Include 6
Comments 3 46
Break

Case

-37-

TABLE3
Percent Changes By Module - Team G3

Delta 1 Delta 2 Delta 3

Main 18.6% 20.07o 11.1%
Findword 89.5% 21.4% 0.0%
Beginproc 11.7% 20.0% 16.2%
Thenproc 15.8% 62.2% 41.9%
Getword 52.6% 0.0% 0.0%
Check 4.1% 9.2% 2.5%
Skip 30.8% 0.0% 0.0%
Declare 0.0% 0.0% 0.0%
Initial 5.3% 0.0% 0.0%

- 38 -

TABLE 4

Complexity Measures - Team G3
McCabe's
Procedure Name Period 1 Period 2 Period 3 Period 4

Beginproc 8 8 8 8
Check 11 12 12 12
Declare 4

1 1 1 1

Findword 3 3 3 3

Getword 2 3 3 3
Initial 2 2 2 2
Main 5 5 5 5
Skip 2 3 3 3
Thenproc 5 6 3 9
OVERALL 39 44 40 46

Halstead's

Procedure Name Period 1 Period 2 Period 3 Period 4

Beginproc 137 159 178 160
Check 179 193 192 195
Declare 27 27 27 27
Findword 41 49 39 39
Getword 39 53 53 53
Initial 35 35 35 35
Main 36 36 55 61
Skip 11 23 23 23
Thenproc 72 93 59 117
OVERALL 577 669 661 710

-39-

APPENDEX B
DATA FOR TEAM G5

TABLE 1

STATEMENT CHANGES BY CHANGE PERIOD - Team G5
ilAl .CUVI r.iN 111 re dud T/~vr» 1rtKlUU 1 Period 3

/"\T TT^T^ ATTOVERALL
Assignment 73.3% 9.1% 32.4% 36.0%
Begin/End 0.0% 0.0% 18.1% 6.1%
Subroutine Calls 29.8% 10.6% 76.6% 39.0%
If 22.2% 11.1% 33.3% 22.2%
Else 0.0% 0.0% 40.0% 13.3%
Do 0.0% 0.0% 0.0% 0.0%
Return 0.0% 0.0% 0.0% 0.0%
While 80.0% 0.0% 0.0% 26.7%
Declarations 33.3% 21.9% 45.5% 33.7%
Include 0.0% 0.0% 0.0% 0.0%
Comment 0.0% 1.2% 8.2% 3.2%
Break 100.0% 0.0% 0.0% 33.3%
Case 100.0% 0.0% 0.0% 33.3%

-40-

TABLE 2

Raw Data for Totals of Types of Statements Changed - Team G5
changes total loc

Assignment 66 194
Begin/End 12 250
Subroutine Calls 118 292
If 12 54
Else 4 30
Do 18
Return

While 8 30
Declarations 52 170
Include/Define 6 20
Comments 14 504
Break 10 30
Case 10 30

-41 -

TABLE 3

Percent Changes By Module - Team G5
Delta 1 Delta 2 Delta 3

Instcode 27.3% 0.0% 18.2%
Firstpass 55.9% 0.0% 21.4%
Secondpass 13.0% 0.0% 13.0%
Mes_proc 12.5% 0.0% 25.0%
Umes_proc 28.0% 0.0% 11.5%
Comment 5.0% 0.0% 25.0%
Insert 13.6% 0.0% 27.3%
Putsymbol 25.7% 0.0% 21.4%
Stack 14.8% 25.9% 32.1%
Push 25.0% 31.8% 66.7%
Pop 15.0% 9.1% 63.6%

-42-

TABLE 4

Complexity Measures - Team G5
McCabe's

Procedure Name Period 1 Period 2 Period 3 Period 4

Comment 2 2 1m 9

A O It J. (lOO f.U

Insert 2 2 2 2

Instcode 1 1 1

Mes_Proc 1 1 1

Pop 2 2 2

jPush 2 2
Putsymbol 1 1 1 l

Second_Pass 3 3 3 3

Stack 4 4 4 4
Umes Proc 5 5 5 5
OVERALL 29 29 29 27

Halstead's

Procedure Name Period 1 Period 2 Period 3 Period 4

Comment 29 24 94 jU
First Pass 57 ^9JZ /

Insert 39 40 40 52
Instcode 13 13 13 15
Mes_Proc 12 13 13 19
Pop 28 35 35 9
Push 28 35 39 9
Putsymbol 15 14 14 17
Second_Pass 41 37 37 40
Stack 37 40 43 35
Umes_Proc 116 124 124 133
OVERALL 415 427 434 426

APPENDIX C

MANAGER'S CHECKLIST FOR PROGRESS EVALUATION

STEP ONE - STATEMENT TYPES BEING CHANGED MOST FRE-
QUENTLY

Choose the group which contains the statement types being changed most
frequently.

