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INTRODUCTION

Knowledge representation is a key issue in artificial intelligence

and related fields of study such as cognitive science. The

representation used by a computer system governs which processing

operations can be used effectively. This, in turn, is related to the

power and capability of the system.

Three main questions should be asked in evaluating a particular

knowledge representation. How easy is it to create and later modify

information in this form of representation? How well does the

representation support processing? Finally, how well does the

representation portray the knowledge it represents?

Conceptual graphs are a notation for knowledge representation. The

notation was created by John F. Sowa (1984) in his book Conceptual

Structures; Information Processing in Mind and Machine . This

representation is easy to create, at least in small examples. While it

does not support von Neumann style processing very well, it may be easily

implemented on special machines (Fahlman, 1979). This representation

provides an open-ended, powerful mechanism for representing knowledge.

However, conceptual graphs suffer from being too rigid; this is

partly due to the fact that they have been developed for database

representations. Entities in a database can be rigidly defined, but

objects in the real world do not lend themselves to this luxury. To

augment the capabilities of the conceptual graph representation, the

methods of fuzzy set theory have been used in this work to create a new

version of conceptual graphs.

This thesis defines a representation of "fuzzy conceptual graphs."

Whenever possible the original methods of Sowa are used; nevertheless,

sometimes the desire for fuzziness creates a need for new operations. To

support fuzzy conceptual graphs, it becomes necessary to define a method

for comparing graphs and a method for defining fuzzy concepts. Sowa

(1984) calls the methods that support conceptual graphs a semantic

network. The term "fuzzy semantic network" is coined for the methods

that support fuzzy conceptual graphs.
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The thesis is divided into three sections. Section one defines fuzzy

conceptual graphs. Section two defines the supporting mechanisms of

graph comparison and concept definition. Section three illustrates an

example application of this fuzzy semantic network.



I. FUZZY CONCEPTUAL GRAPHS: DEFINITION AND MOTIVATION

After a brief description of conceptual graphs and fuzzy concepts,

this section explores the nature of a fuzzy conceptual graph. These

three topics set the stage for the remainder of the thesis.

Conceptual Graphs

A conceptual graph is a description of a scene or a situation,

written with a graph notation consisting of nodes and links. The nodes

represent objects or concepts, and the links represent relations between

the concept nodes. The physical world seems to divide itself into

discernible objects as do other environments such as character

recognition, game playing, and system design. Conceptual graphs are a

natural notation for this kind of environment.

In Figure 1 is an example of how a conceptual graph can be used to

describe an object such as the character T. As per Sowa's convention,

the concept nodes are drawn as labeled rectangles and the relation links

are drawn as arrows with label-circles affixed to them.

The letter T has two main components, the vertical and horizontal

line segments. Each of these pieces are echoed in the conceptual graph

as concept nodes. The conceptual graph, which can be thought of as a

statement about the letter T, points out that the two lines are joined

together. The conceptual graph can also be read as saying that the

alignment (ALGN) of one line segment is horizontal (HORZ) and the

alignment or the other line segment is vertical (VERT). (The ALGN

relation belongs to a special family of relations which act as place

holders for attribute values.)

The conceptual graph in Figure 1 does not completely describe the

letter T in the diagram. Additional relation links and concept nodes are

needed for a complete representation. The horizontal line is above the

vertical line and this information should be shown with an ABOVE relation

connected with the two LINE concept nodes. The two lines are also

perpendicular, which should be stated explicitly in the graph.
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Figure 1. Character T and its conceptual graph



Another important fact is that the upper-end of the vertical line is

connected to the middle of the horizontal line. Finally, it would be

useful to roughly locate the two line segments within the framework of

the letter by saying that the horizontal line is at the top and the

vertical line is in the middle, between the left and right sides. All of

these additional pieces of information would be necessary to provide a

complete description. In general a conceptual graph can grow to be quite

complex even when describing a simple scene.

Relation links usually connect only two concept nodes together but

it is possible, and sometimes necessary, to join three or more nodes with

a single relation link. However, a relation link must always connect at

least two concepts, and can never be connected to just one concept node.

In some ways the relation links used in the conceptual graph notation act

like nodes of standard graph notation where only binary links are

allowed. The constraint above insures against free-floating relation

links and forces them to always exist between concept nodes as relations

should.

The distinction between the concepts and relations seems fairly

clear, but in some cases the two become interchangeable. The relation

ALGN from the graph in Figure 1 relates a line segment with the value of

the alignment attribute, but is not alignment a concept? Every relation

is a concept, but it is not drawn as one until it is referenced in the

graph description. An example of this is given in The Handbook of AI

[see p. 182, Barr & Feigenbaum (1981)] concept node "BIRD" is connected

with a NEST node via a relation of OWN. If the graph needed to describe

when the bird owned the nest then the relation OWN became the concept

node, OWN-1, and this node could be tied to a node with time and date

values. In the process of referring to the OWN relation, it becomes a

relationship and, therefore, a concept.

If it is possible to coerce an arbitrary relation into a concept,

then it must be possible to find a common representation for both

concepts and relations. Fahlman, in his design of a hardware-version of

semantic networks, used a single element type to represent both concepts

and relations [see p. 237 in Fahlman (1979)]. At some level of

representation, concepts and relations are of very similar structures.



In the ensuing discussions, the emphasis will be on concept nodes and

most examples will be of concepts. Anything said about the concepts

should apply to the relations with little alteration. In the special

situations where a distinction should be made, it will be discussed in

some detail to insure completeness with respect to both concepts and

relations.

Fuzzv Concepts and Relations

Conceptual graphs suffer from being too rigid in composition when

used to describe scenes in the physical world. (Conceptual graphs were

originally used to describe data base elements which can be rigidly

described without fault.) Concepts and relations do not submit well to

concise definition, as will be shown directly; this limits the usefulness

of conceptual graphs in describing the physical world.

Suppose that we wish to generate a conceptual graph description of a

line drawing, similar to Figure 1 but with many more lines. The first

step would seem to be separating out the individual line segments, and

curved lines, and labeling them ("concept label") in the graph as either

LINE or ARC (for curved lines). It is necessary to have a definition for

what will be accepted as a LINE and what will not be accepted. There

should be some margin of error for how straight a line has to be in order

to satisfy the definition of LINE, but how much margin? If an arbitrary

cutoff point is used, then the definition will be too strict in some

situations and too lenient in others. The answer to this problem is a

fuzzy threshold which allows a gradation in the definition. As a line

segment curves and becomes an arc, the change can be represented by a

fuzzy measure which is a number from the interval zero to one. A perfect

line would have the fuzzy measure of 1.0, and as the line becomes

less-than-perfect the fuzzy measure approaches 0.0. Figure 2 shows a set

of lines and curves with a possible set of fuzzy measures.

In graph form, the fuzzy concepts can be represented as a "concept

label" and a "fuzzy measure." Because the graph is a description of a

particular object, each component "concept label" refers to a particular

element of that object. The fuzzy concept for that element describes

1) what name or label has been given to the element and 2) provides a

fuzzy measure of how well the element matches with the label type.



10 0.7 0.4 0.1 0.0

Figure 2. Examples of the "fuzzy concept" LINE.

/
1.0 0.7 0.3 0.0

Figure 3. Examples of the "fuzzy relation" PERP (perpendicular)
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In the normal conceptual graph only the "concept label" is used to

describe an element and there is no measure of how well that label fits.

Relations can also be given a "fuzzy measure" which describes how

well the "relational label" fits the particular scene being described.

