
 

Ministry of Science and Education of Ukraine 

 

Ternopil Ivan Puluj National Technical University 
 
 

 

 

 

Department of Technical 

Mechanics and Agricultural Machinery  
 

 

 

 

 

STRENGTH OF MATERIALS 
 

COURSE  BOOK 

for practical works 
 

for the students majoring in  

Industrial Machinery Engineering,  

Applied Mechanics, 

Automobile Transport 
 

 

 

 

 

 

 

 

 

 

 

 

Ternopil 2020 



 2 

UDC 620.10 

      H 27   

 

Authors:  

R. B.  Hevko,  Ph. d., engineering, professor, head of technical mechanics and 

agricultural machinery department 

T. A.  Dovbush,  Ph. d., engineering, associate professor of technical mechanics and 

agricultural machinery department 
N. I.  Khomyk,  Ph. d., engineering, associate professor, associate professor of 

technical mechanics and agricultural machinery department 

A. D.  Dovbush, senior instructor of technical mechanics and agricultural 

machinery department 

H. B.  Tson, Ph. d., engineering, assistant professor of technical mechanics and 

agricultural machinery department 
 

Reviewed by: 

V. F.  Didukh,  Ph. d., engineering, professor, head of agricultural engineering 

department  of Lutsk National Technical University  

P. О.  Marushchak,  Ph. d., engineering, professor, head of automation department  
of Ternopil Ivan Puluj National Technical University  

 

Viewed at the meeting of technical mechanics and agricultural machinery 

department, minutes Nr.11, 06.05.2020 

Approved and recommended for publishing at the meeting of the Scientific Board of 

Ternopil Ivan Puluj National Technical University, minutes Nr. 8, 22.06.2020 

 

Hevko  R. B.  

H 27 Strength of materials: course book for practical works / Hevko  R. B., 

Dovbush  T. A,. Khomyk  N. I., Dovbush  A. D., Tson  H. B. – Ternopil, 

FOP  Palianytsia  V. A., 2020. – 240 p.  

 

"Strength of Materials" is a course book developed in accordance with the 

curriculum and is intended for practical work and self-studies of the foreign 

students majoring in Applied Mechanics, Industrial Engineering, Automobile 

Transport. The book contains theoretical notes of the main material from the 

subject "Strength of Materials", practical tasks, examples of their solution as 

well as necessary reference data. 

 
UDC 620.10 

© Hevko  R. B., Dovbush  T. A.,  

    Khomyk  N. I., Dovbush  A. D., 

    Tson  H. B., 

    2020 



 3 

CONTENTS 

      p. 

INTRODUCTION………………................................................................. 5 

How to choose the task ……………….…………………………………… 6 

1. BASIC CONCEPTS OF STRENGTH OF MATERIALS ………...... 7 

2. CENTRAL TENSION AND COMPRESSION  

OF DIRECT RODS (BARS) …………………………………………. 

 

13 

Task 1  Strength calculation and displacement determination 

under tension and compression…………………………............... 

 

19 

Example of solving the task 1  Strength calculation and displacement 

determination under tension and  

compression ……...……………………..... 

 

 

22 

Task 2   Calculation of statically indeterminate rod (bar) system 

under tensile-compression ……………………………….............. 

 

26 

Example of solving the task 2  Calculation of statically indeterminate 

rod (bar) system under tensile- 

compression ……………………………… 

 

 

29 

3. GEOMETRIC CHARACTERISTICS OF  

PLANE SECTIONS .………………………………………………….. 

 

33 

Task 3   Determination of axial moments of inertia of plane sections ……. 37 

Example of solving the task 3  Determination of axial moments of  

inertia of plane sections …………….......... 

 

40 

4. SHEAR. TORSION …………………………………………………… 43 

Task 4   Shaft calculation for torsion...……………………………………. 47 

Example of solving the task  4  Shaft calculation for torsion  

(strength and rigidity) ……………………. 

 

50 

5. COMPLEX STRESSED STATE ………………………………….. 55 

Task 5  Analysis of plane stressed state ….……………………………... 58 

Example of solving the task 5  Analysis of plane stressed state ..…………. 60 

6. STRAIGHT TRANSVERSE BENDING .…………………………… 65 

Task 6  Drawing the diagrams of shear (cutting) force and bending  

moment for cantilever beam ….………………………………. . 

 

76 

Example of solving the task  6 Drawing the diagrams of shear  

(cutting) force and bending moment  

for cantilever beam ……...……………… 

 

 

79 

Task 7  Diagraming of shear (cutting) force and bending moment  

for simply supported beam …………………………...…………... 

 

82 

Task 8  Strength calculation under the bending of beams .……………….  85 

Task 9  Calculation for strength and determining displacements  

during the bending of beams ….……………………………….. 

 

85 



 4 

Example of solving the task 7 and 8 Diagraming of shear (cutting)  
force and bending moment  
for simply supported beam. 
Strength calculation under  
the bending of beams …………….. 

 
 
 
 

88 
7. DETERMINATION OF DISPLACEMENTS UNDER  

BENDING ……………………………………………………………. 
 

94 
Example of solving the task 9  by the method of initial parameters ........... 108 
Example of solving the task 9  by Mohr method ..…….…………………. 110 
8. STATICALLY INDETERMINATE SYSTEMS …………………... 114 
Task 10 Calculation of statically indeterminate frame ………………….. 120 
Example of solving the task  10  using the force method ………………... 123 
Example of solving the task  10  by the metod of minimum  

potential energy of deformation ………. 
 

128 
9. EVALUATION OF STRESSES AND DISPLACEMENTS 

AT OBLIQUE BENDING ………………………………………...... 
 

130 
Task 11 Choosing the beam section at oblique 

bending deformation …………………………………................ 
 

134 
Example of solving the task  11  Choosing the beam section at oblique  

bending deformation ………………...... 
 

137 
10. JOINT ACTION OF BENDING WITH TORSION ..……………. 144 
Task 12 Calculation of the shaft for bending with torsion……………….. 146 
Example of solving the task  12  Calculation of the shaft for  

bending with torsion ………………….. 
 

149 
11. STABILITY OF CENTRALLY-COMPRESSED RODS ………... 154 
Task 13 Calculation of stability of compressed rod ……………………... 160 
Example of solving the task  13  Calculation of stability  

of compressed rod …………………….. 
 

162 
12. DYNAMIC LOADS. DETERMINING IMPACT  

STRESSED AND DISPLACEMENTS ..............………………….. 
 

165 
Task 14 Determining maximum dynamic stresses 

and displacements under the impact …………………………… 
 

169 
Example of solving the task  14.1 …………………………. ........... ... 172 
Example of solving the task  14.2 …………………………. ............ .. 175 
List of references and recommended literature ……….………………….. 178 
Annexes …………………………………………………………………... 179 
MAIN DEFINITIONS OF STRENGTH OF MATERIALS …………….. 187 
MAIN FORMULAS OF STRENGTH OF MATERIALS ………………. 191 
PERSONALITIES ……………………………………………………….. 195 
MAIN SYMBOLS OF STRENGTH OF MATERIALS …………………. 230 
UKRAINIAN-ENGLISH VOCABULARY 
OF BASIC TERMS ………………………………………………………. 

 
232 



 5 

INTRODUCTION 

 

Strength of materials is the science of engineering methods for calculating 

the strength, rigidity and durability of machine and structure elements. 

Elements of mechanical engineering and building structures during 

operation are subjected to the force action of different nature. These forces are 

either applied directly to the element or transmitted through joint elements. For 

normal operation of engineering structure or machine, each element must be of 

such sizes and shapes that it can withstand the load on it, without fracture 

(strength), not changing in size (rigidity), retaining its original shape 

(durability). 

Strength of materials is theoretical and experimental science. Experiment 

– theory – experiment – such is the dialectic of the development of the science 

of solids resistance to deformation and fracture. However, the science of 

strength of materials does not cover all the issues of deformable bodies 

mechanics. Other related disciplines are also involved: structural mechanics of 

core systems, elasticity theory and plasticity theory. 

Strength of materials is general engineering science, in which, on the 

basis of experimental data concernimg properties of materials, on one hand, and 

rules of theoretical mechanics, physics and higher mathematics, on the other, 

the general methods of calculating rational sizes and shapes of engineering 

structures elements, taking into account the size and character of loads acting 

on them are studied. 

Strength of materials tasks are solved by simple mathematical methods, 

with a number of assumptions and hypotheses, as well as with the use of 

experimental data. 

Strength of materials has independent importance, as the subject, 

knowledge of which are required for all engineering specialties. It is the basis 

for studying all sections of structural mechanics, the basis for studying the 

course of machine parts, etc. Strength of materials is the scientific basis of 

engineering calculations, without which at rescent time it is impossible to 

design and create all the variety of modern mechanical engineering and civil 

engineering structures. 

The peculiarity of this course book is its focus on performing the term 

paper in strength of materials, which includes 14 tasks covering the entire 

course. The manual summarizes the main material for the topic of each task, 

outlines the statement of the task, and examples of solutions. 

The appendices provide the example of term paper structure (title page, 

contents, example of solving the task) and reference materials needed for its 

performance. All this will contribute to deeper course learning and independent 

performance of the term paper. 
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How to choose the task 

The student chooses term paper assignment according to the last two 

figures of the credit book number; number of calculation scheme is chosen 

according to the last figure; option (data from the task statement table) is the 

second to the last figure. 

The term paper in strength of materials contains 14 tasks (the number of 

task can be changed by the instructor), which cover the entire course. It should 

be performed in the form explanatory calculation note on A4 sheets. 

The title page should be drawn or computer typewritten on the 

appropriate form. 

The first page of the term paper is the title page, the second is the content 

which includes the list of completed tasks; next are the task statement terms, the 

tasks solution and references. 

The statement of each task with the selected data and the scheme should 

be recorded on the separate sheet with a frame 40 mm. The task solution should 

be presented after task statement on sheets with 15 mm frame.  

The text of the note should be presented sequentially, concisely, the 

calculations should be accompanied by brief explanations with reference to the 

relevant figure. The style of note text presentation should be concise, clear and 

without ambiguity. The terminology in the text must meet the standard of the 

scientific technical literature. 

The text of the explanatory note should be placed on one side of the A4 

(297x210 mm) sheet. The distance from the border to the borders of the text on 

the left and right must be at least 5 mm, top and bottom are 10 mm. Paragraphs 

in text begin with a space of five characters in the body of the note. Type the 

text with 1,5 intervals in clear fonts of at least 2,5 mm in height (14 pt, Times 

New Roman font) or handwritten in black ink in basic lettering and letters at 

least 2,5 mm high. Explanatory notes may be written in clear legible 

handwriting in black ink. 

Start counting from the cover page, but do not put the number on the 

cover page. Page numbering is continuous. 

Formulas in the text must be written from the new line in the general 

form, and under the formula the explanation of each character, indicating size 

and dimension should be given. Calculate formulas in the following order: 

writing the desired value in the alphabetical expression, substituting the 

corresponding numerical values and recording the final result indicating  the 

dimensions. 

Make all the diagrams and sketches of the term paper on  separate page or 

two, if necessary, in accordance with the sequence provided by the solution 

course. Figures should be enumerated according to the task number and 

accompanied by indexes. 



 7 

1. BASIC CONCEPTS OF STRENGTH OF MATERIALS 

 

Strength of materials problems  

Strength of materials is the science of engineering methods for 

calculating the strength, rigidity and durability of machines and structures 

elements. 

Structures are all material objects of technology, their parts and details. 

Strength is the ability of material or structure to withstand mechanical 

stress without fracture  

 pp max , 

where maxp  is maximum stress; 

  p  is allowable stress. 

Rigidity is  the ability of the structure and its elements to withstand elastic 

deformations, i. e. the ability to perceive external loading without changing the 

geometric dimensions and shape 

 ff max , 

where maxf  is maximum deformation (displacement); 

  f  is allowable deformation (displacement). 

Durability  is the ability of the structure or its elements to retain, under 

the action of given forces, the initial shape of the elastic equilibrium. 

The objective of the strength of materisals course: 

a) to learn to determine correctly the type of deformation on which the 

part or structure operates according to the calculation scheme; 

b) to determine the most dangerous section by pre-plotting internal force 

factors; 

c) to determine the dimensions of the cross-section with appropriate 

strength or rigidity and, in some problems, allowable load or maximum stress, 

and to carry out the strength test. 

 

Calculation objects in strength of materials 

All elements of engineering constructions and structures can be reduced 

to the following typical simplified elements: rods, shells, plates, massive 

bodies. According to them, the calculations in the strength of materials are 

carried out. 

Rod (bar) is a body of prismatic shape where one size (length) is much 

bigger than the other two (transverse) dimensions. 

Thin-walled rods (channels, angles, I-beam) are bodies in which the wall 

thickness is much smaller than the overall dimensions of the cross-section. 
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Examples of rods: shafts, axles, beams, pipes, rails, curvilinear elements 

(screw springs, hooks, chain elements). 

Plate is a prismatic (cylindrical) body in which one size (thickness) is 

much smaller than two others. 

Examples of plates: plane bottoms and covers of tanks, chemical 

production facilities, floor slabs. 

Shell is a body restricted by two curvilinear surfaces, the distance 

between which (thickness) is small in comparison with other dimensions. This 

is a plate with curved middle surface. Examples: walls of thin-walled tanks, 

walls of boilers, domes of building structures, hulls of aircrafts, rockets, 

submarines. 

Solid (massive body) is the body dimensions of which are of the same 

order in all (three) directions. Examples: foundations of structures, retaining 

walls, foundations of powerful presses and machine tools. 

 

Classification of external loads 

External loads are classified: 

1. By the action nature – static, dynamic. 

Static is the load which values, direction and place of application remain 

constant. 

Dynamic are loads that are characterized by rapid changes in their value 

in time, direction, or place of application. 

2. By nature of application (Fig. 1.1): 

a) F, Q, R – concentrated forces  MNkN,,N ; 

b) М, Т – moments  MNmkNm,Nm, ; 

c) wq ,  – distributed on line  mkN,mN . 
 

 
Figure 1.1 

 

Calculation scheme is the real object, free of insignificant features. More 

than one calculation scheme may be developed for the same object, depending 

on the load features and operating conditions. 
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The main types of deformation 

All existing bodies under the influence of external forces are able to 

change their size and shape, i.e. to deform. 

In strength of materials we distinguish tensile deformation (compressive), 

shear, torsion and bending. Different types of deformation in the cross-sections 

of the body have different internal force factors. 

1. Tensile-compressive is a type of deformation in which only 

longitudinal (axial) force N occurs in the cross-sections of a straight bar. 

The stretching bar is called a rod. 

Elements subjected to tensioning are such structural elements as ropes, 

bolts, cables, truss rods, piston rods. Brick masonry, foundation, columns, 

punches work on compression. 

2. Shear is a type of deformation, at which in the cross-section of the rod 

(bar) only shear (cutting) force Q acts. The shear deformation results in 

material fracture. Rivets, bolts, keys, seams of welded joints undergo shear. 

3. Torsion is a type of deformation in which only torque moment TRМ , 

acts in the cross-sections of the rod. The circular cross-section rod (bar) 

transmiting power during rotational motion is called the shaft. Torsion is often 

accompanied by bending or other deformation. 

4. Direct lateral bending is a type of deformation in which the bending 

moment BNМ  and the shear (cutting)  force Q occur at the cross sections of the 

beam. The bending rod (bar) is called the beam. This bending occurs in axes, 

bridge and floor beams, gear-wheel teeth, leaf springs. 

5. Complex strength is the combination of two or more simple types of 

deformation, such as: bending + torsion; compression + bending, etc. 

 

 

 

 

Internal power factors. Section method. Diagram 

Internal force factors are internal forces of interaction between particles of 

the body that occur during the action on the body of external forces, and 

prevent changes in the distances between the particles and the fracture of the 

body. They are called forces. External forces applied to the structural element 

and reactions at the places of supports attachment, that is, active and reactive 

forces are called loads. 

In order to determine the magnitude of the internal forces (force factors) 

occuring at the section of the rods, the cross-section method is used. 

The section perpendicular to the axis of the bar is called normal or shear; 

the section drawn at any other angle, is called oblique or inclined. 
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The method of sections is that the elastic body (rod), which is in 

equilibrium under the action of external forces system, is imaginary cut by the 

plane into 2 parts (Fig. 1.2 a). Any of them are neglected. The remaining part is 

considered as the independent body, which is in equilibrium while applying to 

it the internal forces of interaction (effort) arising between the two parts of the 

body under the influence of external forces (Fig. 1.2 b). Internal forces replace 

the impact of the neglected part of the rod (bar) on the rest. It is fundamentally 

irrelevant which part of the body is neglected. 
 

