by
JOHN R. HOLLENBECK

B. S., Kansas State University, 1984

A MASTER'S THESIS
submitted in partal fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Cival Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

1986

Approved by:

Major Professor
.14 TABLE OF CONTENTS
All202 971046
Page
c. 2
LIST OF FIGURES AND TABLES. iii
ACKNOWLEDGEMENTS 1\%
CONVERSION TABLE. v
CHAPTER ONE, INTRODUCTION, 1
CHAPTER TWO. METHODOLOGY. 4
Utility Rates 4
Municipal Water Plant Rates 4
Rural Water District Rates 8
Private Wells. 9
Energy Rates 10
Water Habits. 14
CHAPTER THREE. DESCRIPTIVE EXAMPLE 19
Introduction Instructions 19
Utility Rate Information. 21
Water Habit Information 24
Printout of Results and Recommendations 25
Flowchart of the Progral. 27
CHAPTER FOUR. PROGRAM ANALYSIS 41
Data Collection 41
Data Analysis 41
CHAPTER FIVE. CONCLUDIMG REMARKS 47
APPENDIX A. Residential Water Conservation Progran Listing 49
APPENDIX B. Glossary for the Variables used in the Residential Water Conservation Progran 77

TABLE OF CONTENTS (continued)

Page
APPENDIX C. Munacipal Marginal Water Rates for Kansas Cities and Towns. 32
APPENDIX D. Marginal Water Rates for Kansas Rural Water Districts. 95
APPENDIX E. Statistical Analysis Program and Graphs. 102
REFERENCES CITED. 112

LIST OF FIGURES AND TABLES

Pags

Table 2.1 Avarage Marginal Watsr Ratss For Municipal Water Plants in Kansas. 7
Figurs 2.1 Schematic of Home-WEll Setup 10
Table 2.2 Avallable BTUs per Unit of Energy 13
Table 2.3 Efficisncy Ratings for Electricity. Natural Gas. and Liquid Propane 13
Table 2.4 Energy Coat Default Valuas and Ranges 14
Table 2.5 Baseline Water Uss for a Typical Fanily of Four 15
Table 2.6 Possible Responses to Water Habit Questions 17
Table 2.7 Percent of Water Heated in Each Water Function. 18
Fiqure 3.1 Printout of Results 26
Figure 3.2 Description of the Fiqures used in the Residen- tial Water Conservation Flowchart 28
Figure 3.3 Flowchart of the Residential Water Conservation Progran 29
Tabl6 4.1 Progran Analysis Results 42
Figure 4.1 Excesdancs Probability Graph for Total Water used Annually by an Individual. 45
Table B. Glossary of the Veriables used in the Residential Water Conservation Program 78
Tablse C.1-C. 6 Municipal Marginal Watsr Rates in 1983 for Kansas Cities and Towns. 83
Tables D.1-D. 2 Marginal Water Rates for Kansas Rural Water Districts 96
Figures E.1-E. 7 Goodness of Fit Tests for Differsist 5tatistical Models. 105

ACKNOWLEDGEMENTS

I would like to thank all the faculty and friends who helped me through college in the past five and a half years. Special thanks goes to: Dr. Peter B. Cooper, sy undergraduate advisor: Dr. Jamen K. Koelliker and Dr. Bruce M. McEnroe, the two sen who obtained the funds for this project and who both helped me in the development of the residential water conservation program; Dr. Koelliker once again for teaching se how to use the microcomputer--the main tool for which made this thesis possibles and Dr. Doris Grosh who taught we the statistics needed to complete this thesis.

A very special thanks goes to my parents. Don and Ellen Hollenbeck, for without their moral support my college aducation would not have been possible. And to my dear friend Stacy Crook who has helped we through the rough times this past year. God bless then all.

CONVERSION TABLE

This thesis has been written in U.S. Customary units. Below are some basic SI unit conversion factors.

To convert from	to	Multioly by
BTU	Joules	1054.8
BTU per Pound mass- ${ }^{\circ} \mathrm{F}$	Joule per Kilogram-*K	4187
Cubic-feet	Cubic-metars	0.0283
${ }^{9} \mathrm{~F}$	${ }^{\bullet} \mathrm{K}$	$\left({ }^{\circ} \mathrm{F}+460\right) / 1.8^{*}$
Feat	Heters	0.305
Foot-pound	Joules	1.365
Foot-pound per year	Kilowatt	42,757
Gallons	Liters	3.795
Gallons per day	Liters per day	3.785
Inches	Centimeters	2.54
Kilowatt-hour	Joules	$3.6 \mathrm{E}+6$
Pound mass	Kilogram	0.454
Pound per cubic foot	Kilogram per cubic neter	16.018
Pound per square foot	Kilopascal	0.0479
Pound per square inch	Kilopascal	6.895

* Vee the formula as is. Do not multiply by ${ }^{\circ} \mathrm{F}$.

Residential water conservation is becoming increasingly important as water demands and costs increase, and existing supplies become less adequate. The Kansas State Water Plan studies [1] predict severe water supply shortages in southeast, south-central and east-central Kansas in the comang decades, Large interbasin water transfers have been proposed to satisfy these future demands. Water transfer legislation passed in 1983 requires the transferee to have a water conservation program in place before a transfer can be approved. Public input to the Kansas State Water Plan listed water conservation as a top priority for solving water problems. Public comments at the Extension Water Policy Sominars indicate undespread interest in household water conservation. The Kaneas Water Resources Research Institute identified a major educational progran in domestic water conservation as a priority need in its Five-Year Research and Development Plan (1980). No such progran currently exists at the state level.

Conservation should be viewed as an alternative to developing new water supplies, since water conserved from existing sugplies can be made available to new users. If an effective residential conservation program could produce savings of 10 to 20 gallons per person per day, then a statewide program could save 20 to 40 nillion gallons per day (mgd). For comparison, the city of Wichita averaged 39 agd in 1984. To succeed in a water conservation progran, the public must first be made aware of their water habits. The Kansas Department of Health and Environment wants to establish a municipal water conservation education progran [1]. The purpose of the progran would be to encourage and assast
local governments in educating the public about their water habits and to aasiat ther with the implementing of simple water aaving techniques (2.e.. low flow shower heads, aerated water faucets, and water displacement devices in toilet tanks).

Methoda used in the paat to educate the public include mailing inforsation packets to the customer [21, or distributing the educational material door-to-door [3]. The microcomputer has now become an educational tool used in water conservation. In 1983, the Virginia Water Reaourcea Research Center (VWRRC) developed an educational module on the Apple II Plua microcomputer that was used in water exhibit shows to promote residential water conaervation [4]. The module covered a broad spectrum of water topics: the hydrologic cycle, water and human health, water pollution and treatment, and water conservation. Media included audio-vizual displays. handa-on demonstrations, a computer game, and printed materials. The exhibits were presented in a cartoon format directed at the seventh-grade educational level. During the study period, the module was viewed by about 50.000 persons at museums, fairs, and shopping malls. Surveys ahowed the module to be an effective device for tranemitting basic knowledge. A major limitation waa that the module failed to show any direct financial incentives for residential water conservation.

The objective of the work presented herein ia to develop a computer program which is to be the main feature of a demonstration podule on costeffective residential water conaervation methods applicable to Kansas. The module is intended to promote household water conservation inside the howe by increasing individual awarenesa of the direct peraonal financial benefits of varioua conseryation measures. The marocomputer progran is to provide the user with personalized recomendations and aavinga estamates of
water and dollars. It ia available on 5-1/4 inch floppy disketta for both the Zenith Z-100 and Z-150 (IBN-PC compatible) computers. The module is intended to become part of an ongoing water conservation program of the Cooperative Extension at Kansas State University and part of the education progran proposed by the Kansas Departent of Health and Environment. Additional perspective users are munscipal water offices. rural water districts, other water related organizations, and civic organizations.

HETHODOLOGY

Ths in-home residential water conservation computer prograt (a complete listing is available in Appendix A) consists of two main sections--the utility rates and water habits sections. The utility rates section deteraines the orgin and cost of the user's water along with the type and cost of energy used to heat their water. The water habits section analyzes how an individual utilizes his/her water. The description of how each section was developed follows.

Utility Rates

Water and onergy are the two utilities of concern in this progras. There are three sources of water available to the public: municipal water plants, rural water districts, and private wells. The three comon energy sources used to heat water are electricity, natural gas, and liquid propane. The following paragraphs will discuss the three water utilities individually, The energy utilities are discussed in a separate section.

Municipal Water Plant Rates: The municipal water rates for cities and towns in Kansas were obtained from the state's 1984 annual report [S]. The report included the monthly cost of water per 1000 gallons for 384 comunities. The majority of the commnities charge their customers based on a declining block rate, i.e., the more water used, the cheaper the rate charged. Therefore, a marginal rate cost between 5000 and 10,000 gallons per month was calculated and used in the progran since a typical household of four averages about 8000 gallons of water per month [6]. Rates betwoen 5000 and 10,000 gallons per month were used because it 15 water from thas
portion of the rate achadule that will be saved. The sarginal coat is laas than the total average cost of all the water unita. Most rates have a fixed sonthly coat for hookup or debt retiresent, regardlaaa of tha quanity of water usad. The report lists the sonthly cost of water at 5000 and 10,000 gallons, and the marginal rate waa obtainad by dividing the difference batween the two costs values by five to obtain a sarginal cost per 1000 gallona.

These rates were entered into the $2-100$ sicrocowputer via a progras called Multiplan-a Microsoft spreadsheet progras. The advantage of this progras is the ability to manipulate files: sorting, arithsetic operations, and printing. The inforsation entered into Multiplan included the cossunity's name, and tha cost of water at 5000 and 10,000 gallons per sonth. The formula used to calculate the sarginal rate waa also entered. The cosmunity's nase and sarginal water rate were printed to s diakette as data files which are used in the conservation sodule as aequantial filaa. These files aid the user who does not know his sarginal water rate. The operation of the progras to sake use of these files ia explained in the following paragraphs.

Cossunity water rates are grouped in six different files. Five contain comsunities grouped by population and the sixth contains the comsunities that charge their custosara a flat fee for water. The division of the cossunitiea by population is as followa: over 100,000, 10,000 to 99,999, 5000 to 9999. 1000 to 4999, and 999 or leas. Files are divided into thase groups to satch a queation which asks tha uaer for the population of his cosnunity. The program user enters a nusber appropriate to his cossunity'a population.

Next, the cosputar aaks the user fros what source his water is sup-
plied: municipal water plant. rural water district. or a private well. With reference to muncipal water plants. the computer then asks the user if his water is metered. If so, the units in which the metering device operates must be known. since some communaties meter in qallons of water while others meter in cubic feet. If the user does not know how his water is ketered, then he is encouraged to enter the response that corresoonds to aallons since this is how the mapority of the water in Kansas 15 metered. If the user's water is not metered. then the program assumes that he are charaed a flat fee for his water.

If the user's water is metered, the program asks the user to input his monthly marginal water cost for either units (dollars per thousand gallons or hundred cubic feet). If the user does not know (very few will know). then the computer will access the sequential files based on the user's response to the population question and display the names of the comunities on the screen. If the file contains less than 24 comunities. then the entire list of those comunities along with a line number beside each will be dieplayed. The user then enters the line nusber that corresponds to his community. For files with more than 24 communties, the user is asked to enter the first letter of his community's name. The program will search the files for names beginning with the letter entered, and will print the list on the screen. Then, the user is asked to enter the line number that corresponds to his compunity's name if listed. If it is not listed, then a default value will be used which is the averaqe marginal water rate for the eities in the population range chosen previously. Table 2.1 shows the default values for each population range. A list of the files showing the names and marginal water costs for Kansas cities and town is shown in Appendix C. Tables C. 1 through C.5.

> Table 2.1 Average marginal water rates for municipal water plants in Kansas for five population ranges--used as default values for the marginal water cost.

Population Range	Average Marginal Water Rate	
	\$/1000-gallons	\$/100-cubic fe日t
Greater than 100,000	1.22	0.91
10,000 to 99.999	1.31	0.98
5,000 to 9,999	1.42	1.06
1,000 to 4,999	1.26	0.94
1ess than 999	1.70	1.27

Source: [5]

This annual water cost is computed as 1.3 times the cost of the total annual water use, computed at the marginal rate. The 1.3 factor accounts for aervice charges.

The program assumes that unmetered howes are charged a flat monthly fee for water, and asks the user to enter this fee. If the person does not know this fee, then a list of Kansas towns that charge a flat fee will appear on the screen. The user can then anter his community if listed, or a default value of $\$ 7.86$ per month will be used. This default value is the average of the flat fees charged by the towns in this list. A listing of the file containing the town that charge a flat fee is shown in Appendix C. Table C. 6.

Commities that charge flat fees offer no financial incentives for their custowers to conserve water. The progras never uses the flat fee cost. The user is asked anyway, so they way at least know what they are paying for water. The progral does inform the user via the printer that conserving water will not save thes money on their water bill, but does point out potential savings in energy costs made possible by conservation.

Rural Water District Rates: Rural water districts (RWD's) usually serve households in rural areas, but sometimes serve small town adjacent to bigger cities. Kansas has 275 RWDs scattered throughout the state. An attenpt to locate a complete list of the districts' rate schedule was unsuccessful. The author therefore sent a latter to each district requesting a copy of its current rate schedule. The Kansas Rural Water Association provided a list of the districts' addresses along with stick-on mailing labels. Of the 275 districts contacted, 174 (63 percent) suoolied the requested information.

The majority of the RWDs operate on a declining block rate system. Thus, a marginal rate was calculated in the same manner as the municioal water rates. The RWD names, numbers, and marginal rates were entered in Multiplan, and an alphabetical list was printed to a diskette as a data file to be used in the conservation orogran as a sequential file. A list of the file is shown in Apoendix D. Table D. 2.

The RWD sequential file is used as an aid for the orogram users who do not know their RWD's marginal water rate. The user who indicates that his water is suoplied by a RWD will be asked to enter his marginal rate. If he does not know. then he is asked to enter the first letter of his RWD's name. The program then searches the file for those districts that beqin With that letter, and displays them on the screen. The user is then asked to enter the line number corresponding to his district, if listed. If it is not listed. a default value of $\$ 2.41$ per 1000 gallons per month will be used for computing the annual water cost. The $\$ 2,41$ was obtained by averaging the marginal rates for the districts replying to the survey letter. The marginal water rates ranged from $\$ 0.50$ to $\mathbf{5 6 . 5 0}$.

The total annual water cost is comouted as 1.5 times the cost of the

Abstract

total annual water uae computed at the marginal rate. The 1.5 factor accounte for debt retirement bonds and service charges.

Priyate Wells: Many people in rural Kaneas operate their own welle. The cost of operating a well depends on the cost of the electricity, pupp. and drilling. Since the last two are extremely variable, the program only includes a question about electricity coete required to pung the water.

The coet analysis for a private well ueer $2 e$ baeed on the coet required to pump the water from the well to the pressure reservoir (see Fig. 2.1). To start the cost analysis, the deoth of the well muet be known. The program aeke the ueer to enter the deoth of hie well in feet. If he hae abeolutely no idea of hie well deoth, then he will be encouraged to enter a default value of 50 feet.

The coet analyeis is baeed on eimple fluid mechanics orinciples and Bernoulli's equation. Eq. 2-1. The hydraulic systen under consideration
where

$$
\begin{equation*}
P_{1} / \gamma+Z_{1}+V_{1} 2 / 2 g=P_{2} / \gamma+z_{2}+V_{2} 2 / 2 g+\Sigma M_{1 f}+\Sigma h_{m}-h_{0} \tag{2-1}
\end{equation*}
$$

extende from the water table (ooint 1) to the preeeure reservoir at the home (point 2). The head lose due to friction and minor loevee wae aseumed to be 10 percent of the total well depth. The preeeure in the reeervoir tank (P_{2}) wae aeeumed to be 40 psig. Since $P_{1}=0, Z_{1}=0$, and $V_{1}=V_{2}=0$). Eq. 2-1 becomee:

Figure 2.1 Schematic of home-well setup. The circled members one and two are the beginning and end of the hydraulle system. respectively.

$$
\begin{equation*}
h p=P_{2} / \gamma+\Delta Z+\Sigma\left(h_{f}+h_{R}\right)=92.3+1.1 \Delta Z \tag{2-2}
\end{equation*}
$$

where ΔZ is the depth of the well. To calculate the power required to punp the water for one year, the following equation was uaed:

$$
\begin{equation*}
p=[(365 / 7.48) \cdot \gamma=0 * h p] / T p \tag{2-3}
\end{equation*}
$$

where

$$
\begin{aligned}
p & =\text { power }(f t-1 b / y r) \\
Q & =\text { flow rate per day (gpd), } \\
T & =\text { pump efficiency. }
\end{aligned}
$$

The coefficients 365 and 7.48 are the number of days per year and gallons of water per cubic feet, respectively. To estimate the coat of operating the punp for one year, the cost of electricity per kilowatt-hour (kwh) wust be supplied by the user. If the user does not know this cost, a default value of eight centa per kwh is used. The variable name used in the program for the cost of electricity is KWAT. Therefore, the annual punping cost (APC) is calculated as:

$$
\begin{equation*}
A P C=k * P * K W A T \tag{2-4}
\end{equation*}
$$

where

```
    APC = annual pumping cost ($/Yr),
    k = unit converaion factor = 3.766 \times 10-7 kwh/ft-1b,
    P = power (ft-1b/yr),
    KWAT = electricity cost (s/kwh).
```

The actual equations used in the progras are shown in Eqs. 2-5 and 2-6. The coefficient 62.4 is the unit weight of water in pounda per cubic foot and 144 is a unit conversion from square inches to square feet (see Eq. 2-5). In Eq. 2-6, the coefficient 365 converts from days to years.

```
P=(62.4* SUY / 7.48*(1.1 * DEPTH + 144* 40/62.4))/.25
```

```
where P = power (ft-1b/day),
    SUM = 0 (gpd).
    1.1 * DEPTH = well depth plus friction lose, hf (ft),
        40 = P2 (ps1),
        .25 = 70.
```

Energy Rates: The energy required to heat water in a homa ia a major expense. As a rule of thumb, the energy cost for heating water is about two to four timea the coat of water. The water conservation progran approxibates this coat for the three common anergy sources most commonly used to heat water: electricity, natural gas, or liquid propane (LP).

The general thermodynalic equation used to calculate the energy cost is given by Eq. 2-7a. The mass is equal to the total volume of hot water

$$
\begin{equation*}
\theta=m \cdot c \cdot \Delta T \tag{2-7a}
\end{equation*}
$$

```
where }Q=\mathrm{ thermal haat (BTU),
    m =mass (1bm).
    c = heat capacity (BTU/1bz-}\mp@subsup{}{}{\circ}F\mathrm{ ),
\DeltaT = temperature change (*F).
```

used yearly (gal/yr) times the conversion of $8.34 \mathrm{lba} / \mathrm{gal}$ which yielda pounds mass per year. The incraase in temperature is assumed to be $60^{\circ} \mathrm{F}$. The heat capacity constant is equal to $1 \mathrm{BTU} / 1 \mathrm{bm} \boldsymbol{*}^{*} \mathrm{~F}$. In the program, the variable name HOTSUM rapresenta the total daily hot water consumed in galIona par day. To obtain the total annual amount of hot water, HOTSUM is multiplied by 365 days per year. After substituting these into Eq. 2-7a, the equation takes the form of Eq. 2-7b, with Q having the units of BTU per year.

$$
0=182,646 \text { HOTSUM }
$$

Table 2.2 shows the available number of BTUs per unit of energy for electricity, natural gas, and LP gas. The program stores the values shown in Table 2.2 under the variable nama BTU. Each of these three energy sources
havs a certain efficiency st which they produce hast. Table 2.3 showa ths efficiency ratinga generally used for the three heat sources.

Table 2.2 Available BTUa* per unit of energy,

Energy Type	Available BTUa
Elsctricity	$3414 \mathrm{BTU} / \mathrm{kwh}$
Natural Gas	$1,000,000 \mathrm{BTU} / \mathrm{MCF}$
Liquid Propane	$95,000 \mathrm{BTU} / \mathrm{gal}^{8}$

[^0]Sourcs: [7]

Table 2.3 Efficiency ratings for the three energy sources commonly used to heat water.

Energy Type
Electricity
Natural Gas
Liquid Propane

Efficlency
0.90
0.70
0.70

The final unknown ia tha cost of the energy, which has the variable name ENERGYCOST. The program uses default values for ENERGYCOST if the user does not know his energy cost (see Tabls 2.4). If the user wishes to enter his energy cost. it must lie vithin the ranges shown in Table 2.4. These ranges wers establishsd by ths author to eliminate the possibility of entering an outlandish valus for ENERGYCOST.

With this information, the annual energy cost (AEC) to heat the water can bs calculated by Eq. 2-8. The actual equation used in the

Table 2.4 Energy cost defalt values and ranges.

Eneray Type	Default Coet	Coet Range
Electricity	\$0.08/kwh"	\$0.05 to $\$ 0.11 / \mathrm{kwh}$
Natural Gas	\$5.50/HCF ${ }^{\text {\% }}$	\$2.00 to $\$ 9.00 / \mathrm{MCF}$
Liquid Propane	\$0.70/gal ${ }^{\text {\% }}$	\$0.50 to $81.25 / \mathrm{gal}$
* kwh $=$ Kilowatt-hour, \# MCF = Thousand Cubic Feet,		
AEC = (182,646 * HOTSUM * ENERGYCOST) / (BTU * EFF)		

program does not combine the terme that wake up the coefficient, 182,646. The formula used in the progras ie shown in Eq. 2-9, with the terss defined above.

$$
\begin{equation*}
A E C=\text { ENERGYCOST } ~ 8.34 * 60 / \mathrm{BTU} / \mathrm{EFF} \cdot H O T S U M * 365 \tag{2-9}
\end{equation*}
$$

Water Habite

Once the computer is informed about the user's utility ratee. it aeks questions to deterwins the user"s water use habits. The inforaation requested frow the user deals strictly with water uees within the home (e.g., bathing, clothes washing, etc.), which are called water functions. It does not include lawn, garden, or house-plant watering or any outside use. The water functions covered in the program are water softening (linited to private well users), bathing/showering, shsving (lisited to ales), flushing toilet, brushing teeth, washing hands, dishwasher/diehwashing by hand, drinking water, and washing elothes.