As an example of the fuzziness found in relations, we refer to the

perpendicular (PERP) relation that might exist between two line segments.

In Figure 3, a set of lines is shown which represent the spectrum

from perpendicular to parallel relationships. The perpendicular line

segments are given the fuzzy measure of 1.0, while at the other extreme

the fuzzy measure of 0.0 is given to the parallel lines segments.

In the discussion about fuzzy concepts, the fuzzy measure was related

to how well a particular concept "matched" the concept type. Another way

of viewing the fuzzy measure is as a distance of some sort between the

particular and the ideal concept type. This "conceptual distance"

implies a linear scale where particulars from the concept type can be

placed for comparison. Figures 2 and 3 are drawn to represent some

linear scales for the concept of LINE and the relation of PERP. The

fuzzy measures at the bottom of these figures are not distance values.

As Figure 4 shows, there is a mapping from the values of distance to the

values used as fuzzy measures.

There are two reasons for the mapping from distance to fuzzy

measures. The first reason is that the fuzzy interval (0,1) provides a

common scaling for distances. Curvature will be measured in one set of

units while perpendicularity is measured in another. Fuzzy measures

allow for a standardization of distance measures.

The second reason for mapping from conceptual distances to fuzzy

measures is the fact that conceptual distance does not always have a

linear scale for comparisons to be made against. For high-level

concepts, it becomes difficult or else meaningless to calculate a number

and call it conceptual distance. How far is a tree from a bush and what

are the units of distance? It is always possible, however, to create

some function which gives a fuzzy measure. Fuzzy measure functions

always represent an approximation to the conceptual distance whether it

can be calculated or not. A fuzzy measure function can be based on



Fuzzy Heasure

1.0

6 8 10 12

Conceptual Distance

(Arbitrary units)

Figure 4. Mapping from the conceptual distance to tne fuzzy measure.
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psychological experiments rather than intuitive notions of what they

should be. This makes it possible to use fuzzy measures as if they

actually were a mapping from conceptual distance values.

What is the point of discussing conceptual distance, if all

calculations and comparisons will be done in terms of the fuzzy measure?

The idea of conceptual distance helps to provide a consistent dealing

with fuzzy numbers during the design of comparison functions and

combination functions. It is very easy to throw some numbers between

zero and one around and call those numbers "fuzzy measures. " By always

relating the fuzzy measures back to the idea of conceptual distance at

least an effort is made to give the fuzzy measures a consistent basis of

meaning.

Fuzzy measure functions are usually created ad hoc, at least as far

as research situations. Kurt Schmucker says, "It cannot be

overemphasized that these definitions are biased decisions of the system

designer. While it is hoped that they reflect the normal meanings given

to the english terms they represent, there is much room here for

disagreement." [see p. 28 of Schmucker (1984)]. This was in reference to

the fuzzy set definitions of words rather than concepts, but the two are

related. He later makes a similar remark about the operations that are

performed on the fuzzy sets and how these operations may differ from

those operations that people supposedly use (p. 38).

Although the fuzzy measures used in this paper are not perfectly

correct in terms of experiment optimization, they suffice for

demonstration purposes. The intuitive definition of a fuzzy concept, as

presented above, can now be used to discuss what a "fuzzy conceptual

graph" is and how it can be used.

Fuzzv Conceptual Graphs

Fuzzy conceptual graphs are simply conceptual graphs which use fuzzy

concepts and fuzzy relations, described earlier, as the graphs' nodes and

links. A fuzzy conceptual graph is still used to describe a scene or

situation but the descriptive elements are now moderated with fuzzy

measures. This will improve the act of graph matching, and graph

matching is the basic operation performed on conceptual graphs.
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One way of evaluating the graph matching ability of a system is to

look at the set of entities from the data environment which can be

described by a given graph. In Figure 5a the picture of a letter A has

been described with a conceptual graph made by a graph generator.

Figure 5b shows that many similar pictures from the character environment

can be described with the same graph. In this case the graph is a normal

conceptual graph with rigidly defined concepts and relations. This

causes the set of acceptable characters to be a well-bounded group, and

unfortunately some members of the set shouldn't belong while some

non-members should belong.

Just as an aside, I point out that the test of a recognition system

is ultimately whether we as human beings agree with what the system

decides. It would be impossible to build a system which recognizes the

exact same set of characters as a human being, so some errors are

inevitable. There are two types of errors: accepting incorrect

characters and not accepting correct characters. Trying to increase the

number of recognized characters makes the system lenient and more

incorrect characters are accepted. Trying to reduce the number of these

incorrect acceptances will decrease the total number of characters

recognized.

Fuzzy conceptual graphs make it possible to increase the number of

recognized characters without necessarily accepting more incorrect

characters. This is due to the ability to accept characters in a

partial, fuzzy manner.

Figure 5c shows that fuzzy conceptual graphs describe a fuzzy set of

characters from the character environment. Each character is a partial

member of the set that can be described by a given graph. A fuzzy

conceptual graph gives partial recognition over a larger set of

characters. The advantage of this is that the final decision, of whether

to accept or reject, can be made later when more information is available

from other partial matchings. If the decision to accept or reject is

forced early in the process of trying to recognize a character, then the

effect of an error can propagate to other critical decision points,

making recognition impossible. This is where the partial, fuzzy

recognition of a character comes into the best use.
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Figure 5a. Graph description of a character.

Figure 5b. Set of characters described by non-fuzzy conceptual graph.
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Figure 5c Fuzzy set of characters described by fuzzy conceptual graph.



13

II. SUPPORTING MECHANISMS FOR THE FUZZY SEMANTIC NETWORK

The first part of this section explains the proposed method for

comparing two graphs and calculating a fuzzy measure for the distance

between them. This "graph matching algorithm 11 is then employed as the

basis of a concept-definition method described in the second part.

Fuzzv Graph Matching

As previously mentioned, a conceptual graph is a description of an

object or a situation. A basic operation on graphs is the comparison of

one graph description with another. Pattern recognition, for example, is

performed by matching graph descriptions of input data with graph

descriptions of data patterns that are stored in memory. Graph matching

provides a method for performing symbolic recognition, which can be used

for performing functions, such as diagnosis and problem solving,- in

addition to vision and hearing [see pp. 52-53 of Fahlman (1979)].

The key problem in graph matching is that there will always be

instances when the description of the input data does not exactly match

the stored descriptions of known data patterns. What is needed is a

graph matching algorithm which calculates a fuzzy measure of how well two

graphs match, instead of just deciding that the graphs do or do not

match.

Before suggesting a particular graph matching algorithm, it is worth

noting that:

1) Graph components can have different degrees of importance.

2) Finding a correspondence between the components of two graphs
is a difficult task in general.

3) The resultant fuzzy measure of comparing two graphs together
should have a meaningful interpretation that is consistent with
its later use.
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Figures 6a through 6d show four characters and their respective

descriptions in graph form. It can be seen by studying Figures 6b and 6d

that some relations should be more important than others. The letter H

and the broken letter H are very similar characters which can lead one to

think that the JOIN relation, missing from Figure 6d, is not as important

as other relations. Another unimportant relation is the relation PART

which only acts as a place keeper for other concepts.

It will be necessary to weight the contributions of some concepts

and relations to be less than others. The particular weighting values

used will depend on the application area. In some situations the

weighting values may change as a function of context or usage. The

weighting of concepts and relations is a form of knowledge which is

stored in the system by the system designer.

Graph matching is performed at a component- to-component level, and

the results are then combined into one overall result. Typically one

graph is used as a template and a second graph is matched against it.