 
 

Figure 1.2 

 

In the general case of loading the rod (bar) in its cross-section, six internal 

force factors occur: 

XN  is longitudinal (normal) force acting along the axis of the rod 

(bar), perpendicular to the section plane; 

YQ , ZQ  are shear (cutting)  forces tangent to the section plane, trying to 

move one part of the rod (bar) relatively to the other in the 

directions of OY , OZ  axes; 

YМ , ZМ  are moments that rotate the section around OY , OZ  axes, tending 

to bend the rod in planes XZ  and XY , that is bending 

moments YBNY ММ . ; ZBNZ MM  ; 

ХМ  is the moment acting in the section plane and causing the section 

rotation with respect to the longitudinal axis of the rod (bar) 

OX , that is, twists the rod (bar), is called its TRX MM   

torque. 
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Each of the internal force factors is associated with a particular type of 

deformation. 

To determine the internal force factors in general, according to the 

method of sections, six conditions of equilibrium of forces acting on the 

remaining  part of the rod (bar)  (use six equations of static) are written. The 

algebraic sums of the projections of all forces applied to this part on the axis 

OX , OY , OZ , and the algebraic sums of the moments of these forces with 

respect to the same axes are equal zero: 
 

  0X ;      0iXX FN ; 
 

  0Y ;      0iYY FQ ; 
 

  0Z ;      0iZZ FQ ; 
 

  0XM ;       0iXTR FMM ; 
 

  0YM ;       0.   iYYBN FMM ; 
 

  0ZM ;      0Z.   iZBN FMM . 
 

Diagram is the graph showing the distribution of internal forces factors 

or displacements along the axis of the rod. Diagrams are lined 

perpendiculary to the axis of the rod (bar). 

 

 

 

Stress 

It is a quantity that characterizes the intensity of internal forces. The total 

stress (Fig. 1.3) is determined by the formula 
 

A

R
p

A 




 0

lim , 

 

where R  is the internal force, i.e. the force applied to the allocated area;  

 A  is the elementary section area at which the effort R  occurs. 
 

The internal force R  can be divided into two components: one directed 

perpendicular to the section N ; the other is located in the section plane Q . 

The stresses that occur at the section of these components are called normal 

and tangential (shear). 
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Figure 1.3 
 

The tangential (shear) stress is the intensity of the tangent forces at the 

given point of section 

A

Q

A 




 0

lim . 

 

The normal stress is the intensity of normal forces at the given point of 

section 

A

N

A 




 0

lim . 

 

The total stress at the point is determined by the formula 
 

22
 p . 

 

Unit of stresses  2
mNPa1  ,  .mmN1Pa10MPa1

26
  

 
Assumptions (hypotheses) about the properties of 

structural elements of materials 

1. The hypothesis of the material continuity. It is suggested that the 

material completely fills the body volume, refuting the theory of the discrete 

structure of substances. 

2. The hypothesis of homogeneity and isotropy. It is considered that the 

mechanical properties of material are the same at any point in the body and in 

any direction. 

3. The hypothesis of the ideal elasticity and natural tension of the 

material. It is assumed that the deformations caused by the loads are 

completely disappeare after unloading and that initial forces and stresses are 

absent. 
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2. CENTRAL TENSION AND COMPRESSION 

OF DIRECT RODS (BARS) 

 
Central tension and compression. Drawing the diagrams of normal force  

Central (axial) tensile or compression occurs from forces applied along 

the central axis of the rod (bar). The stress state caused by such forces is called 

simple or linear. 

Tension (compression) is the type of deformation (type of resistance) in 

which only longitudinal (axial, normal) force N  or XN  directed along the 

axis of the rod (bar) and applied at the center of cross-section gravity occurs. It 

is determined from the equilibrium condition using the section method, starting 

from the free end of the rod (bar). 

Longitudinal force in the random cross-section of the rod (bar) is equal 

to the algebraic sum of the projections on its longitudinal axis OX of all 

external forces applied to the rest part. 

Under tension, the longitudinal force is directed from the section and is 

considered to be positive, under compression it is directed to the section and is 

considered negative. 

In order to estimate the load of the rod (bar), in the case where the 

longitudinal forces in different cross-sections of the rod (bar) are unequal, the 

diagrams are drawn. While drawing the diagrams, the rod (bar) is divided into 

sections. The diagram is drawn in order to use it while calculating the strength. 

It makes it possible to determine the greatest value of the longitudinal force and 

the cross-section at which it occurs, that is, the dangerous (in terms of strength) 

cross-section. 

Example. Draw the diagram of normal forces for the rod (bar) shown in 

Fig. 2.1 a (neglect the rod (bar) weight).  

Divide the rod (bar) into sections. Area boundaries: beginning and fixing 

of the rod (bar); cross-sections where the concentrated forces are applied.  

Using the section method, we determine the values of the normal forces at 

each area, starting from the free end. 

Normal force is the algebraic sum of all external forces on one side of 

the intersection. Write down their values (Fig. 2.1 b) in each area, considering 

the rod from the free end: 
 

;kN2011  FN  
 

;kN305020212  FFN  
 

.kN1040303213  FFFN  
 

Based on the obtained results, draw the diagram of normal forces N 

(Fig. 2.1 c). 
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Figure 2.1 

 

 

 

Stresses in the rod cross-sections 

Under tensile (compression) of the rod, only normal stresses occur in its 

cross-sections. 

Under stretching (compression) of a rod (bar) normal stresses on its cross-

section are distributed evenly. 

There is the relationship between longitudinal (normal) force N and 

normal stress   (Fig. 2.2) 
 

 

A

dAN .  

 

Let us assume, that const , then  
 

AN   ,  
 

hence 
 

Figure 2.2            
A

N
 . 
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Normal stresses are positive if they stretch the material of the rod (bar), 

negative – if they compress. 

If the normal stresses in the different cross-sections of the rod (bar) are 

not the same, it is reasonable to show the law of their changes along the rod 

(bar) in the form of the graph – the diagram of normal stresses. 

The tangential (shear) stresses are positive if the vector   bypasses the 

material elements clockwise. 

 

Longitudinal and transverse deformations 

Let us consider deformation of the rod (bar) loaded with axial force F 

(Fig. 2.3): 

∆l is total longitudinal elongation of the rod (absolute longitudinal 

deformation, linear elongation, linear deformation); 

∆b is the absolute transverse deformation (linear deformation); 

   is  relative longitudinal deformation, ll ; 

'   is  relative transverse deformation, bb' .  

To a certain value, the deformation forces of 

elastic body are proportional to forces. Under tension 

(compression) there is a linear dependence between the 

elongation of the rod and the longitudinal force. 

It is experimentally proved that the stresses in the 

rod material depend on deformation and mechanical 

characteristics of the material. This dependence is 

described as Hooke law under tensile (compression) 
 
 

Figure 2.3             ;E                  ,
AE

lN
l




  

 

where E  is the modulus of elasticity (modulus of elasticity of the first kind, 

Young’s modulus, normal elastic modulus, longitudinal elastic 

modulus). 

It is proved experimentally that under simple tensile or compression ratio 

of the transverse deformation to the longitudinal value is constant for this 

material. This ratio, taken in absolute value, is called the coefficient of 

transverse deformation or Poisson ratio 
 

  . 

E ,   are mechanical characteristics of the material, determining its elastic 

properties. For steel ;MPa102
5

E   =0,3. 

Hooke’s law is valid only for a certain value of normal stress, which is 

called the limit of proportionality of the given material. 
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Stress-strain diagram for plastic materials  
Mechanical characteristics of materials, i.e. quantities that determine their 

strength, ductility, as well as elastic constants E  and   are necessary for 

design engineer to select the material of the part and its calculation for strength 

and rigidity. These characteristics are obtained experimentally. To do this, 

laboratory equipment is used on which the static tensile load (compression) is 

applied to the sample (Fig. 2.4 b) and then the forces and strains are measured. 

To exclude the influence of the absolute dimensions of the investigated sample, 

so-called conditional stretch diagram in coordinates is drawn: relative 

elongation  , normal stress  . For low carbon steel, the tensile (compression) 

diagram is shown in Fig. 2.4 a. 
 

 
 

Figure 2.4 
 

The indexes on the diagram are as follows: 

pr  is the limit of proportionality, in this section deformation is 

proportional to the load, the highest stress, at which Hooke law 

is correct, 0AF prpr  ; 

el  is the limit of elasticity, up to this stress the material retains its 

elastic properties (no residual deformations occur in the sample 

at load removal), 0AFelel  ; 

ye  is the yield strength is the stress at which the increase of plastic 

deformation of the sample at constant load occurs, this is the 

main mechanical characteristic for evaluation the durability of 

plastic materials (steels), 0AF yeye  ; 

t  is the tensile strength is the stress at which the fracture of the 

sample material occurs, that is, the conditional stress that 

corresponds to the highest load that the sample can withstand up 

to fracture, 0max AFt  . 
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Here 0A  is the initial cross-section area of the sample that undergo 

stretching; prF , elF , yeF  are the increases in the magnitude of 

the tensile strength, maxF  is the maximum load force without 

regard to the intersection narrowing. 

The section of the OK stretching diagram (see Fig. 2.4 a) states Hooke 

law .E  
 

Potential deformations energy 

Under the static stretching of the rod (sample) within Hooke law 

application, the force F  gradually increases from zero to certain value, the 

sample deforms by the value l  (see Fig. 2.3) and thus performs the work W. 

This work is accumulated in the deformed sample as potential deformation 

energy, that is W=U. 

If the tensile diagram (see Fig. 2.4 a) is drawn in the coordinates (F, ∆l), 

then the work is equal to the area of triangle ОСK: 
 

lFUW 
2

1
, 

where 
AE

lF
l




 ;    NF  . 

Then 

E

V

E

lA

AF

lF
UW

222

222












, 

 

where F  is the force sretching the sample, ;AF    

 V  is body volume, i.e. the sample, lAV  ; 

 A  is the cross-sectional area of the sample. 

Specific potential energy is the deformation energy per volume unit  
 

EV

W
U

2

2


 . 

 

Allowable stresses. Strength calculations 

In strength of materials there are three types of normal and tangential 

(shear) stresses: working, boundary, allowable. 

Working (actual) stresses are those that actually occur in the structural 

elements and are determined by calculation or experimentally. 

Boundary stresses are those at which material is destroyed or significant 

residual deformations occur in it. 

To ensure the strength of the parts, it is necessary for the stresses occuring 

during their operation to be less than the boundary. But if the working stresses 

approximate the boundary ones (though they are less), the strength of the part 
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cannot be guaranteed. Therefore, when calculating, the strength, the working 

stresses are compared not with the boundary, but with the allowable ones. 

The allowable stresses are those in which the safe work of the part is 

guaranteed. They are indicated by    or    and determined as the fraction of 

the boundary stresses to guarantee the safety margin: 

a) for plastic materials (steels) 

 
n

ye
  , 

where    is allowable tensile and compressive stress; 

 n  is strength factor; 

b) for brittle materials (cast iron) 

 
n

st
t


  ;                 

n

cs
c


  , 

where   t  is allowable tensile stress; 

 st  is tensile strength; 

   c  is allowable compressive stress; 

 cs  is the boundary of compressive strength. 

Safety margin reserve factor for plastic materials 5,2...2,1n ; for brittle 

materials 5...2n . 

Tensile-compression strength condition  

  
A

N
. 

While calculating the strength of the parts, there are three main types of 

problems. 

Design calculation which determine the size of the cross-section 

 
,

max



N
A   

where maxN  is the maximum value of the longitudinal force, taken from the 

diagram N . 

Validating calculation by which the working (actual) stresses are 

determined and compared with the allowable ones 

  
A

N max . 

Determination of allowable loads 
 

    AN   . 
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Task 1 

Strength calculation and displacement determination 

under tensile and compression 

 

For given straight stepped steel rod (Fig. for task 1, Table for task 1), 

determine the dimensions of the cross-section at all sections, provided that the 

cross-section is a circle; make the rod sketch; draw the diagram of the working 

(actual) normal stresses and linear displacements of the rod, if m8l  

 lmblka  , ; rod material – steel;   MPa160 ; MPa.102
5

E  

 

Plan of solving the task: 

 

1. Сomplete the calculation model. 

2. Draw the diagram of lineary forces.  

3. From the strength condition, determine the diameters of the rod (bar) in 

all segments. Round off the obtained values to a size multiple of 2 or 5. Make a 

sketch of the rod (bar). 

4. On each segment, calculate working (actual) normal stresses by the 

module t  and draw the diagram of working (actual) normal stresses.  

5. Determine the lineary displacements of certain steps and the whole rod 

(bar). 

6. Draw the diagram of the displacements distribution along the beam. 

 

Table for task 1 

 

Nr kN,1F  kN,2F  kN,3F  k  m  

1 25 30 50 0,2 0,5 

2 10 40 20 0,4 0,7 

3 20 10 60 0,1 0,4 

4 15 20 40 0,3 0,6 

5 30 25 10 0,25 0,65 

6 25 50 25 0,35 0,75 

7 40 15 30 0,45 0,8 

8 20 30 50 0,15 0,45 

9 50 20 40 0,2 0,8 

0 60 10 20 0,4 0,8 
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Figure for task 1 
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Figure for task 1 (contunied) 
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Example of solving the task 1  

Strength calculation and displacement determination 

under tension and compression 

 

For given straight steel rod (Fig. 2.5 a), determine the dimensions of the 

cross-section at all sections, provided that the cross-section is a circle; make the 

rod (bar) sketch; draw the diagram of the working (actual) normal stresses and 

longitudinal displacements of the rod, if m8l   lmblka  , ; rod (bar) 

material – steel;   MPa160 ; MPa.102
5

E  

 

Solution 

 

Divide the rod (bar) into three parts (Fig. 2.5a). For each part we 

determine the values of longitudinal (normal) forces: 
 

;kN1011  FN  
 

;kN302010212  FFN  
 

.kN5040220102 3213  FFFN  
 

Draw the diagram of longitudinal forces, N  (Fig. 2.5 b). 

From the condition of tensile-compressive strength    AN  

determine the required cross-section areas of the rod (bar) at each section 
 

;m10625,0
160

1010

][

24
3

1
1










N
А  

 

;m10875,1
160

1030

][

24
3

2
2










N
А  

 

.m10125,3
160

1050

][

24
3

3
3










N
А  

 

The rod diameters  determine by formula 
 

,4
2
ii dA       where   4,3,2,1i , 

whence 
 

ii Ad 4 . 
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Substituting data, obtain 
 

;mm92,8
14,3

5,624
1 


d  

 

;mm45,15
14,3

5,1874
2 


d  

 

.mm95,19
14,3

5,3124
3 


d  

 

Round off the results: ,mm101 acd  ,mm162 acd  .mm203 acd   

Then draw the sketch of the rod (bar) (Fig. 2.5 c). 

Determine the actual cross-sectional areas of the rod (bar) at each section, 

taking into account the rounding of their diameters by the formula 
 

.4
2
aciaci dA    

 

Substituting data, obtain 
 

;mm5,7841014,3
22

1 acA  
 

;mm20141614,3
22

2 acA  
 

.mm31442014,3
22

3 acA  
 

Then determine working (actual) normal stresses by the formula 
 

.aciiaci AN  
 

Substituting data, obtain 
 

;MPa127

105,78

1010

6

3

1 










ac  

 

;MPa149

10201

1030

6

3

2 










ac  

 

.MPa159

10314

1050

6

3

3 










ac  
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Draw the diagram of working (actual) normal stresses ac  by the module 

(Fig. 2.5 d). 

The longitudinal (linear) deformations of each section of the rod (bar) are 

determined by the formula 

 

,

aci

ii
i

AE

LN
l




  

 

where iL  is the length of the rod (bar) section on which the longitudinal 

force acts. 

 

In numerical form 

 

;mm53,1m1053,1

105,78102

4,210 3

681 









l  

 

;mm79,1m1079,1

10201102

4,230 3

682 









l  

 

.mm54,2m1054,2

10314102

2,350 3

683 









l  

 

Based on the obtained results, draw the diagram of linear displacements 

of the cross-sections (Fig. 2.5 e). The fixed end of the rod (bar) is taken as zero.  
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Task 2 

Calculation of statically indeterminate rod (bar) system 

under tensile-compression 

 

For the given rod (bar) system (Fig. for task 2, Table for task 2), to which 

force kN50F  is applied determine the diameters of the rods (bars) DE  and 

KH , when the ratio of their areas KHDE AkA   is known. Material of rods 

(bars) is steel St.3; 2
mMN160][  , m1a . The rod (bar) to which 

external force F  is applied should be considered absolutely rigid. 

 

 

Plan of solving the task: 

 

1. Draw the scaled model of the rod (bar) system.  

2. Determine the degree of static indeterminance of the system.  

3. Considering the deformation of the system, make the auxiliary 

equations. 