The progran asks the user questions about the water functions and uees
his responses to analyze hia habita. This analyaia ia baaed on an average water user, i.e., one who uaes approximately 64 gallona of water per day. Table 2.5 show the baseline of in-home water use for a typical fasily of four.

Table 2.5 Baseline water uae for a typical fanily of four.

Water Function	gal/day	gai/day/person	Percent of Total
Toilet	100	25	40
Bathing/Showering	80	20	30
Laundry	35	9	15
Dishwasher	15	4	5
Kitchen sink	12	3	5
Lavatory \& Utiltiy aink	13	3	5
Totals			255
		64	100

Source: [8]

The answer to each of the water function questions (excluding water aoftening and toilet flushing) is either acceptable or unacceptable. An acceptable response is one that does not exceed with the baaeline valuea in Table 2.5, and an unacceptable response is one that exceede the baseline values. For example, for a user who bathes by showering, the prograt will ask how long (in minutes) he spends in the shower. For a conventional shower head that releases four gallons of water per minute, the acceptable answer would be five ninutes or less. If a user showers longer than five minutea, then the computer informs him later via the printer that the length of tise he spends in the shower is wasteful. The other questions, except water softening and toilet flushing, are handled in the aame manner. Theae two water functions are excluded because of the diffuculty in deternining

Why someone flushes his toilet more than average, and because of the large variation between water softeners.

Each water function contributes to the total anount of water a person uses. Once a person answera a queation, the program will sum the cold and/or hot water used by that function to the variables SUM and HOTSUM, respectively. The variable SUK includes all the water uaed by a water function, including water that is heated. HOTSUM is only that portion of water heated for a water function.

As mentioned earlier, each question has an acceptable and unacceptable answer. The amount of water added to SUM for an acceptable answer is based on the baseline values in Table 2.5. The amount added for an unacceptable answor was the judgment of the author. Table 2.6 ahows the possible responses to the water function questions and the amount of water summed for each response.

The amount of water added to HOTSUM is a fraction of the full amount of the water used in a function. For example, if a conventional bathtub was filled one-quarter full, there would be approxiataty 20 -gallons of water used, and 67 percent (13.4-gallona) would be hot water. Table 2.7 shows the percent of water heated for each water function based on the author" ${ }^{\prime}$ judgment.

Table 2.6 Poasible responsea to water habit queations.

Water Function	Response	$\underline{A / O}^{*}$	$\begin{gathered} \text { SUM } \\ \text { (gpd)! } \end{gathered}$	HOTSUM (gpd)
Water Softening	User inputs daya between regeneration cycles.	$N A^{6}$	30-gal. per regeneration	${ }^{0}$
Bathing				
Shower	User inputs sinutea spent in shower.	$\begin{aligned} & A--5 \text { min. } \\ & \text { or leas } \end{aligned}$	4 gal. per sin.	67\% of SUM
Bath	1. Fill tub $1 / 4$ full.	A	20	13.4
	2. Fill tub $1 / 2$ full.	U	35	23.5
	3. Fill tub over $1 / 2$ full.	U	50	33.5
Toilet	User inputs number of flushea per day.	NA	5 gal. per flush	0
Shaving	1. Run water.	U	3	3
	2. Don't run water.	A	1	1
	3. Don't shave w/ water.	--*	---	--*
Brushing Teeth	1. Run water.	U	2	0
	2. Don't run water.	A	0.5	0
Washing Handa	1. Run water.	U	4	1.32
	2. Dont' run water.	A	2	0.66
Dishwashing*				
By Hsend	1. Always run water.	U	7	
	2. Sosetimes run water.	0	5	4
	3. Never run water.	A	4	3.2
Diahwasher	Uaer will enter nusber of losd washed per day.		15 gal. 1 per load	$\begin{aligned} & 100 x \text { of } \\ & \text { SUM } \end{aligned}$
	1. Alwaya wash full load.	A		
	2. Sosetimes wssh full load.	U		
	3. Never wash full load.	U		
Drinking	1. Always run water.	0	1	0
	2. Sosetimes run water.	0	1	0
	3. Never run water.	A	0.5	0
Clothes Washer	User enter nusber of loada washed per week.		50 gal. per load	$\begin{aligned} & \text { SOx of } \\ & \text { SUM } \end{aligned}$
	1. Always wash full load.	A		
	2. Sometises wash full load.	U		
	3. Never wash full load.	0		

[^1]Table 2.7 Percent of water heated in each water function.

Water Function
Water Softener 0
Shower/Bath
67
Toilet 0
Shaving 100
Brushing Te日th 0
Washing Hands 33
Diahwaeher 100
Waahing Diahea by Hand 80
Drinking
0
Clothas Washar 50

CHAPTER THREE

DESCRIPTIVE EXAMPLE

This chapter contains an example to illustrate how the program operates. This example does not cover all the poesible options: therefore, a detailed flowchart is provided at the end of this chapter to illustrate the different paths in the prograw. A complete listing of the progran is shown in Appendix A. A glossary of the variables used in the progras is shown in Appendix B.

Introduction Instructions

The program begins with the title "IN-HOME WATER CONSERVATION ANALYSIS", printed on the screen, along with the following introduction:
"This progran asks you questions to determine how you uae water st home. It will eatimate how much money you spend annually on water and energy used to heat your water.

At the end of the eession, a summary table will be printed on the printer showing how esch function (i.e.. showering, dishwsshing, etc.) contributes to your annual consumption of water. Along with the summsy tsble, aome other information will be printed explsining ways to save you money by conserving water.

Press any key to continue."

Once the user has pressed a key to continue, the next display will appear and introduce them to the types of questions that will be asked of them. This display reads as follows:

[^2]1. Multiple choice questiona.
2. Fill-in-the-blsnk questiona.

To answer the multiple choice questiona, you need only enter the number that corresponds to the snswer. To do thia, you have to type the number by using the numbera scross the top of the key board. You then muat press the key marked RETURN to complate the entry.

Try the multiple choice exsmple below.

What time ia it?
[1] Before 12 o'clock noon
[2] Exsctly 120^{\prime} clock noon
[3] After 120^{\prime} clock noon Answer $=$ *

The user then enters the answer at the flashing eursor located to the right of the equal sign. The progras does not check the answer against the computers clock since it cannot be assumed that the microcomputer's clock is runningy therefore, someone could enter the wrong answer and the computer would not acknowledge the error. This is not a problem though, since the purpose of the wultiple choice example is to give the inexperenced computer user a sample problem.

If the user makes a wrong entry, then the computer will display a message asking that he enter either a one, two, or three, and will then repeat the question. This will continue until the question is answared correctly. If the user answers the question correctly by entering either a one, two, or three, then the computer will print the message "Good Job!" on the screen, and then will instruct him to press any key to continue.

The next screen display discribes the fill-in-the-blank question, and gives an exasplo question. This display reads as follows:

[^3]The user types in his name to the right of the equal sign. For example purposes, suppose the user entered John. After completing the entry by pressing the RETURN key, the computer will display:
${ }^{4}$ You entered your name as John. Is this apelled correctly?
[1] Yea
[2] No Answer $=$ "

If the user typed his name incorrectly, he should answer by entering number two, at which time he will be able to re-enter his name. If his name is spelled correctly, he should enter a one, and the computer will display:
"Press any key and we'11 get started with the program."

After the user presses any key, the computer will start the second part of the program-othe utility rate section.

Utility Rate Inforaation

This section of the program asks the user questions dealing with his utility rates for water and energy. The following example is based on a male individual living in Manhattan, Kansas, who heats his water wath natural gas. As mentioned earlier, the program branches into many different categories (e.g., water supplied from municipal water plants, rural water districts, or a private well); thus, the flow diagram at the back of this chapter illustrates the different branches of the program. The example of the utility section will not include much diecussion, but will follow the sequence of questions asked by the computer program. The numbers shown to the right of the ANSWER are supplied answars to the questions.
"Are you male or female?
[1] Mala
[2] Female Answer $=1$
Do you live in Kansas?
[1] Yes
[2] No Answer $=1$
What is the population of your community?
[1] Grester then 100,000 people
[2] Between 10,000 and 99,999
[3] Between 5,000 and 9,999
[4] Between 1,000 snd 4,999
[5] 999 people or leas
[6] You live in a rural area Answer $=2$
Where does your water come from?
[1] Municipsl water plsnt
[2] Rural water distriet
[3] Privste well Answer a 1
Is your home on a water meter?
[1] Yes
[2] No Answer $=1$
How does your water bill read? Most bills read in dollars per one-thoussnd gsilons.
[1] Dollsra per one-thousand gsllons
[2] Dollsrs per one-hundred cubic feet Answer $=2^{\text {w }}$

The response to this question is number two since Manhattan's water is wetered in cubic feet.
"What is the marginal cost per one-hundred cubie feet of
wster per month where you live?
Enter the smount as s dollsr decimal.
If you don't know, then press the RETURN key. Answor = RETURN*

At this point, the computer displays a list of community's names having a population that ranges between 10,000 and 99,999 people. The screen looks as follows:
"You entered that your community has between 10.000 and 99,999 people, thus the reason for the list below. In the srea marded ANSWER, enter the line number that corresponds to your community.

If your community ia not liated. and your population size ia correct, then preas the key marked RETURN. If you thinik you anawered the queation dealing with your population incorrectiy, then type the key marked 'H" and preaa RETURN.

Line No.	Community	Line No.	Community
1.	Axkanaaa City	13.	Lawrence
2.	Atchiaon	14.	Leavenworth
3.	Chanute	15.	Liberal
4.	Coffeyville	16.	Manhattan
5.	Dodge City	17.	McPheraon
6.	E1 Dorado	18.	O1athe
7.	Emporia	19.	Ottawa
8.	Garden City	20.	Parsona
9.	Hays	21.	Pittaburg
10.	Hutchinaon	22.	Salina
11.	Independence	23.	Winfield
12.	Junction City		

After entering the number 16 to tell the computer that the user'g community is Manhattan, the program then displays the marginal water rate as follows:

```
    *The monthly marginal water rate for Manhattan is $0.60
per one-hundred cubic feet."
The program continues as follows:
*How ia your hot water heated?
    [1] Electricity
    [2] Natural gaa
    [3] LP gas Answer = 2
What is your natural gas cost per 1000 cubic feet (MCF)?
Enter the amount aa a dollar decimal (e.g.. $5.50).
If you don't know, then presa the RETURN key. Anawer = RETURN
Then I'11 uae an estimate cost of $5.50 per MCF.
    Preas the RETURN key to continue."
```

This concludes the questions about the utility rates. The third part of the program will question the user about his water use habits.

Water Habit Inforaation

The program continues once the user presses the RETURN key. The explanation of this section is similar to that of the utility rate section, i.e.. there will not be much discussion about the questions or supplied answers. Instead, the following example will proceed in the same sequence as the program would operate. The program continues on as followa:
"Do you usually take a bath or shower?
[1] Bath
[2] Shower \quad Anawer $=2$

How many minutes do you spend in the shower?
Enter your answer here. Anawer = 10

Eatimate how many timea a day you flush your home toilet. Enter your anawer here. Anawer $=4$

Do you let the water run while you shave?
[1] Yes
[2] No
[3] Don't ahave with water Anawer $=2$

Do you let the water run while you brush your teeth?
[1] Yea
[2] No Answer $=2$

Do you let the water run while you wash your hands?
[1] Yea
[2] No Answer $=1$

Does your home have a dishwasher?
[1] Yes
[2] No Answer $=2$

Do you let the water run while you wash and rinse the dishes?
[1] Yea
[2] Sometimes
[3] No Answer $=3$
Do you let the water run to get cold when getting a drink?
[1] Yea
[2] Sometimea
[3] No Anawer $=2$

Do you have a elothes washer?
[1] Yes
[2] No Answer $=1$
How many loads do you wash per week? Answer $=2$
Do you wash a full load of clothes?
[1] Almost always
[2] Sometimes
[3] Not usually Answer $=1^{* *}$

This concludes the water habits portion of the progran. After the uaer anawera the last question, the screen clears and the following message appears.

[^4]Printout of Results and Reconnendationa
When the program concludea with the user interaction portion, it begins printing the reaults of the run on the printer. An example of the printout is shown in Fig. 3.1.

The table of results shows an annual breakdown of the water functiona, illustrating the amount of water used for each function, and the amount of money spent on energy for heating water. The sentence directly under the table inforns the user of his annual water and energy costs.

The values in the table are calculated in a manner sitilar to those described in Chapter Two. The total and hot water amounts are determined by the user's responses to the water habit questiona, and are based on Table 2.6.

Below the table of results are some conservation instructions. These instructions will point out potential econonic aavings to the user. Theae instructions are printed only for unacceptable responsea. Their purpose

Figure 3.1 Printout of the results.
Watex Conservatior Arailyis Resulte
Below ie s table showing your water haoita, John.

Watar Function	beter Total	Used	(Gal/yr) Hot	Hot Watar Energy Coat ($\mathrm{s} / \mathrm{Yr}_{\mathrm{r}}$)
Showar	14600		9782	38.50
Toilet	7300		----	-----
Sheving	365		365	1.40
Bruahing Teeth	183		----	
Washing Handa	1460		482	1.90
Diah weahing	1460		1168	4.60
Drinking	365		----	
Clothee Wsaher	5214		2607	10.30
Tots 1	30947		tsi $=14404$	

Your annual gae cost to hat your vatar $28 \$ 56.60$ and your annual watar coet is 332 per yesr.

BELO' ARE SOAE INSTRUCTIONS THAT MAY HELP YOU CONSERVE ON WATER.
You apsid 10 minutes in the sbowar. This mans you uas approximatsiy 40 gelions of weter par showar - 13 gallons cold and 27 gallons hot vater. If you would raducs your tiae down to 5 minutes, you would uss sbout 20 gsilons of watar per abower -7 gallone cold and 13 gallons hot. On an annusi basis, this could save you approxiastaly 36 per year in vatar cost and $\$ 20$ par yasr in tha snergy required to hast your watar (sasuling you take ons shower asch day).

Don't run the water while you vash your hande. Put a atoppar in your sink and ifll it one-quertar full. Thie could asve about 2 gellona of watar par wahing. Annuelly you could save sl par year on vater cost, and 1 i par yasr on tha enargy raquirad to hest the water (sasuming you vaah your hands twice s day.)

Instesd of latting the water run to gst cold whila getting a drink, place a wstar bottls in the refrigerator to keep the water cold.
is to try to persuade the user to reduce his wster consumption down to the bsseline vslue of 64 gsllons per dsy by showing him the economic benefits.

The lset sentence on the printout show the user's estimsted snnusi coet ssvings if he followe the conservstion inetructions.

Flow Chsrt of the Progrse

The following flow chsrt (Fig. 3.3) show the nsny different psths s user msy follow depending on his situation. Figure 3.2 is pictorial description of the different figures in the flow chsrt. The flou chsrt wse drswn using the graphice progrsm DOODLER [9].

Processing Operation

Output: Screen or Printer

File Operation

 Manual or Clerical Operation

Start/Stop

Goto/Gosub

Figure 3.2 Description of the figures used in the residential water conservation flow chart.

Figure 3.3 (continued)

Figure 3.3 (continued)

Figure 3.3 (continued)

Figure 3.3 (continued)

CHAPTER FOUR

PROGRAM ANALYSIS

Data Collaction

Twenty-five people assiated in the analysis of the residential water conservation progral by running it. This sample included nitie faculity members and 16 students from Kansas State University. The purpose for asking their assistance was twofold. First, they provided a check of the program's integrity. Second, the 25 runs provided a data set that waa extropolated to predict the amount of water that could be saved if the program's conservation instructions were followed. All 25 users were given values to enter for the utility rate queations because the users all lived in Manhattan. Kansas. This enabled most conbinations of the program to be used, thus checking the programa clarity and flexibility. Each uaer was asked to critique the program and report any difficulties he had while running it. All functional problema reported were corrected.

Data Analysia

Each person submitted his printout to the author for statistical analysis. The analysis was done on an anual basis; that is, attention was paid to the total annual amount of water used by each individual. Analyzing the potential economic eavinge was not done due to the large variability in the marginal water rates.

The annual amount of total and hot water used by each individual was calculated by the program and presented in the table of results on the computer printout. The potental annual savings of total and hot water for each user were obtained by analyzing the conaervation suggestions froz each user's printout. Table 4.1 shows the reaults from the 25 usera. The
coluan labled "Total" under the heading "Water Vaed" is the total anount of cold

Table 4.1 Reaults of the 25 individuals who ran the Residential Water Conservation Progran (sorted by colusn 2).

Observation Number	Water Used ($\mathrm{gal} / \mathrm{yr}$)		```Potential Savings (gal/yr)```	
	Total	Hot	Total	Hot
1	23,725	8,862	4,380	2,431
2	23,725	12,819	9,855	6,008
3	26,098	16,104	8,213	4.986
4	26,567	12,097	4,745	2,942
5	26,645	12,089	9,125	5,278
6	29,383	10,848	913	241
7	29,930	15,739	8,760	4.986
8	31,599	16,427	913	241
9	32,042	15,426	9,308	6,008
10	33,033	9,373	4,928	3,307
11	33,554	15,635	8,578	5,278
12	34,466	13,897	2,190	971
13	37,308	17,731	913	241
14	39,837	19,597	17,885	11,702
15	41,688	23,352	9,490	5,957
16	41,975	15,118	13,505	8,453
17	43,461	20,953	8.213	4,986
18	43,644	23,274	16,608	7,176
19	45,625	18,294	17,155	11,118
20	46,981	17,731	1,460	241
21	47.540	21,244	4,380	2,431
22	49,730	11,363	1,460	241
23	50,474	19,806	17,155	10,972
24	51,648	21,871	23,178	15,498
25	58,125	25,055	24,455	8,782
Sux:	948,803	414,705	227,765	130,475
Hean:	37,952	16,588	9,111	5.219
Max:	58,125	25,055	24,455	15.498
Hin:	23,725	8,862	913	241
Range:	34,400	16,193	23,542	15,257

water used annually by each individual. The hot water is a fraction of the cold water used by the water functions (e.g., 67 percent of the total
water used in showering was estimated to be hot water).

The results of the 25 conputer runs estiated average potential avings of 24 percent for the total water and 32 percent for the hot water, if all auggestiona given on the printout were followed. Total coat savinga cannot be estinsted accurately due to the high varisbility in the asrginal water rates. Using the sversge unit cost of $\$ 0.08$ for electricity, $\$ 5.50$ for natural gas, and $\$ 0.70$ for liquid propane, $\$ 70,521$, and 527 per year could be saved for the three energy sources, respectively, based on the mean of the potentisl hot water savings ahown in Table 4.1.

Ststiaticsl modela were inveatigated for use in deteraining the exceedance probability for any given water usage. Seven different distributiona were tested; one by hand calculations and the other six with the aid of a Fortran progras called Internstional Mathmematical and Ststisticsl Library (IMSL) [10]. The Continuous Unaform Distribution (CUD) was the distribution tested by hand calculations. The six distributiona teated by using IMSL were the norasl, log-norasl, half-noraal, exponential, Wesbull, snd extreme value distributions. Of the seven, the CUD wss the only one which aeened to fit the data collected from the 25 computer runs.

The goodness-of-fit test for the six distributions uaing IMSL waa simple. A few linea of computer code were written to read the dats file (see computer listing in Appendix E): then a subroutine nased USPRP was called from the IMSL progran which anslyzed the data and plotted the points on the appropriate distribution psper (see Appendix E, Figs. E.1E.6). If the data plotted approximately in a straight line, then that distribution wss scceptable; otherwise, the data did not fit the distribution. The dats did not fit any of the aix distributiona.

To test the fit of the data for the CUD, the firat step was to plot
the cumalative distribution function (c.d.f.) for both the theoretical and observed CUD on arithmetic paper (see Appendix E, Fig. E.7). The Kolmogorov-5mirnov one-sample test for goodness of fit test [11] was carried out on the two graphs. The eritical diatance, D_{c}, for a Type I error with alpha equal to 0.01 ia 0.32 . The maximus distance, $D_{m a x}$, between the two c.d.f. plots is 0.165 , which 15 less than D_{C}. Therefore, the null hypotheais (i.e., the asaumption that the data fitted the CUD) waa not rejected. Finally, the exceedance probability graph, Fig. 4.1, was constructed, and was judged to be acceptable based on the 25 data pointa obtained. The exceedance probability graph is the complement of the c.d.f. It was chosen because most civil engineers are accuatored to working with this type of probability graph.

Table 2.5 shows that an average individual nationwide uses approximately 64 gallons of water per day. From Table 4.1, it is seen that the 25 individuals use an average of 37,952 gallons per year, or 104 gallons per day--a difference of 40 gallons per day when compared to the national average. The CUD model shows a slightly higher average of 112 gallons per day (40,925 gallons per year). Based on the CUD model, the difference in the baseline value of the average daily use and the model is 48 gallons per day. Assuming that the sample of 25 is a reasonably good sample of how people in Kansas use their water, it is concluded that there is a potential for aaving 48 gallons of water per day per person, or 17,520 gallons per year per person. Once again, it is not posaible to assign a dollar value to the figure of 48 gallons per day since the water rates throughout Kanaaa are highly variable.

The computer progran should be used in other parts of the atate to

obtain a larger and more videapread croaa-sectional aample. Such a sample would provide a more reliable check on the apppropriateness of the CuD. This sasple would also provide a better estimate of average water use within the atate.

CHAPTER FIVE

CONCLUDING REMARKS

The objective of this work wae to develop a microcosputer program that could be ueed to educate the general public on waya to conaerve water in their homee. The goal of the program ie to provide an economic incentive for the user to coneerve water.

After educating the public on how they uee their water at home, the next step is to educate them on what stepe they would follow to begin saving water. The two major water use functione in the home are the toilet and ehower. Toilet flushing and ehowering uee approximately 40 percent and 30 percent, reapectively, of the total water uaed at hone. The flush volume of moat conventional toilets (5 gallona) can be reduced by at leat 15 percent without hindering performance. Thie can be achieved by placing weighted plastic containers or other dieplacement devicea in the tank. Plastic "dane" are available for about $\$ 5.00$ which save aa auch aa 2.5 gallons por flueh. Specially designed low-fluah toilets can reduce fluah volumee by 70 to 90 percent, but are rather expeneive, and have a long payback period compared to the displacement devices.