The algorithm for graph comparison given here consists of three

major steps:

1) A correspondence is found between the components of the
template graph and those of the input graph.

2) The corresponding components of the two graphs are compared,
and a fuzzy measure is calculated to represent how well each
pair matches.

3) The collection of fuzzy measures for the pairs is combined into
a single fuzzy measure, representing how well the input graph
matches the template graph.

Finding a correspondence between graphs will be referred to as

"conforming 11 in this thesis. The input graph will be conformed to the

template graph. This will be represented as a mapping function from the

components of the template graph to the components of the input graph.

In general the template graph will be smaller than the input graph, and

only a subgraph of the input graph will be matched.
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Figure 6a. Character A and its conceptual graph.

Figure 6b. Character H and its conceptual graph.
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Figure 6c. Broken top A and its conceptual graph.

LEFT -CJmT) LINE XJmT) »
j R6HT

Figure 6d. Broken bar H and its conceptual graph.
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The act of conforming two graphs is similar to the operation of

"maximal joining" put forth by Sowa. A maximal join connects two graphs

together so they can share information. That differs from this research,

where the purpose is to recognize subgraphs. A maximal join is only

effective if it joins the two largest subgraphs available within the

graphs; and this is the same as the goal here. Sowa says, "For practical

applications.. .the labels on the nodes reduce the combinations to a

manageable number." [see p. 102 of Sowa (1984)]. Sowa then cites

McGregor (1982) as a source of efficient algorithms for computing maximal

joins. The issue of finding the mapping between graphs will not be

discussed in this work. In addition to McGregor, Shapiro and Haralick

(1981) are to be a source of algorithms for not only graph mappings but

inexact graph mappings. (The inexact graph mapping is not made use of

here, but in future work it might lead to a better fuzzy graph matching

algorithm.)

A difference between the graphs used in the articles just mentioned

and the graphs used here may prevent the application of those "efficient

algorithms" in their current form. In fuzzy conceptual graphs, a node

may have more than one valid concept label or concept type

simultaneously. A particular node may be a LINE or an ARC at the same

time, and the choice is dependent only on which makes a better fit. This

problem should not increase the complexity of the algorithms to an

unmanageable extent, but whatever algorithm is used it must be able to

account for this interchange of concept labels.

The interchangeability of concept labels is not an entirely new

situation. Sowa proposes a similar operation which is termed a

"restriction" [see p. 94 of Sowa (1984)]. The restriction is a

"vertical" change in type labels, meaning that the label moves from a

higher, more abstract concept to a lower, more specific concept. The

concept HUMAN could be restricted to the concept WOMAN in order to match

a concept node of WOMAN in another graph. The interchange of labels used

here will be of a "horizontal" nature, because the concepts will be on

the same level of specification or abstraction. The change is different,

but the effect is similar with respect to the graph conforming algorithm.
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Sowa allows any number of restrictions prior to a join or maximal join

operation. He has not pointed out that the need for a restriction would

not be discovered until during the process of joining the two graphs.

Another problem, if the labels are so different, then how did the

system know that the two graphs should be compared? The options of

making hueristic guesses and comparing all graphs do not seem

appropriate. Although the topic is not explored here, it would seem that

an additional mechanism is needed to assist in choosing the correct

concept label during the process of trying to match two graphs together.

Changing the label on a concept node is done to improve the match

between two graphs. Changing the label of a node from the input graph to

agree with a node label in the "template" graph (ideal concepts) also

requires a change of the fuzzy measure for that node. For some sets of

interchangeable concept types, it may be possible to calculate the new

fuzzy measure in terms of the last fuzzy measure, for example, when the

fuzzy functions are complements of each other. Usually it will be

necessary to return to the original input data and calculate the new

fuzzy measure. This may be costly to do for a high-level concept which,

in turn, consists of many other low-level concepts, each requiring a

fuzzy measure calculation.

After a mapping between the input graph and the template graph has

been made, each pair of corresponding components are compared together.

A fuzzy measure must be calculated for each pair; this indicates how well

the component from the input graph matches the component from the

template graph. More often than not, the fuzzy measures on the template

graph will be 1.0 because the template graph will consist of ideal

concepts. The fuzzy measure between the input and template nodes in this

case simply will be the fuzzy measure on the input node, because the

template node is the ideal concept. In cases where the template node has

a fuzzy measure of less than 1.0, the fuzzy measure will be calculated by

taking the absolute difference between input and template fuzzy measures

and then subtracting it from 1.0. As an example, support the template

has a note with the type of LINE with a fuzzy measure of 0.7 and the

corresponding input node is 0.4 a LINE concept. The resulting fuzzy
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measure is given by:

ji(0.7,0.4) = 1.0 - abs(0.7 - 0.4) = 0.7

This particular equation makes an assumption of monotonieity in the fuzzy

measure, which will be true usually, and an assumption of linearity in

the fuzzy measure will not be true usually. Fortunately the effects are

worst at the smaller end of the fuzzy measure scale where the problem may

not be serious.

Having found the component-to-component fuzzy measure for each pair

of corresponding graph nodes it is now possible to combine them into a

single, overall fuzzy measure. The overall combining function must

satisfy a few constraints and desired behaviors. The output is a fuzzy

number, for instance, and must exist on the fuzzy interval (0,1).

Keeping in mind that certain concept types are more important than

others, the following characteristics are desired from the combining

function

:

1) Predicates (i.e. concepts and relations) with low importance

should not appreciably affect the overall comparison measure.

2) Predicates with high importance should affect the overall

measure in proportion to their contribution to the graph
description.

3) In combination the effect of low- importance predicates should

be greater than the sum of these predicates had they occurred
in isolation.

The method suggested here for combining the individual fuzzy measures

is a weighted average. Every concept or relation type is given a

weighting number reflecting its relative importance in the application

area. This weighting of the concept and relation types is of a different

nature from fuzzy numbers.

The suggested combining method does not satisfy the third desired

characteristic listed above but still performs adequately. Before

formally defining the Weighted Average Combining Function, however, it

will be necessary to define some formal notation for fuzzy conceptual

graphs. This notation is after Shapiro and Haralick (1981) and many of

comments and observations in this section are echoed in that article.
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The notation for Sowa's conceptual graphs can be mapped into their

notation with little trouble and the result of combining the two

notations is basically what follows.

A fuzzy conceptual graph, Gx, is a pair
Gx = (Cx,Rx)

where Cx is a set of concept nodes
Cx = (Cxl,Cx2,... ,CxM)

and RX is a set of relation links
Rx = (Rxl,Rx2,... ,RxK).

Each concept node is a triplet,

Cxm = (NCm,REFm,WCm)
where NCm is the name of the concept which labels the node,

REFm is the referent marker of the node,

and WCm is the fuzzy measure of how well the node's referent

satisfies the concept given by the concept name.

Each relation link is a triplet,

Rxk = (NRk, TDPLEk, WRk)
where NRk is the name of the relation type,

TDPLEk is an N-tuple of concepts
(Cxil,Cxi2,...,CxiN)

that the N-ary relation, Rxk, relates together,
and WRk is the fuzzy measure of how well the relationship named NRk is
satisfied by the concept nodes specified in the N-tuple TDPLEk.

In words then, a fuzzy graph is a set of concept nodes and a set of

relation links where the relations connect the concepts.