4. Determine the forces in the rods (bars). 

5. Select the cross-section areas of the rods (bars).  

 

 

Table for task 2 

 

Nr 1 2 3 4 5 6 7 8 9 0 

k  1 1,5 2 2,5 3 3,5 4 4,5 5 0,5 
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Figure for task 2 
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Figure for task 2 (contunied) 
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Example of solving the task 2 

Calculation of statically indeterminate rod (bar) system 

under tensile-compression 

 

For the given rod (bar) system (Fig. 2.6 a), to which force kN50F  is 

applied determine the diameters of the rods (bars) DE  and KH , when the ratio 

of their areas KHDE AkA  , 3k  is known. The rod (bar) to which external 

force F  is applied should be considered absolutely rigid. Material of rods 

(bars) and bar  (rod) is steel St.3;   MPa160 ; 1a  m. 

 

Solution 

 

When the system is loaded by force F , in rods (bars) DE  and KH  

normal forces occur, in this case – compression forces. The cross-sectional area 

of the rods (bars) under compression is determined from the condition of 

tensile-compression strength 

 

.
][

 whence],[



i

i

i

i N
A

A

N
                       (1.1) 

 

To determine the force in the rods (bars) DE  and KH  we derive the 

eqation of the bar equilibrium equilibrium (Fig. 2.6 b): 

 

;0 X               ;0cos  XDE BN             (1.2) 

 

;0 Y                ;0sin  KHYDE NBNF                            (1.3) 

 

;0 BM             ,0sin23  aNaNaF KHDE                      (1.4) 

 

where DEN , KHN  are normal forces occurring in rods  (bars) DE  and KH ; 

 XB , YB  are components of the reaction force of the support B . 

 

There are four unknown forces and reactions ( DEN , KHN , XB , YB )  in 

the system, and three equilibrium equations. Thus, the system is 4–3 = 1 time 

statically indeterminate. 

We derive the additional equation, the equation of displacements 

compatibility (deformations). 
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Figure 2.6 
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After applying the force F , the rods (bars) DE  and KH  deform and the 

system takes the position shown in Fig. 2.6 c. From the similarity of triangles 

BDD 1  and BKK 1  it follows that 

 

.2
2

1

1


a

a

KB

DB

KK

DD
           (1.5) 

 

In this case 

;
sin

1


DEL
DD


  ,1 KHLKK          (1.6) 

 

where KHL , DEL  are absolute deformations of rods (bars) KH  and DE . 

 

Rods deformations write by Hooke law in the following form: 

 

;
5,1

KH

KH
KH

AE

aN
L




         .

sin

2






DE

DE
DE

AE

aN
L  

 

Substituting values KHL  and DEL  into expressions (1.5) and (1.6), 

obtain 

 

.2
sin5,1

2

2






DEKH

KHDE

AEaN

AEaN
 

 

Taking into account that KHDE AA 3 , we have 

 

.sin5,4
2
 KHDE NN  

 

In this case =45 (see Fig. 2.6а), then 

 

.25,245sin5,4
2

KHKHDE NNN                      (1.7) 

 

Solving equations (1.4) and (1.7), we determine unknown forces in the 

rods (bars) 












,25,2

;045sin23

KHDE

KHDE

NN

NNF
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where 

kN9,35
17,05,4

503

145sin5,4

3










F
N KH , 

 

respectively 

 

.kN8,809,3525,2 DEN  

 

Further equations (1.2) and (1.3) are not used in solving the task, since the 

unknown forces in the rods (bars) are defined, and according to the task 

statement it is not required to determine the reaction in support B . 

The cross-section area of the rod (bar) KH  is determined from the 

condition of tensile-compression strength (1.1). 

 

,m1024,2
160

109,35

][

24
3










KH
KH

N
A  

 

the cross-section area of rod (bar) DE  determined from ratio 

 

.m1072,61024,233
244 

 KHDE AA  

 

Estimate the strength of rod (bar) DE  

 

.MPa160][MPa120

1072,6

108,80

4

3














DE

DE
DE

A

N
 

 

The strength condition is ensured. Otherwise, the cross-section area of the 

rod (bar) DE  should be determined from the strength condition and that of the 

rod (bar) KH from the ratio. 
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3. GEOMETRIC CHARACTERISTICS 

OF PLANE SECTIONS 

 

Moments of inertia and center of gravity 
The static moment of the plane figure area with respect to the axis 

lying in the same plane is the sum of the products of the areas of elementary 

planes at their distance from that axis. 

The static moments of the section area of arbitrary shape (Fig. 3.1) are 

determined by the formulas 
 



A

X ydAS ;   

A

Y xdAS ; 

 

AyS CX  ;   AxS CY  , 
 

where x , y  are coordinates (distances) that determine the position of the 

element area dA ; 

        CC xy ,  are coordinates of the center of gravity of the section area; 

 A  is a section area; 

 dA  is an element of the area (elementary plane). 

 

 
Figure 3.1 

 

The static moment of the figure area relatively to axis lying in the same 

plane is equal to the product of the figure area at the distance from it to the 

center of gravity of that axis. 

The static moment of figure area is the moment of the first order, its unit 

is   m
3
. It can be positive, negative and zero (relatively to the axis of figure 

symmetry or relatively to the central axis, that is, the axis passing through the 

center of gravity of the section). 
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The method of partitioning is used to determine the center of gravity of 

complex figures; the static moment of the area of the whole figure is defined as 

the algebraic sum of static moments of its individual parts. The coordinates of 

the center of gravity of the complex section is determined by the formulas 
 






A

S
x

Y
C ;   






A

S
y

X
C , 

 

where  YS ,  XS  are sums of static moments of separate areas; 

  A  is a sum of separate areas. 

The axes passing through the center of gravity of the section are called the 

central axes. The static moment of the area relatively to the central axis is zero. 

The polar moment of inertia of the plane figure with respect to the pole 

lying in the same plane is the sum of the product of the areas of the elementary 

plane by the squares of their distances from the pole. 

The polar moment of the section area of the arbitrary shape with respect 

to the pole O  (see Fig. 3.1) is determined by the integral 
 



A

P dAI
2

 ,  

 

where   is the distance from the center of the elementary plane (element of 

the area) dA  to the axis perpendicular to the plane of the section 

through point O  (pole), 
 

222
xy  . 

 

The axial moment of inertia of a plane figure with respect to the axis 

lying in the same plane is the sum products over the whole area by the 

elementary areas squared by their distance from that axis. 

Axial moments of inertia of the section area of arbitrary shape 

(see Fig. 3.1) with respect to the axes OX  and OY  are determined by integrals 
 



A

X dAyI
2 ;                   

A

Y dAxI
2 . 

 

The polar and axial moments of inertia of the section are always positive 

and not equal to zero. 

The dependence of axial and polar moments of inertia 
 

  YX

AA

P IIdAxydAI  
222

 . 

 

Moments of figure inertia are moments of the second order, unit   m
4
. 



 35 

The sum of the axial moments of inertia with respect to two mutually 

perpendicular axes is equal to the polar moment of inertia relatively to the point 

of intersection of these axes (the coordinate origin). 

The dependence between the moments of inertia in parallel axes transfer 
2

1
aAII XX  . 

The axial moment of inertia with respect to any axis 1X  is equal to the 

axial moment of inertia with respect to the central axis X , which is parallel to 

the axis 1X , plus the product of the area by the squared distance between the 

axes ( a  is the distance between the axes). 
 

Main axes and main moments of inertia 

Central axes are the axes that pass through the center of gravity of the 

plane figure. 

Central moments of inertia of the plane figure (section) are moments of 

inertia relatively to the central axes. 

If the axis of coordinates is rotated in its plane around the origin, the polar 

moment of inertia of the section will remain constant and the axial moments of 

inertia will change, and 
 

constIII PYX  . 
 

If the sum of two variables remains constant, one of them decreases and 

the other increases. Therefore, at any position, one of the axial moments reaches 

the maximum and the other – the minimum values. 

Main axes of inertia are axes in relation to which the axial moments of 

inertia of the section (plane figure) reach the maximum and minimum values. 

The main moments of inertia of the section are the axial moments of 

inertia relatively to the principal axes. 

The principal central axes are the main axes that pass through the center 

of gravity of the section (plane figure). If the figure has at least one axis of 

symmetry, then this axis will always be one of the main central axes. 

The main central moments of inertia of the section (plane figure) are 

the moments of inertia with respect to the principal central axes. 

In engineering calculations, the main central moments of inertia are 

important. 

The moments of inertia of the sections are geometric characteristics that 

make it possible to compare the rigidity of the bars of the given material with 

their resistance to external forces. 

Axial and polar moments of inertia gain only positive values. 

The bar resistance to bending and torsion is also characterized by the 

moments of resistance of the sections: axial and polar. 
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The axial moments of intersection resistance are determined by the 

formulas 

maxy

I
W

X
X  ;                            

maxx

I
W

Y
Y  , 

 

where maxy , maxx  are the coordinates of the points of section are at 

maximum distance from the axes OX  and OY . 

The polar moment of intersection resistance, respectively 

max

P
P

I
W  , 

where max  is the coordinate of the intersection point at maximum distance 

from the poles. 

Polar moments of inertia and polar moments of resistance for cross-

sections: 

- circle (Fig. 3.2 а) 

32
4

DI P   ; 16
3

DW P   ; 
 

- ring (Fig. 3.2 b) 

 4
4

1
32








D

I P ;   ,1
16

4
3








D

W P    where .Dd  

 

 Figure 3.2 
 

Axial moments of inertia and axial resistance moments for cross-sections: 

- circle (see Fig. 3.2 а) 
 

;64
4

0 DIII YX    ;32
3

0 DWWW YX    

- rectangle (Fig. 3.2 c) 
 

;
12

3
hb

I X


          ;

12

3
bh

IY


                ;

6

2
hb

W X


           .

6

2
bh

WY
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Task 3 

Determination of axial moments of inertia of plane sections 

 

For the given section (Fig. for task 3, Table for task 3) determine the 

position of the main central axes, the main central moments of inertia and the 

axial moments of resistance with respect to the main central axes. 

 

 

Plan of solving the task: 

 

1. Write out the data needed to solve the task from the assortment tables 

(Annexs 1, 2).  

2. Determine the geometric characteristics of the strip (strips). 

3. Draw a cross-section at a scale of 1 : 1 or 1 : 2. Mark all the dimensions 

used in the calculations in the drawing.  

4. Choose a rational placement of auxiliary coordinate axes.  

5. Determine the position of the center of gravity of the section. 

6. Draw the main central axes parallel to the auxiliary axes and determine 

the values of the main central moments of inertia of the section.  

7. Determine the axial moments of the section resistance relative to the 

main central axes. 

 

Table for task 3 

 

Nr 

Geometrical 

characteristic  

(I-beam, U-beam) 

Nr 

Geometrical 

characteristic  

 (I-beam, U-beam) 

1 12 6 22 

2 14 7 24 

3 16 8 27 

4 18 9 30 

5 20 0 10 
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Figure for task 3 
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Figure for task 3 (contunied) 
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Example of solving the task  3 

Determination of axial moments of inertia of plane sections 

 

For the given section (Fig. 3.3) determine the position of the main central 

axes, the main central moments of inertia and the axial moments of resistance 

with respect to the main central axes, if I-beam is Nr 33. 

 

Solution 

 

The geometric characteristics of the specified rolling section are taken 

from the tables of assortment GOST 8239-89 (Annex 1). For I-beam Nr 33, 

indicate by 1. 
 

;mm3301h  ;mm1401 b  ;mm0,71 d  ;mm2,111 t  ;cm8,53
2

1 A  
 

;cm419
4

1 XI  .cm9840
4

1 YI  
 

Determine the geometric characteristics of the strip,  indicate them by 2. 

The strip dimensions  
 

;mm5,824330412  hb    .mm33012  ha  
 

The cross-sectional area of the strip is 
 

.cm2723325,8
2

222  abA  
 

Axial moments of strip inertia are  
 

;cm1544
12

25,833

12

4
33

22
2 







ba
I X  

 

.cm24706
12

3325,8

12

4
33

22
2 







ab
IY  

 

Draw the section at scale (see Fig. 3.3). 

The coordinates of the center of gravity of the section in the coordinate 

system 11 YX  are: 
 

0Cx ,   as axis Y  is the axis of symmetry; 
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,

21

2211

AA

yAyA

A

S
y

CCX
C









 

 

where 1Cy  is the distance (coordinate) from the center of gravity of the area 

of the first figure of section (I-beam) to the axis 1X , 01 Cy ; 

 2Cy  is the distance (coordinate) from the center of gravity of the area 

of the second figure of section (strip) to the axis 1X   
 

.mm25,111
2

5,82

2

140
2 Cy  

 

Substitute the value and obtain  
 

.mm9,92
2728,53

25,1112720





Cy  

 

Draw the principal central axes YX  through point C  (see Fig. 3.3). 

Determine the axial moments of inertia with respect to the principal 

central axes, i.e. the main central moments of inertia of the given section  
 

;cm34600247069840
4

21  YYY III  
 

    
2

22
2

11 835,129,9 AIAII XXX  
 

        .cm5980835,1272154429,98,53419
422

  
 

Determine the axial moments of resistance relatively to the principal 

central axes  
 

;cm367
29,16

5980 3

max


y

I
W

X
X

 

 

;cm2097
5,16

34600 3

max


x

I
W

Y
Y  

 

where maxx , maxy  are the coordinates of points of the given section, 

maximum distant from the axes X  and Y  

(see Fig. 3.3): 
 

;cm29,16729,9max y     .cm5,16max x  
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Figure 3.3 
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4. SHEAR. TORSION 

Shear stress, strain and Hooke’s  law 

Shear is a type of deformation in which at any cross-section of the bar 

only shear (cutting) force Q  acts (Fig. 4.1 a). The shear deformation resulting 

in material fracture is shear. 

 
Figure 4.1 

 

We assume that tangent stresses occuring at the cross-section of the bar 

under shear is const , then the shearing force is 

 AQ ,      i.e.  stress  AQ . 

Condition of shearing strength  

  ss
A

Q
  , 

where   ss  is the allowable shear stress,     yess  35,0...25,0 . 

The shear deformation is determined by shear angle  . Absolute bar 

shear (Fig. 4.1 b)  – bb  , cc  . 

Hooke’s shear law  
,  G  

where G  is the shear modulus or modulus of elasticity of the second type, 

characterizing the material rigidity. 

The dependence between the elastic characteristics of the plastic material 

(steels) E , G ,   is 

 


12

E
G . 
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Torsion 

Torsion is a type of deformation in which only torque moment TRM  

occurs at any cross-section of the bar. 

Torsional deformations occur when a pair of forces M  is applied to the 

straight bar in planes perpendicular to the axis (Fig. 4.2). The moments of these 

pairs are called rotating (if the bar rotates), they are indicated T , and twisting 

(if the bar does not rotate), they are indicated M . 

The circular cross-section bar which operates for torsional deformation is 

called the shaft. The shafts of engines and machine tools or other metal 

structures are affected by torsion. The rods with the cross-sections of other 

shapes also operate for torsion. 
 

 
 

Figure 4.2 

 

The torque TRM  at any section of the shaft cross-section is equal to the 

algebraic sum of the external twisting moments applied to the bar on the right 

or left of the section. 

To calculate the bar for tensile strength, as well as for tensile 

(compression) it is necessary to determine the dangerous section. If the 

dimensions of the cross-section at bar length are constant, the sections at which 

torques are maximum are dangerous. The torque diagram is the graph 

showing the law of torque change along the bar length. It is drawn the same 

way as the diagram of longitudinal forces. 

Under bar torsion, only tangential stresses occur in its cross sections. For 

the circular rod (shaft), the tangent stresses are determined by the formula 
 

, 

P

TR

I

М
 

 

where   is the distance from the center (pole) of the round section to the 

point at which the tangent stresses are determined (Fig. 4.3 a). 
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The diagram of the tangential (shear) stress distribution by the height of 

the cross-section is shown in Fig. 4.3 b. The shear stresses vary along the radius 

of section by linear law. 

 

 
 

Figure 4.3 

 

The tangential (shear) stresses are zero at the center of the section, 0  

and reach the maximum value at the points of the contour, 2d . At the 

intermediate points of section, the tangent stresses depend linearly on the 

distance   (see Fig. 4.3 b). As 
 

 
P

P
W

d

I


2
,           then       

P

TR

W

M
max . 

 

Condition of tensile strength. The strength of the shaft is ensured when 

the maximum tangential (shear) stress does not exceed the allowable one 
 

  

P

TR

W

М
max , 

 

where    is the allowable shear stress, determined depending on the  

allowable tensile stress   P : 
 

for steels         P 6,0...55,0 ; 
 

for cast iron         P 2,1...1 . 
 

Three types of tasks are solved by the torsional strength of the shaft. 
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Сhoosing the cross-section (design calculation), that is, determining its 

required sizes based on the polar moment of resistance 
 

 TRP MW  , for round section 3 16 PWd  . 
 