The cost of heating water averagee two to four times the coet of the water. Therefore, large coet eavings can be achieved by reducing hot water use. The greatest potential here liee in reducing shower flowe. Two typee of ehower devices are common: epecially designed low-flow ohower heade. and flow restricting orifice dieks which are placed just upetream of the exiating ahower head. Theae devices can reduce ahower flowa by 40 percent. Although ehower heade are more expeneive than the flow restrictore, their performance ie generally more aatiefactory. The additional coat is quickly
recovered in water and energy aavinge, in moet casea in a few monthe. Additional water and energy conaervation can be achieved through the uae of faucet aerators and water saving diehwahere and clothes wabere. Faucet aeratore can reduce water uee in einka and lavatories by 30 percent. These are especially advantageous where dishea are wahed by hend.

The author hoated a water conaervation exhibit at the 1985 Kansaa State Univeraity Open House. The exhibit demonstrated the uae of dieplacerent devicea in a toilet tank, and diaplayed both conventional and low-flow ahower heada. Hany of the people remarked about the old "brick in the toilet tank" method of dieplacing water. Thie ia the concept that the exhibit waa trying to get acrose to the public, but this particular method waa discouraged since the brick will start to break down and fall apart once it gete aatruated, thus, plugging up the toilet plumbing. One man resarked that he found a dise with a asall hole drilled in it placed in hia shower head that was being used as a flow restricting orifice.

Overall, the exhibit proved to be eucceaeful in educating the public about ways to save water, but the people seemed to need an incentive to eave. Thia ie where the water conservation progran developed herein can be ueed. Since it gives an economic incentive to aave water, and aince aaving money ie the goal of many people today, then the uee of thia program ia a first step in a aucceasful education program.

Appericilix \mathbf{A}

Residential Water Conservation Progran Listing

Listing of Residential Water Conservation Program.

```
1000 CLS
1010
1020 '*
1030'* RESIDENTIAL WATER CONSERVATION ANALYSIS DEALING WITH IN-HOME WATER USE *
1040*
1050': Written By: John R. Hollenbeck
1060'% Graduate Student, Civil Engineering
1070** Kansas State University
1080 '% Supervised By: Dr. James Koelliker
1090'a Professor, Civil Engineering
1100'* Kansas State University
1110 '*
1120 ** Date Started: 4 January }198
1130'* Date Completed: 3 November }198
1140'*
```



```
1160*
```



```
1180 '*
1190'* To use this program, refer to the user's manual entitled "User' *
1200 '* Manual for Residential Water Conservation Program" written by John
1210'% Hollenbeck, Nov, 1985.
1220 %
1230 '* The user's manual documents all of the variables used in this
1240'* program. Some of the variables are documented in the program listing*
1250'* but for a complete listing, please go to the user's manual.
1260 '*
```



```
1280
1290 ON ERROR GOTO 12640
1300 DIM As(69), CITYS(69), MCU1(18), MCU2(18), COUNTY$(25), RWDNOS (25)
1310 DIM RWDHWC(25), FC(11), ALPHS(26)
1320 '
```



```
1340 , * * INTRODUCTION * * *
1350
1360*
1370 CLS : COLOR 2,0
1380 PRINT TAB(22) "IN-HOME WATER CONSERVATION ANALYSIS" : COLOR 7.O
1390 LOGATE 5.1
1400 PRINT " This progran will ask you questions to deteraine how you use wa
ter at home.It will estimate how much money you spend annually on water and
energy used to heat your water in a year."
1410 PRINT
1420 PRINT * At the end of the session, a sumaary table will be printed on
the printer showing how each water function (i.e., showering, dishwashing, etc.)
contrib- uites to your annual consumption of water. Along with the sumary
table, some"
```

Listing of Residential Water Conservation Program (continued).

1430 PRINT "other information will be printed explaining ways to save you money by conserving water."
1440 PRINT : PRINT
1450 LOCATE , 0
1460 PRINT TAB(28) "Preas any key to continue,"
1470 AS = INPUT $\$(1)$
1480 CLS
1490 PRINT " There are two types of queations aaked in thia program. They
are:
1500 PRINT
1510 PRINT TAB(15) "1. Multiple choice queations."
1520 PRINT TAB(15) "2. Fill-in-the-blank queationa."
1530 PRINT
1540 PRINT " To answer the multiple choice questions, you need only enter
the nunber that corresponds to the answer. To do this, you have to type the
nunber by "
1550 PRINT "using the nuxbers acroaa the top of the keyboard. You then must
press the key marked RETURN to complete the entry."
1560 PRINT
1570 PRINT "Try the multiple choice example below."
1580 PRINT
1590 LOCATE ,, 1
1600 PRINT "What time is it?"
1610 PRINT * [1] Sefore 120^{\prime} clock noon. "
1620 PRINT * [2] Exactly 12 o'clock noon."
1630 INPUT " [3] After 120^{\prime} clock noon. ANSWER $=$ ",ANS*
1640
1650 . Any anawer will be accepted as long as the user enters 1, 2, or 3. The
1660 , reason any answer will be accepted is because some machines do not have
1670, a continous clock in them, 50 I could not check their anawer with the
1680 . correct time.
1690
1700 IF VAL(ANSS) $=1$ OR VAL(ANSS) $=2$ OR VAL(ANSs) $=3$ THEN T = VAL(ANSS) :
GOTO 1720
1710 PRINT : COLOR 7.1 : PRINT * You must enter either 1, 2, or 3.... Try
again. "; : COLOR 7,0 : PRINT : GOTO 1600
1720 PRINT : COLOR 0,7 : PRINT " GOOD JOB! "; COLOR 7,0
1730 PRINT : PRINT
1740 PRINT TAB (28) "Preas any key to continue."
1750 LOCATE , O : A $=$ INPUTS(1)
1760 CLS : LOCATE 5,1
1770 PRINT "The fill-in-the-blank questions allow you to enter either lettera, nusbers, or symbols. You must supply the answer to the queation that is asked."
1780 PRINT
1790 PRINT "Anawer the fill-in-the-blank exanple below."
1800 PRINT : PRINT
1810 LOCATE , , 1
1820 LINE INPUT * Enter your first nase. ANSWER = " , NMAMEs
1830 IF NNAMES $=\cdots$ OR VAL (NNAMES) 〈 0 THEN 1840 ELSE 1850
1840 PRINT : COLOR 7,1 : PRINT " Try again "; : COLOR 7,0 : PRINT : GOTO 1820

```
Listing of Residential Water Conaervation Program (continued).
```

```
1850 PRINT : PRINT USING "You entered your name as &. Is this spelled
correctly?"; NNAMES
1860 PRINT " [1] Yea"
1870 INPUT - [2] No Answer = "', ANSs
1880 IF VAL(ANSS) = 1 OR ANSS = " }>>"\mathrm{ OR ANSS = "Y" THEN 1940
1890 IF VAL (ANSE) = 2 OR ANS% = "n" OR ANSS = "N" THEN 1900 ELSE 1910
1900 PRINT : PRINT " Ok... Try again." : PRINT : GOTO 1820
1910 COLOR 7.1
1920 PRINT " You must enter either 1 or 2..... Try again. ";
1930 COLOR 7,0 : PRINT ; GOTO 1850
1940 PRINT:PRINT TAB(20) "Press any key and we'1l get started with the program."
1950 LOCATE ,.O : AS = INPUTs(1) : LOCATE .,1
1960 CLS : LOCATE 5,1
1970 SEX = 0
1980 PRINT "Are you male or female?"
1990 PRINT " [1] Male"
2000 INPUT " [2] Fenale Answer = ", ANSS
2010 PRINT
2020 IF VAL(ANS$) = 1 OR VAL(ANSS) = 2 THEN SEX = VAL(ANS5) : GOTO 2240
2030 COLOR 7.1
2040 PRINT " You muat enter aither 1 or 2.... Try again. ";
2050 COLOR 7,0 : PRINT
2060 GOTO 1980
2070 *
2080'***************************************************************************
2090 * * * * UTILITY RATE SECTION * * *
2100
2110,
2120 PRINT
2130 IF COUNTER = 1 THEN CLS ELSE 2240
2140 LOCATE 5,1 : COLOR 7,0
2150.
2160. = = = SETTING PARAMETERS TO ZERO }==
2170,
2180 SUM = 0 : HOTSUN = 0 : SUMDIFF = 0 : HOTDIFF = 0 : KANCOUNT = 0
2190 BS = 0 : DISH = 0 : CLOTHES = 0 : SOFTENER = 0 : CLOTHESCOUNT = 0
2200 DRINK =0 : SHAVECOUNT =0: NOTWISE =0: FRC =0: TUBCOUNT =0
2210 SHOWERCOUNT =0: TEETHCOUNT =0: HANDSCOUNT =0: DISHCOUNT =0
2220 RINSECOUNT = 0:WC=0:WCOST = 0: HWC = 0:WATER = 0
2230.
2240 PRINT "Do you live in Kanaas?"
2250 PRINT " [1] Yea"
2260 INPUT " [2] No Answer = ", KaNs
2270 PRINT
2280 IF VAL(KANS) = 1 OR KANs = " }\boldsymbol{y
2290 IF VAL(KANS) = 2 OR KANS = "n" OR KANS = "N" THEN 2300 ELSE 2330
2300 PRINT " I do not have any information about water rates for any place
outside Kansas, but I will use averages based on Kansas water rates,"
2310 PRINT
2320 KANCOUNT = 1 : GOTO 2370
```

```
Listing of Reaidential Water Conservation Program (continued).
```

```
2330 COLOR 7,1
2340 PRIMT " You must enter either 1 or 2.... Try again. ";
2350 COLOR 7,0 : PRINT : PRINT : GOTO 2240
2360 *
2370 PRIMT "What is the population of your comwunity?"
2380 PRINT ** [1] Greater than 100,000 people"
2390 PRIMT " [2] Between 10,000 and 99,999"
2400 PRINT * [3] Between 5,000 and 9,999*
2410 PRINT " [4] Between 1,000 and 4,999"
2420 PRINT * [5] 999 people or less."
2430 INPUT " [6] You live in a rural area. Answer = ", ANSS
2440 PRINT
2450 IF VAL(ANSS) = 6 THEN ANS $ = "S"
2460 IF VAL(ANSF) >=1 AND VAL(ANS5) <=5 THEN POP = VAL(ANSS) ; GOTO 2500
2470 COLOR 7,1
2480 PRINT " You wust enter either 1, 2, 3, 4, 5, or 6.... Try again. ";
2490 COLOR 7.0 : GOTO 2310
2500 IF COUNTER = 1 THEN COUNTER = 0 ELSE 2520
2 5 1 0 \text { GOTO 3640}
2520 PRINT
2530.* *****************************+******+*+******
2540* }===\mathrm{ WATER UTILITY RATE SECTION = = =
```



```
2560*
2570 PRINT "Where does your water cone from?*
2580 PRINT " [1] Municipal water plant*
2590 PRINT * [2] Rural Water District*
2600 INPUT " [3] Private well Answer = ' }\mp@subsup{}{}{*}\mathrm{ , ANS占
2 6 1 0 ~ P R I N T ~
2620 IF VAL(ANSS) =1 OR VAL(ANS&) =2 OR VAL(ANS%) =3 THEN SOURCE = VAL(ANSS) :
GOTO }267
2630 COLOR 7.1
2640 PRINT " You must enter either 1, 2, or 3.... Try again. ";
2650 COLOR 7,0 : PRINT
2660 GOTO 2570
2670 IF SOURCE <> 3 THEN 2750
2680 *
2690 PRINT "How deep (in feet) is your well? If you don't know, then make a
rough eatimate.
2700 INPUT * Answer = * .DEPTH's
2 7 1 0 ~ P R I N T
2720 IF VAL(DEPTHE) < = O OR DEPTHs = "* THEN COLOR 7,1 ELSE DEPTH = VAL(DEPTHs)
: GOTO 6420
2730 PRINT * You must give me an eatimate. If you don't know, then guesa SO
faet. ";
2740 COLOR 7,0 : PRINT : GOTO 2690
2750 IF SOURCE = 2 THEN UNITS = 1 : UNIT$ = "1000 gallona" : GOTD 3500
2760 PRINT "Ia your hose on a water meter?"
2770 PRINT " [1] Yea"
2780 INPUT " [2] No Anawer = ", ANSt
```

```
Liating of Residential Water Conservation Program (continued).
```

```
2790 PRINT
2800 IF VAL (ANSs) = 1 OR AMSS = " }\mp@subsup{\boldsymbol{Y}}{}{**}\mathrm{ OR ANSs = "Y" THEN METER = 1 : GOTO 2880
2810 IF VAL(ANSS) = 2 OR ANSS = "n" OR ANS' = "N" THEN METER = 2 : GOTO 2860
2820 COLOR 7,1
2830 PRINT " You must enter either 1 or 2.... Try again. ":
2840 COLOR 7,0 : PRINT
2850 GOTO 2750
2860 IF METER = 2 THEN 2990
2870 '
2880 PRINT "How does your water bill read? Most bills read in dollara per ";
2890 PRINT "one-thousand" : PRINT "gallons."
2900 PRINT * [1] Dollars per one-thousand gallons"
2910 INPUT " [2] Dollars per one-hundred cubic feet Answer = ", ANS5
2920 PRINT
2930 IF VAL(ANSङ) =1 OR VAL(ANS5) =2 THEN UNITS = VAL(ANS5) : GOTO 3470
2940 COLOR 7,1
2950 PRINT * You must enter either 1 or 2.... Try again. *;
2960 COLOR 7,0 : PRINT
2970 GOTO 2880
2980 '
2990 PRINT "What is your flat rate water fee in dollars per month?"
3000 PRINT * Enter the amount as a dollar decimal."
3010 INPUT " If you don't know, then hit the RETURN keY. Answer = $",FLAT$
3020 PRINT
3030 IF KANCOUNT = 1 AND FLATS = ** THEN 3420: IF VAL(FLAT&) > O AND VAL(FLATE)
< 20 THEN FLATFEE a VAL(FLATS) ELSE 3060 : GOTO 3420
3040 IF FLAT& = "* THEN FRC = 1 : GOTO 3130
3050 IF VAL(FLAT$) > 0 AND VAL(FLAT$) <= 20 THEN 3090
3060 COLOR 7.1
3070 PRINT " Please enter a cost between $1 and $20 per month. ";
3080 COLOR 7,0 : PRINT : PRINT : GOTO 2990
3090 FC = VAL(FLATE) : FRC = 1 : GOTO 6420
3100 '
3110* = = = OPENING THE SEQUENTIAL FILE "FLATFEE.DAT" = = =
3120 '
3130 CLS
3140 OPEN "I", "1, "FLATFEE,DAT"
3150 FOR I = 1 TO 11
3160 INPUT #1, CITY&(I), FC(I)
3170 NEXT I
3180 CLOSE
3 1 9 0 ~ P R I N T ~ " B e l o w ~ i s ~ a ~ l i s t ~ o f ~ K a n s a s ~ c o m u u n i t i e s ~ t h a t ~ c h a r g e ~ a ~ f l a t ~ f e e ~ f o r ~
their water.If your community is listed, enter the line number that corresponds
to it and"
3200 PRINT "hit the RETURN key, If your community is not listed, then hit
RETURN key only."
3210 PRINT
3220 PRINT *" Line No. Community*
3230 PRINT " ---- --- ----------********
3240 FOR I # 1 TO 11
```

Listing of Residential Water Conservation Program（continued）．

```
3250 LOGATE (6 * I), 21
3260 PRINT USING "##, &"# I, GITY$(I)
3270 PRINT
3280 NEXT I
3290 LOCATE 20,35
3300 INPUT "ANSNER = ", ANSS
3310 IF ANSS = *" THEN FC = 7.86 : PRINT : GOTO 3420
3 3 2 0 ~ I F ~ V A L ( A N S S ) ~ > = ~ 1 ~ A N D ~ V A L ( A N S S ) ~ < = ~ 1 1 ~ T H E N ~ 3 3 3 0 ~ E L S E ~ 3 3 7 0 ~
3330 FC = FC(VAL(ANSS)) : FRC = 1 : PRINT
3340 COLOR 7,4
3350 PRINT USING " The flat rate water fee for s is $##.###, "; GITY施(VAL(ANSs)),
FC(VAL(ANS%));
3360 COLOR 7,0 : PRINT : PRINT : LOCATE 24,1 : GOTO 6420
3370 CL.S
3380 LOCATE 12,1 : COLOR 7,1
3390 INPUT " You must have hit the wrong key.... Press the RETURN key and try
again, *, RETs
3400 IF RETs = ** THEN COLOR 7,0 : CLS : GOTO 3190
3410 COLOR 7,0 : GOTO 3370
3420 FRC = 1 : COLOR 7,4
3430 PRINT " Then I'11 use a rough estimate for the flat rate equal to 57.86 ";
3440 PRINT "per month. ";
3450 COLOR 7,0 : PRINT : PRINT : GOTO 6420
3460 PRINT : GOTO 6310
3470 IF UNITS = 1 THEN UNITs = "one-thousand gallons" : GOTO 3500
3480 IF UNITS = 2 THEN UNITS = "one-hundred cubic feet"
3490 '
3500 PRINT "What is the marginal cost per ";UNIT弯" of water per month where ";
3510 PRINT "you live?"
3520 PRINT " Enter the amount as a dollar decimal."
3530 INPUT " If you don't know, then press the RETURN key. Answer = s",
wcosTs
3540 PRINT
3550 IF WCOST占 = ** AND KANCOUNT = 1 AND SOURCE = 2 THEN 6260
3560 IF WCOSTs }=*=*\mathrm{ AND KANCOUNT a 1 THEN 5960
3570 IF WCOST& = m THEN 3630
3580 IF VAL(WCOST%) > 0 AND VAL(WCOSTs) <= 8 THEN 3620
3590 COLOR 7,1
3600 PRINT " Please enter a cost between $0.50 and s8. ";
3610 COLOR 7,0 : PRINT : PRINT : GOTO 3500
3620 WCOST = VAL(WCOSTS) : LOGATE 24,1 : PRINT : GOTO 6420
3630 PRINT
3640 CLS
3650 IF SOURCE = 2 THEN 4710
3660 ON POP GOTO 3670, 3680, 3690, 3700, 3710
3670 FFNS = "GITY1" : POP' = "over 100,000" : GOTO 3760
3680 FFNs = "CITY2" : POP% = "between 10,000 & 99,999" : GOTO 3760
3690 FFNS = "CITY3" ; POPK = "between 5000 or 9999" : GOTO 3760
3700 FFNs = "CITY4" ; POP$ = "between 1000 & 4999" : GOTO 3760
3710 FFNs = "city5" : POP% = "legs than 1000" : GOTO 3760
```

```
Listing of Reaidential Water Conservation Program (continued).
```

```
3720 ,
3730 * = = OPENING THE SEQUENTIAL FILE FOR THE MUNICIPAL WATER = = =
3740* = = PLANTS BASED ON COMMUNITY POPULATION = = =
3750 '
3760 OPEN "I", 期, FFNS + *.DAT"
3 7 7 0 \text { IF POP = 4 OR POP = 5 THEN 4200}
3780 LOCATE 1,1
3790 PRINT USING " You entered that your community had & people, thus";POP:
3800 PRINT "the reason for the list below. In the area narked ANSWER, enter the
line number that corresponds to your community."
3810 PRINT " If your community is not listed, and your population size is
correct, then press the key marked RETURN. If you think you answered the
question dealing with your population incorrectly, then press the key marked
'H' and hit RETURN.**
3820 IF POP = 2 THEN 3990
3830 LOCATE 8,5
3840 PRINT "Line No. Community"
3850 LOCATE 9,5
3860 PRINT "---- --- -------------*
3 8 7 0 ~ I F ~ P O P ~ = ~ 1 ~ T H E N ~ N ~ = ~ 9 ~ E L S E ~ N ~ = ~ 3 6 ~
3880 FOR I = 1 TO N
3890 INPUT #1, AS(I)
3900 NEXT I
3910 J = 0
3920 FOR I = 1 TO (N - 2) STEP 3
3930 J = J + 1 : LOCATE (9 + J),8
3940 CITY吕(I) = AS(I)
```



```
3960 NEXT I
3970 LOCATE 15,45 : INPUT "ANSWER = ", ANSS
3980 CLOSE : GOTO 5660
3990 LOCATE 8,1
4000 PRINT "Line No. Comaunity Line No. Comaunity"
4010 PRINT "---- ---
4 0 2 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ 6 9 ~
4030 INPUT 華1, A号(I)
4040 NEXT I
4 0 5 0 ~ J ~ = ~ 0 ~
4 0 6 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ 3 6 ~ S T E P ~ 3 ~
4070 J = J + 1
4080 CITYS(I) = AS(I)
4090 PRINT USING " ###. &"% J, CITY$(I)
4 1 0 0 ~ N E X T ~ I ~
4 1 1 0 ~ F O R ~ I ~ = ~ 3 7 ~ T O ~ 6 7 ~ S T E P ~ 3 ~
4120 J = J + 1
4130 LOCATE (J - 3),40
4140 CITYE(I) = AS(I)
```



```
4160 NEXT I
4170 LOCATE 23,35 : INPUT "ANSWER = ", ANSE
```

```
Liating of Reaidential Water Conservation Progran (continued).
```

```
4180 CLOSE
4190 GOTO 5660
4 2 0 0 ~ C L S ~
4210 PRINT " In the area by the word ANSWER, enter the firat letter";
4220 COLOR 4,0 : PRINT * (IN CAPS ONLY) "; ; COLOR 7.0
4 2 3 0 ~ P R I N T ~ " o f ~ y o u r ~ c o m m u n i t y ' s ~ n a m e . ~ " ;
4240 COLOR 4.0 ; PRINT "DO NOT PUT ANY SPACES IN FRONT OF THIS LETTER%"; : COLOR
7.0
4250 PRIMT
4260 INPUT ** ANSWER = ** FL$
4 2 7 0 ~ P R I N T
4280 PRINT USING "I ax attempting to look for the towna that begin with the
letter &. Please Wait....": FLS
4290 J = 0
4 3 0 0 ~ I F ~ P O P ~ = ~ 4 ~ T H E N ~ N ~ = ~ 1 2 0 ~ E L S E ~ N ~ = ~ 2 0 9 ~
4 3 1 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ N '
4320 INPUT N1, A$, B, C
4330 IF LEFTS(A多,1) (FL$ THEN 4360
4340 IF LEFTS(AS,1) > FLS THEN 4370 ELSE J = J + 1
4350 CITY&(J) = As:MCU1(J) = B : MCU2(J) = C
4 3 6 0 ~ N E X T ~ I ~
4370 CLOSE
4380 IF J = O THEN 5930
4390 COLOR 7.0 : CLS : LOCATE 1.1
4 4 0 0 ~ P R I N T ~ U S I N G ~ " ~ Y o u ~ e n t e r e d ~ t h a t ~ y o u r ~ c o m m u n i t y ~ h a d ~ \& ~ p e o p l e , ~ t h u a " ; P O P \$
440 PRINT "the reason for the list below. In the area marked ANSWER, enter the
lime number that corresponds to your community."
4420 PRINT " If your cosmunity is not listed, and your population size is
correct, then press the key marked RETURN. If you think you answered the
question dealing with your population incorrectly, then press the key
narked "H" and hit RETURN."
4430 IF POP = 5 AND (FL% = "B" OR FLs = "C" OR FLS = "L" OR FLs = "M" OR FLB =
"W*) THEN 4540
4440 LOCATE 8.5
4450 PRINT "Line No. Community"
4460 LDCATE 9.5
4470 PRINT "---------
4 4 8 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ J ~
4490 LOCATE (9 + I). 8
4500 PRINT USING "䋱. G*:I,CITY&(I)
4 5 1 0 ~ N E X T ~ I ~
4520 LOCATE 15,45 : INPUT "ANSWER = ** ANS$
4530 CLOSE : GOTO 5660
4540 LOGATE 8.1
4550 PRINT "Line No. Community N-* Line No. Community"
4570 K* = J / 2
4580 FOR I = 1 TO K*
4 5 9 0 ~ P R I N T ~ U S I N G ~ " ~ \# \# \# . * ) G " ; I , ~ C I T Y \% ( I )
4600 NEXT I
```

```
Liating of Residential Water Conservation Progran (continued).
```

```
4610 L = 0
4620 FOR I = (Kx + 1) TO J
4630 L = L + 1
4640 LOCATE (9 * L),40
4650 PRINT USING * ##. G*;I,CITYक(I)
4 6 6 0 ~ N E X T ~ I ~
4670 CLOSE
4680 LOCATE 23,35 : INPUT *ANSWER = ", ANS$
4690 GOTO 5660
4 7 0 0 ~ L O C A T E ~ 1 . 1 ~
4 7 1 0 ~ P R I N T ~ " Y o u ~ a n s w e r e d ~ t h a t ~ y o u r ~ w a t e r ~ i s ~ s u p p l i e d ~ b y ~ a ~ R u r a l ~ W a t e r ~ D i s t r i c t ,
(RWD). Somedistricts are named after the city they serve. Below is a list of
the dis-"
4 7 2 0 ~ P R I N T ~ " t r i c t s ~ t h a t ~ f i t ~ t h i s ~ c a t e g o r y . ~ I f ~ y o u r ~ d i s t r i c t ~ i s ~ o n e ~ o f ~ t h e s e ,
then enter the line number that corresponds to it and hit the RETURN key. If
this is not your case then enter the first letter*;
4730 COLOR 4,0 : PRINT = (IN CAPS ONLY) "; ; COLOR 7,0
4 7 4 0 \text { PRINT "of your district's name and"}
4 7 5 0 ~ P R I N T ~ " p r e s s ~ t h e ~ R E T U R N ~ k e y . ~ " ; ~
4760 COLOR 4,0 : PRINT "DO NOT PUT ANY SPACES BEFORE THE LETTERI" : COLOR 7,0
4770 *
4780 * }==\mathrm{ OPENING THE RWD SEQUENTIAL FILE m m
4790 *
4800 OPEN "I", #1, "RWD.DAT"
4 8 1 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ 5 ~
4820 INPUT #1, CITYS(I), RWDMWC(I)
4830 NEXT I
4840 LOCATE 8,1
4850 PRINT * Line No. Comwunity"
4860 PRINT * ---- -.- -------------
4870 FOR I = 1 TO 5
4880 PRINT USING" *. **' I, CITY&(I)
4 8 9 0 ~ N E X T ~ I ~
4900 LOCATE 17,10
4910 INPUT "ANSWER = ", ANSS
4920 IF VAL(ANSS) >= 1 AND VAL(ANSS) <= 5 THEN WCOST = RWDMWC(VAL(ANS$)) ELSE
    4970
4930 CLOSE
4940 LOCATE 23,1 : COLOR 7,4
4 9 5 0 ~ P R I N T ~ U S I N G ~ " ~ T h e ~ m a r g i n a l ~ w a t e r ~ r a t e ~ f o r ~ t h e ~ i s ~ i s \# \# \# \# \# \# , ~ " ;
CITY&(VAL(ANSS)), UCOST: : PRINT
4 9 6 0 \text { COLOR 7,0 : PRINT : GOTO 6420}
4970 IF ANSs = ** THEN 4900
4 9 8 0 ~ F O R ~ I ~ = ~ 1 ~ T O ~ 2 6 ~
4990 READ ALPH% (I)
5000 IF ANSS = ALPHS(I) THEN }507
5010 NEXT I
5020 DATA A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z
5030 IF VAL(ANSङ) < 1 OR VAL(ANSS) > 5 THEN LOCATE 23,1 ELSE 5070
5040 COLOR 7,1
```

```
Listing of Reaidential Water Conaervation Program (continued).
```