Every concept node describes an individual object or concept and

gives that individual an appropriate type label. The referent marker of

the node can be thought of as a serial marker for every object in the

universe. The idea of a referent (Sowa p. 85) makes it easier to

distinguish between an individual and a concept label. If a certain man

is the referent of a node he might be given the concept labels of MAN,

HUMAN, FATHER, EMPLOYEE, etc. and yet he would always remain the same

object. The act of labeling the universe is an imperfect process and in

that act lies the roots of fuzziness. Thus it is natural for a concept

to be a triplet of referent, label, and fuzzy measure.
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The referent for a relation is the set of concept nodes that it joins

together. For relations, identity is shown through the referents of the

concepts specified in the TUPLE list. The relation link says that the

referents of the specified concepts satisfy the relationship called NR,

and the fuzzy measure specifies how well NR is satisfied.

The weighted average combining function can almost be presented now

but some additional notation needs to be presented.

Recall that the first step in graph matching is finding a

correspondence between components of the two graphs. For graphs Go and

Gx, consisting of component predicates

Po = (Pol,Po2,... ,PoL)

and

Px = (Pxl,Px2,...PxL),

the correspondence is given by a mapping

h:Go —-» Gx

and so

h(Poi)=Pxi.

The predicates of a graph are all the concepts and relations used in that

graph so the mapping includes both concepts and relations, but it is not

allowed to map from concepts to relations and vice versa.

In general, the input graph, Gx, will have more components than the

template graph, Go, and the inverse of mapping h will not exist for every

component member of the input graph Gx.

In some cases a component from the template graph, Go, will not have

a corresponding component in the input graph, Gx, and no candidate will

exist for a type coercion. In these situations the mapping, h, will map

the template node to a null value and then later during the fuzzy measure

calculations, every mapping to a null value will automatically result in

a zero fuzzy measure.

The final piece of required notation specifies the weighting

functions for the concepts and relations.

Let WNC be the weighting function for concept types and let WNR be

the weighting function for relation types. Both functions map from their

respective set of type labels into the interval (0,1). The purpose of

weighting concepts differently, again, is to reflect the relative

importance some concepts and relations have over others.
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The complete method of graph matching is given as follows. To

compute the fuzzy measure of comparisons, u(Go,Gx), for the template

graph Go and the input graph Gx, the procedure is:

1) Conform input graph Gx to template graph Go by making a mapping

function.
h:Go —> Gx

It may be necessary to do a vertical or horizontal restriction

on some components to coerce the input graph to match the

template graph. If no component can be found to correspond with

a component of the template graph, then this component of the

template will map to a null symbol. The act of restriction
changes the fuzzy measure for the restricted node.

2) The fuzzy measure between each pair of the corresponding

components must be calculated and the measure is given by:

u(Coi,Cxi) 1.0 - abs( WCoi - WCxi )

where
h(Coi)=Cxi,

Similiarly for relations, we have:

ji(Roj,Rxj) = 1.0 - abs( WRoj - WRxj )

where
h(Roj)=Rxj.

The special case of null mappings always evaluates to zero:

u(Poi,NULL) =0.0
where Poi is Coi or Roj.
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3) The fuzzy measures of the individual components are combined

into a single, final result, using some combining function.

The function proposed here is the weighted average combining
function given by:

^u(Coi,Cxi)*WNC(NCi) + J. ji(Boj t Bjtj)«WHR(HRj)

Co Ro

J WNC(NCi) + 2_ WNR(NRj)
Co Ro

where
Go=(Co,Ro),
Coi^=^ Co,

Roj ^-y Ro,

and
h:Go —» Gx,

then
h(Coi)=Cxi,
h(Roj)=Rxj.

(For clarity, note that the template graph has
M concepts and K relations, or Mt-K predicates.

Poi=Coi for i=1,2,...,M and
Poi=Roj for i=Mfj,...,M*K where j=i-M.)
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An Example of Fuzzv Graph Matching

To demonstrate this function we compare the input graph for the

"broken top" letter A to the template of the character H, shown in

Figures 6c and 6b, respectively.

The graph of the template is:

Go =

Co =

Ro

Col

Co2

Co3

Co4

Co5

Co6

Co7

Co8

Co9

Co10

Rol ( JOIN,

Ro2 [ JOIN,

Ro3 r : ALGN,

Ro4 = ( ALGN,

Ro5 s [ ALGN,

Ro6 = ( PART,

Ro7 8 [ PART,

Ro8 = [ PART,

Ro9 =
: PART,

Ro10 = [ NEAR,

Ro11 = I NEAR,

Ro12 : PARA,

LINE,

LINE,

LINE,

MIDDLE,

001, 1.0 )

002, 1.0 )

003, 1.0 )

014, 1.0 )

LEFTEND, 015, 1.0 )

MIDDLE, 016, 1.0 )

RIGHTEND, 017, 1.0 )

VERT, 028, 1.0 )

HORZ, 029, 1.0 )

VERT, 030, 1.0 )

(Col,Co2), 1.0 )

(Co2,Co3), 1.0 )

(Co1,Co8), 1.0 )

(Co2,Co9), 1.0 )

(Co3,Co10),1.0 )

(Co1,Co4), 1.0 )

(Co2,Co5), 1.0 )

(Co2,Co7), 1.0 )

(Co3,Co6), 1.0 )

(Co4,Co5), 1.0 )

(Co6,Co7), 1.0 )

(Co1,Co3), 1.0 )
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In comparing the graphs in Figures 6c and 6b we note the following

differences. The input graph, Figure 6c, contains the extra concepts

RGHT and LEFT and the extra relations PART, NEAR, and another PART.

Since these are not part of the template graph, Figure 6b, they will not

affect the comparison of the graph. The other differences between the

graphs include mismatches between VERT and RDIAG, VERT and LDIAG, and a

perfect PARA (parallel) relation against a 0.77 PARA relation.

Conforming the diagonal concepts into vertical concepts requires a

change in the fuzzy measure. The functions used in calculating the fuzzy

measures for base concepts and relations are given in Appendix B. In

this case the lines are 8.5 degrees from the vertical or .149 radians

from being vertical. The equation is

F = 1.0 - 2.594«A"2

This yields the fuzzy measure as 0.942.

In conforming the input graph, Gx, to the template graph, Go, in

this example, the only non- identity mappings are:

h: Co8(VERT,1.0)
Co10( VERT, 1.0)
Ro12(PARA,1.0)

Cx8(RDIAG,1.0)

Cx10( LDIAG, 1.0)
Rx12(PARA,0.77),

After conforming the graphs these mappings become:

h: Co8(VERT,1.0)
Co10( VERT, 1.0)

Ro12(PARA,1.0)

Cx8(VERT,0.94)

Cx10( VERT, 0.94)
Rx12(PARA,0.77)

The following values are used for the weighting functions WNC and

WNR:

Concepts WNC Relations WNR

LINE 0.95 NEAR 0.95
LEFT 0.90 ALGN 0.90
RGHT 0.90 PERP 0.90
MIDL 0.90 JOIN 0.40
VERT 0.90 PARA 0.30
HORZ 0.90 PARA 0.30
RDIA 0.90
LDIA 0.90
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The second step in graph matching in computing the fuzzy measure

between each corresponding pair of predicates. This fuzzy measure is

given by

1.0 - abs( WCoi - WCxi )

as previously stated. In our example, however, the weights on all the

concepts and relations are 1.0 and the equation above becomes

1.0 - absO.O - WCxi)

or

1.0 - (1.0 - WCxi)

and finally

WCxi.

Typically, the concepts in the template graph are representatives of

ideal concepts.

Having calculated the individually fuzzy measures of the graphs, the

third and last step is using the combining function to generate the

overall, single fuzzy measure.