Declarations, If. While, Else, Begin/End, Case, Break

Indicates unsuccessful pattern for step one.

If Declarations are the highest. STOP:
else proceed to step 2
PATTERN for step one is "a"

Subroutine/Sytem Calls, Assignment

Indicates successful pattern for step one.

Proceed to step 2

PATTERN for step one is V

Comments, Include, Return, Do

Pattern not established for this model.
Proceed to step 2
PATTERN for step one is V

-44-

STEP TWO - FIND INTEGRATION PATTERN FOR HIERARCHY
STRUCTURE

Choose an integration pattern by matching the selection criteria against the

observed data.

TOP-DOWN INTEGRATION

Higher percentages of module change at top level modules.
Downward movement of location of higher percentages.

Downward growth of hierarchy structure.

Hierarchy calls stable (if A calls B in early phases
then A calls B throughout).

PATTERN for step two is I

Proceed to step 3 - COMPLEXITY A.

BOTTOM-UP INTEGRATION

Higher percentages of module change at lower level modules.
Upward movement of location of higher percentages.

Upward growth of hierarchy structure.

PATTERN for step two is II

Proceed to step 3 - COMPLEXITY A.

SANDWICH INTEGRATION

Higher percentages of module change at lower levels.

Upward movement of location of higher percentages.
Appearance of total hierarchy.

Higher percentages of module change at top levels.

Downward movement of location of higher percentages.

PATTERN for step two is m
Proceed to step 3 - COMPLEXITY B.

(continued next page)

-45-

G3 BIG BANG INTEGRATION

Hierarchy structure is complete and stable.

Higher percentages of module change at lower levels.

Upward movement of location of higher percentages.

PATTERN for step two is IV
Proceed to step 3 - COMPLEXITY C.

NO PATTERN

Higher percentages of module change randomly distributed.

Hierarchy structure may be stable or may be fluctuating rapidly.

PATTERN for step two is V
No visible progress is being made.
Cannot identify an integration technique.

STOP

-46-

STEP THREE - COMPLEXITY MEASURE EVALUATION

Complexity A

Inter-module complexity growing significantly.

Intra-module complexity showing slight change but
relatively stable.

PATTERN for step three is A

Complexity B

Inter-module complexity growing significantly then
leveling off.

Intra-module complexity showing slight change but
relatively stable.-

PATTERN for step three is B

Complexity C

Both intra-module and inter-module complexity showing
slight change but relatively stable.

PATTERN for step three is C

OTHER:

If both McCabe's and Halstead's exhibit a pattern then NO PROGRESS.

If neither McCabe's or Halstead's exhibits a pattern then NO PROGRESS.

PATTERN for step three is D

-47-

CONCLUSIONS

Pattern sequences are ranked from those promising the highest probability
of success to those with the lowest probability of success.

STEP

PROGRESS

Promising b

b

b

c

c

c

b

b

b

c

c

c

Unpromising a

STEP 2 STEP 3

i. n A
m B
rv C

i.n A
m B
IV C

i.n B. C

m A.C

IV A. B

i.n B. C

m A, C

IV A, B

V D

A Model of Successful Patterns

of Progress During the Integration of Software

by

MARY LOU A. LANCHBURY

B.S.. Kansas State University. 1985

AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY

Manhattan. Kansas

1986

ABSTRACT

Experience shows that the testing and integration phase of the software

development cycle generates the single largest part of the development cost -

both in time and money. This single phase accounts for 40 - 50% of the overall

development costs and 40 - 50% of the time schedule [Gilbertl983]. Project

managers often watch in frustration as projected costs increase and delivery

times are delayed. There is a need for a model to evaluate the progress of the

testing and integration phase.

This thesis presents a model for evaluating progress during the integration

portion of the testing and integration phase. The model patterns concepts that

can be understood and used by technical and non-technical managers alike.

While it does not purport to be the final ideal in all cases, it is an initial step

toward developing a model of progress for the software development cycle.