5050 PRINT＂You cannot enter a number leas than 1 or larger than 5．．．．Try again．＂；
5060 COLOR 7．0 ：GOTO 4900
5070 CLS ：FLs＝ANS $\$$
5080 PRINT
5090 PRINT USING＂I an attempting to look for the RWDa that begin with the
letter g ．Please Wait．．．．．．＂；FLS
5100 FOR I＝ 1 TO 169
5110 INPUT \＃1，As，Bs，C
5120 IF LEFTS（As，1）＜FLS THEN 5150
5130 IF LEFT\＆$(A S, 1)>$ FL\＄THEN 5170 ELSE $J=J+1$
5140 COUNTYE（J）$=A$ ：RWDNOS（J）$=\mathrm{BS}: \operatorname{RWDHWC}(\mathrm{J})=C$
5150 NEXT I
5160 CLOSE
5170 IF $J=0$ THEN 6220
5180 CLS
5190 PRINT USING＂Below ia a list of RWD＇s that begin with the letter G ．If
your district is liated，then enter the nuaber that correaponda to it and
preas the RETURN key．＂：FLs
5200 PRINT＂If your district ia not listed，then presa the RETURN key only．＂
5210 PRINT
5220 IF FLS $=$＂C＂OR FLS $=$＂L＂OR FLS $=$＂M＂THEN 5400
5230 PRIMT＂Line No．County $\quad 5240$ PRIMT＂
5240 PRIMT＂－－－－－－－－－－－－－－－－－－－－＂
5250 FOR I $=1$ TO J
5260 LOCATE $(6+I), 8$

5280 LOCATE（ $6 \times I$ ）， 43 ：PRINT USING＂${ }^{*}{ }^{*}$ ；RWDNOS（I）
5290 NEXT I
5300 LOCATE 23，35
5310 INPUT＂ANSWER $={ }^{*}$ ，ANS
5320 IF VAL（ANSs）＞＝ 1 AND VAL（ANS 3 ）《a J THEN WCOST＝RWDHWC（VAL（ANSS））ELSE 5360
S330 LOCATE 24．1 ：COLOR 7．4

COUNTY末（VAL（ANSS）），RWDNOS（VAL（ANS\＄）），WCOST ：PRINT＊per 1000 gallons．＂；
5350 COLOR 7，0 ：PRINT ：PRINT ：GOTO 6420
5360 IF ANSs $=$＊＊THEN 6170
5370 CLS ：LOCATE 12，5 ：COLOR 7，1
5380 INPUT＂You must have hit the wrong key．．．．Preas the RETURN key and try
again．＂，RETs；
5390 IF RET $\%$＊${ }^{*}$ THEN 5190 ELSE COLOR 7，0 ：GOTO 5370
5400 PRINT
5410 PRINT＂Line No．County RWD No．I Line No．County
RWD No．＂
5420 PRINT

－－－－－－－＂
$5430 \mathrm{Kt}=\mathrm{J} / 2$
5440 FOR I＝ 1 TO K＊
5450 PRINT USING＂归＊G＊；I，COUNTYミ（I）

```
Liating of Reaidential Water Conaervation Program (continued).
```

```
5460 LOCATE (7 + I), 30
5470 PRINT USING "G"; RWDNOS(I)
5480 NEXT I
5490 L = 0
5500 FOR I = (Kx + 1) TO J
5510 L = L + 1
5520 LOCATE (7 + L), 38
5530 PRINT USING "1 ###. &*; I, COUNTYS(I)
5540 LOCATE (7 + L), 73
5550 PRINT USING "g"; RWDNO$(I)
5560 NEXT I
5570 LOCATE 25,35 : INPUT "ANSWER = ", ANSS
5580 IF VAL (ANSs) >= 1 AND VAL (ANSS) <= J THEN WCOST = RWDMWC(VAL (ANSS)) : CLS :
ELSE 5620
5590 LOCATE 3,1 : COLOR 7,4
5600 PRINT USING " The marginal water rate for & county RWD No. & is S###,## ";
COUNTYS(VAL(ANSs)), RWDNOS(VAL(ANSS)), WCOST : PRINT * per 1000 gallons. *;
5610 COLOR 7.0 : PRINT : PRINT : GOTO 6420
5620 IF ANS5 = "* THEN 6170
5 6 3 0 \text { CLS : LOCATE 12,5 : COLOR 7,1}
5640 INPUT " You must have hit the wrong key.... Press the RETURN key and try
again. ", RETS
5650 IF RETS = m THEN 5190 ELSE COLOR 7,0 : GOTO 5630
5660 ON POP GOTO 5670, 5680, 5690, 5700, 5700
5670 IF VAL (ANSs) >= 1 AND VAL(ANS$) <= 3 THEN 5710 ELSE 5770
5680 IF VAL(ANSs) >= 1 AND VAL(ANSs) <= 23 THEN 5710 ELSE 5770
5690 IF VAL(ANSS) >=1 AND VAL(ANSS) <=12 THEN 5710 ELSE 5770
$700 IF VAL (ANS$) >= 1 AND VAL(ANSs) <= J THEN S750 ELSE 5770
5710 NUM = VAL(ANSS) * 3
5720 IF UNITS = 1 THEN WCOST = VAL(AS (NUM - 1)) : GOTO 6310
S730 IF UNITS = 2 THEN WCOST = VAL(AS (NUK)) : GOTO 6310
5740 GOTO 5770
5750 IF UNITS = 1 THEN WCOST = MCU1 (VAL(ANSS)) : GOTO 6310
5760 IF UNITS = 2 THEN WCOST = MCU2(VAL(ANSS)) : GOTO 6310
5770 IF ANSS = ** THEN 5960
5780 IF ANSS = "H" OR ANSS = "h" THEN 5860
5790 CLS
5800 COLOR 7,1
5810 LOCATE 12,5
5820 INPUT " You must have hit the wrong key -- Press the RETURN key and try
again. ",RETs
5830 IF RETS = "# AND POP = 4 OR POP = 5 THEN 4390 ELSE 5850
5840 GOTO 5820
5850 COLOR 7,0 : GOTO 3640
S860 COUNTER = 1 : CLS
5 8 7 0 \text { COLOR 2,0 : LOCATE 5,1}
5880 PRINT " Since you might have answered the population question
incorrectly,I will return you to that question and let you try again."
5890 PRINT
5900 INPUT ** Press the RETURN key when you are ready to go back. ", RETs
```

Listing of Reaidential Water Conservation Progran (continued).

```
5910 IF RET$ = ** THEN 5920 ELSE 5900
5920 COLOR 7,0 : CLS : GOTO 2370
5 9 3 0 ~ C O L O R ~ 7 , 4 ~ : ~ L O C A T E ~ 2 4 , 1 ~ : ~ P R I N T ~
5 9 4 0 ~ P R I N T ~ U S I N G ~ " ~ I ~ h a v s ~ n o ~ c o m m u n i t y ~ l i s t e d ~ t h a t ~ b e g i n g ~ w i t h ~ t h e ~ l e t t e r ~ G ,
thersfors I'11 use a very rough estimate according to the size of your
community**' FLs
5950 GOTO 6040
5960 LOCATE 24.1 : PRINT
5 9 7 0 ~ C O L O R ~ 7 . 4 ,
5980 PRINT "Then I'11 usa a very rough estimate according to the sizs of your";
5990 PRINT ** community. ";
5 0 0 0 ~ P R I N T
6 0 1 0 ~ *
6020 * }===\mathrm{ MARGINAL WATER RATE OEFAULT VALUES FOR MUNICIPAL WATER PLANTS }==
6 0 3 0 *
6040 IF POP = 1 ANO UNITS = 1 THEN WCOST = 1.22 : GOTO 6140
6050 IF POP = 2 ANO UNITS = 1 THEN WCOST = 1.31 : GOTO 6140
6060 IF POP = 3 ANO UNITS = 1 THEN WCOST = 1.42 : GOTO 6140
6070 IF POP = 4 ANO UNITS = 1 THEN WCOST = 1.26 : GOTO 6140
6 0 8 0 ~ I F ~ P O P ~ = ~ 5 ~ A N O ~ U N I T S ~ \# ~ 1 ~ T H E N ~ W C O S T ~ = ~ 1 . 7 ~ : ~ G O T O ~ 6 1 4 0 ~
6 0 9 0 ~ I F ~ P O P ~ = ~ 1 ~ A N O ~ U N I T S ~ = ~ 2 ~ T H E N ~ W C O S T ~ = ~ . 9 1 ~ : ~ G O T O ~ 6 1 4 0 ~
6100 IF POP = 2 ANO UNITS = 2 THEN WCOST = .98 : GOTO 6140
6110 IF POP = 3 ANO UNITS =2 THEN WCOST = 1.06 : GOTO 6140
6 1 2 0 ~ I F ~ P O P ~ = ~ 4 ~ A N O ~ U N I T S ~ = ~ 2 ~ T H E N ~ W C O S T ~ = ~ . 9 4 ~ : ~ G O T O ~ 6 1 4 0 ~
6130 IF POP = 5 AND UNITS = 2 THEN WCOST = 1.27 : GOTO 6140
6140 PRINT USING*The estimate I will uss for your marginal water cost is $#.###
";WC0ST
6150 PRINT USING "per & par month.";UNIT$;
6160 COLOR 7,0 : PRINT : PRINT : GOTO 6420
6 1 7 0 \text { CLS : LOCATE 3.1 : COLOR 7,4}
6180 PRINT "Then I'11 use a very rough estimats for your marginal water rate
bassd on the average of the RWOs in the stats of Kansas. This cost is $2.41
per 1000 gallons:";
6190 wcosT =2.41
6200 COLOR 7,0 : PRINT
6 2 1 0 ~ P R I N T ~ : ~ G O T O ~ 6 4 2 0 ~
620 CLS : LOCATE 3.1 : COLOR 7,4
6 2 3 0 ~ P R I N T ~ U S I N G ~ " I ~ h a v e ~ n o ~ R W O ~ l i s t e d ~ t h a t ~ b e g i n ~ w i t h ~ t h e ~ l e t t e r ~ \& . ~ T h a r e f o r e ~
I will use a very rough estimate of your marginal watsr cost based on the
avarage for the districts in Kansas. This cost is s2.41 per 1000 gallons. "t
Fl*
6240 WCOST = 2.41
6 2 5 0 ~ C O L O R ~ 7 . 0 ~ : ~ P R I N T ~ : ~ G O T O ~ 6 4 2 0 ~
6260 COLOR 7,4
6 2 7 0 ~ P R I N T ~ " ~ S i n c e ~ y o u ~ d o ~ n o t ~ l i v e ~ i n ~ K a n s a s , ~ I ~ w i l l ~ u s e ~ a n ~ a v e r a g e ~ f o r ~ y o u r
monthly marginal water cost based on Kansas RWOs. This cost is $2.41 per
1000 gallons:":
6280 WC0ST = 2.41
6 2 9 0 \text { COLOR 7.0 : PRINT : PRINT : GOTO 6420}
6 3 0 0 ~ P R I N T ~
```

```
Liating of Reaidential Water Conaervation Program (continued).
```

```
6310 LOCATE 24.1
6320 COLOR 7,4 : IF POP = 4 OR POP = 5 THEN 6350
6 3 3 0 ~ P R I N T ~ U S I N G ~ * ~ T h e ~ m o n t h l y ~ m a r g i n a l ~ w a t e r ~ r a t e ~ f o r ~ \& ~ i a ~ \$ \# \# . \# \# \# ~ p e r ~ " ;
CITYE (NUY-2), WCOST; : PRINT : PRINT USING " &. "; UNITS;
6 3 4 0 \text { COLOR 7,0 : PRINT : PRINT : GOTO 6420}
6 3 5 0 ~ P R I N T ~ U S I N G ~ * ~ T h e ~ m o n t h l y ~ m a r g i n a l ~ w a t e r ~ r a t e ~ f o r ~ \& ~ i s ~ \$ \# \# , \# \# \# ~ p e r ~ " ; ~
CITYS(VAL(ANSS)), WCOST; : PRINT : PRINT USING " G. *; UNITS:
6360 COLOR 7.0 : PRINT : PRINT
6370.
6380 *
6390* = = ENERGY UTILITY RATE SECTION }==
```



```
6410*
6420 PRINT "How ia your hot water heated?"
6430 PRINT " [1] Electricity*
6440 PRINT " [2] Natural gaa"
6450 INPUT * [3] LP gaa Answer = * ANSs
6 4 6 0 ~ P R I N T ~
6470 IF VAL(ANSS) = 1 OR VAL(ANS$) = 2 OR VAL(ANSS) = 3 THEN HEAT = VAL(ANSS) :
GOTO 6520
6480 COLOR 7,1
6 4 9 0 ~ P R I N T ~ " ~ Y o u ~ g u a t ~ e n t e r ~ e i t h e r ~ 1 , 2 ~ o r ~ 3 . . . = ~ T r y ~ a g a i n . ~ " ; ' ;
6500 COLOR 7,0 : PRINT
6 5 1 0 \text { GOTO 6420}
6520 IF HEAT = 1 THEN BTU = 3413 : GOTO 6580
6530 IF HEAT = 2 THEN BTU = 1000000: ELSE 6550
6540 IF SOURCE = 3 THEN 6570 ELSE 6750
6550 IF HEAT = 3 THEN BTU = $5000%
6560 IF SOURCE = 3 THEN 6570 ELSE 6900
6 5 7 0 \text { PRINT "For the purpoae of pumping your water, what is your electric coat}
per kilowatt- hour, (kwh)?* : GOTO 6550
6580 PRINT "What is your electric cost per kilowatt-hour, (kwh)?"
6590 PRINT " Enter the amount aa a dollar decimal (e.g., $0.08)."
6 6 0 0 ~ I N P U T ~ = ~ I f ~ y o u ~ d o n ' t ~ k n o w , ~ t h e n ~ p r e s s ~ t h e ~ R E T U R N ~ k e y . ~ A n a w e r ~ = ~
$",KWATS
6 6 1 0 ~ P R I N T ~
6620 IF KWATS = 4* THEN KWAT = .08 ELSE 6660
6630 COLOR 7.4
6640 PRINT " Then I'11 use on eatinated coat of $0.08 per kwh. ";
6 6 5 0 ~ C O L O R ~ 7 , 0 ~ : ~ P R I N T ~ : ~ G O T O ~ 6 7 1 0 ~
6660 IF VAL (KWAT#) <.049 OR VAL(KWAT&) > . }115\mathrm{ THEN 6670 ELSE 6700
6670 COLOR 7,1
6 6 8 0 ~ I F ~ V A L ~ ( K W A T S ) ~ < . 0 4 \% ~ T H E N ~ P R I N T ~ " ~ Y o u r ~ e l e c t r i c i t y ~ c o a t ~ i s ~ t o o ~ l o w . ~ T h e
price for electricity ranges between $0.05 and s0.11 per kwh. Try again...
and enter a cost that ia in this range. ";: COLOR 7,0 : PRINT:PRINT : GOTO 6580
6690 IF VAL(KWATF) > .115 THEN PRINT " Your electricity cost is too high. The
price for electricity ranges between $0.05 and $0.11 per kwh. Try again....
and enter a coat that is in this range.";: COLOR 7.0 : PRINT : PRINT : GOTO 6580
6700 KWAT = VAL (KWAT&)
6710 ENERGYCOST = KWAT : PRINT
```

```
6720 IF SOURGE = 3 AND HEAT = 2 THEN 6750
6730 IF SOURCE = 3 AND HEAT = 3 THEN 6S00 ELSE 7040
6740 *
6750 PRINT "What is your natural gas cost per }1000\mathrm{ cubic feet (MCF)?"
6760 PRINT " Enter the amount as a dollar decimal (e.g., $5.50)."
6 7 7 0 \text { INPUT * If you don't know, then press the RETURN key. Answer =}
$*,GAS$
6 7 8 0 \text { PRINT}
6790 IF GAS! =** THEN GAS = 5.5 ELSE 6830
6 8 0 0 ~ C O L O R ~ 7 , 4
6810 PRINT " Then I'11 use an estimated cost of $5.50 per MCF. '%
6820 COLOR 7,0 : PRINT : GOTO 6880
6830 IF VAL(GASs) < 1.g9 OR VAL (GASE) > g.01 THEN 6840 ELSE 6870
6840 COLOR 7.1
6850 IF VAL(GAS$) < 1.99 THEN PRINT " Your gas cost is too low. The cost of gas
ranges between $2,00 and $$.00. Try again... and enter a cost in this
range.";: COLOR 7,0 : PRINT : PRINT : GOTO }675
6860 IF VAL(GAS$) > g.01 THEN PRINT " Your gas cost is too high. The cost of
gas ranges between $2,00 and s9.00. Try again... and enter a cost in this
range." ;: COLOR 7.0 : PRINT : PRINT ; GOTO 6750
6870 GAS = VAL(GAS$)
6880 ENERGYCOST = GAS : GOTO 7040
6890 '
6 9 0 0 ~ P R I N T ~ " W h a t ~ i s ~ y o u r ~ c o s t ~ p e r ~ g a l l o n ~ f o r ~ L P ~ g a s ? " ~
6 9 1 0 ~ P R I N T ~ " ~ E n t e r ~ t h e ~ a m o u n t ~ a s ~ a ~ d o l l a r ~ d e c i m a l ~ ( e . g . , ~ s o . 7 0 ) . " ~
6 9 2 0 ~ I N P U T ~ " ~ I f ~ y o u ~ d o n ' t ~ k n o w , ~ t h e n ~ p r e s s ~ t h e ~ R E T U R N ~ k e y . ~ A n s w e r ~ = ~ s " , L P s
6 9 3 0 ~ P R I N T ~
6940 IF LP岁 =** THEN LP = .7 ELSE 6980
6950 COLOR 7,4
6960 PRINT " Then I'11 use an estimated cost of $0.70 per gallon. ";
6970 COLOR 7,0 : PRINT : GOTO 7030
6980 IF VAL(LPs) < .49 OR VAL(LP$) > 1.26 THEN 6g90 ELSE }702
6990 COLOR 7.1
7000 IF VAL (LPE) < . 49 THEN PRINT * Your LP gas cost is too low. The cost range
for LP gas is between $0.50 and $1.25. Try again... and enter a cost in this
range. ";: COLOR 7,0 : PRINT : PRINT : GOTO 6900
7010 IF VAL(LPs) > 1.26 THEN PRINT " Your LP gas cost is too high. The cost
range for LP gas is between so.50 and $1.25. Try again... and enter a cost in
this range. ";: COLOR 7,0 : PRINT : PRINT : GOTO 6900
7020 LP = VAL(LP$)
7030 ENERGYCOST = LP
7 0 4 0 ~ P R I N T ~
7050 INPUT " Press the RETURN key to continue.", RETS
7060 IF RETS }=*** THEN 7070 ELSE 7050
7070 CLS : LOCATE 5,1
7 0 8 0 \text { SUM = 0}
7090 IF SOURCE <> 3 THEN 7380
7100 '
7110
7120 *
```