Validating calculation (testing calculation) is reduced to the comparison 

of actual (real) and allowable shear stresses by the formula 
 

  

P

TR

W

М
max . 

 

Determination of maximum torque  
 

    PTR WM   . 
 

Torsional deformation is characterized by the rotation of the cross-

sections of the shaft relativly to each other by certain angle   – the twist 

angle. For a shaft of constant rigidity   PIG    of length l  with constant value of 

torque TRM  the twist angle (full twisting angle) is determined by the formulas: 

 rad

P

TR

IG

lМ




 ;                     .degree

180












P

TR

IG

lМ
 

 

These relations are called Hooke’s shear law. For the cylindrical bar 

having several sections that differ in cross-section size, torque value, material, 

the full twist angle is equal to the algebraic sum of the twist angles of the 

separate sections  i . 

The full twist angle of the shaft does not completely characterize the 

deformation of the torsion, since it depends on the length of the shaft. The 

rigidity of the shaft is estimated by the relative twist angle, which is 

determined by the formulas 
 

l  ;                 ;
m

rad














P

TR

IG

М
             .

m

degree180


















P

TR

IG

М
 

 

Condition of rigidity of the shaft at rotation. The rigidity of the shaft is 

sufficient when the maximum relative twist angle does not exceed its allowable 

value 

 


 






180

P

TR

IG

М
, 

 

where    is the allowable angle of the shaft rotation. 

Using rigidity conditions (as well as strength conditions), three types of 

structural calculations: design, validation and determination of allowable 

load are carried out. 
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Task 4 

Shaft calculation for torsion 
 

On the shaft (Fig. for task 4, Table for task 4) 5 pulleys are mounted, 

which transmit powers 1P , 2P , 3P , 4P , 0P . From the condition of torsional 

strength determine the diameters of individual sections of the shaft. Check shaft 

for rigidity at allowable angle of rotation   .deg/m2  Shaft rotation 

frequency  ; distance m4,0a ; material – steel 45;   60  MPa; 
4

108 G  MPa. 
 

Plan of solving the task: 
 

1. Determine the power on the pulley 0P  neglecting the friction in the 

bearings. 

2. Find the torques transmitted by each pulley.  

3. Determine the torques TRM  on each segment of the shaft. Draw the 

diagram of torques.  

4. From the condition of torsional strength, determine the diameters of the 

shaft in its certain segments. Round off stepped shaft the obtained values  to a  

size  multiple of 2 or 5. 

5. Draw the sketch of the (indicating the diameters and lengths of 

individual sections).  

6. Determine the values of the torsion angles on the certain segments and 

draw a diagram of the torsion angles for the whole shaft, taking one of the ends 

of the shaft or the section where it 0P  acts, as a fixed section.  

7. Check the shaft for rigidity. 
 

Table for task  4 
 

Nr kW,1P  kW,2P  kW,3P  kW,4P  srad,  

1 11 12 13 14 10 

2 12 13 14 11 20 

3 13 14 11 12 30 

4 14 13 12 11 40 

5 11 12 13 14 50 

6 12 13 14 11 60 

7 13 14 11 12 70 

8 14 11 12 13 80 

9 16 17 13 15 90 

0 15 16 14 13 100 
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Figure for task 4 
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Figure for task 4 (contunied) 
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Example of solving the task 4 

Shaft calculation for torsion 

 

On the shaft (Fig. 4.4 a) 5 pulleys are mounted, which transmit powers 

;kW101 P  ;kW502 P  ;kW483 P  .kW804 P  From the condition of 

torsional strength, determine the diameters of individual sections of the shaft. 

Check shaft for rigidity at allowable angle of rotation   .deg/m2  Shaft 

rotation frequency 1
s40


 ; distance m4,0a ; material – steel 45; 

  50  MPa; 4
108 G  MPa. 

 

 

Solution 

 

The value of power 0P  is determined on the basis equation of the power 

balance, written taking into account the direction of action of the concentrated 

moments (friction in the supports is neglected), 

 

043210  PPPPP , 

 

where 
 

.kW288048501043210  PPPPP  

 

The twisting moments іМ  transmitted by each pulley are determined by 

the formula 
 



i
і

P
М  ,         where    і=0, 1, 2, 3, 4. 

 

Substituting the value, obtain 
 

;kNm7,0
40

28
0 М     ;kNm25,0

40

10
1 М     ;kNm25,1

40

50
2 М  

 

;kNm2,1
40

48
3 M      .kNm0,2

40

80
4 M  

 

Torques TRiМ 4)3,2,,1( i  at each section of the shaft are determined 

considering the left and right sections (Fig. 4.4 b): 
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;kNm7,001  MM TR  

 

;kNm45,025,07,0102  MMM TR  

 

kNm;0,243  MM TR  

 

kNm.8,02,10,2344  MMM TR  

 

Based on the obtained values, draw torque diagram (Fig. 4.4 c). 

From the tensile strength condition /    PTR WМmax  taking into 

account that the moment of resistance of the round cross-section 
33

2,016 ddW P   , we determine the diameter of the shaft at each section 

by the formula 
 

3

][2,0 

TRi
i

M
d  . 

 

Substituting the values of torques, obtain 
 

;m100,41

10502,0

7,0 3
3

31






d  

 

;m104,35

10502,0

45,0 3
3

32






d  

 

;m108,42

10502,0

8,0 3
3

33






d  

 

.m101,58

10502,0

0,2 3
3

34






d  

 

Accept the diameters of the shaft sections 
 

;mm421 dd  ;mm362 dd  ;mm443 dd  .mm584 dd  
 

According to the obtained values, draw a sketch of the shaft (Fig. 4.4 d). 
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The angles of twisting of individual sections of the shaft are determined 

by the formula 

 

Pi

iTRi
i

IG

lМ




 ;   і=1, 2, 3, 4, 

 

where il  is the length of the shaft section; 

G  is shear modulus, MPa101,8
4

G ; 

PiI  is the polar moment of inertia of the cross-section of the shaft 

4
4

1,0
32

id
id

Pi d
d

I 





. 

 

Substituting the value, obtain 
 

rad;1010,1

)042,0(1,0101,8

4,07,0 2

471







  

 

;rad1098,1

)036,0(1,0101,8

6,045,0 2

472







  

 

;rad1010,1

)044,0(1,0101,8

4,08,0 2

473







  

 

 
.rad1009,1

058,01,0101,8

5,00,2 2

474







  

 

Determine the angles of the shaft cross-sections twist B , C , D , E  

relatively to the section A  
 

;rad1010,1
2

1


  BA  

 

  ;rad1008,31098,110,1
22

2


  BAСА  

 

  ;rad1098,11010,108,3
22

3


  CADA  

 

  .rad1089,01009,198,1
22

4


  DAЕА  

 



 53 

 
 

Figure 4.4 
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Draw the diagram of twist angles of the shaft (Fig. 4.4 e), accepting 

section A  for the beginning of reference. 

Test of the shaft rigidity is carried out under the rigidity condition 
 

  max , 

 

where max  is the maximum relative twist angle of the shaft. 

Determine the relative twist angles on each section of the shaft by 

formula 
 

i

i
i

l


  ,  where   4.3,2,,1i  

 

Substituting the value, obtain 
 

;
m

rad
1075,2

4,0

1010,1 2
2

1







  

 

;
m

rad
1030,3

6,0

1098,1 2
2

2







  

 

;
m

rad
1075,2

4,0

1010,1 2
2

3







  

 

.
m

rad
101,2

5,0

1009,1 2
2

4







  

 

Obtain 
 

.
m

rad
2][

m

rad
89,1

14,3

180
1030,3

180 2
2max 











  

 

Hence, the rigidity condition is ensured. 
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5. COMPLEX STRESSED STATE  

 

Through any point of the deformed massive body, it is possible to draw 

many differently oriented cutting planes (platforms). The set of normal and 

tangential (shear) stresses occurring on planes crossing the given point 

characterize the stressed state of the body at that point. 

Normal stresses   are considered to be positive if they stretch the 

material of the element. Tangential (shear) stresses are positive when they form 

a pair of forces relatively to the center of the element that tends to rotate it 

clockwise (Fig. 5.1). 
 

 
 

Figure 5.1 
 

The tangential (shear) stresses at two mutually perpendicular planes are 

equal but opposite in sign. (Law of paired relationship of tangent stresses). 

Three mutually perpendicular planes can be drawn through each point of 

the body at which the tangential (shear) stresses are zero. Such planes are called 

the main planes, and the stresses acting on them are the main stresses. They 

are indicated 321 ,,  , besides 321   . The main stresses at the given 

point in massive body reach extreme values for the given stress state. 

There are three types of stress state (Fig. 5.2-5.4). 

1. Linear 
 

\  
 

Figure 5.2 
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2. Plane 

 

 
 

Figure 5.3 

 

 

3. Volume 

 

 
 

Figure 5.4 

 

Then we consider the linear and flat stressed states. 

Most of the tasks of complex stressed state are to determine the principal 

stresses by the known normal and tangent stresses at the planes. 

The principal stresses are the extreme (maximum and minimum) stresses 

at which the strength of the structural material can be evaluated. 

In the general case, for plane stressed state normal  ,   and tangential 

(shear)     stresses acting on mutually perpendicular sites are known. 

We assume that   . Therefore, the calculation scheme can be taken as 

shown in Fig. 5.5. 
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Figure 5.5 

 

 

The value and direction of the principal stresses are determined by the 

formulas 

 

 








22
4

2

1
max

min
  ; 

 












2
2atg , 

 

where max  is maximum main stress, 1max    (Fig. 5.3 a, b),  

2max    (Fig. 5.3 c); 

 min  is minimum main stress, 2min    (Fig. 5.3 а), 

3min    (Fig. 5.3 b, c); 

   is the angle to which the vector   must be rotated in order to  

determine the direction of greater main stress (if the angle is 

positive, then you need to turn counterclockwise). 

 

The values of the main stresses and their directions can be determined 

graphically using the Mohr’s circle. This method is described in the example 

of solving of task 5. 
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Task 5 

Analysis of stressed state 
 

For a given element (Fig. for task 5, Table for task 5) determine: the 

position of the main planes (graphically and analytically), value and direction of 

the main stresses, linear deformations in the direction of all main stresses, 

relative change in volume, specific potential deformation energy. Check the 

element for strength according to the strength theories appropriate for the given 

materials.  
 

Plan of solving the task: 
 

1. Determine the values and directions of  ,  ,  ,   (indeces V  

and H  on the model stand for vertical and horizontal, replace them by   and 

  according to the value and with symbol  ),  draw the given element. 

2. Determine the values and direction of the main stresses graphically. In 

the middle of the given element draw the main element limited by the main 

planes.  

3. Determine the value max  and on the same figure, draw the position of 

the plane where max acts. 

4. Validate the obtained results analytically.  

5. Determine the relative deformations in the directions of all three main 

stresses.  

6. Determine the relative volume change and specific potential 

deformation energy.  

7. Determine the calculated stress according to one of the theories of 

strength relevant to the given material (at the student’s choice) and compare it 

with the allowable, taking the margin of safety 5,1Tn ; 5,2Мn . 
 

Table for task 5 
 

Nr 2
mMN,V  2

mMN,H  2
mMN,  

Material 

Cast iron Steel 

1 100 50 10 Сi 12-28 St. 1 

2 0 60 20 Сi 15-32 St. 2 

3 20 0 30 Сi 18-36 St. 3 

4 30 80 40 Сi 21-40 St. 4 

5 40 90 50 Сi 24-44 St. 5 

6 50 0 25 Сi 28-48 St. 6 

7 60 10 15 Сi 32-52 St. 1 

8 0 20 45 Сi 35-56 St. 2 

9 80 30 35 Сi 38-60 St. 3 

0 90 40 10 Сi 18-36 St. 4 
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Figure for task 5 
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Example of solving the task 5 

Analysis of plane stressed state 

 

;0V  MPa60H  act on the element shown in Fig. 5.6. Complete 

the following: 

 

 

Figure 5.6 

 

Determine the values and directions  ,  ,  ,   (indices C and D in 

the diagram mean vertical and horizontal, replace them with   and   in 

accordance with the magnitude and sign  ), draw the element. 

Determine graphically the values and direction of the main stresses. In the 

middle of the given element, draw the main element, restricted by the main 

planes. 

Determine the value max  and in the same figure to show the position of 

the plane on which max  acts. 

Analyze the obtained results analytically. 

Determine the relative deformations in the directions of all three main 

stresses. 

Determine the relative change in volume and the specific potential 

deformation energy. 

Determine the calculation stresses according to one of the corresponding 

given material of strength theories for materials steel St.3 and cast iron Ci 18-

36. Compare their values with the allowable stresses by taking the strength 

coefficients 5,1Tn ; 5,2Мn . 
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Solution 

Replace the indices of stresses acting on the element according to the data 

and calculation scheme (Fig. 5.7 a) 
 

;MPa60 H      ;0 V       .    

 

On the plane   the tangent stresses are .MPa100  According to the 

law of paired relationship of tangent stresses  
 

MPa100   . 

 

Draw out the rectangular coordinate system  ,  . Axis   is parallel to 

the greater normal stress   (Fig. 5.7 b). In this coordinate system, we define 

points that correspond to the stresses on the planes   and  , these are points 

D  and D . Since these points reflect the stresses acting on two mutually 

perpendicular planes, the segment  DD  is the diameter of the stress circle. 

The point of intersection of this diameter with the axis   forms the center of 

the circle – point C . Points A  and B  at which the circle crosses axis    0  

determine the values of the main normal stresses: 
 

.MPa75      ;MPa135 31  ОВОА   

 

The stress direction 1  is determined by a vector DB  , ;0   .02   

The angle between normal stresses   and 1  and is 
37 . Minus 

sign indicates that it is set off from the axis   clockwise direction. 

The maximum tangential (shear) stress max  is equal to the radius of 

Mohr’s circle 
 

.MPa105max  СТ  

 

The angle between stress   and greater main stress is determined by the 

formula 
 

33,3
060

10022
2 
















tg ; 

 

  .3733,3
2

1
 arctg  
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The maximum tangential (shear) stress is equal 

 

 
.MPa105

2

75135

2

31
max 








  

 

The vectors of stresses 1 , 3 , max  and the planes on which they act are 

shown in Fig. 5.7 a. 

The relative deformations in the direction of the main stresses for the steel 

element are determined by the formulas: 

 

    ;108,78]753,0135[
102

1
][

1 5

53211





 
E

 

 

    ;1000,9]751353,00[
102

1
][

1 5

53122





 
E

 

 

  .108,57]1353,075[
102

1
][

1 5

52133





 
E

 

 

Determine the relative change in volume 

 

  .1012108,5700,98,78
55

321


   

 

Determine the specific potential energy of deformation of the steel 

element 

 

   332211
2

1
U  

 

  .mMNm109,7410758,5701358,78
2

1 335 
  

 

Determine the allowable stresses: 

a) for steel St.3 

 

,MPa147
5,1

220
][ 

Т

Т

n


  

 

where T  is the yield strength for steel Art.3; MPa220T ; 
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Figure 5.7 
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b) for cast iron Ci 18-36:  

 

MPa72
5,2

180
][ 

M

MP
P

n


 ; 

 

MPa280
5,2

700
][ 

M

MC
C

n


 , 

 

where MP , MC  are the tensile and compression strengths for brittle 

material, for Ci 18-36 ,MPa180MP  

MPa700MC . 

For steel St.3, which is a plastic material, the strength test can be 

performed according to the third or fourth theory of strength. According to the 

third theory of strength 

 

  ;MPa21075135313   P  

 

  .MPa147MPa2103   P  

 

The strength condition is not ensured. 

For Ci 18-36 cast iron, which is brittle material, we apply the theory of 

Mohr strength, since the investigated stress state of the material is between 

simple tension and simple compression 

 

MPa;154)75(257,013531   P  

 

MPa72][  MPa154  PP  , 

 

where 

 

.257,0
280

72

][

][


C

P




  

 

The strength condition for cast iron is also not ensured.  
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6. STRAIGHT TRANSVERSE BENDING 
 

Straight transverse bending. Internal force factors. 

Sign convention of bending 

Bending is the bar resistance state in which bending or change of the 

curvature of its axis occurs. The bar that works in bending is called the beam. 

Many structural elements work for bending: axes of railway cars, shafts, 

overlapping panels, span bridges, crane arrows, flat car springs, etc. 

Plane or straight bending is the case of bending in which the beam axis 

is curved in the direction of external forces and loads, i.e. in the same plane 

with external forces. 

Straight transverse bending is a type of deformation in which the shear 

(cutting) force Q  and bending moment BNM  occur in the cross-sections of 

the beam (Fig. 6.1 a). If the shear force does not occur, then it is the pure 

bending (Fig. 6.1 b). 
 