The two terms in the numerator are summations of products over the

template graph. The first term is the summation of individual concept

fuzzy measures times the weighting function for these concepts. The

second term is the summation of individual relation fuzzy measures times

the weighting function for those relations. For the twenty-two

predicates in the template graph, Go, here are the fuzzy measures from Gx

and the weighting function values:

Concept Name u(Coi,Cxi) Weight Relation Name u(Roj.Rxj) Weigh

Col LINE 1.0 0.95 Rol JOIN 1.0 0.40

Co2 LINE 1.0 0.95 Ro2 JOIN 1.0 0.40

Co3 LINE 1.0 0.95 Ro3 ALGN 1.0 0.90

Co4 MIDL 1.0 0.90 Ro4 ALGN 1.0 0.90
Co5 LEFT 1.0 0.90 Ro5 ALGN 1.0 0.90
Co6 MIDL 1.0 0.90 Ro6 PART 1.0 0.30
Co7 RGHT 1.0 0.90 Ro7 PART 1.0 0.30
Co8 VERT 0.94 0.90 Ro8 PART 1.0 0.30
Co9 HORZ 1.0 0.90 Ro9 PART 1.0 0.30
Co10 VERT 0.94 0.90 Ro10 NEAR 1.0 0.95

Ro11 NEAR 1.0 0.95
Ro12 PARA 0.77 0.90
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The first term is found by taking the product of the two columns for

concepts and then summing those together; the same procedure is used on

the two columns for the relations. The numerator is given by

9.0465 + 7.293 = 16.339

The denominator is the sum of all the weights, both concepts and

relations, without multiplying them by anything. The denominator is

given by

9.15 + 7.5 = 16.65

The overall fuzzy measure for how well graph Gx matches graph Go is

given by

16.339/16.65 = 0.981

This fuzzy measure becomes lower as the input character increasingly

differs from the template character.

The graph in Figure 7 shows the results of two experiments. The

letter A is slowly transformed into the letter H. The intermediate

stages are put into graph notation and given to the graph matching

algorithm. In the first experiment the graph for the letter A serves as

the template, and in the second experiment the graph for the letter H is

used as the template.

Along the bottom of the graph in Figure 7 are pictures of the letter

A as it transforms into the letter H. The vertical axis shows the fuzzy

measure calculated by the graph matching algorithm. The solid line

represents comparisons with the template A and the broken line represents

comparisons with the template H.

The intermediate stages all seems to make a good letter H in

comparison with making a good letter A. However, the numbers in general

seem too high. Should not the perfect letter H make a 0.0 comparison

with the template for the letter A and vice versa? Not necessarily. The

graph matching algorithm shows that from the entire universe of objects

that can be described with conceptual graphs, the letters A and H are

very close. In a character recognition system, when the whole universe

is not of concern, it would be necessary to rescale the fuzzy measures

from the graph matching algorithm.
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Fuzzy Measure of Character During Transition
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Template "H"
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Figure 7. Graph matching experiment
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One more comment should be made about this graph. The curve for the

letter A template shows a discontinuity just to the right of the center.

The reason for this discontinuity is that a large segment of the graph

suddenly disappears as the transformation moves from left to right.

Looking back at Figures 6a and 6b we note that five predicates at the top

of the graph for A are not present in the graph for H. The center

predicate, the relation NEAR, is the reason for the other four predicates

to exist. During the transformation the relation NEAR goes from 1.0 to

0.0. When the graph generator can no longer find the relation NEAR, it

ceases to include the other predicates in the graph. This causes a sharp

drop in the fuzzy measure calculated by the graph matching algorithm.

The problem could be easily fixed in this case, but that fix would

only apply to this application area. It may be impossible to have a

graph, matching algorithm which can be generalized to work in any

application area. Special enhancements for the graph matching algorithm

may be needed for every area of application.

Fuzzv Concept Definition

In the section on definition, a fuzzy concept is defined as a

concept label and a fuzzy measure. The fuzzy measure indicated how well

the object matched the concept's label. The graph matching algorithm

calculates a fuzzy measure of how well one graph description fits another

graph description. If a concept can be expressed as a conceptual graph

then the graph matching algorithm can be used to calculate the fuzzy

measure of this concept. This makes it possible to define concepts in

terms of "graphs.

"

A single graph could be used to define an entire class of objects.

This resembles a paradigmatic symbol [see p. 4*»3 of Watanabe (1985)]

which is a single example of a class of objects used to define the class

to which it belongs. Watanabe calls pattern recognition "a process of

seeing many- in-one", in the sense of giving a class label to a single

individual

.
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As an example of concept definition, let's define the concept of the

letter T. Figure 8 shows the ideal letter T and the graph description of

it. The graph is, in fact, the definition of the concept T. To decide

if an input graph represents the letter T, we simply use the fuzzy graph

matching algorithm and calculate the fuzzy measure. The fuzzy measure

tells us how well the input fits the concept definition. We can use it

to make the decision. If the T occurs in isolation then an arbitrary

threshold can be used to make the decision. If the T is part of a word,

then the decision can be based on what the word might be and if it should

contain the letter T or not. This is the advantage of fuzzy measures;

decisions can be postponed until later when additional information is

available.

A single graph can define a concept, but sometimes it may be

desirable to use more than one graph in a definition. This is due to the

that a concept may contain some major divisions within its boundaries.

Each of the major divisions should have a template in order to improve on

recognition ability. An example of this could be the concept of letter T

which has upper and lower case Ts within the same group. A single

template might be able to define both kinds of T, but neither type would

match the template perfectly. By giving each T a separate template, both

could be matched perfectly every time. Other examples exist, such as

male HUMANs and female HUMANs, coniferous TREEs and deciduous TREEs,

White HOUSE and shack HOUSE, etc. , where a single concept has multiple

incarnations.

The second reason for using multiple templates for concept

definition is that an object may remain the same under certain

transformations and multiple templates could be used to indicate this.

Rotating a letter on the pages does not really change the letter's

identity but the computer cannot know this unless it is told. One way of

telling it is to allow certain operations on the graph prior to

recognition, such as rotation. It may be easier, however, to simply

store multiple orientations of the letter together as one definition. We

would resort the fuzziness of the graphs to bridge the gaps between

different views.
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LINE

LINE

KjaGJT)-

<j»xiP)-

HORZ

* VERT

Figure 8. Character T and its conceptual graph.
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When a concept is defined with more than one template, thereby

forming a cluster of templates, the graph matching algorithm will be used

to pick the best template. The template which has the best match to the

input graph will be the template used. The fuzzy measure produced by the

graph matching algorithm will be the fuzzy measure of the concept.

Sometimes a template used to define a concept will not be the ideal

graph. To match perfectly with a half-ideal example is still only to be

half- ideal. Because of this the templates in the cluster will be given

weighting values. Half-ideal example templates will have a weighting

value of 1 .0 while the other less-than-half-ideal templates will have

smaller weighting values. The weighting values will be used to limit the

final resultant fuzzy measure when the input graph is a good match with a

less- than-i deal template.

Formally, we state that a cluster G is a set of template graphs,

i.e.