Liating of Reaidential Water Conservation Progran (continued).

```

```

7140 '
7150 PRINT "Do you have a water softener?"
7160 PRINT * [1] Yes*
7170 INPUT " [2] No Anawer = "*,ANS5
7 1 8 0 ~ P R I N T
7190 IF VAL(ANSS) = 1 OR ANSS = " }\mp@subsup{y}{}{**}\mathrm{ OR ANSS = "Y" THEN SOFTENER = 1 : GOTO 7240
7200 IF VAL(ANSS) = 2 OR ANS\$ = "n" OR ANS\$ m "N" THEN SOFTENER = 2 : GOTO 7240
7 2 1 0 ~ C O L O R ~ 7 , 1 ~
7220 PRINT " You must enter either 1 or 2.... Try again. ";
7230 COLOR 7,0 : PRINT : GOTO 7150
7240 IF SOFTENER = 2 THEN 7380
7 2 5 0
7 2 6 0 ~ P R I N T ~ " H o w ~ m a n y ~ d a y s ~ b e t w e e n ~ r e g e n e r a t i o n ~ i s ~ y o u r ~ w a t e r ~ s o f t e n e r ~ a e t ~ f o r ? " ~
7 2 7 0 INPUT " Enter your answer here. Anawer m ", ANSS
7 2 8 0 ~ P R I N T ~
7290 IF VAL(ANS$) < = OR VAL(ANS$) > 10 THEN 7300 ELSE REGEN = VAL(ANS$) : GOTO
 7330
7300 COLOR 7.1
7310 PRINT * P1eace enter an number between 1 and 10 days. ";
7 3 2 0 \text { COLOR 7,0 : PRINT : GOTO } 7 2 6 0
7330 REGENDAY = 30 / REGEN
7340 SUM = SUM + REGENDAY
7 3 5 0 ~ S O F T E N E R C O L D ~ = ~ R E G E N D A Y ~ * ~ 3 6 5 ~
7360 SALT = 6 / REGEN * 365 * / 100
7370 '
7380 PRINT "Do you uaually take a bath or ahower?"
7390 PRINT " [1] Bath"
7400 INPUT " [2] Shower Answer = ", ANS$
7 4 1 0 ~ P R I N T
7420 IF VAL(ANS5) = 1 OR VAL(ANSS) = 2 THEN BS = VAL(ANSS) : GOTO 7470
7430 COLOR 7.1
7440 PRINT * You sust enter either 1 or 2.... Try again. *;
7450 COLOR 7,0 : PRINT
7460 GOTO 7380
7470 IF BS = 2 THEN 7930
7480
7 4 9 0 ~ P R I N T ~ " H o w ~ f u l 1 ~ d o ~ y o u ~ f i l 1 ~ t h e ~ b a t h ~ t u b ? " ~
7500 PRINT * [1] One-quarter fu11*
7510 PRINT " [2] One-half ful1**
7520 INPUT * [3] Over one-half full Answer = *, ANS\$
7530 PRINT
7540 IF VAL(ANS5) = 1 OR VAL(ANSS) = 2 OR VAL(ANSF) = 3 THEN TUB = VAL(ANSS) :
GOTO 7590
7550 COLOR 7.1
7560 PRINT " You must enter either 1, 2, or 3.... Try again. * ;
7570 COLOR 7,0 : PRINT
7580 GOTO 7490
7590 IF TUB = 1 THEN SUM = SUM + 20: HOTSUM = HOTSUM + 20*.67 : GOTO 7610
7600 GOTO 7630

```
```

Listing of Residential Water Conservation Progran (continued).

```
```

7610 TUBCOLD = 20*365 : TUBHOT = 20*.67*365 : HOT = TUBHOT : GOSUB 12600
7 6 2 0 ~ T U B E N E R G Y ~ = ~ H O T C O S T ~ : ~ G O T O ~ 8 2 4 0 ~
7630 IF TUB = 2 THEN SUM = SUM + 35 : HOTSUM = HOTSUM + 35 * . 67 : GOTO 7650
7640 GOTO 7670
7650 TUBCOLD = 35 * 365 : TUBHOT = 35*.67*365: HOT = TUBHOT : GOSUB 12600
7 6 6 0 TUBENERGY = HOTCOST : GOTO 7700
7670 SUM = SUM + S0: HOTSUM = HOTSUM * 50*.67: , TUB = 3
7680 TUBCOLD = 50* 365: TUBHOT = 50*.67*365: HOT = TUBHOT : GOSUB 12600
7690 TUBENERGY = HOTCOST : GOTO }770
7 7 0 0 TUBCOUNT = 1
7710 IF TUB = 2 THEN HD = (35*.67) - 13 ELSE }773
7 7 2 0 C D = 3 5 - 2 0 : G O T O ~ 7 7 4 0
7730 HD = (50*.67)-13:CD = 50-20
7740 GOSUB 12500
7 7 5 0 ~ T U B H D C ~ = ~ H W C D I F F
7 7 6 0 ~ T U B C D C ~ = ~ C W C D I F F ~
7770 IF TUB = 2 THEN 7780 ELSE 7790
7780 TUB1s = "You fill your bath tub one-half full. If you have a conventional
tub, you may be using 35 gallons of water per bath - 11 gallons cold and 24
gallons hot." : GOTO }780
7790 TUB1% = "You fill your bath tub over half full. If you have a conventional
tub, you may be using 50 gallons of water per bath - 17 gallons cold and 33
gallons hot."
7800 IF SOURCE = 3 THEM 7840
7810 IF FRC = 1 THEN 7860
7820 TUB2%="If you would fill your tub one-quarter full you would only use 20
gallons of water per bath. This could save you s\#\#\#\# per year on your water
cost and s\#\#\# per year on the energy required to heat your water (assuning
one bath a day)."
7830 GOTO 7870
7 8 4 0 ~ T U B 2 5 ~ = ~ " I f ~ y o u ~ w o u l d ~ f i l l ~ y o u r ~ t u b ~ t o ~ o n e - q u a r t e r ~ f u l l ~ y o u ~ w o u l d ~ o n l y ~ u s e
20 gallons of water. This could save you s\#\#\# per year on the pupping cost of
water and क\#\#\#per year on the energy required to heat your water fassuming one
bath a day)."
78S0 GOTO }787
7 8 6 0 TUB2s = "If you would fill your tub to one-quarter full you would only use
20 gallons of water. This could save you 輷諒 per year on your water heating
requirments."
7870 IF TUB = 2 THEN SUMDIFF = SUMDIFF + 15 ELSE 7890
7880 HOTDIFF = HOTDIFF + (35 * .67) - 13 : GOTO 8240
7890 IF TUB = 3 THEN SUMDIFF = SUMDIFF + 30 ELSE 8240
7900 HOTDIFF = HOTDIFF + (50 = .67) - 13
7 9 1 0 ~ G O T O ~ 8 2 4 0 ~
7920 '
7 9 3 0 ~ P R I N T ~ " H o w ~ s a n y ~ m i n u t e s ~ d o ~ y o u ~ s p e n d ~ i n ~ t h e ~ s h o w e r ? " ~
7940 INPUT * Enter your answer here. Answer = ", ANSS
7 9 5 0 ~ P R I N T
7960 IF VAL (ANSS) > O AND VAL (ANSS) <= 45 THEN SHOWER = VAL(ANS5) : GOTO 8000
7970 COLOR 7,1
7980 PRINT " Please enter a time between 1 and 45 minutes. *:

```
```

Listing of Reaidential Water Conservation Program (continued).

```
```

7990 COLOR 7,0 : PRINT : PRINT : GOTO 7930
8000 SUH = SUM + SHOWER * 4
8 0 1 0 ~ H O T S U M ~ = ~ H O T S U H ~ + ~ S H O W E R ~ * ~ 4 * . 6 7 ~
8020 SHOWERCOLD = SHOWER * 4*365 : SHOWERHOT = SHOWER * 4* .67* 365
8030 HOT = SHOWERHOT : GOSUB 12600
8040 SHOWERENERGY = HOTCOST
8050 IF SHOWER <= 5 THEN 8240
8060 SHOWERCOUNT = 1
8070 CD = SHOWER * 4-20
8080 HD = SHOWER * 4*.67-13
8090 GOSUB 12500
8100 SHOWERHDC = HWCDIFF
8110 SHOWERCDC = CWCDIFF
8120 SHOWER1% = "You apend minutes in the ahower. Thia meana you uae

```

```

hot water. If you would"
8130 SHOWER2% = "reduce your time down to 5 rinutes, you would use about 20
gallona of water per ahower - 7 gallons cold and }13\mathrm{ gallons hot. On an annual
basia, this could"
8140 IF SOURCE = 3 THEN 8180
8150 IF FRC = 1 THEN 8200
8160 SHOWER3s = "save you approximately s\#\#\#\# per year in water coat and \$\#\#\#\# per
year in the energy required to heat your water (assuming you take one
ahower each day)."
8170 GOTO }821

8180 SHOWER3F = =ave you approximately \$\$ per year in pumping cost of your
water and इ\#\#\# per year on energy required to heat your water (assuming one
shower each day)."
8190 GOTO }821
8200 SHOWER3s = "save you s靿\# per year on your water heating requirments."*
8210 SUMDIFF = SUMDIFF * SHOWER | 4-20
8220 HOTDIFF = HOTDIFF + SHOWER * 4*.67 - 13
8230
8240 PRINT "Estimate how many times a day you flush your home toilet."
8 2 5 0 ~ I N P U T ~ " ~ E n t e r ~ y o u r ~ a n s w e r ~ h e r e . ~ A n e w e r ~ a ~ " , ~ A N S s
8260 PRINT
8270 IF VAL(ANSS) > O AND VAL(ANS$) <= 10 THEN FLUSH = VAL(ANSS) : GOTO 8310
8280 COLOR 7,1
8290 PRINT " Please enter a number between 1 and 10. ";
8300 COLOR 7,0 : PRINT : PRINT : GOTO 8240
8310 SUM = 5UH + FLUSH = 5
8320 FLUSHCOLD = FLUSH * 5 = 365
8330 IF SEX = 2 THEN 8680
8340
8350 PRINT "Do you let the water run while you ahave?"
8360 PRIMT = [1] Yes"
8370 PRINT * [2] No**
8380 INPUT " [3] Don't shave with water Answer = ",ANSS
8390 PRIMT
8400 IF VAL(ANS&) = 1 OR ANS$ = "Y" OR ANS % = "Y" THEN SHAVE = 1 : GOTO 8470
``` ```
Liating of Reaidential Water Conaervation Prograa (continued).
``` ```
8410 IF VAL(ANSs) = 2 OR ANS盾 = "n" OR ANSS = "N" THEN SHAVE = 2 : GOTO 8470
8420 IF VAL(ANSS) = 3 THEN SHAVE = 3 : GOTO 8470
8430 COLOR 7.1
8440 PRIMT " You sust enter either 1 or 2,... Try again. ";
8450 COLOR 7.0 : PRINT
8460 GOTO 8350
8470 IF SHAVE = 3 THEH 8680
84BO IF SHAVE = 1 THEN SUM = SUM + 3 : HOTSUM = HOTSUM * 3 : GOTO 8500
8490 GOTO 8520
8500 SHAVECOLD = 3 * 365 : SHAVEHOT = 3 * 365 : HOT = SHAVEHOT ; GOSUB 12600
8510 SHAVEENERGY = HOTCOST : GOTO 8570
8520 IF SHAVE = 2 THEN SUM = SUM + 1 : HOTSUM = HOTSUM + 1 : GOTO 8540
8530 GOTO 8680
8540 SHAVECOLD = 1 * 365 : SHAVEHOT = 1 * 365 : HOT = SHAVEHOT : GOSUB 12600
8550 SHAVEENERGY = HOTCOST
8560 IF SHAVE = 2 THEN 8680
8570 SHAVECOUNT = 1
8580 HD = 2 : CD = 2 : GOSUB 12500
8590 SHAVEHDC = HWCDIFF
8600 SHAVECDC = CWCDIFF
8610 SHAVE1s = "Don't run the water while you shave. Put a stopper in your sink
basin and fill the basin one-quarter full. This could save you 2 gallons of
hot water per day."
8620 IF FRC = 1 OR SOURCE = 3 THEN 8650
8630 SHAVE2% = "On an annual baila, you could aave s\# per year in water cost and
s\#\#\# per year for the energy required to heat the water."
8640 GOTO 8660
8650 SHAVE2s = "On an annual basis, you could save ह\#\# on the energy required to
heat the water."
8660 SUMDIFF = SUMDIFF + 2 : HOTDIFF = HOTDIFF * 2
8670.
8680 PRINT "Do you lat the water run while you brush your teeth?"
8690 PRINT " [1] Yes"
8700 INPUT * [2] No Answer = "',ANSS
8 7 1 0 ~ P R I N T ~
8720 IF VAL(ANS$) = 1 OR ANS$ = " }\gamma\mathrm{ " OR ANSs = "Y" THEN TEETH = 1 : GOTO 8780
8730 IF VAL(ANSE) = 2 OR ANSS = "n" OR ANSS = "N" THEN TEETH = 2 : GOTO 8780
8740 COLOR 7.1
8750 PRINT " You muat enter either 1 or 2.... Try again. ";
8760 COLOR 7,0 : PRINT
8770 GOTO 8680
8780 IF TEETH = 1 THEN SUM = SUM + 2 : GOTO 88OO
8790 GOTO 8810
8800 TEETHCOLD = 2 * 365 : GOTO 8830
8810 IF TEETH = 2 THEN SUM = SUM + . 5
8820 TEETHCOLD = .5 * 365 : GOTO 8920
8830 TEETHCOUNT = 1
8840 HD = 0
8850 CD = 1.5 : GOSUB 12500
8860 TEETHCDC = CWCDIFF
```

Listing of Residential Water Conservation Program (continued).

```
8870 TEETH1s = "Don't let the wster run while you brush your teeth. By using a
cup to rinse your mouth, you could asve 1.5 to 2 gsilons of wster per brush."
8880 IF SOURCE = 3 OR ERC = 1 THEN }890
8890 TEETH2s = "This could save you s| per yesr on wster coat sssuming sll the
wster is cold."
8900 SUMDIFF = SUMDIFF + 1.5
8910.
8920 PRINT "Do you let the wster run while you wssh your hands?"
8930 PRINT " [1] Yes*
8940 INPUT " [2] No Answer = ",ANSs
9 9 5 0 ~ P R I N T
8960 IF VAL(ANS') = 1 OR ANS5 = " }y\mathrm{ " OR ANSS m "Y* THEN HANDS = 1 : GOTO 9020
8970 IF VAL(ANSS) = 2 OR ANSS = "n" OR ANSS = "N" THEN HANDS = 2 : GOTO 9020
8980 COLOR 7,1
8990 PRINT " You wust enter either 1 or 2.... Try agsin. "%
9000 COLOR 7.0 : PRINT
9 0 1 0 ~ G O T O ~ 8 9 2 0 ~
9020 IF HANDS = 1 THEN SUM = SUM + (2 * 2) ELSE 9070
9030 HOTSUM = HOTSUM + (2* 2*.33)
9040 HANDSCOLD = (2*2)*365: HANDSHOT = (2 * 2*.33)*365
9050 HOT = HANDSHOT : GOSUB 12600
9060 HANDSENERGY = HOTCOST : GOTO 9110
9070 SUM = SUM + (1 * 2) : HOTSUM = HOTSUM * (1 * 2 * .33)
9080 HANDSCOLD = (1*2)*365: HANDSHOT = (1* 2*.33) * 365
9090 HOT = HANDSHOT : GOSUB 12600
9100 HANDSENERGY = HOTCOST : GOTO 9230
9 1 1 0 ~ H A N D S C O U N T ~ = ~ 1 ~
9120 HD = (2*2*.33)-(1:2*.33)
9130 CD = (2 * 2)-(1 * 2) : GOSUB 12500
9140 HANDSHDC = HWCDIFF
9150 HANDSCDC = CWCDIFF
9160 HANDS1s = "Don't run the wster while you wssh your hsnds. Put s stopper in
your sink snd fill it one*qusrter full. This could save about 2 gsilons of
wster per washing."
9170 IF FRC = 1 OR SOURCE = 3 THEN 9200
9180 HANDS2s = "Annuslly you could aave 爵 per year on wster coat, and s## per
year on the energy required to hest the water (assuning you wssh your handa
twice a day.)*
9190 GOTO 9210
9200 HANDS2s = "Annuslly you could ssve s%## per year on the energy required to
hest your wster."
9210 SUMDIFF = SUMDIFF + 2 : HOTDIFF = HOTDIFF * .66
9220 *
9230 PRINT "Does your home have s diahwssher?"
9240 PRINT " [1] Yes"
9250 INPUT " [2] No Answer m ", ANSE
9 2 6 0 ~ P R I N T
9270 IF VAL (ANSE) = 1 OR ANSS = " }\mp@subsup{y}{}{\prime\prime}\mathrm{ OR ANS$ = "Y" THEN DISH = 1 : GOTO 9330
9280 IF VAL (ANSS) = 2 OR ANSs = "n" OR ANSS = "N" THEN DISH = 2 : GOTO 9330
9290 COLOR 7,1
```

Listing of Residential Water Conservation Program（continued）．

```
9300 PRINT * You must enter either 1 or 2.... Try again. *;
9310 COLOR 7,0 : PRINT
9320 GOTO 9230
9330 IF DISH = 2 THEN 9710
9340 '
9350 PRINT "How many times a day do you use the dishwasher?"
9360 INPUT * Enter your answer here. Answer = ", ANSs
9370 PRINT
9380 IF VAL(ANSE) >= 1 AND VAL(ANSS) <= 3 THEN DTIM = VAL(ANSS) : GOTO 9420
9390 COLOR 7.1
9400 PRINT " Please enter a number between 1 and 3. ";
9410 COLOR 7,0 : PRINT : PRINT : GOTO 9350
9420 SUM = SUM + DTIM * 15
9430 HOTSUM = HOTSUM * DTIM * }1
9 4 4 0 ~ D I S H C O L D ~ = ~ D T I M ~ * ~ 1 5 * 3 6 5 ~ : ~ D I S H H O T ~ = ~ D T I M ~ * ~ 1 5 * 3 6 5 ~
9450 HOT = DISHHOT : GOSUB 12600
9460 DISHENERGY = HOTCOST
9470 *
9480 PRINT "Do you wash a full load of dishes?"
9 4 9 0 ~ P R I N T ~ * ~ [1] ~ A l m o s t ~ a l w a y s " ~
9500 PRINT " [2] Sometimes"
9 5 1 0 ~ I N P U T ~ * ~ [3] ~ N o t ~ u s u a l l y ~ A n s w e r ~ = ~ * ~ A N S S ~
9 5 2 0 ~ P R I N T
9530 IF VAL(ANSS) = 1 OR VAL(ANS良) = 2 OR VAL(ANS$) = 3 THEN FULLDISH =
VAL(ANS&) ELSE 9660
9 5 4 0 ~ I F ~ F U L L D I S H ~ = ~ 1 ~ T H E N ~ 1 0 1 6 0 ~ E L S E ~ D I S H C O U N T ~ = ~ 1 ~
9550 FULLDISH1; = "When using your dishwasher, always wash a full load of dishes.
A conventional dishwasher uses }15\mathrm{ gallons of water (approximately all hot)
per load. If you"
9560 HD = 15 : CD = 15 : GOSUB 12500
9570 DISHHDC = HWCDIFF : DISHGDC = CWCDIFF
9580 IF SOURCE = 3 THEN }962
9590 IF FRC = 1 THEN 9640
9600 FULLDISH2$ = "wash a load of dishes every day for a year, the water alone
would cost s## per year and the energy required to heat the water would cost
s"#
9610 GOTO 10160
9620 FULLDISH2s = "wash a load of dishes evary day for a year, the cost to puap
the water would be f## per year, and the energy required to heat the water would
cost s## per year."
9630 GOTO }1016
9640 FULLDISH2自 = "wash a load of dishes every day for a year, the cost of the
energy required to heat the water would be about s新.
9650 GOTO 10160
9660 COLOR 7.1
9670 PRINT " You must enter either 1,2, or 3.... Try again. ";
9680 COLOR 7,0 : PRINT
9690 GOTO 9480
9700 *
9710 PRINT "Do you let the water run while you wash and rinse the dishes?"
```

Listing of Residential Water Conservation Progran (continued).