 
Figure 6.1 

 

Shear (cutting) force at any cross-section of the beam is equal to the 

algebraic sum of the projections of all external forces acting on the right or left 

of the section on the axis perpendicular to the axis of the beam, i.e. 
 

 iYFQ . 
 

Bending moment at any cross-section of the beam is equal to the – 

algebraic sum of the moments of all external forces acting to the right or left of 

the section relatively to the center of gravity of the section. 
 

  iBN FMM . 
 

For the beam in equilibrium under the action of plane system of forces 

perpendicular to the axis (i.e. the system of parallel forces), the algebraic sum 

of all external forces is zero. Therefore, the sum of the external forces acting 

on the beam to the left of the section is numerically equal to the sum of the 

forces acting on the beam to the right of the intersection. 



 66 

Statics signs rules are unsuitable for determining the signs of the cross-

section force Q  and bending moment BNM . 

Sign rule of bending can be represented graphically – shear (cutting) 

force (Fig. 6.2) and bending moment (Fig. 6.3). 

If the sum of external forces acting to the left of the section gives the 

equilibrium pointing upwards, then the shear (cutting) force in the section is 

considered to be positive. Conversely: for the part of the beam to the right of the 

section, the signs of the lateral force will be opposite (see Fig. 6.2). Or the 

lateral forces are positive if they tend to rotate the beam element clockwise. 

 
 

Figure 6.2 
 

If the external load tends to bend the beam by the convexity downwards 

(the lower fibers are stretched), the bending moment in the section is 

considered positive and vice versa (see Fig. 6.3). 
 

 
 

Figure 6.3 
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Using these rules, one should imagine the section of the beam rigidly 

fixed, and the links rejected and replaced by reactions. 

Statics sign rules are used to determine support reactions; to determine the 

signs of bending moment and shear (cutting) force the rules of strength of 

materials are applied. 

All forces, active and reactive are the beam loads. 

Simplified representation of the real support elements, that is, their 

schematization, which is used to construct the calculation schemes of beams in 

plane bending state, makes it possible to distinguish three main types of 

supports: hinged-movable, hinged-fixed and clamping (rigid fastening). Each 

of them is model ed in the form of rods (bars) (Fig. 6.4). 
 

 
 

Figure 6.4. Schemes of beam supports: 

a) hinged-movable; b) hinged-fixed; c) clamping  

 

Differential dependencies at straight transverse bending 

There are differential dependences between bending moment, shear 

(cutting) force, and intensity of the distributed load, on which the Zhuravsky 

theorem is based: the shear (cutting) force is equal to the first derivative from 

the bending moment by the abscissa of the beam section. 



 68 

Differential dependences between force factors under bending 
 

 
 xQ

dx

xdM
 ;            

   
 .

2

2

xq
dx

xdQ

dx

xMd
  

 

The second derivative of bending moment or the first derivative from 

shear (cutting) force along abscissa of the intersection of the beam is equal to 

the intensity of the distributed load. 

 

Diagrams of shear (cutting) forces and bending moment  

To illustrate the distribution of the shear (cutting) forces and bending 

moments along the beam axis, the diagrams allowing to determine the possible 

dangerous section of the beam, to determine the value of shear (cutting) force 

and bending moment at this section are drawn. There are two methods of 

drawing the diagrams for shear (cutting) forces and bending moments. 

The first method. Analytical expressions of shear forces and bending 

moments for each segment as the function of the current coordinate x  of the 

cross-section are recorded 
 

 xfQ 1 ,                   xfM BN 2 . 
 

Then the diarams are drawn according to the obtained results. 

The second method. Diagrams are drawn according to the characteristic 

points and values of shear (cutting) forces and bending moments at the sections 

boundaries. Using this method, in most cases you can omit the addition of shear 

(cutting) forces and bending moments equations. 

The construction of the diagrams of internal force factors under bending 

will be shown in the examples. 

Example 1 (Fig. 6.5). 

Determine the support beam reactions (Fig. 6.5 а) 
 

  0CM ;     0 bFbaR B , 
 

from which   
ba

bF
RB




 ; 

 

  0BM ;     0aFbaRM CB , 
 

from which   
ba

aF
RC




 . 

Vlidate the correctness of the support beam reactions determination  
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 0

ba

aF
F

ba

bF
RFRY CB . 

 

The support beam reactions are determined correctly.  
 

 
 

Figure 6.5 
 

Use the first method of diagram drawing. Divide the beam into sections. 

For each section down functions  xQ ,  xM BN , as well as the boundaries 

within which these functions are true (Fig. 6.5 a). 
 

Section I,   ax 0  (left side): 

 
ba

bF
RxQ B




 ;       

ba

bF
aQQ




0 ; 

 

  x
ba

bF
xRxM BBN 




 ;    00 BNM ;         

ba

abF
aM BN




 . 

 

Section ІІ,   bx 0  (right side): 
 

 
ba

aF
RxQ C




 ;               

ba

aF
bQQ




0 ; 

  x
ba

aF
xRxM CBN 




 ;        00 BNM ;          

ba

abF
bM BN




 . 

Based on the obtained results, draw the diagrams Q  and BNM  

(Fig. 6.5 b, c). 



 70 

From the diagram BNM  (see Fig. 6.5 c) determine the dangerous section, 

i.e. the section in which the maximum bending moment acts – it is section K  

.max
ba

abF
M BN




  

 

Determine the values of the shear (cutting) forces using differential 

dependencies (for validation): 

- on the first section  
 

 
B

BNBN
R

a

M
Qtg

dx

xdM


max
11 ; 

 

- on the second section  
 

 
C

BNBN
R

b

M
Qtg

dx

xdM


max
22 . 

 

Example 2 (Fig. 6.6). Use the second method of the diagram Q , BNM  

construction. 
 

 
Figure 6.6 

 

Analytically determine the value of extreme moment, for this case it is 

dangerous beam section. 

Coordinate 5,3270  qRx B  m. 

  25,1225,325,372
22

000  xqxRxM BBN  kNm. 
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I. Control of the correctness of drawing the diagrams of shear 

(cutting) forces and bending moments according to the calculation scheme 

of the beam 
For shear (cutting) force diagram: 

1. In the beam segment loaded by evenly distributed load q, the shear 

(cutting) force diagram is drawn by straight line inclined to the axis of the 

beam. 

2. In the beam segment free from q, the shear (cutting) force diagram is 

drawn by straight line parallel to the beam axis. 

3. Under the intersection of the beam where concentrated force is applied, 

there is a jump on the shear forces (cutting) diagram, which is equal to the 

magnitude of applied force. 

4. At the section, where the concentrated pair of forces (concentrated 

moment) is applied, the diagram of shear (cutting) forces does not change its 

value. 

For bending moment diagram: 

1. In the beam segment loaded by evenly distributed load q, the diagram 

of bending moment is represented by quadratic parabola. 

2. In the beam segment free from q, the diagram of bending moment is 

drawn as a straight line inclined to the axis of the beam. 

3. The bending moment reaches extreme values at the sections where the 

shear forces are zero. 

4. Under the section of the beam, where concentrated pair of forces 

(concentrated moment) is applied, there is a jump in the diagram of bending 

moments, which is equal to the magnitude of the concentrated moment. 

5. On the beam segment where the shear (cutting)  force is zero, the beam 

undergoes pure bending, the diagram of bending moments is straight line 

parallel to the axis of the beam. 
 

II. Verification of the diagram of bending moments using bending 

differential (by diagram Q ). 

The cross-sectional diagram verification using dependency 
 

 
 xQ

dx

xdM BN
 , 

is carried out taking into account that the diagram Q  is graphical representation 

of the derivative of the bending moment BNM : 

1. The bending moment function  xM BN  increases when the derivative 

of the function, i.e.  xQ  is positive. 

2. The bending moment function  xM BN  decreases when the derivative 

of the function, i.e.  xQ , is negative. 
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3. The bending moment function  xM BN  reaches extreme value at the 

point where its derivative  xQ  is zero. The function at this section must be 

investigated for extremum. 

Bending stress. Strength calculation 

The bending moment is the destructive internal force factor in direct 

transverse (shear) bending. From the action of the bending moment in the cross-

section of the beam the normal stresses occur. They are determined by the 

formula 

,y
I

M

X

BN
  

where y  is the distance (coordinate) from axis X  (neutral axis) to points of 

the cross-section in which the normal stress is determined 

(Fig. 6.7 a). 

Analyzing this formula, we obtain the diagram of the normal stresses 

distribution by the section height (Fig. 6.7b). 

Maximum normal stresses and bending strength condition under 

normal stresses 

  

X

BN

X

BN

W

M
y

I

M max.
max

max.
max , 

where max.BNM  is the maximum bending moment, determined from the 

diagram BNM ; 

 XW  is axial moment of cross-section resistance (see topic 3).  
 

 
Figure 6.7 
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In the cross-sections of the beam under transverse bending deformation, 

not only normal but also tangential stresses occur as the result of shear (cutting) 

force Q  action, which cause the shear deformation. According to the law of 

paired relationship, the same tangential stresses occur in the longitudinal 

sections parallel to the neutral layer. The presence of tangential (shear) stresses 

in the longitudinal sections under shear bending is confirmed by the occurence 

of longitudinal cracks in the wooden beams. 

The values of tangential (shear) stresses are determined by 

D.I. Zhuravsky formula 
 

 

  X

Xy

Iyb

ySQ




 , 

 

where   is tangential (shear) stress at the considered point of cross-section; 

yQ  is the absolute value of the shear (cutting) force in the considered 

section; 

 yS X  is the absolute value of the static moment of section, cut off at the 

level of the point under consideration;  

 yb  is the width of the beam section at the level where tangential 

stresses (shear) are determined; 

XI  is the moment of inertia of the entire section with respect to its 

central axis X . 
 

The absolute value of the static moment of the section part cut off at the 

level of the considered point is determined by the formula 
 

  *yAyS shX  , 
 

here shA  is the area of the cut off part of the section; 

 *y  is the distance (coordinate) of the center of gravity BС  of the cut 

off part area relatively to the central axis. 
 

For the cross-section, the values yQ  and XI  are constant values. 

Depending on the shape of the cross-section of the bar, the width  yb  of the 

section may be variable (in the presence of the cross-section the function  yb  

is known). In contrast to yQ  and XI , the value of the static moment  yS X  of 

the cut off part of the section has  variable value that depends on *y . 

For the rectangular beam with sides b  and h  (Fig. 6.8 a) 

- the area of the cut off section at the level of the layer under 

consideration of fibers nm  
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 y

h
bAsh

2
; 

- the static moment of this area (i.e. at  nm   level) 
 











































2
2

4222

1

2
y

hb
y

h
yy

h
bS adce . 

 

The axial moment of inertia of rectangular cross-section 
 

12

3
hb

I X


 . 

 
Figure 6.8 

 

Define the law of distribution of tangential (shear) stresses for the 

rectangular cross-section beam. Do this for the fiber layer at mn  level 

(see Fig. 6.8a) 
 

     
;

46

12

42

3

22

3

22

hb

yhQ

hbb

yhbQ

Ib

SQ

X

sh














  

 

when 2hy  , then 0 ; 

when 0y , then 
2

3

2

3

2

3
max 




A

Q

hb

Q
, 

 

where   are tangential (shear) stresses. 
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The diagram of tangential (shear) stresses at the height of  rectangular 

section is indicated by quadratic parabola (Fig. 6.8 b). That is, in the upper and 

lower layers of fibers the tangential (shear) stresses are zero, and in the fibers of 

the neutral layer they reach the maximum value. 

Thus, the tangential (shear) stresses in the beams correspond to shear 

deformation, and as the result plane cross-sections in direct transverse bending 

do not remain plane, as in pure bending, but distorted. 

Most bending beams are calculated only under normal stresses. Three 

types of beams are verified for tangential stresses: 

1) wooden beams, because wood is not good for chipping; 

2) narrow beams, for example, I-beams, since the maximum tangential 

(shear) stresses are inversely proportional to the width of the neutral layer; 

3) short beams, because with relatively small bending moment and 

normal stresses such beams can produce considerable shear forces and tangent 

stresses. 

Strength conditions under bending according to shear stresses 
 

 

 
],[

maxmax

max  





X

Xy

Iyb

ySQ
 

 

where maxQ  is the maximum shear (cutting) force, determined from the 

diagram Q ; 

 
max

yS X  is the maximum static moment of the cross-sectional 

area  crossing; 

    is allowable  shear  stress,      5,0 . 
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Task 6 

Drawing the diagrams of shear (cutting) force and bending moment  

for cantilever beam 

 

For given cantilever beam (Fig. for task 6, Table for task 6) draw the 

diagram of shear (cutting) forces and bending moments, if m3a . 

 

Plan of solving the task: 

 

1. Write down the functions of shear (cutting) forces and bending 

moments cantilever sections. 

2. Diagram shear (cutting) forces and bending moments. 

 

 

Table for task 6 

 

Nr mkN,q  kN,F  kNm,М  m,b  m,с  

1 2 aq 5,1  2
5,0 aq   a

3

2
 a

3

1
 

2 3 aq   2
aq   a

3

1
 a

3

2
 

3 6 aq 5,0  2
2,1 aq   a

3

1
 a

3

1
 

4 2 aq   2
aq   a

3

2
 a

3

2
 

5 4 aq 2  2
5,1 aq   a

3

2
 a

3

1
 

6 6 aq   2
aq   a

3

1
 a

3

2
 

7 2 aq 5,0  2
5,1 aq   a

3

1
 a

3

1
 

8 5 aq 5,1  2
aq   a

3

2
 a

3

2
 

9 6 aq   2
aq   a

3

2
 a

3

1
 

0 3 aq 2  2
2,0 aq   a

3

1
 a

3

2
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Figure for task 6 
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Figure for task 6 (contunied) 
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Example of solving the task 6 

Drawing the diagrams of shear (cutting) force and bending moment  

for cantilever beam 

 

For given cantilever beam (Fig. 6.9 a) diagram shear (cutting) forces and 

bending moment. 
 

Solution 
 

Divide the beam into three sections. The boundaries of the sections are 

the sections where the concentrated forces and bending moments are applied 

and the sections where the distributed load begins and ends. 

In direct transverse bending, these internal force factors, such as bending 

moment  xM BN  and shear (cutting) force  xQ , occur in the cross-sections. 

To determine them, we use the method of sections. 

At each segment of the beam (for the cantilever beam we consider the 

segments from the free end) make imaginative sections, reject the left part of 

the beam and consider the equilibrium of the right one. The forces of interaction 

of beam parts are replaced by internal forces  xQ  and  xM BN  (Fig. 6.9b). We 

define them as functions of the current coordinate x  based on equilibrium 

equations   0Y ;   00M , using the sign rule. 

Determine the lateral forces and bending moments at each segment of the 

cantilever beam 
 

Section ,   m3,10  x  (right side): 
 

  ;kN19 FxQ  
 

  ;xFxM BN   
 

  ;00 BNM  
 

  .kNm7,243,1193,1 BNM  
 

Section ,   m2,3m3,1  x  (right side): 
 

    ;3,1 xqFxQ  
 

  ;kN193,1 Q  
 

    kN;7,53,12,313192,3 Q  
 

;
2

)3,1(
)(

2



x

qxFxM BN  
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;kNm7,243,119)3,1( BNM  
 

.kNm3,37
2

)3,12,3(
132,319)2,3(

2




BNM  

 

Evaluate function  xM BN  for extremum 
 

;0)3,1()(
)(

 xqFxQ
dx

xdM
 

 

;m76,2
13

133,1193,1








q

qF
x  

 

then 
 

 
.kNm6,38

2

3,176,2
1376,219)76,2(

2

max 


 BNBN MM  

 

It should be noted that the necessary condition for the extremum of 

function  xM BN  at the segment is zero value on this segment  xQ . 
 

Section ,   m8,4m2,3  х  (right side): 
 

   ;3,1 xqFxQ  
 

    ;kN7,53,12,313192,3 Q  
 

    ;kN5,263,18,413198,4 Q  
 

 
;

2

3,1
)(

2

M
x

qxFxM BN 


  

 

 
kNm;3,2116

2

3,12,3
132,319)2,3(

2




BNM  

 

 
kNm.43,416

2

3,18,4
138,419)8,4(

2




BNM  

 

Based on the obtained results, draw the diagrams Q  and BNM  (Fig. 

6.9 c, d). The diagram of bending moments is draw from the side of stretched 

fibers, that is, the positive values of bending moments are placed down from the 

axis and the negative ones are up. 
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Figure 6.9 



 82 

Task 7 

 

Diagraming of shear (cutting) force and bending moment  

for simply supported beam 

 

For the given steel beam (Fig. for task 7, Table for task 7) diagram shear 

(cutting) forces and bending moments. 

 

Plan of solving the task: 

 

1. Determine the support reactions, write down the functions of shear 

(cutting) forces and bending moments on the beam sections. 