G = (G1,G2,...,GN)

a weighting function over the graphs,

GW(Gi) —> (0,1)

A concept definition function is used to calculate how well an input

graph matches the concept defined by the cluster of templates. This

function is given by:

u(G,Gx) = max( min ( ji(Gi,Gx) , GW(Gi) ) )

i=l,2,...,N

Gx = input graph,
G = the template cluster

Gi = ith member,
GW(Gi) = the template weighting function,
^i(Gi,Gx) = the graph matching algorithm applied to

input Gx and the ith cluster template, Gi

Figure 9 shows three example characters to be used as templates in

defining the concept T. The graphs describing these examples will not be

shown but the cluster is a cluster of conceptual graphs. Underneath each

character in Figure 9 is the value of the template weighting function for

each character template. More specifically, GW(G1) = 1.0, GW(G2) = 1.0,

and GW(G3) =0.7 where GI, G2, and G3 are the graphs for the characters

in Figure 9, left to right, respectively.

where

and
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Figure 10 shows the input character from which a input graph is

generated. This input graph is matched against all three of the template

graphs using the graph matching algorithm. The results are given by:

u(gl,Gx) =0.8

u(G2,Gx) = 0.92

^(G3,Gx) = 0.97

Using these values and the template weighting values, the concept

definition is evaluated as:

^(G.Gx) = Max( min(0.8,1.0) , min(0.92,1 .0) , min(0.97,0.7 ) )

= max( 0.8
,

0.92 , 0.7 )

= 0.92

Note how the input graph, Gx, matches very well with the last template;

nevertheless because G3 is not a perfect example of the letter T, it has

a ceiling on how well it can be matched. The template weighting values

act as limits for those templates which are less-than-ideal examples.

As mentioned earlier, there are two reasons to include more than one

template in a concept definition. The last example shows the situation

where one concept, the concept of the letter T, really has two different

forms which cannot be correctly described with a single template. The

second reason is to maintain the capability of recognition throughout the

process of transformations on a graph. Certain transformations (e.g.,

rotation) change the graph-description of an object. This makes the

object unrecognizable to the computer system unless it is told how to

handle the transformation. One way to store the information on

transformation is to make a template graph for intermediate stages of the

transformation. In the case of rotation a different template could be

stored for an objective every 45 degrees around a full, 360-degree

rotation. The fact that each template defines a fuzzy set makes it

possible to bridge the gaps between the separate templates.
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1.0 1.0 0.7

Figure 9. Three templates for the concept T.

Figure 10. Input letter T
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Representing this kind of information with a cluster may be

inappropriate in certain situations. If the template is a complicated

structure, processing several such structures will greatly slow down the

system during matching. If a great number of templates are required to

represent the transformation, e.g., as rotations in three-dimensional

space, then the cluster will again be too large for reasonable

processing. In some applications, it will be necessary to build graph

transformations into the system for the sake of performance.

In Section I, the fuzzy conceptual graph has been defined. Fuzzy

conceptual graphs are a straightforward combination of fuzzy set ideas

and the graph notation of conceptual graphs. Fuzzy conceptual graphs

should overcome the limitations of regular conceptual graphs which are

well suited for rigid, database applications.

Section II introduces the graph matching algorithms and the concept

definition cluster. These two collectively support the processing of

fuzzy conceptual graphs. According to Sowa, "A conceptual graph has no

meaning in isolation. Only through the semantic network are its concepts

and relations linked to context. . .and perception." [see p. 77 of Sowa

(1984)]. Sowa uses the term "semantic network" to mean the underlying

relations and procedures that give conceptual graphs their meaning.

In this thesis, the relationships provided by fuzzy concept

definitions, and the procedure of graph matching, give meaning to fuzzy

conceptual graphs. Therefore, fuzzy concept definitions and the procedure

of fuzzy graph matching by definition is a "fuzzy semantic network."
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III. AN EXAMPLE APPLICATION OF A FUZZY SEMANTIC NETWORK

An example of character recognition is provided to show that fuzzy

conceptual graphs improve recognition tasks and especially

recognition-in-context tasks. The main operation is recognizing portions

of the input graph and substituting a concept node in place.

Perception as Graph Matching

Perception can be defined as "the mental capture of objects through

the senses." This definition can be altered when defining computer

perception by substituting "input data" for "senses" and "internal

representation" for "mental capture." This "internal representation of

objects from input data" will be accomplished using conceptual graphs.

In some data environments objects are decomposable into recognizable

parts called features. Recognizing or perceiving an object can be done

by recognizing the pieces and then recognizing the group. It may be

possible to find features which are decomposable into smaller, lower

level features. Eventually decomposition of features must stop at the

lowest level of base features.

In these terms, recognition begins with the lowest level features,

attempts to find groupings, representing higher level features, and on up

until the entire set of input data is recognized. This model is not

psychologically complete. That is, it is not sufficient to explain human

perception. This model, or a facsimile thereof, is discussed in great

detail in Human Information Processing [see p. 27 M of Lindsay and Norman

(1977)]. The authors say, "...the type of feature analysis that we have

just been performing is absolutely essential to the perceptual process,

but by itself is not sufficient."
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The fuzzy semantic network can be used to execute this model of

perception. The briefest description of the perception model is given in

four steps:

1) The camera or the eye transforms the world into input data.

2) Base-feature detectors convert (most of) the input data into
concept nodes, waiting to be pieced together.

3) The concepts nodes are assembles together after the relations
between them have been found. The result is a lower level

graph description.

4) Portions of the graph are recognized and replaced with higher

level concepts. This step is repeated until the graph is
completely recognizable as a high level concept.

Some of the details of the sketchy description will be filled in

while other matters will simply be discussed in terms of possible

solutions.

Input Data and Base-Level Features

The object environment for this example is the domain of english

alphabetic characters. The characters have been constrained to lines,

portions of circles, and combinations thereof. All lines are of the same

width and no serifs are allowed. The input data takes on the form of a

bit image with reasonable resolution (20x20 to 40x40 pixels per

character).

To compensate for this over-simplified situation, the only feature

that is detectable is a long segment. Line segments are constrained to

vertical, horizontal, and diagonal orientations as far as being

recognizable. That is to say, except for very long lines, only the four

orientations will be recognized. Anything else will be noted for future

reference but not recognized as a line. Lines must also exist within a

certain constraint of curvature to length ratio. The main point of these

constraints is to show that with limited base-level support, the system

can still recognize features and characters when required. The object

and data environments have been constrained to provide a good showcase

for the fuzzy semantic network!
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Ba3e-Level Relations and the Assembler

After the base-level features have been detected, they become

concept nodes, ready to be put into a graph. At this state they retain

some primitive information in numerical form, such as the (x,y)

coordinates of the endpoints and middle of the lines. This information

is used by the assembler to decide if any of the base-level relations are

present.

For example, the base-relation of NEAR is given by the equation:

{1.0
r < 0.1

1.0 - 5*(r-0.1) 0.1 < r < 0.3

0.0 r > 0.3

where r is the ratio defined by

the distance between lines 1 and 2

r =

length of line 1

The distance between lines 1 and 2 really means the distance between a

point on line 1, such as the endpoint or midpoint, and a point on line 2.

The distances are calculated in terms of the (x,y) information which has

been retained for this computation. This function and the similar

functions of JOIN, PARA, PERP, and ALGN have all been created ad hoc for

this constrained enviroiment. The functions could be redone on the basis

of psychological experiments to provide them with a basis in reality, if

that is a desired characteristic.

The search for relations must be a guided procedure; simply too many

relations exist to be found by brute force. The endpoint of a line

cannot be compared against all other endpoints to decide if it is NEAR or

not. Similiarly, not every pair of lines can be compared for being

parallel (PARA) or perpendicular (PERP). The search for these relations

must be data driven and selective. Not every relation is relevant, even

if it is true. If certain relations are ignored at this stage of

processing, a complete system would allow for a return to this level of

data in case a missing relation is needed at a higher level. This

backtracking will not be shown here but the necessity is pointed out as a

direction of future research.