```
9720 PRINT * [1] Yes"
9730 PRINT "* [2] Soretimes*
9740 INPUT * [3] No Answer = "* ANS$
9 7 5 0 ~ P R I N T
9760 IF VAL (ANSS) = 1 OR ANSS = "Y" OR ANSS = "Y" THEN RINSE = 1 : GOT0 9830
9770 IF VAL(ANS$) = 2 THEN RINSE = 2 : GOTO 9830
9780 IF VAL (ANSS) = 3 OR ANSS = "n" OR ANSS = "N" THEN RINSE = 3 : GOTO 9830
9790 COLOR 7.1
9800 PRINT ** You must enter either 1, 2, or 3.... Try again. ";
9810 COLOR 7.0 : PRINT
9 8 2 0 ~ G O T O ~ 9 7 1 0 ~
9830 IF RINSE = 3 THEN 10110
9840 RINSECOUNT = 1
9850 IF RINSE = 1 THEN HD = 2.4 ELSE 9870
9860 CD = 3 : GOTO 9880
9870 HD = .8 : CD = 1
9880 GOSUB 12500
9890 RINSECDC = CWCDIFF
9900 RIMSEHDC = HWCDIFF
9910 IF RINSE = 1 THEN 9920 ELSE 9940
9920 RINSE15 = "When washing dishes by hand, use the other sink for a dishpan if
you only have one sink) to hold your rinse water. This could save you 3
gallons of waterper"
9930 GOTO 9950
9940 RINSE1s = "When washing dishes by hand, use the other sink (or a dishpan if
you only have one sink) to hold your rinse water. This could save you 1
gallons of waterper"
9950 IF FRC = 1 OR SOURCE = 3 THEN 9980
9960 RINSE2s = "wash. On an annual basis, you could save s## per year on water
cost and s## peryear for the energy used to heat your water."
9970 GOTO 9990
9980 RIMSE2S = "wash. On an annual basis, you could save $## per year on the
energy required to heat your water."
9990 IF RINSE = 1 THEN SUM = SUM + 7 ELSE 10050
10000 HOTSUK = HOTSUM + 7 . 8: SUMDIFF = SUMDIFF + 3: HOTDIFF = HOTDIFF + 2.4
10010 RIMSECOLD = 7 * 365: RINSEHOT = 7 * . * 365
10020 HOT = RINSEHOT : GOSUB 12600
10030 RINSEENERGY = HOTCOST
10040 GOTO 10160
10050 IF RIMSE = 2 THEN SUH = SUH + 5 ELSE }1011
10060 HOTSUM = HOTSUM + 5 * . 8 : SUMDIFF = SUMDIFF + 1 : HOTDIFF = HOTDIFF + .
10070 RINSECOLD =5*365: RIMSEHOT = 5*.8*365
100B0 HOT = RIMSEHOT : GOSUB 12600
10090 RINSEENERGY = HOTCOST
10100 GOTO 10160
1 0 1 1 0 \text { SUM = SUM + 4: HOTSUM = HOTSUM + 4* .8 : RINSE = NO}
10120 RINSECOLD = 4* 365 : RINSEHOT = 4* . 8 * 365
10130 HOT = RINSEHOT : GOSUB 12600
10140 RINSEENERGY = HOTCOST
10150 '
```

10160 PRINT "Do you let the water run to get cold when getting s drink?" 10170 PRINT " [1] Yes"
Residentisi Wster Conservstion Progrsm Listing (continued)

```
10180 PRINT " [2] Sometimea"
10190 INPUT " [3] No Answer = "}\mathrm{ *, ANS5
10200 PRINT
10210 IF VAL(ANSS) = 1 OR ANSS = "Y" OR ANS$ = "Y" THEN DRINK = 1 : GOTO 10280
10220 IF VAL(ANSS) = 2 THEN DRINK = 2 : GOTO 10280
10230 IF VAL(ANSS) = 3 OR ANS = " "n" OR ANS$ = "N" THEN DRINK = 3 : GOTO 10280
10240 COLOR 7,1
10250 PRINT * You must enter either 1, 2, or 3.... Try sgsin. ";
10260 COLOR 7,0 : PRIMT
10270 GOTO 10160
10280 IF DRINK = 3 THEN }1033
10290 DRINKs = "Instead of letting the wster run to get cold while getting a
drink, plsce a wster bottle in the refrigerator to keep the water cold."
10300 SUMDIFF = SUMDIFF + .5
10310 IF DRINK = 1 OR DRINK = 2 THEN SUM = SUM + 1
10320 DRINKCOLD = 1 * 365 : GOTO 10360
10330 IF DRINK = 3 THEN SUM = SUM + .5
10340 DRIMKCOLD = .5 - 365
10350 ,
10360 PRINT "Do you hsve s clothes wssher?"
10370 PRINT " [1] Yes"
10380 INPUT " [2] No Answer = " ANS$
10390 PRINT
10400 IF VAL(ANSS) = 1 OR ANSS = "Y" OR ANSS = "Y" THEN CLOTHES = 2 : GOTO 10460
10410 IF VAL(ANS$) = 2 OR ANSS = "n" OR ANSS = "N" THEN CLOTHES = 2 : GOTO 10460
10420 COLOR 7,1
10430 PRINT "You must enter either 1 or 2.... Try sgsin. ";
10440 COLOR 7,0 : PRINT
10450 GOTO 10360
10460 IF CLOTHES = 2 THEN 10870
10470 PRIMT
10480 *
10490 INPUT "How many loads do you wssh s week? Answer = ", ANSs
10500 PRINT
10510 IF VAL (ANS$) >= 1 AND VAL (ANS$) <= 10 THEN LC = VAL(ANS$) : GOTO 10550
10520 COLOR 7,1
10530 PRINT " Please enter s number between 1 and 10. ";
10540 COLOR 7,0 : PRINT : PRINT : GOTO 10490
10550 AMT = LC = 50/7
10560 HOTSUK = HOTSUH + AMT * .5
10570 SUM = SUM + AMT
10580 CLOTHESCOLD = AMT * 365 : CLOTHESHOT = AMT * .5 = 365
10590 HOT = CLOTHESHOT : GOSUB 12600
10600 CLOTHESENERGY = HOTCOST
10610 PRINT
10620 '
10630 PRIMT "Do you wssh s full load of clothes?"
10640 PRINT * [1] Almost slways*
```

```
10650 PRINT * [2] Sometimes"
10660 INPUT * [3] Not usually Answer = " , ANS$
10670 PRINT
10680 IF VAL(ANS%) = 1 OR VAL(ANS$) = 2 OR VAL(ANS%) = 3 THEN FULLCLOTHES =
VAL(ANSs) : GOTO 10730
10690 COLOR 7.1
10700 PRINT * You must enter either 1, 2, or 3.... Try again. ";
10710 COLOR 7,0 : PRINT
10720 GOTO 10630
10730 IF FULLCLOTHES = 1 THEN 10870
10740 CLOTHESCOUNT = 1
10750 HD = AMT * .5
10760 CD = AnT : GOSUB 12500
10770 CLOTHESCDC = CWCDIFF
10780 CLOTHESHDC = HWCDIFF
10790 CLOTHES1s = "You shoild always wash a full load of clothes, A clothes
washer will use about 50 gallons of water per wash. Wash a full load to use the
water more effici-"
10800 IF SOURCE = 3 THEN 10840
10810 IF FRC = 1 THEN }1086
10820 CLOTHES2S = "ent1y. On an annual basis, you spend about s%# on the water
cost, and s### on the energy required to heat the water."
10830 GOTO 10870
10840 CLOTHES2s = "ent1y. On an annual basis, you spend about sil to purp your
water and s### on the energy required to heat the water."
10850 GOTO 10870
10860 CLOTHES2s = "ent1y. On an annual basis, you spend about s#####费 per year on
the energy requiredto heat your water."
10870 CLS : LOCATE 7,1
10880.
```



```
10900 '
 * * RESULTS * * *
10910
10920.
10930 COLOR 2,0
10940 PRINT " Thank you for running this progran. Your results should be
coming out onthe printer. If they aren't, then turn the printer on. Thanks
again...."" : COLOR 7,0
10950 LPRINT CHR$ (27);CHR$ (37);CHR$(67);"174";
10960 LPRINT CHR$(28)
10970 LPRINT CHRs(31); " Water Conservation Analysis Results";
10980 LPRINT CHR&(27);CHR$(37);CHR$(67);"174*';
10990 LPRINT CHR$(28)
11000 '
11010 * }====\mathrm{ TABULAR RESULTS }==
11020 '
11030 LPRINT: LPRINT USING "Below is a table showing your water habits, g.";
NNAMES
11040 LPRINT ** Hot Water
11050 LPRINT "* Water Used (Gal/yr) Energy Cost"
```

Liating of Residential Weter Conaervation Progran（continued）．

```
11060 LPRINT * Water Function Total
11070 LPRINT * ---------------------
11080 IF SOFTENER = 2 OR SOFTENER =0 THEN 11100
11090 LPRINT " Water Softener";: LPRINT TAB(27) USING "#####
~-\infty- -----"! SOFTENERCOLD
11100 IF BS = 1 THEN 11110 ELSE 11130
11110 LPRINT * Bath";: LPRINT TAB(27) USING "######
###.#O"; TUBCOLD, TUBHOT, TUBENERGY
11120 GOTO 11140
11130 LPRINT " Shower";: LPRINT TAB(27) USING "########
####,*O"; SHOWERCOLD, SHOWERHOT, SHOWERENERGY
11140 LPRINT " Toilet":: LPRINT TAB(27) USING "########
--.-""; FLUSHCOLD
11150 IF SEX = 2 OR SHAVE = 3 THEN 11170
11160 LPRINT " Shaving";: LPRINT TAB(28) USING "##############
##.#O"; SHAVECOLD. SHAVEHOT, SHAVEENERGY
11170 LPRINT " Bruahing Teeth";: LPRINT TAB(28) USING "####
---- -----"; TEETHCOLD
11180 LPRINT " Washing Handa";: LPRINT TAB(28) USING"####
##.#O"; HANDSCOLD, HANDSHOT, HANDSENERGY
11190 IF DISH = 2 THEN 11220
11200 LPRINT " Diahwacher";: LPRINT TAB(27) USING "#################
#**.#O"; DISHCOLD, DISHHOT, DISHENERGY
11210 GOTO 11230
11220 LPRINT " Dish vashing";: LPRINT TAB(27) USING "#####
#########.*O"; RINSECOLD, RINSEHOT, RINSEENERGY
11230 LPRINT " Drinking"I: LPRINT TAB(28) USING ""####
*----"; DRINKCOLD
11240 IF CLOTHES = 2 THEN 11260
11250 LPRINT " Clothes Washer";: LPRINT TAB(27) USING "制䉽粈
##########,#O"; CLOTHESCOLD, CLOTHESHOT, CLOTHESENERGY
11260 LPRINT TAB(18) USING "Total = "####### Total = ######"; SUM * 365,
HOTSUM * 365
11270 IF SOURCE <> 3 THEN 11300
11280 P = (62.4 * SUM / 7.48 * (1.1 * DEPTH * 144 * 40 / 62.4)) / . }2
11290 APC = P * 3.766E-07 * KWAT * 365 : ' APC = Annual Pumping Cost, P = Power
11300 ON HEAT GOTO 11320, 11350, 11380
11310 * AEC = Annual Energy Cost
11320 AEC = KWAT * 8.34 * 60 / BTU / .9 * HOTSUM * 365
11330 LPRINT USING"Your annual electric cost to heat your water is $####.#O
";AEC;
11340 GOTO 11400
11350 AEC = GAS * 8.34 * 60 / BTU / .7 * HOTSUM * 365
11360 LPRINT USING "Your annual gas cost to heat your water is s###.#O ";AEC;
11370 GOTO 11400
11380 AEC = LP * 8.34 * 60 / BTU / .7 * HOTSUM * 365
11390 LPRINT USING " Your annual LP cost to heat your water is s###.#0 ";AEC;
11400 IF SOURCE = 3 THEN 11410 ELSE 11430
11410 LPRINT "and the annual coat"
11420 LPRINT USING "to pump your water is s##."; APC : GOTO 11520
```

```
Listing of Reaidential Water Conservation Progran (continued).
```

```
11430 IF METER = 2 THEN LPRINT "." : GOTO 11520
11440 IF UNITS a 1 THEN TOTWATER = SUM / 1000 ELSE TOTWATER = SUK / 748
11450 IF SOURCE = 1 THEN FF = 1.3 : GOTO 11500
11460 IF SOURCE = 2 THEN FF = 1.5: GOTO 11500
11470.
11480 - FF = Fudge Factor, used to increase WCOST to cover service chargea.
11490 ,
11500 LPRINT "and your annual water*
11510 LPRINT USING "cost is s### per year."; TOTWATER * 365 * WCOST * FF
11520 LPRINT
11530
11540 , = = PRINTED SUGGESTIONS SECTION }==
11550
11560 LPRINT "BELOW ARE SOME INSTRUCTIONS THAT MAY HELP YOU CONSERVE ON WATER."
11570 LPRINT
11580 LPRINT CHR&(27);CHR$(37);CHRS(67);"160";
11590 LPRINT CHRS(28);
11600 IF TUBCOUNT = 1 THEN LPRINT TUBIS ELSE 1165O
11610 IF FRC = 1 THEN 11640
11620 LPRINT USING TUB2s; TUBCDC, TUBHDC : LPRINT : NOTWISE = 1
11630 GOTO 11650
11640 LPRINT USING TUB25; TUBHDC : LPRINT : NOTWISE = 1
11650 IF SHOWERCOUNT = 1 THEN LPRINT USING SHOWER1%; SHOWER, SHOWER*4, SHOWER*4-
SHOWER*4*.67, SHOWER*4*.67 ELSE 11710
11660 LPRINT SHOWER2s
11670 IF FRC = 1 THEN }1170
11680 LPRINT USING SHOWER3s; SHOWERCDC, SHOWERHDC : LPRINT : NOTWISE = 1
11690 GOTO 11710
11700 LPRIMT USING SHOWER35; SHOWERHDC : LPRINT : NOTWISE = 1
11710 IF SHAVECOUNT * 1 THEN LPRINT SHAVE1S ELSE }1176
11720 IF FRC = 1 OR SOURCE = 3 THEN 11750
11730 LPRINT USING SHAVE2S; SHAVECDC, SHAVEHDC : LPRINT : NOTWISE = 1
11740 GOTO 11760
11750 LPRINT USING SHAVE2S; SHAVEHDC : LPRINT : NOTWISE = 1
11760 IF TEETHCOUNT = 1 THEN LPRINT TEETH1$ ELSE 11790
11770 IF FRC = 1 OR SOURCE = 3 THEN LPRINT : NOTWISE = 1 : GOTO 11790
11780 LPRINT USING TEETH2%; TEETHCDC : LPRINT : NOTWISE = 1
11790 IF HANDSCOUNT = 1 THEN LPRINT HANDS1S ELSE 11840
11800 IF FRC = 1 OR SOURCE = 3 THEN 11830
11810 LPRINT USING HANDS2s; HANDSCDC, HANDSHDC : LPRINT : NOTWISE = 1
11820 GOTO 11840
11830 LPRINT USING HANDS2S; HANDSHDC : LPRINT : NOTWISE = 1
11840 IF DISHCOUNT = 1 THEN LPRINT FULLDISH1S ELSE 11890
11850 IF FRC = 1 THEN 11880
11860 LPRINT USING FOLLDISH2%; DISHCDC, DISHHDC : LPRINT : NOTWISE = 1
11870 GOTO 11890
11880 LPRINT USING FULLDISH2$; DISHHDC : LPRINT : NOTWISE = 1
11890 IF RINSECOUNT = 1 THEN LPRINT RINSE1$ ELSE }1194
11900 IF FRC = 1 OR SOURGE = 3 THEN 11930
11910 LPRINT USING RINSE2s; RINSECDC, RINSEHDC : LPRINT : NOTWISE = 1
```

```
Listing of Residential Water Conservation Program (continued).
```

```
11920 GOTO 11940
11930 LPRINT USING RINSE2%; RINSEHDC : LPRINT : NOTWISE = 1
11940 IF DRINK = 1 OR DRINK = 2 THEN LPRINT DRINKS : LPRINT : NOTWISE = 1
1 1 9 5 0 ~ I F ~ C L O T H E S C O U N T ~ = ~ 1 ~ T H E N ~ L P R I N T ~ C L O T H E S 1 S ~ E L S E ~ 1 2 0 0 0 ~
11960 IF FRC = 1 THEN 11990
11970 LPRIMT USING CLOTHES2S; CLOTHESCDC, CLOTHESHDC : LPRINT : NOTWISE = 1
11980 GOTO 12000
11990 LPRINT USING CLOTHES2s; CLOTHESHDC : LPRINT : NOTWISE = 1
12000 IF NOTWISE = 0 THEN 12300
12010 IF FRC = 1 THEN 12070
12020 IF UNITS =2 THEN 12050
12030 WATER = SUMDIFF*365 / 1000
12040 GOTO 12060
12050 WATER = SUMDIFF * 365 / 748
12060 WC = WATER * WCOST
12070 HWC = AEC / HOTSUM * HOTDIFF
12080 IF FRC = 1 THEN }1214
12050 IF SOURCE = 3 THEN 12190
12100 FOR I = 1 TO 80 : LPRINT "**"; : NEXT I
12110 LPRINT USING "If you would follow the instructions above you could aeve
approximately 卓㫠 per year on your water bill, and s### per year on energy
used to heat your water."; WC; HWC
12120 FOR I = 1 T0 80 : LPRINT "a": : NEXT I
12130 GOTO 12330
12140 FOR I = 1 TO 80 : LPRINT " =* ; : NEXT I
12150 LPRINT USING "Since you are charged a flat rate for your water, there ia
no incentive to savewater in your community. But if you would follow the
instructions given above,you could seve approximately s#### per year on energy
uaed to ";HWC;
12160 LPRINT "heat your water."
12170 FOR I = 1 TO 80 : LPRINT "="; : NEXT I
12180 GOTO 12330
12150 DAPC = APC / SUM * SUMDIFF
12200 FOR I = 1 TO 80 : LPRINT " }=*\mathrm{ ' % : NEXT I
12210 LPRINT USING "If you would follow the instructions above, you could save
about s## per year onyour pumping cost, and $### per year on the energy used to
heat your hot water."; DAPC; HWC
12220 IF SOFTENER = 2 THEN }1228
12230 CD = REGENDAY ; GOSUB 12570
12240 REGENCOST = CWCDIFF
12250 LPRINT USING "Since you have a water aoftener, it is estimated that you
spend s#### per year on salt for regeneration of your softener. This is based on
salt costing $5.00 per }100\mathrm{ pounds. It is also estimated that you spend 5%
";SALT, REGENCOST;
12260 LPRINT "for water used during"
12270 LPRINT "regeneration. If these costs seen high, you should analyze your
water habits to try to reduce this cost."
12280 FOR I = 1 TO 80 : LPRINT "="; ; NEXT I
12290 GOTO 12330
12300 FOR I = 1 TO 80 : LPRINT "="; : NEXT I
```