2. Diagram shear (cutting) forces and bending moments. 

 

 

Table for task 7 

 

Nr mkN,q  kN,F  kNm,М  m,a  Nr mkN,q  kN,F  kNm,М  m,a  

1 4 6 8 3 6 3 3 7 3 

2 5 7 9 2 7 2 2 4 5 

3 3 3 5 4 8 3 4 5 4 

4 2 4 6 5 9 5 8 7 3 

5 3 5 4 4 0 4 9 8 2 
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Figure for task 7 
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Figure for task 7 (contunied) 
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Task 8 

Strength calculation under the bending of beams 
 

For the given steel beam (Fig. for task 8, Table for task 8), diagram the 

shear (cutting) forces and bending moments for strength under normal stresses; 

choose I-beam, round and rectangular cross-section (putting for a rectangular 

cross-section the relation of height to width 2bh ) sections of the beams and 

compare their weight. For I-beam, conduct the strength test by shear (cutting) 

stresses and complete test by the main stresses. Material of the beams is steel 

St.3;   MPa.160  
 

Plan of solving the task: 

1. Determine the support reactions, write down the functions of shear 

(cutting) forces and bending moments in the segments of the beam.  

2. Diagram the shear (cutting) forces and bending moment. Determine the 

cross-section in which the maximum bending moment and the maximum cross-

section force act.  

3. Choose the dimensions of the sections (I-beam, round, rectangular) 

from the condition of strength under normal stresses.  

4. Compare the weight of the beams, taking the weight of I-beam as 

100%.  

5. Test the strength of the selected I-beam for shear (cutting) stresses. 

6. Determine the section in which the maximum main stresses occur. 

Conduct the complete strength test of I-beam at the dangerous point of this 

section.  

Table for task 8 
 

Nr mkN,q  kN,F  kNm,М  m,a  Nr mkN,q  kN,F  kNm,М  m,a  

1 2 3 9 8 6 2 3,5 5,5 10 

2 3 4 5 7 7 3 4,5 7,5 8 

3 4 5 8 9 8 2 2,5 4,5 9 

4 1 2 4 10 9 5 6,5 9,5 8 

5 4 6 7 7 0 4 5,5 8,5 6 

 

Task 9 

Calculation for strength and determining displacements  

during the bending of beams  
 

For  the  given  beam (Fig. for task 8, Table for task 8) choose the I-beam. 

Determine the deflection of the beam in the section A  by the method of initial 

parameters. Verify the obtained result by the Mohr method. 
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Figure for task 8 
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Figure for task 8 (contunied) 
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Example of solving the task 7 and 8 

Diagraming of shear (cutting) force and bending moment  

for simply supported beam. 

Strength calculation under the bending of beams 

 

 

For the given steel beam (Fig. 6.10 a), diagram shear (cutting) forces and 

bending moments for strength under normal stresses; choose the I-beam, round 

and rectangular (putting for a rectangular cross-section the relation of height to 

width 2/ bh ) sections of the beams and compare their weight. For I-beam, 

conduct the strength test by shear (cutting) stresses and complete test by  the 

main stresses. Material of the beams is steel St.3;   MPa.160  
 

Solution 

Using the static equilibrium for the given beam scheme (Fig. 6.10 b), 

determine the vertical components of the forces reactions: 
 

  ;0BM       ;00,275,05,15,1  FqAM Y  

 

;kN7,15
5,1

0,21575,05,12016



YA  

 

  ;0AM        ;05,35,175,05,1  FBqM Y  

 

kN7,60
5,1

5,31575,05,12016



YB . 

 

Verification:  
 

  FBqAY YY 5,1 .0157,605,1207,15   
 

Conclusion: the resistance responses are determined correctly. 

Divide the beam into three sections. For each section write the functions 

of lateral force  xQ  and bending moment  xM BN . 
 

Section ,   m6,10  x  (left side): 
 

  ;0xQ       MxM BN  ; 
 

    .kNm166,10  BNBN MM  



 89 

Section ,   m1,3m6,1  х  (left side): 

 

   6,1 xqAxQ Y ; 

 

  ;kN7,156,1 Q  

 

    ;kN5,476,11,3207,151,3 Q  

 

   
 

2

6,1
6,1

2



x

qxAMxM YBN ; 

 

  ;kNm166,1 BNM  

 

      .kNm306,11,3106,11,37,15161,3
2

BNM  

 

Section ,  m0,20  x  (right side): 

 

  ;kN15 FxQ            ;kNm150,20  QQ  

 

  ;xFxM BN                               ;00 BNM    

 

  .kNm300,2150,2 BNM  

 

Draw the diagrams Q  and BNM  (Fig. 6.10 c, d). 

 

From the condition of bending strength by normal stresses 

 

  

0

max
max

W

M BN , 

 

determine the required axial moment of section resistance 

 

 
36

3
max

0 m10188
160

1030 








BNM
W , 

 

where maxBNM  is the maximum bending moment acting on the beam, 

kNm30max BNM . 
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For the given beam, choose the following cross-sections: 

a) I-beam Nr 20a (GOST 8239-56) 
 

;m10203
36

bW    ;m108,28
24

bA  
 

b) rectangular cross-section 
 

 
;

3

2

6

2

6

3
22

b
bbhb

W rc 





  

 

;m106,652101883
33 6 

b  

 

take  ,mm70b   then   ,mm140702 h  

respectively  ;m10981014070
246 

 hbArc  
 

c) round cross-section 

;32
3

dW rn    

 

;m1012414,31018832
33 6 

d  

 

take ,mm125d  then  
 

.m1012341012514,34
24622 

 dArn   
 

Compare the beams weight  

 

.26,4:39,3:1123:98:9,28::::  rnrcbrnrcb АААQQQ  

 

Test the strength of  I-beam. 

Taking into account that the dimensions of cross-section of the I-beam 

were determined only by the condition of strength at normal stresses, it is 

necessary to test the strength of the beam by tangential (shear) and principal 

stresses. 

From the assortment tables  for  I-beam Nr 20a  according  to 

GOST 8239-72 we take the necessary data for the calculation: 
 

;mm200bh    ;mm110bb    ;mm2,5bd    ;mm6,8bt  
 

;cm2030
4

XI   .cm114
3

XS  
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Figure 6.10 
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Draw the simplified section of I-beam (Fig. 6.11 a). 
 

 
 

Figure 6.11 

 

The dangerous section while testing for tensile strength is the section 

where the shear (cutting) force has maximum value  kN7,45max Q  (section 

at point B , see Fig. 6.10 c). 

The maximum tangential (shear) stresses occur at the section points that 

coincide with the neutral axis (axis X , see Fig. 6.11). 

Tensile strength condition 
 

],[
max

max  





Xb

X

Id

SQ
 

 

where    is allowable shear stress,  
 

    .MPa801605,05,0    

 

Substituting the values, obtain 

 

.MPa80][MPa4,49

102030102,5

10114107,45

83

63

max 










  

 

The dangerous section while testing for main stresses is the section where 

bending moment and shear (cutting) force acquire maximum values or are close 

to them (the section point B , ,kNm30max BNM  kN7,45max Q , 

see Fig. 6.10 c, d). 
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Determine the normal and tangential (shear) stress in the dangerous 

section of the I-beam (point K , Fig. 6.11 a): 

 

MPa135106,8
2

200

102030

1030

2

3

8

3
max































b
b

X

BN
t

h

I

M
 ; 

 

,MPa2,39

102030102,5

105,90107,45

83

63

















Xb

shХ

Id

SQ
  

 

where shХS  is the static moment of the section area of the I-beam shelf 

relatively to axis X , is determined by the formula 

 

 

222

bbbbbb
shshХ

thtbth
AS











 . 

 

Substituting the data, obtain 

 

  36
9

m105,90
2

106,82006,8110 






shX

S . 

 

Here shA  is the area of   I-beam shelf,  bbsh btA  . 

 

Draw the diagrams of normal and tangent stresses for the I-beam section 

(Fig. 6.11 a, b, c). 

Determine the calculated stress by the third theory of strength and test the 

strength of the material by the main stress: 

 

;MPa1562,3941354
2222

3   R  

 

  .MPa160MPa1563   R  

 

Therefore, the strength of the beam by the main and tangential (shear) 

stresses is ensured. 
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7. DETERMINATION OF DISPLACEMENTS UNDER BENDING  

 

Rods that undergo bending deformation have to be not only of adequate 

strength but also of sufficient rigidity. Under the action of external loads, the 

displacements of their sections must not exceed the allowable values 

established by the norms.  

To perform the calculation for rigidity in practice, it is necessary to be 

able to calculate the corresponding displacements of the sections. Consider the 

movement of sections when bending the cantilever beam (Fig. 7.1).  

 

 
 

Figure 7.1 

 

In Fig. 7.1 the symbols are used: OB  – undeformed axis; 1OB  – bent axis 

of the beam; A  – slope of the elastic curve A ; Ay  – linear displacement of the 

section; Z  – curvature of the beam axis. 

With a plane transverse bend, the bent axis of the beam lies in the force 

plane and coincides with the main plane. The curved axis of the beam is 

referred to as the curved axis or elastic line. 

Position of the cross-section of the beam under bending is determined by 

two displacements (Fig. 7.1): 

1. Linear displacement  AA xyy   of the gravity center of the section 

in the direction perpendicular to the undeformed axis of the beam, which is 

referred to as deflection.  

2. Angular displacement  AA x  is a slope of the elastic curve 

around the neutral axis of the section relative to its initial position.  
It is considered that the length of the curved longitudinal axis belonging 

to the neutral layer does not change when the beam is curved.  
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Deflections slopes of elastic curve are related by differential dependence  
 

 
 

 xy
dx

xdy
x  . (7.1) 

 

 

Differential equation of the bent axis of the beam 

There is such an analytical relationship between the curvature 1  of the 

bent axis of the beam (elastic line), bending moment BNM  that determines this 

curvature, and the beam rigidity during bending 0EI  
 

 

 

0

1

IE

xM

x

BN





, (7.2) 

 

where  x  is the curvature radius of the elastic line of the beam in the 

plane at distance x  from the coordinates origin; 

 xM BN  is the bending moment at the same cross-section of the beam. 

Curvature of a plane curve (known from the course of higher 

mathematics) is described by the dependence  
 

 

 

   23
2

1

1

xy

xy

x






. (7.3) 

 

By equating the right-hand sides of relations (7.2) and (7.3), the exact 

differential equation of the bent axis of the beam is obtained.  
 

 

  
 xM

xy

xy
IE BN






23
2

0

1

. (7.4) 

 

Given that the slopes of the elastic curve are small, the value  2xy   

compared to the unit can be neglected. Then, from expression (7.4), when 

choosing the direction of the upward axis Y , get the approximate differential 

equation of the elastic line of the beam  
 

   xMxyIE BN 0 . (7.5) 
 

By integrating it twice or once, it is possible to determine the linear  xy  

and angular  x  displacements of the beam sections under any load 

conditions.  
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There are several methods for determining displacements in direct 

transverse bending. Consider some of them.  

 

 

 

Method of direct integration of differential equation  

of the bent axis of the beam  

The method is based on the approximate differential equation of the bent 

axis of the beam  

 

   xMxyIE BN "0 , (7.6) 

 

where IE   
is the rigidity of cross-section of a beam under bending; 

 E  
is the modulus of elasticity of the material from which the 

beam is made; 
 0I  is the axial inertia moment of the cross-section of the beam, 

II 0 ; 
 xM BN  is the function of bending moment from external loading, 

acting on this section of the beam, hereinafter 

 xM BN =  xM . 
 

To obtain the function of the curved axis of the beam  xfy  , integrate 

equation (7.6)  
 

  CdxxMxyIE )()(' ; (7.7) 

 

   DxCdxxMdxxyIE )()( . (7.8) 

 

Therefore, the equation of the curved axis of the beam is 

 

  


 DxCdxxMdx
IE

xy )(
1

)( . (7.9) 

 

Equations (7.7)-(7.8) include constant integrations C  and D , which are 

determined from the boundary conditions, i.e. the conditions of fixing the beam 

supports, the deflections and slopes of the elastic curve which are known.  
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Method of initial parameters 

Method of initial parameters makes it possible to write only one equation 

of deflections or slopes of the elastic curve, which is suitable for all sections 

of the beam. This equation is called the universal equation of the elastic line, 

which takes into account all types of loads: concentrated force F , concentrated 

moment M , distributed load  xq .  

Method of initial parameters is obtained as a result of unification of the 

method of direct integration of the beam bent axis by equating the constant 

integrations at the boundaries of the sections. This method is a universal 

technique for determining displacements during bending.  

For a prismatic beam (Fig. 7.2) with the selected coordinate system X Y  

and different types of load, the equation of the elastic line can be written as  
 

 
 

Figure 7.2  

 

 

 

     
,

24242

662

1
)(

442

33
0

2
0

00


































dxqcxqbxM

axFxQxM

IE
xyxy

 (7.10) 
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where 0y , 0 , 0M , 0Q  are initial parameters, respectively: deflection, slope of 

the elastic curve, bending moment and shearing force at the coordinate origin; 

 

a  is a distance from the coordinate origin to the section at which 

concentrated force F  is applied; 

b  is a distance from the coordinate origin to the section at which 

concentrated moment M  is applied; 

c  is a distance from the coordinate origin to the section at which the 

load q  starts to act; 

d  is a distance from the coordinate origin to the section at which the 

load q  finishes its action. 

 

Deflection 0y  and slope of the elastic curve 0  are geometric initial 

parameters; bending moment 0M  and shear (cutting) force 0Q  in the crossing, 

which coincides with the coordinate origin are static initial parameters. 

Deflection 0y  and slope of the elastic curve 0  of the initial (right-hand 

final) beam section are determined from the conditions of beam fixation, bending 

moment 0M  and shear (cutting) force 0Q  are found from diagrams BNM  and Q . 

If the simply supported beam is considered, 0y  and 0  are determined 

from the conditions that deflections on the supports equal zero. If the cantilever 

beam is considered, these parameters are determined from the conditions that 

deflection and slope of the elastic curve in the clamp equal zero.  

Initial parameters 0y , 0 , 0M , 0Q  can be positive, negative, or equal zero. 

The signs of terms in the equation are determined by the signs of the 

corresponding external force factors. The rules of signs are the same as those 

adopted for shear (cutting) forces and bending moments. 

The equation for determining slopes of the elastic curve of the prismatic 

beam (see Fig. 7.2) is 

 

   

   
.

66

122

1
)(

33

22
0

00
































dxqcxq

bxMaxFxQ
M

IE
x

 (7.11) 

 

When compiling the equation of the elastic line of the beam, such rules 

should be followed:  
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1. The coordinate origin is chosen at the leftmost point of the beam and 

kept it common to all segments. 

2. Only those loads that are applied to the left of the considered section 

are substituted into the equation. 

3. If the distributed load  xq  breaks on one of the sections of the beam, it 

is conventionally continued to the right end of the beam, while introducing a 

compensatory load of the same intensity, but in the opposite direction. 

 

 

The Mohr method  

The Mohr method is based on the principle of conservation of energy, i.e. 

the equality of work from external loads and the potential energy of 

deformation.  

Displacement   (deflection y  or slope of the elastic curve  ) is 

determined by Mohr integral which spans all the length of the beam  

 

   





l

dx
IE

xMxM
y

)()(
, , (7.12) 

 

where )( xM  are functions of bending moments from the external loads for 

the given (loaded) beam; 

 )( xM  are functions of bending moments from a singular load for the 

redundant (auxiliary) — unloaded — beam. 
 

Redundant (auxiliary) beam is a given beam without external loads.  

Physical outline of the Mohr integral: the displacement of a random 

section of the beam is the work of a singular force, which is spent for 

displacement of its application point from a given load.  

Sequence for determining displacements (deflections or slopes of the 

elastic curve) using the Mohr integral:  

1. Compile the equations of bending moments  xM  from the given load. 

2. Having eliminated given loads from the system (beam), apply a force 

(pair of forces) equal one (singular force or singular moment) at that beam 

section, where the displacements are determined and in the direction of this 

displacement. 

3. Compile the equations of bending moments  xM  from this singular 

force (pair of forces). 

4. Calculate the integral sum (7.12) from the product of both moments 

divided by rigidity of the section. 
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Graphic-analytical solution of the Mohr integral  

It is reasonable to calculate the Mohr integral (7.12) by graphic-analytical 

method.  

Outline: the definite integral of the product of two functions, one of 

which is linear and the other arbitrary, is equal to the product of the area of 

the graph of an arbitrary function and the ordinate of the graph of the linear 

function taken under its center of gravity.  
Graphic-analytical method of solving the Mohr integral can be used when 

one diagram is traced with straight lines. This condition is satisfied for 

structures that consist of straight bars (elements), because the diagrams from the 

singular loads are always rectilinear.  