39

The assembler gives rise to base-level graphs [see p. 34 of Sowa

(1984)]. These graphs are basically a line-by-line description of the

picture/input data. The computer can now see the input data, but it has

not seen anything in the data yet. Perception begins here.

Subgraph Matching and Replacement

The next stage in the process involves recognition. As noted

previously, recognition can be characterized as matching input data

descriptions with stored data descriptions. The base-level graph is the

input description and the stored descriptions will take the form of the

concept definition clusters.

Instead of describing the process in a wordy manner, let us work an

example during each matching and replacement. The input data is

displayed in Figure 1 1

.

The difficult part of interpreting this input data is the replacement

of rounded characters with block characters (the Q and the U)

.

Eventually the system should be able to match the lines that look like a

Q with the Q template and the lines that look like a U with the U

template, etc. Figures 12a and 12b show a major part of these templates.

The main difficulty resides in the concepts of CIRCLE and HALF-CIRCLE

graphs which do not exist in the input graph. At this point the input

graph consists of nothing but nineteen line concepts tied together with

over one hundred other predicates. This graph will not appear in this

thesis except for relevant subsections.

The features of CIRCLE and HALF-CIRCLE will have to be recognized as

groups of lines. The graph for a concept of a circle is shown in

Figure 13. Since this is really a graph for an octagon description, as

shown at the bottom of the figure, it has a template weighting only 0.8

in the circle cluster. It is also the only member of that cluster.

Only half of the boxes in the conceptual graph (Figure 13) were

labeled. Note that the ring has been evenly divided into eight equal

sections, alternating labeled and unlabeled sections. The reason for the

distinction will be explained in terms of the pictures in Figure 14.
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QUEEN
Figure 11. Picture of the input data "QUEEN".
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Figure 12a. Template for the Q concept.

LOURT
VERT «H^ALCJT) (^LoT)—

»

VERT

LINE LINE

CnEmT) (jimP) (jOnT)

UPLF HALF CIRCLE

LOUR

(jifjmT)

UPRT

QALCTj)—

»

| HORZ

Figure 12b. Template for the U concept,
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Figure 13. Template for the CIRCLE concept.
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CIRCLE 0.8 CIRCLE 0.4

(a) (b)

Figure 14. Two partial matches to the CIRCLE concept.
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The labeled parts of the graph in Figure 13 correspond to the

vertical and horizontal lines of the octagon in Figure 14a. These are

also the parts of the template that can be mapped into the graph

description of Figure 14b. The square in Figure 14b matches only one

half of the template of Figure 14a. The parts that match together are

the labeled portion of the graph in Figure 13.

The square in Figure 14b represents a portion of the input graph.

The square is part of the bad Q of Figure 11. We wish to match this

square against the circle definition in order to calculate how well it

matches the circle concept. This can then be used to calculate how well

the badly formed Q matches the concept Q. This will lead, eventually, to

calculating the match of the entire input graph against the QUEEN

concept.

Using the graph matching algorithm from the previous section, the

fuzzy measure of fit between square and circle template is calculated.

In this case, there are no partial matches and the fuzzy measure can be

found by dividing the sum of the predicate weights in the square by the

sum of the predicate weights in the template, which is

20.6/52.0 = 0.3962.

The square approximates a circle to a degree of 0.4.

The idea is to match portions of the input graph to feature templates

and then substitute the appropriate concept node into the graph. Three

major obstacles prevent this from being an easy operation. How does the

system know to match the square against the circle definition? How does

the conforming part of the graph matching algorithm know not to include

extraneous pieces during matching, such as the line on the character Q?

How does the replacement algorithm know where certain arcs are to be

connected or disconnected? In this example, all these things can be

handled with a bit of hand waving, but for general purpose use, these

problems will have to be studied in greater detail for an answer.

Question one: "How did the system know to compare the square from

the input graph with the circle concept definition?" Focusing the search

requires 1) localizing or narrowing the portion of the input graph that

is being searched, and 2) narrowing the number of concept definitions to

be compared in the "knowledge base.

"
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In this application the input graph is fairly easy to segment into a

character by character recognition problem. In other applications, this

will become a major problem of control for the perception algorithm.

Narrowing the search in the knowledge base can be accomplished by

grouping concept definition together in various ways to help direct the

search. Characters could be separated from the feature concepts. Words

could be separated from the characters. Another approach would be to

group objects according to similarities, such as all the letters that

have two vertical lines (ADHMJOQUVW) . The groups could be given a graph

that represents the similar features within the group. This small graph

would be a prototype of sorts and could be used to reduce the search time

by a great deal.

Question two: "How does the conforming part of the graph matching

algorithm know not to include extraneous parts of the input graph during

matching?" In the example, the matching algorithm tries to make a

correspondence between the diagonal bar of the Q and the diagonal lines

in the octagon. In this case the diagonal directions of the two lines

are exactly opposite and this prevents a match. This occurred only

because the graph matching algorithm used knew that the LDIAG concept and

the LINE concept were intimately tied together. This little bit of

knowledge came from the application area and represented a special

heuristic for the matching algorithm. This is another case where the

graph matching algorithm seems to require special augmentation from the

particular application area.

Question three: "How does the replacement algorithm know where to

connect or disconnect concepts and relations?" This is a difficult

problem but there are two possible solutions. The first involves a

complicated set of rules for combining LINE concepts together, replacing

concepts such as LOWR and RGHT with LOWER-RIGHT, eliminating redundant

relations, etc. This would require an expert system of sorts just to

substitute subgraphs back into complicated positions of the input graph.
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The second method involves a return to the original input data. At

this level everything can be marked with the name of the concept to which

it belongs. This returns the system back to that part of the perception

algorithm just prior to the assembler being the first graph. Instead of

only lines, though, the assembler is also given circles and half-circles

and other features to work with. The assembler builds the base-level

graph from scratch which solves the problem of where to connect which

link. Neither solution is without fault; this is another area where

future work could be useful.

Continuing with the example, we assume that the square has been

matched with the circle to a fuzzy degree of 0.396. Replacing the

appropriate portion of the graph with the concept circle makes the input

graph, or at least the Q part of it, look like the Q template in

Figure 12a. The only difference between the input graph and the Q

template is the 0.396 fuzzy measure on the concept node for CIRCLE.

Using the graph matching algorithm, it is possible to calculate how

well the input graph matches the Q template. The ratio of weighted fuzzy

measures is

6.876/7/45 = 0.923.

The system knows that the input graph contained the letter Q and the Q

concept node replaces the entire subgraph.

A similar process is used to recognize the other letters in the

input graph. The two Es and the N matched perfectly, 1.0, but the letter

U matched only 0.967.

Figure 15 shows the template graph for the word "QUEEN. 1' The concept

and relation weightings are all 0.9. The final fuzzy measure, for the

entire input graph, is given by:

(0.923H0.9) + (0.967K0.9) + (0.9) (7)

= 0.987

0.9 (9)

In other words, the final fuzzy measure is 0.987 for recognizing the

word "QUEEN."
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Figure 15. Template for the "QUEEN".



48

As a counter-example, the "system" was given a similar word but with

a completely different first letter, such as "XUEEN." Assuming that the

first letter completely mismatched the Q template and had a fuzzy measure

of 0.0 still allows the final fuzzy measure to have a value of O.889.

A test word of complete different letters, such as "XXXXI" has a

fuzzy measure for the concept "QUEEN" of 0.444.