```
Listing of Reaidential Wster Conservstion Program (continued).
```

```
12310 LPRINT USING "You are a wise water user &, and I would like to
congratulste you."; MNAMES
12320 FOR I = 1 TO 80 : LPRINT "з"; : NEXT I
12330 LPRINT CHR$(12);
12340 LPRINT CHR$(27): CHR$(37); CHRS(67); "O01"; CHRS(30);
12350 PRINT : PRINT
12360.
12370 PRINT "Do you want to run the program again?"
12380 PRINT " [1] Yes"
12350 INPUT " [2] No Answer m "; ANSS
12400 IF VAL(ANSS) = 1 OR ANSS = "Y" OR ANSs = "
12410 IF VAL(ANSS) = 2 OR ANSS = "N" OR ANSS = "n" THEN RUN
12420 PRINT : COLOR 7.1
12430 PRINT " Enter either a 1 or 2.... Try again. ";
12440 COLOR 7,0 : PRINT : PRINT : GOTO 12370
12450.
12460 '**************************#**
12470 * * * SUBROUTINES * * *
12480 /**
12490 *
12500 IF HEAT = 1 THEN EFF = . S ELSE EFF = .7
12510 HWCDIFF = ENERGYCOST * 8.34 * 60 / BTU / EFF * HD * 365
12520 IF SOURCE = 3 THEN 12570
12530 IF UNITS = 1 THEN 12540 ELSE 12550
12540 CWCDIFF = CD * WCOST / 1000 * 365 : GOTO 12560
12550 CWCDIFF = CD * WCOST / 748 * 365
12560 RETURN
12570 P = (62.4 * CD * 365 / 7.48 * (1.1 * DEPTH + 144 * 40 / 62.4)) / .25
12580 CWCDIFF = P * 3.766E-07 * KWAT
12590 RETURN
12600 IF HEAT = 1 THEN EFF = .S ELSE EFF = . }
12610 HOTCOST = ENERGYCOST * 8.34* 60 / BTU / EFF * HOT
12620 RETURN
12630.
12640 '**
12650 * * * ERROR STATEMENT * * *
12660
12670.
12680 CLS : LOCATE 12,1 : COLOR 4,0
126S0 PRINT USING "I'm sorry, but an error has been detected in this program.
It is error number "##, Please note the error number. If you want to try
again, then type the word RUN snd press the RETURN key."; ERR
12700 COLOR 7,0 : END
```


## Apperncilix B

Glossary for the variables used in the Residential Water Conservation Program.

# Table B. 1 Glossary of the variables used in the Residential Water Conservation Program. 

| Variable Name | Definition |
| :---: | :---: |
| As.............. | Temporary storage for data file information. |
| AEC. | Annual energy cost to heat the water. |
| ANT. | Average amount of water used per day when washing clothes. |
| ANSE | Temporary storage for a response to a question. |
| APC............ | Annual pumping cost. |
|  | Response to user taking either a bath or shower. |
| BTU. | British Thermal Units for different types of HEAT. |
| CD. | Subroutine dumy variable equal to cold water difference. |
| CITY\$. | Storage for citys name. |
| CLOTHES. | $Y / N$ response if user has a clothes washer. |
| CLOTHES15. | String variable. |
| CLOTHES2\$ | String variable. |
| CLOTHESCDC. | Cold water cost difference for clothes washing. |
| CLOTHESCOLD. | Annual amount of water used in clothes washer. |
| CLOTHESCOUNT. . | Conditional variable. |
| CLOTHESENERGY. . | Annual cost to heat clothes washer water. |
| CLOTHESHDC. . | Hot water cost difference for clothes washing. |
| CLOTHESHOT. | Annual apount of hot water used in clothes washer. |
| COUNTER......... | Counter variable. |
| COUNTY\$......... | Stroage of county's name. |
| CWCDIFF. | Potential cold water cost difference. |
| DAPC. | Potential difference in annual pumping cost. |
| DEPTHS. | User's private well depth. |
| DISH. | Y/N response if user has a dishwasher. |
| DISHCDC. | Dishwasher cold water cost difference. |
| DISHCOLD. | Annual water amount used in dishwasher. |
| DISHCOUNT. . . . . | Conditional variable. |
| DISHENERGY | Annual cost to heat dishwasher water. |
| DISHHDC. | Dishwasher hot water cost difference. |
| DISHHOT......... | Annual water amount used in dishwasher. |
| DRINK\$. | String variable. |
| DRINK. | Response to water habits employed while getting a drink. |
| DRINKCOLD...... | Annual amount of drinking water. |
| DTIM. | Response about how offen dishwasher is used daily. |
| EFF............ | Heating energy efficiency. |

Table B. 1 Continued.

| Variable Name | Dofinition |
| :---: | :---: |
| ENERGYCOST..... | Storage for energy cost. |
| FC.............. | Flat rate water cost. |
| FFNE............ | String storage for sequential data file name. |
| FLs............. | First letter for a community or county name. |
| FLATS | Temporary storage for user's flat rate water fee. |
| FLUSH........... | Response to number time per day the user flushes the hone toilet. |
| FLUSHCOLD...... | Annual water amount used to flush toilet. |
| FRC............. | Counter used if user is charged a flat fee for water. |
| FULLCLOTHES.... | Response to water habits while washing clothes. |
| FULLDISH....... | Response to water habits employed when using dishwasher. |
| FULLDISH15..... | String variable. |
| FULLDISH2F..... | String variable. |
| GA5s............ | Matural gas cost per 1000 cubic feet. |
| GAS............ | Natural gas cost per 1000 cubic feet. |
| Hands. | Response to water habits employed while washing the hands. |
| HANDS15. | String variable. |
| HANDS2\$........ | String variable. |
| HANDSCDG. | Cold water cost difference while washing the hands. |
| Handscold | Annual water amount used to wash hands. |
| HAMDSCOUNT..... | Conditional variable. |
| HANDSENERGY.... | Annual cost for heating the water used in washing hands. |
| HANDSHDC. | Hot water cost difference while washing the hands. |
| HANDSHOT. | Annual hot water amount used to wash hands. |
|  | Subroutine dummy variable equal to hot water difference. |
| HEAT. | Defines the type of energy used to heat water. |
| HOT. | Subroutine dumay variable. |
| HOTCOS | Annual hot water energy cost used in subroutine. |
| HOTDIFF. . . . . . | Total sumation of potential hot water savings. |
| HOTSUM. | Total sumation of hot water. |
| HWC. | potential annual hot water energy cost savings. |
| HWCDIFF........ | Potential hot water cost difference. |
|  | For-Next loop counter. |
| J.............. | For-Next loop counter. |
|  | Integer counter. |
| KWAT5......... | Electricity cost per kilowatt hour. |

## Table B.1 Continued.

| Variable Nare | Definition |
| :---: | :---: |
| KWAT. . . | Electricity cost per kilowatt hour. |
| L. | Counter variable. |
| LC | Response to the nusber of loads of clothes washed per week. |
| LPS | Liquid propane cost per gallon. |
| LP | Liquid propane cost per gallon. |
| MCU1........... | Marginal cost of water for UNITS $=1$. |
| HCU2. | Marginal cost of water for UNITS $s 2$. |
| HETER. | Y/N response if user's water is metered. |
| NNAMES. | Program users name. |
| NUM | Array storage number. |
|  | Power required to lift one days supply of water from well to house. |
| POP\$. | String storage for population size. |
| POP.............. | User's compunity population size. |
| REGEN | Number of days between regeneration of water softener. |
| REGENCOST. | Annual cost of water used to regenerate water softener. |
| REGENDAY. | Average amount of water used per day for regeneration of water softener. |
| RETS. | Tepporary storage for RETURN answer. |
| RINSE. | Response to water habits employed when rinsing dishes by hand. |
| RINSE1S. | String variable. |
| RINSE2S. | String variable. |
| RINSECDC. | Cold water difference for rinsing dishes. |
| RINSECOLD. | Annual water amount used to rinse dishes by hand. |
| RINSECOUNT. | Conditional variable. |
| RINSEENERGY. | Annual cost of heating dish rinsing water. |
| RINSEHDC. | Hot water difference for rinsing dishes. |
| RINSEHOT........ | Annual hot water asount used to rinse dishes by hand. |
| RWDHWC. . . . . . . . | Rural water district sarginal water cost. |
| RWDNO | Storage for rural water districts number. |
| SALT | Annual salt cost for regeneration of water softener. |
| SEX | Used to ask shaving question is user is male. |
| SHAVE. | Response to the type of water habits employed while shaving. |
| SHAVE1\%........ | String variable. |
| SHAVE2S | String varialbe. |
| SHAVECDC. . . . . . | Shaving cold water cost difference. |
| SHAVECOLD. . . . . | Annual water amount used to shave. |
| SHAVECOUNT..... | Conditional variable. |

Table B. 1 Continued.

| Variable Nare | Definition |
| :---: | :---: |
| SHAVEENERGY.... | Annual cost for heating shaving water. |
| SHAVEHDC....... | Shaving hot water cost difference. |
| SHAVEHOT....... | Annual hot water amount used to shave. |
| SHOWER......... | Response to length of time spent in the shower. |
| SHOWER15....... | String variable. |
| SHOWER25....... | String variable. |
| SHOWER35....... | String variable. |
| SHOWERCDC. | Shower cold water cost difference. |
| SHOWERCOLD..... | Annual water amount used in shower. |
| SHOWERCOUNT. . . | Conditional variable. |
| SHOWERENERGY... | Annual cost for heating shower water. |
| SHOWERHDC...... | Shower hot water cost difference. |
| SHOWERHOT. . . . | Annual hot water amount used in shower. |
| SOFTENER....... | Y/N response if user has a water softener. |
| SOFTENERCOLD... | Annual water amount used in regenerating water softener. |
| SOURCE......... | User's vater source. |
| SUи............ | Total summation of water. |
| SUMDIFF........ | Total summation of potential water savings. |
| TEETH. | Response to water habits employed while brushing the teeth. |
| TEETH1\%........ | String variable. |
| TEETH25........ | String variable. |
| TEETHCDC. | Cold vater cost difference while brushing teeth. |
| TEETHCOLD...... | Annual water anount used to brush teeth. |
| TEETHCOUNT.... | Conditional varialble. |
| TUB............. | Response to water level in bath tub. |
| TUB15.......... | String variable. |
| TUB2s........... | String variable. |
| TUBCDC......... | Bath tub cold water cost difference. |
| TUBCOLD........ | Annual water amount used in bath tub. |
| TUBCOUNT. . . . . . | Conditional variable. |
| TUBENERGY...... | Annual cost for heating bath water. |
| TUBHDC......... | Bath tub hot water cost difference. |
| TUBHOT......... | Annual hot water amount used in bath tub. |
| UNITS.......... | String storage for water meter units. |
| UNIT5........... | User's water billing units. |
| WATER.......... | Potential annual water savings. |
| WC............. | Potential annual cold water cost savings. |
| \%Costs......... | Temporary storage for marginal water cost. |
| WCOST........... | Marginal water cost. |

## Appenaile $C$

Municipal marginal water rates for Kansas cities and towns.

List of the municipal marginal water rates in 1983 for Kansas cities and towns [5].

Table C. 1 Population over 100,000 people.

| CITY | s/1000 gallons | \$/100 $\mathrm{ft}^{3}$ |
| :--- | :---: | :---: |
|  |  | 1.85 |
| Kansas City | 1.07 | 1.38 |
| Topeka | 0.75 | 0.80 |
| Wichita |  | 0.56 |

Table C. 2 Population between 10,000 and 99,999 people.

| CITY | \$/1000 gatlons | \$/100 $\mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Arkansas City | 1.81 | 1.35 |
| Atchison | 1.10 | 0.82 |
| Chanute | 1.39 | 1.04 |
| Coffeyville | 2.30 | 1.72 |
| Dodge City | 1.50 | 1.12 |
| El Dorado | 0.86 | 0.65 |
| Emporia | 1.00 | 0.75 |
| Garden City | 0.70 | 0.52 |
| Hays | 0.90 | 0.67 |
| Hutchinson | 0.67 | 0.50 |
| Independence | 1.41 | 1.05 |
| Junction City | 0.91 | 0.68 |
| Lawrence | 1.81 | 1.35 |
| Leavenworth | 1.76 | 1.31 |
| Liberal | 0.70 | 0.52 |
| Manhattan | 0.80 | 0.60 |
| McPherson | 0.73 | 0.54 |
| 01athe | 2.81 | 2.10 |
| Ottawa | 1.18 | 0.88 |
| Parsons | 1.47 | 1.10 |
| Pittsburg | 2.27 | 1.70 |
| Salina | 1.30 | 0.97 |
| Winfield | 0.85 | 0.64 |


| Table C. 3 Popu | Population between 5,000 and 9,999 people. |  |
| :---: | :---: | :---: |
| CITY | s/1000 gallons | \%/100 $\mathrm{ft}^{3}$ |
| Abilene | 0.86 | 0.64 |
| Augueta | 1.20 | 0.90 |
| Bonner 5prings | 2.20 | 1.65 |
| Colby | 0.58 | 0.43 |
| Concordia | 1.49 | 1.11 |
| Fort Scott | 1.74 | 1.30 |
| Goodland | 0.68 | 0.51 |
| Haysville | 1.25 | 0.94 |
| Iola | 1.44 | 1.08 |
| Pratt | 0.81 | 0.61 |
| Russell | 2.80 | 2.09 |
| Wellington | 2.00 | 1.50 |

Table C. 4 Population between 1,000 and 4,999 people.

| GITY | E/1000 gallons | \$/100 $\mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Anthony | 0.95 | 0.71 |
| Araa | 2.10 | 1.57 |
| Ashland | 0.60 | 0.45 |
| Atwood | 0.50 | 0.37 |
| Baldwin City | 2.47 | 1.85 |
| Baxter Springs | 1.57 | 1.17 |
| Bel Aire | 1.00 | 0.75 |
| Belle Plaine | 1.00 | 0.75 |
| Belleville | 0.79 | 0.59 |
| Beloit | 0.95 | 0.71 |
| Blue Rapids | 0.59 | 0.44 |
| Buhler | 0.60 | 0.45 |
| Burlingane | 2.00 | 1.50 |
| Burlington | 1.05 | 0.79 |
| Carbondale | 1.50 | 1.12 |

Table C. 4 Continued.

| CITY | \$/1000 gallons | \$/100 $\mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Chapman | 2.00 | 1.50 |
| Cheney | 0.94 | 0.70 |
| Cherryvala | 1.00 | 0.75 |
| Chetopa | 1.56 | 1.17 |
| Cimmarron | 0.42 | 0.31 |
| Clay Center | 0.73 | 0.55 |
| Clearwater | 2.50 | 1.87 |
| Conway Springs | 0.99 | 0.74 |
| Council Grove | 1.32 | 0.99 |
| De Soto | 1.14 | 0.85 |
| Dighton | 0.72 | 0.54 |
| Downs | 0.42 | 0.31 |
| Edgerton | 3.30 | 2.47 |
| Elkhart | 0.65 | 0.49 |
| Ellinwood | 0.82 | 0.61 |
| Ellis | 1.00 | 0.75 |
| Erie | 0.80 | 0.60 |
| Eudora | 2.73 | 2.04 |
| Eureka | 2.50 | 1.87 |
| Frankfort | 1.00 | 0.75 |
| Fredonia | 2.71 | 2.03 |
| Galena | 1.00 | 0.75 |
| Garnett | 3.85 | 2.88 |
| Girard | 1.50 | 1.12 |
| Goddard | 0.70 | 0.52 |
| Hesston | 1.05 | 0.79 |
| Hiawatha | 1.20 | 0.90 |
| Hill City | 0.60 | 0.45 |
| Hillsboro | 2.85 | 2.13 |
| Hoisington | 1.10 | 0.82 |
| Holton | 1.63 | 1.22 |
| Horton | 2.40 | 1.80 |
| Hoxie | 0.50 | 0.37 |
| Hugoton | 0.44 | 0.33 |
| Huxboldt | 1.60 | 1.20 |

Table G. 4 Continued.

| CITY | s/1000 gallons | \$/100 $\mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Johnson City | 0.65 | 0.49 |
| Kingman | 1.00 | 0.75 |
| Kinslay | 0.55 | 0.41 |
| Kiowa | 2.00 | 1.50 |
| LaCrosse | 1.70 | 1.27 |
| Grandview Plaza | 0.69 | 0.51 |
| Greensburg | 0.55 | 0.41 |
| Harper | 0.80 | 0.50 |
| Haven | 0.34 | 0.25 |
| Herington | 1.36 | 1.02 |
| LaCygne | 1.05 | 0.79 |
| Lakin | - 0.30 | 0.22 |
| Larned | 0.65 | 0.49 |
| Leoti | 0.30 | 0.22 |
| Lincoln Center | 0.67 | 0.50 |
| Lindeborg | 0.96 | 0.72 |
| Louisburg | 3.00 | 2.24 |
| Lyndon | 1.40 | 1.05 |
| Lyons | 0.52 | 0.39 |
| Madison | 1.25 | 0.94 |
| Mankato | 1.45 | 1.08 |
| Marysville | 1.27 | 0.95 |
| Meade | 1.40 | 1.05 |
| Medicine Lodge | 0.70 | 0.52 |
| Minneapolis | 1.00 | 0.75 |
| Moundridge | 0.80 | 0.60 |
| Muivane | 1.25 | 0.94 |
| Ness City | 1.30 | 0.97 |
| Nickerson | 0.60 | 0.45 |
| North Newton | 1.00 | 0.75 |
| Norton | 0.48 | 0.36 |
| Dakley | 0.59 | 0.44 |
| Ober1in | 0.29 | 0.22 |

Table C. 4 Continued.

| CITY | \$/1000 gallons | $\$ / 100 \mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Ogden | 4.55 | 3.40 |
| Oeage City | 1.23 | 0.92 |
| Osawatomie | 1.67 | 1.25 |
| Osborne | 0.40 | 0.30 |
| Oskaloosa | 2.00 | 1.50 |
| Oswego | 2.90 | 2.17 |
| Paola | 1.35 | 1.01 |
| Park City | 1.00 | 0.75 |
| Peabody | 1.34 | 1.00 |
| Phillipsburg | 1.50 | 1.12 |
| Plains | 0.70 | 0.52 |
| Plainville | 0.75 | 0.56 |
| Pleasanton | 1.80 | 1.35 |
| Rose Hill | 1.80 | 1.35 |
| Rossville | 0.90 | 0.67 |
| Sabetha | 1.80 | 1.35 |
| Sedan | 2.15 | 1.61 |
| Sedgwick | 0.80 | 0.60 |
| Seneca | 0.80 | 0.60 |
| Silver Lake | 1.55 | 1.16 |
| Smith Center | 1.26 | 0.94 |
| Solomon | 1.05 | 0.79 |
| South Hutchinson | n 0.54 | 0.40 |
| St. Marys | 0.70 | 0.52 |
| Stafford | 1.00 | 0.75 |
| Stockton | 0.85 | 0.64 |
| Syracuse | 0.50 | 0.37 |
| Tonganoxie | 1.50 | 1.12 |
| Towanda | 2.20 | 1.65 |
| Vlysses | 0.70 | 0.52 |
| Valley Falle | 1.50 | 1.12 |
| Victoria | 0.95 | 0.71 |
| Wakeeney | 1.00 | 0.75 |
| Wanego | 0.80 | 0.60 |
| Washington | 0.50 | 0.37 |
| Wathena | 1.80 | 1.35 |
| Wellsville | 3.39 | 2.54 |
| Yates Center | 1.75 | 1.31 |

Table C. 5 Population of 999 or less people.

| CITY | \$/1000 gallons | \$/100 $\mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Admire | 3.50 | 2.62 |
| Agenda | 0.75 | 0.56 |
| Agra | 0.65 | 0.49 |
| Allen | 2.00 | 1.50 |
| Alna | 0.85 | 0.64 |
| Alton | 0.60 | 0.45 |
| Altoona | 1.75 | 1.31 |
| Arcadia | 2.90 | 2.17 |
| Argonia | 0.70 | 0.52 |
| Arlington | 0.40 | 0.30 |
| Atlanta | 1.85 | 1.38 |
| Attica | 1.00 | 0.75 |
| Axtell | 1.00 | 0.75 |
| Bazine | 1.10 | 0.82 |
| Belpre | 0.50 | 0.37 |
| Belvue | 1.00 | 0.75 |
| Beverly | 0.80 | 0.60 |
| Bird City | 0.55 | 0.41 |
| Bison | 0.70 | 0.52 |
| Blue Mound | 2.00 | 1.50 |
| Bluff City | 0.60 | 0.45 |
| Bogue | 0.50 | 0.37 |
| Brewster | 0.60 | 0.45 |
| Brookwille | 1.00 | 0.75 |
| Brownell | 0.36 | 0.27 |
| Buffalo | 2.50 | 1.87 |
| Burden | 0.85 | 0.64 |
| Burdett | 0.44 | 0.33 |
| Burns | 1.25 | 0.94 |
| Burrton | 1.00 | 0.75 |
| Bushton | 0.44 | 0.33 |
| Cassoday | 2.00 | 1.50 |
| Cawker City | 0.66 | 0.49 |
| Cedar Vale | 2.00 | 1.50 |
| Centralia | 1.30 | 0.97 |

Table C. 5 Continued.

CITY \$/1000 gallons $\$ / 100 \mathrm{ft}^{3}$

| Chase | 0.48 | 0.36 |
| :---: | :---: | :---: |
| Chautauqua | 1.75 | 1.31 |
| Circloville | 1.00 | 0.75 |
| Clayton | 0.25 | 0.19 |
| clifton | 0.35 | 0.26 |
| Clyde | 1.00 | 0.75 |
| Collyer | 0.52 | 0.39 |
| Colony | 2.00 | 1.50 |
| Coolidge | 0.50 | 0.37 |
| Copeland | 1.00 | 0.75 |
| Corning | 0.75 | 0.56 |
| Cottonwood Falls | 2.50 | 1.87 |
| Courtland | 1.00 | 0.75 |
| Cunningham | 0.50 | 0.37 |
| Deerfield | 0.60 | 0.45 |
| Delphos | 0.70 | 0.52 |
| Denison | 2.50 | 1.87 |
| Dexter | 1.25 | 0.94 |
| Durham | 1.00 | 0.75 |
| Dwight | 0.50 | 0.37 |
| Easton | 1.20 | 0.90 |
| Elbing | 1.40 | 1.05 |
| Elgin | 0.50 | 0.37 |
| Elk City | 1.80 | 1.35 |
| Elmdale | 1.00 | 0.75 |
| Emmett | 1.50 | 1.12 |
| Esbon | 2.00 | 1.50 |
| Eekridge | 1.25 | 0.94 |
| Everest | 1.50 | 1.12 |
| Fall River | 3.00 | 2.24 |
| Florence | 1.00 | 0.75 |
| Fontana | 2.00 | 1.50 |
| Fowler | 0.50 | 0.37 |
| Galesburg | 2.00 | 1.50 |
| Galva | 1.00 | 0.75 |

Table C. 5 Continued.

| CITY | \$/1000 gallons | \$/100 $\mathrm{ft} \mathrm{t}^{3}$ |
| :---: | :---: | :---: |
| Gas | 1.74 | 1.30 |
| Gaylord | 0.91 | 0.68 |
| Geneseo | 1.00 | 0.75 |
| Glade | 0.75 | 0.56 |
| Glen Elder | 0.96 | 0.72 |
| Goessel | 0.43 | 0.32 |
| Gorham | 3.20 | 2.39 |
| Gove | 0.40 | 0.30 |
| Grainfield | 0.64 | 0.48 |
| Grinnell | 0.50 | 0.37 |
| Gypsum | 1.60 | 1.20 |
| Haddam | 1.50 | 1.12 |
| Hanston | 0.40 | 0.30 |
| Hartford | 2.00 | 1.50 |
| Harveyville | 2.00 | 1.50 |
| Haviland | 0.60 | 0.45 |
| Herndon | 0.36 | 0.27 |
| Highland | 1.50 | 1.12 |
| Holcomb | 0.69 | 0.52 |
| Hollenber9 | 8.00 | 5.98 |
| Hope | 0.80 | 0.60 |
| Horace | 1.50 | 1.12 |
| Howard | 1.77 | 1.32 |
| Hoyt | 2.80 | 2.09 |
| Hunter | 2.00 | 1.50 |
| Ingalls | 1.00 | 0.75 |
| Inman | 0.75 | 0.56 |
| Jamestown | 2.00 | 1.50 |
| Jennings | 0.20 | 0.15 |
| Kanopolis | 0.85 | 0.64 |
| Kanorado | 0.32 | 0.24 |
| Kechi | 2.10 | 1.57 |
| Kensington | 1.70 | 1.27 |
| Kirwin | 0.50 | 0.37 |
| Kismet | 0.75 | 0.56 |

Table C. 5 Continued.

| CITY | \%/1000 gallons | \%/200 ft ${ }^{3}$ |
| :---: | :---: | :---: |
| Lancaster | 1.50 | 1.12 |
| LeRoy | 2.00 | 1.50 |
| Lebanon | 2.00 | 1.50 |
| Lebo | 2.40 | 1.80 |
| Lecompton | 1.25 | 0.94 |
| Lehigh | 0.50 | 0.37 |
| Lewis | 0.50 | 0.37 |
| Liebenthal | 1.00 | 0.75 |
| Linn | 0.80 | 0.60 |
| Little River | 2.00 | 1.50 |
| Long Island | 0.75 | 0.56 |
| Longford | 0.44 | 0.33 |
| Longton | 1.20 | 0.90 |
| Lorraine | 1.00 | 0.75 |
| Lucas | 0.75 | 0.56 |
| Luray | 1.00 | 0.75 |
| Manchester | 1.50 | 1.12 |
| Manter | 1.00 | 0.75 |
| Maple Hill | 1.30 | 0.97 |
| Matifeld Green | 2.50 | 1.87 |
| Mayfield | 2.24 | 1.68 |
| MeCune | 3.00 | 2.24 |
| MeFarland | 1.50 | 1.12 |
| McLouth | 2.80 | 2.09 |
| Melvern | 1.50 | 1.12 |
| Milford | 1.40 | 1.05 |
| Miltonvale | 1.00 | 0.75 |
| Mineral | 1.32 | 0.99 |
| Moline | 1.50 | 1.12 |
| Montezuma | 0.60 | 0.45 |
| Morrowville | 1.00 | 0.75 |
| Mound City | 3.30 | 2.47 |
| Mount Hope | 0.22 | 0.16 |
| Munden | 0.80 | 0.60 |
| Narka | 1.00 | 0.75 |

Table C. 5 Continued.

| CITY | \$/1000 gallons | \$/100 $\mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Natoma | 1.00 | 0.75 |
| Netawaka | 1.20 | 0.90 |
| New Strawn | 7.00 | 5.24 |
| Norcatur | 1.50 | 1.12 |
| Nortonville | 1.00 | 0.75 |
| Norwich | 0.75 | 0.56 |
| Oketo | 1.00 | 0.75 |
| Olpe | 1.75 | 1.31 |
| Onaga | 2.00 | 1.50 |
| Oneida | 0.80 | 0.60 |
| Otis | 0.50 | 0.37 |
| Ozawkie | 0.75 | 0.56 |
| Palmer | 0.90 | 0.67 |
| Paradise | 1.00 | 0.75 |
| Park | 0.35 | 0.26 |
| Parker | 1.00 | 0.75 |
| Paxico | 1.00 | 0.75 |
| Peru | 4.00 | 2.99 |
| Pomona | 1.25 | 0.94 |
| Potwin | 2.46 | 1.84 |
| Powhattan | 2.00 | 1.50 |
| Prairie View | 0.50 | 0.37 |
| Pretty Prairie | 1.14 | 0.85 |
| Princeton | 2.50 | 1.87 |
| Protection | 0.60 | 0.45 |
| Quenema | 1.75 | 1.31 |
| Quinter | 0.50 | 0.37 |
| Rando1ph | 0.75 | 0.56 |
| Ransom | 0.90 | 0.67 |
| Rantoul | 2.00 | 1.50 |
| Raymond | 0.21 | 0.16 |
| Riley | 0.80 | 0.60 |
| Sawyer | 0.50 | 0.37 |
| Scandia | 0.28 | 0.21 |
| Selden | 0.75 | 0.56 |

Table C. 5 Continued.

| CITY | \$/1000 gallons | \$/100 $\mathrm{ft}^{3}$ |
| :---: | :---: | :---: |
| Severy | 2.00 | 1.50 |
| Sharon Springs | 0.50 | 0.37 |
| Soldier | 1.30 | 0.97 |
| South Haven | 1.00 | 0.75 |
| Spearville | 0.40 | 0.30 |
| St. George | 0.55 | 0.41 |
| Summerfield | 0.75 | 0.56 |
| Susank | 1.50 | 1.12 |
| Tescott | 0.50 | 0.37 |
| Thayer | 3.50 | 2.62 |
| Timken | 0.80 | 0.60 |
| Toronto | 3.75 | 2.81 |
| Tribune | 1.43 | 1.07 |
| Turon | 0.50 | 0.37 |
| Udall | 1.80 | 1.35 |
| Uniontown | 4.35 | 3.25 |
| Viola | 2.70 | 2.02 |
| Virgil | 2.00 | 1.50 |
| Wakefield | 1.25 | 0.94 |
| Wallace | 0.90 | 0.67 |
| Walnut | 2.25 | 1.68 |
| Walton | 1.76 | 1.32 |
| Waterville | 0.30 | 0.22 |
| Waverly | 2.42 | 1.81 |
| Westmoreland | 2.00 | 1.50 |
| Wetmore | 14.40 | 10.77 |
| White City | 1.00 | 0.75 |
| Whitewater | 3.35 | 2.51 |
| Whiting | 0.75 | 0.56 |
| Williambburg | 2.30 | 1.72 |
| Windom | 0.50 | 0.37 |
| Winona | 0.50 | 0.37 |
| Woodston | 0.80 | 0.60 |
| Zenda | 0.75 | 0.56 |

Table C. 6 Kansas towns that charge their customers a flat rate for water.

| City | Cost. 5 | Amount, gallons |
| :---: | :---: | :---: |
| Asmaria | 9.00 | Unlimited |
| Barnes | 6.00 | Unlimited |
| Cullizon | 7.00 | Unlimited |
| Dorrance | 9.50 | Unlimited |
| Effingham | 10.00 | Unlimited |
| Ford | 7.00 | Unlimited |
| Greenleaf | 7.00 | Unlimited |
| Ogden | 4.50 | Unlimited |
| Republie | 7.50 | Unlimited |
| Rolla | 11.70 | Unlimitad |
| Scammon | 7.25 | Unlimited |

## Appencilix $\quad$ D

Marginal water rates for Kansas Rural Water Districts.

| Table D. 1 Marginal water rates for Kansas Rural Water Districts that are named after the town they serve. |  |  |  | |
|---|---|---|---|---|
| Town |  |  | 5/1000 |
|  |  |  | gallons |
| City of Beattie City of Edgerton City of Richmond City of Scranton City of Spring Hill |  |  | 1.25 |
|  |  |  | 3.30 |
|  |  |  | 1.95 |
|  |  |  | 5.00 |
|  |  |  | 6.50 |
| Table D. 2 | Marginal water rates for Kansas Rural Water Districts that are named after the county they serve. |  |  |
| County |  | RWD No. | \$/1000 |
|  |  | gollons |
| Allen |  |  | 7 | 2.50 |
| allen |  | 8 | 3.00 |
| Allon |  | 10 | 3.02 |
| Anderson <br> Anderson |  | 2 | 1.50 |
|  |  | 3 | 2.50 |
| Anderson |  | 4 | 2.52 |
| Anderson |  | 4A | 3.50 |
| Anderson |  | 5 | 4.75 |
| Atchison |  | 2 | 1.32 |
| Atchison |  | 3 | 1.10 |
| Atchison |  | 4 | 2.50 |
| Atchison |  | 5 | 1.25 |
| Atchison |  | 6 | 1.30 |
| Barber |  | 1 | 1.14 |
| Barber |  | 2 | 2.00 |
| Bourbon |  | c-2 | 2.20 |
| Bourbon |  | 4 | 2.75 |
| Butler |  | 1 | 1.70 |
| Butler |  | 3 | 3.00 |
| Butler |  | 5 | 2.25 |

Table D. 2 Continued.

| County | RWD No. | $\begin{aligned} & \text { \$/1000 } \\ & \text { gallons } \end{aligned}$ |
| :---: | :---: | :---: |
| Butler | 6 | 2.50 |
| Butler | 7 | 2.00 |
| Butler | 8 | 1.50 |
| Chase | 1 | 2.00 |
| Chautauqua | 1 | 1.37 |
| Cherokee | 1 | 1.20 |
| Cherokee | 2 | 0.61 |
| Cherokee | 4 | 1.00 |
| Cherokee | 5 | 1.55 |
| Cherokee | 6 | 2.75 |
| Clay | 2 | 2.51 |
| Cloud | 1 | 2.20 |
| Coffey | 2 | 3.00 |
| Coffey | 3 | 3.00 |
| Comanche | 1 | 1.25 |
| Comanche | 2 | 3.00 |
| Cowley | 1 | 1.50 |
| Cowley | 2 | 1.25 |
| Cowley | 3 | 1.00 |
| Cowley | 4 | 1.70 |
| Cowley | 5 | 2.20 |
| Crawford | 4 | 0.90 |
| Crawford | 5 | 1.00 |
| Crawford | 6 | 2.02 |
| Crawford | 7 | 1.45 |
| Crawford | 8 | 1.80 |
| Crawford-Chicopee |  | 3.00 |
| Dickenson | 2 | 3.03 |
| Douglas | 1 | 2.55 |
| Douglas | 3 | 2.60 |
| Douglas | 4 | 1.50 |
| Douglas | 5 | 2.00 |
| Douglas | 6 | 2.25 |
| Elk | 1 | 3.80 |
| Ellis | 2 | 1.00 |

Table D. 2 Continued.

| County | RWD No. | $\begin{aligned} & \$ / 1000 \\ & \text { gallons } \end{aligned}$ |
| :---: | :---: | :---: |
| Ellis | 3 | 0.50 |
| E1lis | 5 | 1.00 |
| E11 is | 7 | 3.00 |
| Ellsworth | 1 | 4.20 |
| Frankl in | 1 | 3.79 |
| Franklin | 3 | 3.50 |
| Franklin | 4 | 1.75 |
| Franklin | 5 | 0.76 |
| Greenwood | 1 | 4.00 |
| Greenwood | 2 | 3.40 |
| Harvey | 1 | 1.80 |
| Jackson | 1 | 1.54 |
| Jackson | 2 | 2.25 |
| Jefferson | 1 | 1.76 |
| Jefferson | 2 | 0.72 |
| Jefferson | 3 | 1.50 |
| Jefferson | 6 | 1.50 |
| Jefferson | 9 | 3.03 |
| Jefferson | 11 | 2.00 |
| Jefferson | 12 | 2.02 |
| Jewe11 | 1 | 1.25 |
| Johnson | 1 | 2.75 |
| Johnson | 3 | 2.20 |
| Johnson | 5 | 4.12 |
| Johnson | 6 | 3.50 |
| Johnson | 7 | 3.37 |
| Kingran | 1 | 3.00 |
| Labette | 1 | 4.75 |
| Labette | 2 | 4.04 |
| Labette | 3 | 4.55 |
| Labette | 4 | 3.30 |
| Labette | 6 | 1.78 |
| Lane | 1 | 1.03 |
| Leavenworth | 2 | 2.00 |
| Leavenworth | 5 | 2.00 |

Tab1e D. 2 Continued.

| County | RWD No. | $\begin{aligned} & \text { \$/1000 } \\ & \text { gallons } \end{aligned}$ |
| :---: | :---: | :---: |
| Leavenworth | 7 | 2.94 |
| Leavenworth | 8 | 2.85 |
| Leavenworth | 10 | 2.50 |
| Linn | 1 | 3.00 |
| Lyon | 1 | 2.50 |
| Lyon | 2 | 1.50 |
| Lyon | 3 | 2.50 |
| Lyon | 4 | 2.50 |
| Lyon | 5 | 1.60 |
| Marion | 1 | 1.25 |
| Marion | 4 | 2.00 |
| Marshal1 | 3 | 1.70 |
| MePherson | 1 | 1.15 |
| McPharson | 4 | 2.02 |
| Miami | 1 | 2.22 |
| Miami | 2 | 4.04 |
| Mitchell | 2 | 2.27 |
| Mitchel1 | 3 | 2.50 |
| Montgomery | 3 | 3.00 |
| Montgorery | 4 | 2.70 |
| Montgomery | 5 | 4.00 |
| Montgomery | 6 | 4,50 |
| Montgomery | 7 | 2.75 |
| Montgomery | 8 | 2.57 |
| Montgorery | 9 | 3.50 |
| Montgomery | 10 | 2.30 |
| Montgomery | 11 | 2.00 |
| Montgomery | 12 | 3.20 |
| Nenaha | 1 | 1.26 |
| Nemaha | 2 | 0.98 |
| Nemaha | 3 | 1.70 |
| Neosho | 5 | 4.50 |
| Necosho | 6 | 4.92 |
| Neosho | 7 | 1.71 |
| Neosho | 8 | 1.50 |

## Table D. 2 Continued.

| County | RWD NO. | $\begin{aligned} & \text { \$/1000 } \\ & \text { gallons } \end{aligned}$ |
| :---: | :---: | :---: |
| Neosho | 9 | 2.07 |
| Neosho | 10 | 3.12 |
| Neosho | 12 | 2.26 |
| Neosho-Allen | 2 | 2.21 |
| Neosho-Labette | 4 | 2.76 |
| Osage | 2 | 2.33 |
| Osage | 3 | 2.00 |
| Osage | 5 | 2.75 |
| Osage | 6 | 3.05 |
| Osage | 8 | 3.50 |
| Ottawa | 2 | 2.30 |
| Pottawatomie | 1 | 1.00 |
| Pottawatonie | 3 | 1.70 |
| Public Wholesale | 6 | 3.25 |
| Reno | 1 | 1.25 |
| Republic | 1 | 1.12 |
| Republic | 2 | 1.08 |
| Riley | 1 | 2.00 |
| Russel1 | 3 | 1.90 |
| Saline | 1 | 2.00 |
| Saline | 2 | 1.20 |
| Saline | 4 | 1.26 |
| Saline | 5 | 2.00 |
| Saline | 6 | 1.70 |
| Sedgwick | 1 | 2.30 |
| Sedgwick | 2 | 2.50 |
| Sedgwick | 3 | 2.30 |
| Shawnee | 1 | 1.89 |
| Shawnee | 4 | 1.75 |
| Shawnee | 6 | 2.25 |
| Shawnce | 7 | 3.00 |
| Shawnee | 11 | 2.00 |
| Sumner | 2 | 2.81 |
| Sumner-Cowely | 4 | 3.20 |
| Wabaunsee | 1 | 5.00 |

## Table D. 2 Continued.

| County | RWD No. | $\$ / 1000$ gallons |
| :---: | :---: | :---: |
| Washington | 1 | 1.60 |
| Wilson | 1 | 4.00 |
| Wilson | 9 | 5.00 |
| Wilson | 10 | 4.28 |
| Wilson | 11 | 3.50 |
| Wilson | 12 | 2.90 |
| Wilson | 13 | 4.20 |
| Woodson | 1 | 3.40 |
| Wyandotte/Leavenworth | 1 | 2.19 |

## Appendiix E

Statistical analysis program and graphe.

Fortran program listing which uses the USPRP subroutine in the IMSL program.