General formula for determining displacements under bending  

 

    










l

n

i

Cii

IE

M
dxxMxM

IE
y

1

)()(
1

,


, (7.13) 

 

where i  is the area of diagram (Fig. 7.3 а) of bending moments  FM  

from the external loads of the і-segment of a beam; 

CiM  is the ordinate of the linear diagram (Fig. 7.3 b) of bending 

moments from a singular load CM  of the i-section of the 

beam located under the gravity centre of nonlinear diagram 

 

 
 

Figure 7.3 
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Graphic-analytical method of solving the Mohr integral is referred to as 

the method of multiplication of diagrams. Herewith the diagram  FM  is 

named the load one and diagram CM  is a singular. 

 

When using this method, the following should be considered:  

1. Number of terms n  Cii M  has to be not less than the number of the 

Mohr integral sums. 

2. If diagrams  FM  (of external loads) and CiM  (of singular loads) are 

of opposite sign (are on different sides of zero line), the result of diagram 

multiplication has the sign minus. 

3. If the equation of bending moments is a polynomial, it is reasonable to 

draw the load diagram in layered form, i.e. to draw separate diagrams from 

external loads, each of which corresponds to one of the terms. Such diagrams 

are drawn by approaching the breaking point of a single diagram from both 

sides of the beam. 

4. Diagrams drawn for use of the graphical-analytical method of the Mohr 

integral calculation are not hatched. 

 

Measurements of singular diagrams of bending moments are the units of 

length.  

The values of the diagrams areas and the coordinates of their gravity 

centre, which can be used to determine the displacements, are given in Annex 6.  

 

 

Example of solving the task (cantilever beam) 

By graphic-analytical solution of the Mohr integral, determine deflections 

and slopes of the elastic curve of sections A  and B  of cantilever beam shown 

in Fig. 7.4, provided that constIE  . 
 

 
 

Figure 7.4 
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Solution 

For a given cantilever beam (Fig. 7.5 a) draw a diagram of bending 

moments (Fig. 7.5 b) from external loads  FM . To determine the deflection of 

the section A , in the redundant (auxiliary) beam (Fig. 7.5 c) apply a singular 

force at the same section and draw a singular diagram of bending moments 1M  

(Fig. 7.5 d).  

Deflection of the section A  determine by multiplying diagrams  FM  

and 1M  

 
IE

aM
M

IE
y CA









2

111

21
 , 

 

where aM 21  ;    aM C 11 . 

To determine the deflection of the beam at section B , it is reasonable to 

repeat diagram  FM  again (Fig. 7.5 e). In the redundant (auxiliary) beam at 

section B , it is necessary to apply a singular force (Fig. 7.5 f) and draw a 

singular diagram of bending moments 2M  (Fig. 7.5 g).  Then the deflection of 

section B  is 

 
IE

aM
MM

IE
y CCB









2

1
2

323222  , 

 

where aM 2 ;  aM 3 ;   222 aM C  ;    032 CM . 
 

To determine the slopes of the elastic curves of sections А and В, it is 

necessary to apply singular bending moments in the given sections of redundant 

(auxiliary) beams (Fig. 7.5 h, j) and draw the diagrams of bending moments 

(Fig. 7.5 і, k). 
Slope of the elastic curve of section A  is determined by multiplication of the 

diagram from exteral forces  FM  (see Fig. 7.5 b) and singular moments 3M  

(see Fig. 7.5 і) 

 
IE

aM
M

IE
CA









21
131 , 

 

where 113 CM . 

Slope of the elastic curve of section B  is determined by multiplication of 

the diagram from exteral forces  FM  (see Fig. 7.5 b) and singular moments 

4M  (see Fig. 7.5 k) 

 
IE

aM
MM

IE
CCB







 242343

1
 , 

 

where   034 CM ;    124 CM . 



 103 

 

 
 

Figure 7.5 
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Example of solving the task (simply supported beam) 

By graphical-analytical solution of the Mohr integral, determine the 

deflections in the sections K  and D  and the slope of the elastic curve of the 

beam on two supports, shown in Fig. 7.6 a, provided that constIE  . 

 

Solution 

From the equilibrium equations, determine the support reactions 

(see  Fig. 7.6a): 
 

  0BM ;          023  aFaR A ;         FR A
3

2
 ; 

 

  0AM ;          03  aFaR B ;          FR B
3

1
 . 

 

Verification          0
3

1

3

2
FFFRFRY BA . 

 

Draw a diagram of bending moments  FM  (Fig. 7.6 b) from external 

loads. 

To determine the deflection of the section K in the redundant (auxiliary) 

system (Fig. 7.6 c), apply a singular force in the section K . Determine the 

support reactions:  
 

  0BM ;          0213  aaR A ;         
3

2
AR ; 

 

  0AM ;          013  aaR B ;         
3

1
BR . 

 

Verification          0
3

1
1

3

2
1 BA RRY . 

 

Draw a diagram of bending moments 1M  (Fig. 7.6 d) from a singular 

force.  

Determine deflection of section K  by multiplying diagrams  FM  and 

1M  
 

 222111

1
CCK MM

IE
y 


  , 
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Figure 7.6 
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where  

33

2

2

1
2

1

aF
aaF


 ; 

 

3

2
2

3

2

2

1
2

2

aF
aaF


 ; 

 

aaaRM AC
9

4

3

2

3

2

3

2
11  ; 

 

aaaRM BC
9

4

3

4

3

1
2

3

2
21  . 

 

Substituting the data, obtain 

 

IE

aF
a

aF
a

aF

IE
y K





























322
12

9

4

3

2

9

4

3

1
. 

 

To determine the deflection of section D, do the similar operations, i.e. 

apply a singular force in section D of the redundant (auxiliary) beam 

(Fig. 7.6 e) and draw the diagram 2M  (Fig. 7.6 f). For convenience and clarity, 

place the diagram from external forces  FM  under the diagram 2M  

(Fig. 7.6 g). 

Determining the deflection of section D is complicated by the increase of 

terms Cii M . This is due to the fact that we have three areas of integration by 

the Mohr method, and also divide the middle shape (trapezoid) into two shapes 

— triangle and rectangle (Fig. 7.6 g). 

Deflection of the section D  determine by formula  

 

 232232222221221121

1
CCCCD MMMM

IE
y 


   , 

 

where    
33

2

2

1
2

1

aF
aaF


 ;                       

63

1

2

1
2

21

aF
aaF


 ; 

 

             
63

1

2

1
2

22

aF
aaF


 ;                      

33

1
2

23

aF
aaF


 ; 
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           aaM C
9

2

3

1

3

2
12  ;                             aaM C

9

4

3

2

3

2
212  ; 

 

           aaaM C
9

4

3

1

3

1
222 








 ;                 aaaM C

2

1

2

1

3

1
232 








 . 

 

Substituting data, obtain 

 

IE

aF
a

aF
a

Fa
a

aF
a

aF

IE
y D
































54

23

2

1

39

4

69

4

69

2

3

1
32222

. 

 

To determine a slope of the elastic curve of section A  in the redundant 

(auxiliary) beam (Fig. 7.6 i), apply 1M  in section А, find supporting 

reactions and draw the diagram of bending moments from a singular load M  

(Fig. 7.6 j). 

Slope of the elastic curve of section А detrmine by multiplying diagram 

 FM  (Fig. 7.6 b) by 3M  (Fig. 7.6 j) 

 

 232131

1
CCA MM

IE



   , 

 

where   
9

7

3

1
2

3

1
13 








 aa

a
M C ;  

 

9

4
2

3

2

3

1
23 








 a

a
M C . 

 

Substituting the data, obtain 

 

IE

aFaFaF

IE
A





























27

15

9

4

3

2

9

7

3

1
222

. 

 

Sign minus means that the slope of the elastic curve of section А occurs in 

the direction opposite to the action of singular moment.  
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Example of solving the task 9  

by the method of initial parameters 

 

For the given beam (Fig. 7.7), determine deflections of sections C  and D  

and the slope of the elastic curve of section A  by the method of initial 

parameters, when ,kN10F  ,kNm40M  m/kN20q , constIE  . 
 

 
 

Figure 7.7 

 

Solution 

 

From the equilibrium condition write down: 
 

  0BM ;           02244  FMqR A ; 
 

  0AM ;           02446  qMRF B . 
 

Determine the support reactions: 
 

kN25
4

21040820

4

28








FMq
R A ; 

 

kN65
4

82040610

4

86








qMF
R B . 

 

Compile the validation equation  
 

  ,01065420254 FRqRY BA  
 

that is support reactions are determined correctly. 

Choose the coordinate origin on the left-most support A . Write down the 

general equation of the bent axis of the beam by the method of initial 

parameters  

 

   
.

24

4

246

4

2

2

6
)(

443

23

00


















xqxqxR

xMxR
xIEyIExyIE

B

A

 (7.14) 
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Find the initial parameters 0y  and 0  from the conditions: 
 

  00  yIE ; 
 

(7.15) 

  04  yIE ;  

or 

 





















.0
2

24

24

4

6

4
4

;0

243

00

0

MqR
IEyIE

yIE

A
 (7.16) 

 

From the system (7.16) obtain: 
 

00  yIE ; 
 

.3,33
2

240

24

420

6

425

4

1
243

0 












 






 IE

 
 

On substituting the initial parameters, write down the equation of the bent 

axis of a beam  

 
     

.
24

4

6

4

2

2

246
3,33

43243















xqxRxMxqxR

xxyIE
BA

 
 

Find deflections of the beam in sections C  and D . 

Section C ,   :m2Cx  

  ;7,46
24

220

24

225
23,332

43







 CyІЕ   

from which 

 
ІЕ

yC



7,46

2 . 

Section D , m6Dx : 

  ;0,40
24

220

6

265

2

440

24

620

6

625
63,336

43243
















 DyІЕ

 

from which 

 
IE

y D



0,40

6 . 
 

Slope of the elastic curve of section A  
 

;3,330  AIEIE  
 

from which 
 

.
3,33

IE
A
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Example of solving the task 9 

by Mohr method 
 

Let us solve the task (see Fig. 7.7) by Mohr method. Given: 

;m/kN20q  ;kNm40M  ;kN10F  ;kN25AR  kN65BR ; 

constIE  . Calculation model is shown in Fig. 7.8 а. 
 

Solution 
 

Determine the deflection of section C . In the redundant (auxiliary) beam 

at point С (Fig. 7.8 b) apply a singular force. Determine the support reactions. 

In the given case (symmetric application of force) 

.5,0
2

1
 BA RR  

Determine deflection of section C  by Mohr method using the formula  
 

    

l

C dxxMxMEIy . 
(7.17) 

Write down the expressions )( xM  and )( xM  on the segments of the 

beam: 

Segment І;   m20  x   (left side) 
2

1025)( xxxM  ; 

xxM 5,0)(  . 
 

Segment ІІ;   m4m2  x   (left side) 

401025)(
2
 xxxM ; 

)2(15,0)(  xxxM . 
 

Segment ІІІ;   m20  x   (right side) 

xxM 10)(  ; 

0)( xM . 
 

Substitute expressions )( xM  and )( xM  into Mohr integral (7.17) and 

integrate  

    

   







4

2

322
2

0

32

4

2

2
2

0

2

2055,1280205055,12

025,04010255,0)1025(

dxxxxxxdxxx

dxxxxxxdxxxyIE C

 

;7,46
1

80

4

5

3

5,32

2

30

4

5

3

5,12
4

2

4

2

4
4

2

3
4

2

2
2

0

4
2

0

3




















xxxxxx
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from which the deflection of point C  is 

.
7,46

IE
yC


  

 

Sign plus means that the deflection coincides with the direction of a 

singular force action. 

To determine the deflection of section D  in redundant (auxiliary) beam 

(Fig. 7.8 c), apply a singular force in the same section. Determine the support 

reactions:  

;5,1;0614;0  BBA RRM  

.5,0;0214;0  AAB RRM  

Write down the expressions of bending moments from the singular load 

on the segments of the: 

segment І;   m20  x   (left side) 

  ;5,0 xxM   

segment ІІ;   m4m2  x   (left side) 
 

  ;5,0 xxM   

segment ІІІ;   m20  x   (right side) 
 

  .1 xxM   
 

Substitute expressions  xM  and )( xM  in the Mohr integral (7.17) and 

integrate  
 

           

    







4

2

2

0

232
2

0

32

2

0

4

2

2
2

0

2

102055,1255,12

1105,04010255,01025

dxxdxxxxdxxx

dxxxdxxxxdxxxxEIy D

 

,40
3

10

2

20

4

5

2

5,12

4

5

3

5,12
2

0

3
4

2

2
4

2

4
4

2

3
2

0

4
2

0

3




















xxxxxx

 
 

from which the deflection of point D  is 

.
40

IE
y D


  

 

Sign minus means that the deflection of point D  does not coincide with 

the direction of a singular force action (see. Fig. 7.8 c). 
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Figure 7.8 
 

To determine the slope of the elastic curve A , in the redundant (auxiliary) 

beam (Fig. 7.8 d), apply a single moment. 

Find the support reactions from the action of a single moment 
 

25,0
4

1
 BA RR . 
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Expressions of bending moments for the beam (Fig. 7.8 d): 

segment І;   m20  x   (left side) 
 

xxM 25,01)(  ; 
 

segment ІІ;   m4m2  x   (left side) 
 

xxM 25,01)(  ; 
 

segment ІІІ;   m20  x   (right side) 
 

0)( xM . 
 

Determine the slope of the elastic curve A  by the Mohr method using the 

formula  
 

    

l

A dxxMxMIE .                   (7.18) 

 

Substituting the data, obtain 

   

   

 

 















4

2

322

2

0

322

4

2

2

2

0

2

105,225,6401025

5,225,61025

025,01401025

25,011025

dxxxxxx

dxxxxx

dxxxx

dxxxxIE A

 

          


















4

2

24

2

2

0

4
2

0

3
2

0

2

2

15

1

40

4

5,2

3

25,16

2

25 xxxxx

 

        

;4,33
4

5,2

3

25,16
4

2

4
4

2

3








xx

 

 

from which the slope of the elastic curve A  is 
 

IE
A




4,33
. 
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8. STATICALLY INDETERMINATE SYSTEMS 

 

General concept 

Statically indeterminate systems are systems in which the reactions of 

junctions and internal forces are impossible to determine by the equilibrium 

equations only. 

Such systems (constructions) are the most spread as they are more reliable 

and rigid in comparison with statically determinate ones. 

Statically determinate (isostatic) beam or frame can be transformed into 

statically indeterminate (hyperstatic) by setting extra (excessive from the point 

if view of the system’s equilibrium) support. Advantages of such system: the 

loading over it can be increased without changing the crossing of the beam; 

when one of the supports in isostatic system is damaged, it is turned into 

mechanism whilst hyperstatic system remains unmoveable, capable to take 

loads, in other words, it is safer. In many cases statically indeterminate systems 

are the only possible variant of construction. 

Advantages of statically indeterminate systems are: decrease of elastic 

displacements; increase of stiffness and stability of the system elements; 

significant decrease of the working stresses at their crossings; economical 

efficiency as having the same size of crossings, they can carry more load; when 

losing some excessive relations they remain immovable and geometrically 

unchanged; have higher reliability and connectedness of elements during work; 

capable to redistribute the load between elements if some of them damage or 

weaken (in case of setting down of one or several supports). 

Drawbacks: there occur the temperature stresses as well as assembly ones 

in case if their size changes in relation to designed dimensions. 

Peculiarities: the supports reactions and internal forces in the elements 

depend on stiffness of diametrical crossing of the rod system; it is impossible to 

provide the equal safety margine, i.e. one elements can be underloaded, and the 

others overloaded which requires them to be optimally designed. 

 

Main methods of evaluating the systems indeterminence  

Since there are more unknown forces than the equilibrium equations, 

static indeterminance of the system can be evaluated only with redundant 

(auxiliary) equations. These equations have to show the peculiarities of 

geometric relations put over the rod system. Such equations are composed by 

figuring out and drawing the picture of displacement of the construction 

elements sections during its deformation and that is why they are defined as 

displacement (deformation) compatability equations. 

Metods of calculation of statically indeterminate systems are classified 

according to whaich is taken as an unknown value. If displacements are 



 115 

considered as unknown, the calculation method is called the displacement 

method; and if the forces are unknown, the method of their calculation is the 

force method. If partially forces and partially displacemetnts are unknown, the 

method of calculation is mixed. 

The displacement method, in which the linear and angular displacement 

of rigid nodes of the pin system are taken as unknowns in the static equations, 

appeared in 1880, the force method is known since 1807. 

In strength of materials the force method is used more frequently. 

 

Force method 

Calculation of statically indeterminate system begins with its analysis. It 

is necessary for determining the degree of static indeterminance. The degree of 

static indeterminance equals the number of redundant junctions removing of 

which turns the indeterminate system into determinate one (main), 

geometrically changeable. The term redundant (auxiliary) junction is ment as 

excessive junction, not as unnecessary junction. 