These numbers all shows that the fuzzy measure is higher than might

be expected for a character recognition system. It should be pointed

out, again, that these measures reflect differences between words on a

scale that includes the entire universe of objects. A second point is

that it does not matter how large the numbers are as long as the largest

one belongs to the correct answer.



49

CONCLUSION

In this thesis the conceptual graph notation of Sowa has been

modififed to make use of fuzzy measures in concept labeling. A graph

matching algorithm is outlined for comparing graphs in the new notation

and the basic method for defining fuzzy concepts is presented. The

collection of structures and operations I have termed a "fuzzy semantic

network.

"

The fuzzy conceptual graphs, based on the new notation, should

improve the outcome of any symbolic recognition task. Symbolic

recognition based on high-level or multiple-level encodings of the input

data instead of using it directly. By encoding the data into

higher-level representations, the system can do recognition in terms of

only the relevant data features. Fuzzy conceptual graphs can represent

the input data as high-level features and the fuzzy measures make it

possible to record how well a high-level feature fits the data. Regular

conceptual graphs can encode higher-level features also but there is no

measure of how correct this encoding is. Fuzzy conceptual graphs combine

high-level symbolism with moderating effect of fuzzy measures.

The graph matching algorithm of Section II. makes the fuzzy graph

nottion into a useable notation. Matching graphs is a fundamental

operation in recognition, graph generation, and concept definition.

There is also potential uses for graph matching in learning models,

problem solving and behavior modeling. Eventually other operations on

fuzzy conceptual graphs could be needed; especially application area

oriented transformations. For this semantic network, however, the graph

matching algorithm was sufficient.

Fuzzy concepts were defined in this thesis using graph descriptions.

The definition graphs (templates) consisted of feature concepts which

could be decomposed into lower-level feature concepts. Eventually

everything was defined in terms of the lowest feature, the line segment.

Because every concept was based in the sensory domain of the system, the

symbols used in the conceptual graphs were connected to reality.
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I see this as a step toward the "paradigmatic symbol" that humans have,

as opposed to the "empty computer symbols" that are devoid of any meaning

[see p. 447 of Watanabe (1985)].

This "fuzzy semantic network", then, is meant to capture some of the

fuzzy concept processing that provides power to human pattern recognition

abilities.
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ALGN:

CIRC or CIRCLE:

HALF-CIRCLE:

HORZ:

JOIN:

LDIA or LDIAG:

LEFT (concept):

LEFT (relation):

LINE:

LOWR:

LWLF:

LWRT:

NEAR:

MIDL:

PARA:

PART:

PERP:

RGHT:

RDIA or RDIAG:

OPPR:

OPLF:

OPRT:

VERT:

APPENDIX A

Glossary of Predicate Abbreviations

alignment. The angular alignment of a line segment.

A closed loop resembling a perfect circle.

horizontal. A possible "value" for alignment.

joined. Attached or very close line segments.

left-diagonal. Upper left to lower right.

left end of a line segment.

left of. The Q is left of U in QUEEN.

A line segment.

lower end of a line segment.

lower left quadrant of a character cell.

lower right quadrant.

relatively close line segments or picture elements.

middle point of a line segment.

parallel. Parallel line segments.

part of. A definable sub- piece of a picture element

perpendicular. Perpendicular line segments.

right end of a line segment.

right diagonal. Lower left to upper right.

upper end of a line segment

upper left quadrant of a character cell.

upper right quadrant of a character cell.

vertical. A vertical line segment.
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APPENDIX B

During the earliest stages of character recognition special

mechanisms are needed to calculate the fuzzy measure for base-level

relations. Appendix B briefly describes the mechanisms used for

experiments in this thesis.

NEAR

1.0 r < 0.1

1.0 - 5*(r-0.1) 0.1 < r < 0.3

0.0 0.3 < r

the distance between the line and the given point
r =

the length of the given line segment

The NEAR function calculates the fuzzy measure for how close a given
point is to a given line segment. The length of the line segment, in the

numerator, acts as a scaling factor in this equation. This is based on
the assumption that a large line segment has a larger neighborhood in
terms of the NEAR relation than a smaller line segment.

JOIN

JOIN = exp ( -d«d)

distance between line segments

width of line segments

The JOIN function calculates a fuzzy measure representing how well
two line segments are joined. The fuzzy measure is calculated as a
function of the distance between the two line segments. The scaling
factor for this function is the width of the line segment, whereas for
the NEAR relation the scaling factor was the length of the line segment.
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1.0 - 2.594*(a«2) < a < pi/8

0.2 + 2.594«(pi/4-a)»»2 pi/8 < a < pi/4
V

a = interior angle between line segments

The PARA function generates a fuzzy number as a measure for how well

two lines satisfy the parallel relation. The angle between the two line

segments is measured in radians.

This same function is used with slight modifications for other

angular fuzzy relations such as PERP, HORZ, RDIAG, LDIAG, and VERT.

PERP

PERP

1.0 - 2.594*(b**2) < a < pi/8

0.2 + 2.594»(pi/4-b)*»2 pi/8 < a < pi/4

b = interior angle between line segments - 90 degrees

The PERP function is exactly the same as the PARA function but a

different parameter is used as input. The "best" angle for being

perpendicular is ninety degrees while the "best" angle for being parallel
is zero degrees. The PERP function simply subtracts the ninety degrees

(1.57 radians) and then uses the same equation used in the PARA function.



56

HORT. VERT. RDIAG. and LDIAG

The same technique as described above for the PERP function can be

used for any angular predicate measure. The angle between a line segment

and an imaginary, horizontal reference line is measured. This radian

measure is compared against the desired angle, such as 45 degrees for

RDIAG lines, and the difference is used as the input parameter to the

equation for the PARA function.

Example: an input line has an angular measure of 52 degrees or

0.908 radians. For RDIAG the desired angle is 0.785

radians. Subtracting these values gives:

a = 0.908 - 0.785 0.122

In the equation for the PARA function this produces a

final result of 0.985.

LEFT END. MIDDLE-POINT and RIGHT-END

The NEAR relation is only used between specified points on line

segments (in this thesis). The right end of one line segment may be near

the middle point of another line segment. The points on a line segment
are fuzzy concepts and the following fuzzy measure function is used to
generate them:

(

1.0 - 8.0«(d«»2) < d < 0.25

POINT

d =

8.0»(d-.5)»*2 0.25 < d < 0.5

the distance from a point on the line segment

the length of the line segment

The length of the line segment acts as the scaling factor in this
function. The distance from the right end or the middle point determines
the fuzzy measure depending on whether the RGHT predicate or the MIDL
predicate is desired.
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ABSTRACT

This thesis presents a knowledge representation structures termed a

fuzzy conceptual graph. This structure is similar to the conceptual

graphs of John Sowa but the concepts and relations have been replaced

with fuzzy concepts and fuzzy relations, respectively. It is

rationalized that the performance of the fuzzy conceptual graphs is

superior to the non- fuzzy counterparts in some pattern recognition tasks.

A method for comparing two fuzzy conceptual graphs is given; it

calculates a fuzzy measure for how well the two graphs compare. This new

fuzzy measure function is employed as the basis for fuzzy concept

definitions. The two methods of fuzzy comparisons and fuzzy definitions

are demonstrated in the content of a character recognition application.

A semantic network is a set of relations and operations underlying

the processing of conceptual graphs. In this thesis, the fuzzy versions

of the mechanisms of conceptual graphs, graph comparing, and concept

definition are proposed, thereby rendering the semantic network to become

the fuzzy semantic network.