```
//**+ PRINT VM
```

$\qquad$

```
//*++ VMMSG LOG PRINT IQL
//**+ SERVICE *
// EXEC FORTVCLG
 INTEGER N, N1, N2, IDIST, IOPT, IER, I, L
 REAL X(25),WK (50)
C ** X = VECTOR OF LENGTH N2 - N1 * 1 CONTAINING THE DATA.
C ***
C axs N = NUMBER OF OBSERVATIONS.
C ***
 N=25
C a**
C ** N1 = THE RANKED NUMBER OF THE SMALLEST OBSERVATION.
C ***
 N1 = 1
C **
C ** N2 = THE RANKED NUMBER OF THE LARGEST OBSERVATION.
C
 N2 = N
C ***
C sat IDIST = PARAMETER TO INDICATE THE DIFFERENT DISTRIBUTIONS.
C *** IDIST = 1, NORHAL DIST.
C "* = 2, LOGNORMAL DIST.
C *s* " 3, HALF-NORMAL DIST.
C *** * 4, EXPONENTIAL DIST.
C*** " = 5, WEIBULL DIST.
C*** * 6, EXTRENE VALUE DIST.
C wax
C ** IOPT = OPTION INDICATING THE NUMBER OF PRINTER COLUMNS.
C wa IOPT = 0, 80 COLUMNS.
C*** " = 1, 129 COLUNNS.
C ***
 IOPT =0
C ***
C ** WK = WORK VECTOR OF LENGTH 2N
C **
C *** IER = ERROR PARAMETER (OUTPUT)
C IER = 67, SONE DATA POINTS WERE DELETED BEGAUSE THEY DIDN'T
 SATISFY THE DISTRIBUTION.
C *** * 131, INDICATES THAT N1 OR N2 ARE SPECIFIED INCORRECTLY.
C "* = 132, INDICATES THAT THE SAMPLE SIZE IS LESS THAN 2.
C "# " 133, INDICATES THAT IDIST IS SPECIFIED INCORRECTLY.
C
 DO 200 I = 1,N
 READ(5,100) X(I)
100 FORMAT(FS.0)
200 CONTINUE
C ***
 DO 300 IDIST = 1, 6
 CALL USPRP (X, N, N1, N2, IDIST, IOPT, WK, IER)
```


## Fortran progran listing (continued)

300 CONTINUE
C $3 \times 4$
STOP
END
//LKED.SYSLIB DD
// DD
// DD
// DD DSN=SYS1.IMSL.SPFLIB,DISP=SHR
//GO.SYSIN
DD *
23725
23725
26098
26567
26645
29383
29930
31599
32042
33033
33554
34466
37308
39837
41688
41975
43461
43644
45625
46981
47540
49730
50474
51648
58125


PRORADILITY PLOT FOR LOGNORAAL OISTRIOUTION


Figure E. 2 Annual water usage sample tested against the lognormal distribution model using the USPRP subroutine in the IMSL fortran program. The sample was obtafned from the 25 people who ran the Residential Water Conservation Program.



Figure E. 4 Annual water usage sample tested against the exponential distribution model using the USPRP subroutine in the IMSL fortran progras. The sample was obtained fron the 25 people who ran the Residential Water Conservation Prograin.


Figure E. 5 Annual water usage sampie tested agafnst the Weibull distribution model using the USPRP subroutine in the IMSL fortran program. The sample was obtained from the 25 people who ran the Residential Water Conservation Program.


Figure E. 6 Annual water usage sample tested against the extreme value distribution model using the USPRP suoroutine in the IMSL fortran progran. The sample was obtained fron the 25 people who ran the Residential Water Conservation Program.


## References Cited

1. Kansas Water Office, Kansas Water Plan (Final Draft), January 1985.
2. Bringham, A. P., "A Public Education Campaign to Conserve Water," Journal of the American Water Works Association, Vol. 68, No, 12. pp. 665-668, December 1976.
3. Morgan, W. D. and Pelosi, P., "The Effects of Water Conservation Kits on Water Use," Journal of tho Averican Water Works Association, Vol. 72, No. 3, pp. 131-133, March 1980.
4. Sevebeck, K. P. and Walker, W. R., "Evaluating the Effectiveness of Promoting Residential Water Conservation through Exhibits," Virginia Water Resources Center, Blacksburg, VA, August 1983. National Technical Information Service PB84-114056 5.
5. League of Kansas Municipalities, Municipal Utilities: Annual Report, June 1984.
6. Flack, J. E., "Residential Water Conservation," Journal of the Water Resources Planning and Management Division, American Society of Civil Engineers, Vol. 107, No. WR1, pp. 85-95, March 1981.
7. Hodgman, C. D., Handbook of Chemistry and Physics, 44th Ed. Cleveland: Chemical Rubber Publishing Co.: pp. 1938 \& 3305, 1962.
8. Hopp, W. J. and Darby, W. P., "In-Home Conservation and Wastewater Managenent," Journal of the Water Resources Planning and Manaqenent Divison, Anerican Society of Civil Engineers. Vol. 107, No. WR2, pp. 401-418, October 1981.
9. Herman, P. F., Doodler: Z-DOS Software, Safety Harbor, FL, 1983.
10. International Matheratical and Statistical Library, Mainframe Computer System, Kansas State University, 1985.
11. Siege1, S., Nonparanetric Statistics, McGraw-Hill Book Co.: pp.47-51, 1956.

# RESIDENTIAL WATER CONSERVATION COMPUTER PROGRAM 

## by

JOHN R. HOLLENBECK
B. S., Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the

## requirements for the degree

MASTER OF SCIENCE

Department of Givil Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

## ABSTRACT

Residential water conaervstion is becoming increaangly isportant aa water demands snd costs increase, and existing supplies become less adequste. Conservation should be viewed aa an alternstive to developing new wister aupplies since water conaerved fron existing suppliea can be nade availsble to new users. The first step for a succeasful conservation program is educstion. Thus s microcomputer progrsm was written thet analyzes s person's water hsbits and gives him on economic incentive to aave water, using a printed copy of specific recomrendstions.

The user of the progran entera his source of water, either municipal water plsnt, rursi water district, or private well. If hia water source was one of the first two, then he is aaked to enter the unit prica for his wster, snd if not known, then the computer sids him in determining his water cost, based on Kansas watar rates. In the csae of the private well user, the program saks hin for the depth of his well, sind the unit price for electricity--both are needed to cslculate the coat to pump the water froe the well to the hove.

The uaer alao enters into the progran the type of energy uaed to heat the water, either electricity, natursl gsa, or liquid propane. The unat oost of energy must slso be supplied to calculate the cost to heat the water. If the uaer does not know the unit coat of energy, then the program uses default vslues.

The progrsi then asks the user aone queationa sbout how he uses water st home, and finally supplies printed output on the printer. This output explains ways the user might be able to aave both water and money by conaerving water. The auggestions printed on the output are bsaed upon
baeline valuea which reflect the uae of water by the average Anerican. A descriptive example is shown which reflecta the water uses of the author.

Twenty five people ratudenta and faculity members at Kansaa State Univeraity) ran the program to deter品ine the program'a integerity and to obtain a aet of data that could be uaed to deterine the potential water savinga auggested by the prograx. The progran eatimated that 24 percent (227, 700 gallons) of the total water uaed annually by the 25 individuals could be saved. A total of 32 percent of the hot water $(130,500$ gallons) waa the eatimated annual savinga of the 25 individuala provided the prograz output auggeations were to be followed.

To follow up after educating the public about their own water habits, an educational progran ahould be developed to instruct people of the phyaical waya to go about saving water. For example, inatructions and detaled information about inatallation of displacement devices in toilet tanks. inatalling low flow shower heads, and faucet aerators ahould be made available.

A complete liating of the prograx, along with a gloasary of the variablea used in the progral ia provided in the appendices.


[^0]:    * BTU = British Thermal Unit.
    i kwh $=$ Kilowatt-hour.
    " HCF $=$ Thousand Cubic Fest, - gal $=$ gallon.

[^1]:    * $\mathrm{A} / \mathrm{J}=$ acceptable/unacceptable: ${ }^{1}$ gpd = gallons per day; ${ }^{6} \mathrm{MA}=$ not applicable * either of the two options.

[^2]:    "There are two types of questions asked in this program. They are:

[^3]:    "The fill-in-the-blsnk question sllows you to enter either letters, numbera, or symbola. You must supply the answer to the question that is saked.

    Answer the fill-in-the-blenk exsmple below.
    Enter your firat name. Answer = *

[^4]:    "Thank you for running the program. Your results should be coming out on the printer. If they aren't, then turn the printer on. Thanks again....."