In Fig. 8.1 a   there is a statically indeterminate beam.  

Over this beam, four junctions are placed 1X , 2X , 3X , 4X .  For the 

plane force system, only three static equations can be formed, so this beam is 

134   times statically indeterminate. As a redundant (auxiliary) junction 1X  

is taken, hence the beam (Fig. 8.1 b) is statically determinate (the main). 
 

 
 

Figure 8.1 
 

In Fig. 8.2 а the plane frame is drawn. This system is 235   times 

statically indeterminate. 

Having removed redundant (auxiliary) junctions 1X  and 2X , we 

transform statically indeterminate system into statically determinate 

geometrically unchangeable one (Fig. 8.2 b). 
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Figure 8.2 

 

The main system is statically determinate geometrically unchangeable 

system made of statically indetermitate one is defined.  

In Fig. 8.1 b the main system is drawn. 

The principle of the independence of force action makes the basis of the 

force method. 

The order of calculation of statically indeterminate systems using the 

force method: 

1. Determining the degree of static indeterminance of the system 

(see Fig. 8.1, 8.2) 

2. Choosing the main system by remowing the redundant junctions. The 

main system has to be statically determinate, unmovable and geometrically 

ungchangeable after applying the load as well. For every given system, a few 

auxiliary can be chosen so it is reasonable to take the optimal system which 

significantly simplifies the further calculations. 

3. Formation of the equivalent system. Artificial changes in given 

statically indeterminate system during transition to the main system have to be 

compensated by introduction of corresponding unknown generalized forces that 

are applied instead of the removed junctions. In those sections where the linear 

displacements are impossible, the concentrated forces are applied, and where 

the angular displacements are unallowable the moments are introduced. These 

unknown for present forces are indicated as iX , where i is the number of 

unknown redundant force. In other words, by substituting of removed redundant 

junctions with the force iX  and applying external load, the equivalent system is 

formed. During transition to it, the force scheme of the given hyperstatic system 

as well as its deformation scheme have to be kept, i.e. the equivalent system has 

to deform in the same way as the given hyperstatic one. These demands can be 

formulated as so called conditions of continuity or strain compatability. 
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4. Writing down the equation of strain compatability (continuity of 

displacements) for the equivalent system taking ino account the condition that 

displacements which are impossible in the given system have to be impossible 

in the equivalent system under stated active load and unknown redundant forces 

(reactions) as well. 

In the extended geometric form this equation can be written down as the 

condition of zero equality of displacements by the direction of any removed 

junction 

 

  ;0,,...2211  MqFXXX iininiii   (8.1) 

 

where 1X , 2X , nX  are values of reactions of redundant unknowns; 

 1i , 2i , in  are displacements in  the main system by  the direction 

of  redundant  unknown  i  from  the  singular loads 

that are applied in the main system in the directions 

1X , 2X , nX ;  

  MqFi ,,  is displacement in the main system by the direction of 

redundant unknown i from the external loads. 

 

With introducing the concept of singular effort being applied instead of 

unknown 1iX  and the term singular displacement occurring in the direction 

of i-force from n-singular force for n-times statically indeterminate scheme, the 

equation (8.1) is written down as the system of canonic (the simplest) 

equations: 

 
























.0)(

;0)(

;0)(

2211

22222212

11122111

FXXX

FXXX

FXXX

nnnnnn

nn

nn







 

 

 

(8.2) 

 

Singular displacements are the coefficients in canonic equations and 

absolute displacements are absolute terms. During displacements, the first 

index shows in the direction of which force the displacement of the section with 

this force is applied, the second index indicates the force that caused this 

displacement. Singular displacements with the same indeces  11  are denoted 

as the main coefficients of the system of canonic equations, and with different 

indeces are  12  — secondary, while 2112   . 
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Every single canonic equation of the system (8.2) shows that 

displacement of the section where the redundant junction is remowed is 

impossible in the direction of this junction reaction under the stated load and all 

unknown forces. 

The total number of displacement compatability equations equals the 

number of unknown forces (removed redundant junctions), in other words, the 

degree of static indeterminance of the stated system. 

5. Calculation of coefficients and absolute terms of canonic equations. 

It is reasonable to work out these displacements by formulas of energy method 

(Mohr integral). 

While determining ij  and iF  expressions for rigidity IE   elements of 

the system, it is advisable to solve them in general (not numeric) form in order 

to simplify the canonic equations and make the calculations shorter. 

To establish the absolute terms of the system of equations (8.2), i.e. 

complete displacements iF , the diagrams (epures) caused by the external 

forces action have to be drawn. It is better to draw these diagrams (epures) from 

each force separately. Multiplying these real diagrams (epures) by appropreate 

singular ones, the values of displacements iF  are determined. 

6. Determining unknown forces from the system of canonic equations. 

7. Calculations of strength, rigidity and stability can be made similarly to 

the way it is done in case of statically deretminant systems. Determination of 

total bending moments and other internal force factors in the sections is 

carried basing on the principle of the action independence using the classical 

method of sections or by the method of drawing appropreate diagrams 

(epures). 
While determining real displacements of single sections of the system, the 

singular action has to be applied to the main system; draw the diagram of 

bending moments of this force and multiply it by the resultant diagram of 

external load. On order not to divide the resultat diagram into simple segments, 

singular diagram can be multiplied by single real diagrams from the action of 

each force and the results can be added. Displacement of characteristic 

crossings  (fixations on supports) are determined to test the correctness of all 

previous calculations of statically indeterminate system. 

 

 

Metod of minimum potential energy of deformation 

While considering statically indeterminate frame constructions, taking 

into account additivity (continuity) of the function of potential energy of 

deformation, the expression of full potential energy of construction deformation 

can be written down 
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,NQKM UUUUU   (8.3) 

 

where MU  is potential energy of bending strain of the frame elements, 
 

  
dx

IE

xM
U M  




0

2

2
; 

 

 KU  is potential energy of tortion strain, 
 

  
dx

IG

xK
U

P

K  



2

2

; 

 

 QU  is potential energy of shearing strain, 
 

  
dx

AG

xQ
U Q  




2

2

; 

 

 NU  is potential energy of tensile (compressive) strain, 
 

  
dx

AE

xN
U N  




2

2

, 

 

here E  and G  are elasticity and creep module correspondingly; 

 I  is an axial moment of cross-section inertia; 

 PI  is a polar moment of cross-section inertia; 

 A  is a cross-section area; 

  xM  is a functions of bending moment; 

  xK  is a functions of tortion moment; 

  xQ  is a functions of cross-cut forces; 

  xN  is a functions of tensile (compessing) forces. 

 

In these formulas integration is made along the elements of frame (beam). 

Formula (8.3) and its components are the main expressions of potential 

energy of deformation during evaluation of static indeterminance of any 

system.  

Using Castigliano theorem ,0 iXU  the system of equations is 

formed and the values of redundant unknowns are calculated. 

While calculating frame constructions from the normal and cross-cut 

forces, potential energies are neglected and only potential energies from the 

bending moment and tortion are considered. 
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Task 10 

Calculation of statically indeterminate frame 
 

For the given statically indeterminate frame (Fig. for task 10, Table for 

task 10) evaluate static indeterminance using the force method and validate the 

obtained result by the method of minimum potential energy of deformation 

(ММPЕD). Draw the diagrams of scoss-cut and axial forces, bending moments. 

Carry out static assessment of any frame nod. Choose I-shaped section, when 

  ;MPa160    ;m1a    kN/m20q ;   constIE  .   From   two  binders 

(1 and 2) leave the one from Table for task 10. 
 

Plan of solving the task: 
 

1. Choose the main system and draw the diagrams of bending moments 

from external and singular loads in the main system. 

2. Write down the canonic equation of the force method. 

3. Determine coefficient 11  and absolute term  F1  of the canonic 

equation. 

4. Solve the canonic equation. 

5. Check the correctness of evaluation of static indeterminance by 

MMPED. 

6. Write down the axial N , cross-cut (cutting) ,Q  and bending moments 

on the frame segments. 

7. Draw diagrams ,N  ,Q  M  for the equivalent system. 

8. Carry out static assessment of any frame nod. 

9. Determine the dangerous frame section and choose I-shaped section 

from the terms of strength with normal stresses that appear because of bending. 
 

Table for task 10 
 

Nr kN,F  kNm,M  Binder number 

1 aq   aF   1 
2 aq 2  2

aq   2 

3 aq 3  aF   1 

4 aq   2
aq   2 

5 aq 2  aF   1 

6 aq 3  2
aq   2 

7 aq   aF   1 
8 aq 2  2

aq   2 

9 aq 3  aF   1 

0 aq   2
aq   2 
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Figure for task 10 
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Figure for task 10 (contunied) 
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Example of solving the task 10 

using the force method 

 

For the given statically indeterminate frame (Fig. 8.3а) evaluate static 

indeterminance using the force method and validate the obtained result by the 

method of minimum potential energy of deformation (ММPЕD). Draw the 

diagrams of shear (cutting, cross-cut) and axial forces, bending moments. Carry 

out static evaluation of any frame nod. Choose the cross-cut, when 

  ;MPa160  ;m1a  40F kN; 60M kNm; constIE  . 
 

Solution 
 

The given frame construction (see Fig. 8.3 а) is 134  time statically 

indeterminate. Statical indeterminance is evaluated using the force method. 1X  

is taken as excessive unknown. The main system is shown at Fig. 8.3 b. 

Write down the canonic equation of the force method 
 

  .1111 FX   
 

Displacement (coefficient) 11  and the absolute term of equation  F1  

are evaluated by grapho-analytical method using Mohr integral solution 

approach. 

We load the main system with singular force (Fig. 8.3 c). Draw the 

diagram of bending moments from the singular force (Fig. 8.3 d). Work out 
 

,1111 CMIE    
 

where ;222
2

1
1    .

3

4
2

3

2
1 CM  

Then 

.
3

8

3

4
211  IE  

 

To determine the absolute term of the equation  F1 , apply the external 

load to the main system (Fig. 8.3 e). Draw the diagram of bending moments 

from the loads (Fig. 8.3 f). Write down the equation 
 

  ,33221 CC MMFIE    
 

where ;401402         ;201203         ;5,0
2

1
2 CM        .5,13 CM  
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Figure 8.3 
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Then 
 

  .105,1205,0401  FIE  

 

Solve the canonic equation using the force method 
 

 
.kN75,3

8

310)(

11

1
1 









F
X  

 

Sign plus means that the direction of reaction force 1X  is chosen 

correctly. 

Draw the equivalent scheme (Fig. 8.3 g). Equivalent scheme is the main 

scheme loaded with external load and determined reaction forces, in other 

words, it is the given initial scheme with determined reactions. 

Divide the frame into segments. Work out the values of internal forces 

factors for each of them. On the scheme (see Fig. 8.3 g) on the frame contour, 

there are signs plus for positive values of bending moments indicated. The 

bending moment is considered to be positive if it stretches the lower fibres. 

Write down the functions of axial N , cross-cut (shear, cutting) forces Q , and 

bending moments BNM  on the frame segments. 

 

Segment AB ,   m10  x : 
 

  ;kN75,31  XxN                   ;kN75,3 BA NN  

 

  ;kN40 FxQ                             ;kN40 BA QQ  

 

  ;40 xxFxM BN                   ;0ABNM      .kNm40BBNM  

 

 

Segment BC ,   m10  x : 
 

  ;kN40 FxN                            ;kN40 CB NN  

 

  ;kN75,31  XxQ                        ;kN75,3 CB QQ  

 

  ;75,3401 1 xxXFxM BN   

 

;kNm40BBNM                             .kNm75,43CBNM  
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Segment LC ,   m10  x : 
 

  ;0xN                                          ;0 CL NN  
 

  ;0xQ                                           ;0 CL QQ  
 

  ;kNm60 MxM BN                  .kNm60 CBNLBN MM  

 

Segment CK ,   m2m1  x : 
 

  ;kN40 FxN                            ;kN40 KC NN  
 

  ;kN75,31  XxQ                        ;kN75,3 KC QQ  
 

  ;75,325,166075,375,34011 111 xxMxXXFxM BN   
 

;kNm25,16CBNM                          .kNm5,12KBNM  

 

By the obtained results, draw the diagrams   ,N   Q   and  BNM   (Fig. 8.3 h, i, j).  

 

Validate the evaluation of static indeterminance. 

Static test. Consider equilibrium of the nod С  (Fig. 8.3 k): 

Write down the equilibrium equation: 
 

  ;04040AiX QFF  

 

  ;075,375,31 NXFiY  

 

  .075,4325,1660iCM  

 

From the diagram of bending moments determine (see Fig. 8.3 j) 
 

.kNm60max. BNM  
 

To select the frame section from the terms of bending strength at normal 

stress, determine the axial resisting moment of one I-beam 
 

 
,m105,187

1602

1060

2

36
3

max

0












BNM
W  

 

take I-beam Nr 22а (standard GOST 8240-72, Annex 1), for which 

.cm192
3

0 W  
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Figure 8.3 (continued) 
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Example of solving the task 10 

by the metod of minimum potential energy of deformation 

 

Evaluate the static indereminance of the frame construction 

(see Fig. 8.3 а) by the metod of minimum potential energy of deformation 

(MMPED). 

 

Solution 

 

Write down potential energies of bending deformation for each element 

of the frame. 

Segment ,AB    m10  x : 

 

  ;40 xxFxM BN   

 

 







1

0

2

1 .
2

40
dx

IE

x
U  

 

Segment ,BC    m10  x : 

 

  ;140 1 xXxM   

 

 







1

0

2
1

2 .
2

40
dx

IE

xX
U  

 

Segment ,LC    m10  x : 

 

  ;60 MxM  

 

 





1

0

2

3 .
2

60
dx

IE
U  

 

Segment ,CK    m10  x : 

 

  ;2060140 1111 xXXxXXxM   
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1

0

2
11

4 .
2

20
dx

IE

xXX
U  

 

Total potential energy of bending deformation 

 

   

   
.

2

20

2

60

2

40

2

40

1

0

1

0

2
11

2

1

0

2
1

1

0

2

4321

dx
IE

xXX
dx

IE

dx
IE

xX
dx

IE

x
UUUUU

 




















 

 

From equation ,0

1






X

U
 work out the value of the reaction 1X : 

 

     





















 

1

0

1

0

111

1

120204020
2

1
dxxxXXxdxxX

IEX

U

 






























1

0

2
1

0

2
1

1

0

1

1

0

1

0

3
1

1

0

2

0 2

40

2

2

1

2

1

40

3

2

2

80

2

1 xxXxXxxXx

IE

 

      













 11111

1

0

3
1

1

0

2
1

3

2
20240

3

2
40

3

2

2

2
XXXXX

xXxX
 

 

0
3

16
20 1  X ; 

 

then 
 

,kN75,3
16

320
1 


X  

 

that consists with the definitions of the forces method. 
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9. EVALUATION OF STRESSES AND DISPLACEMENTS 

AT OBLIQUE BENDING 

 

Oblique bending is a complex type of deformation. It occurs when the 

plane of absolute bending moment action does not coincide with any of its main 

planes, i.e. planes drawn through the beam axis and the main axis of cross-cut 

inertia. 

Consider the example of pure oblique bending. In a random cross-cut the 

force plane of bending pair M  makes the angle   with the inertia axis Y  

(Fig. 9.1). 

 
 

Figure 9.1 

 

Oblique bending is considered as combination of two right bendings in 

the main planes XZ  and YZ  (Fig. 9.2). Axes X  and Y  are the main central 

crossing inertia axes, axis Z  coincides with longitudinal axis of the beam. 

Components XM  and YM  of the general bending moment M  that act in 

the main planes are calculated by formulas: 
 

cos MM X ;   sin MM Y . 
 

Normal stress at oblique bending at any cross-cut point, e.g. at point C  

with coordinates Cx  and Cy  (see Fig. 9.1), is found as algebraic sum of 

normal stresses from the components of the bending moment XM  and YM , 
 

   













 CCYZXZ x

Y
I

Y
M

y

Х
I

Х
M

MM
sumZ

  (9.1) 

 

or 
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  sincos

Y
I

x

Х
I

y
M

sumZ
CC

. (9.2) 

 

Coordinate system XYZ  is chosen in such a way that compression stresses 

act in the I-st quadrant.  

The neutral (zero) section line is a geometric place of the points where 

normal stresses equal zero. This line must run through the weight centre of the 

cross-cut.  

Equation of the neutral line at oblique bending 
 

,000  x
I

M
y

I

M

Y

Y

X

X  (9.3) 

 

or 
 

,0sincos
00

 

YX I

x

I

y
 (9.4) 

 

where ,0x  0y  are coordinates of the points of the neutral crossing line 

(Fig. 9.3). 

Since 00 x , then 00 y   as well. The position of such line is evaluated 

by the angle of its inclination to the axis X  (Fig. 9.2). 
 

.

0

0
 tg

I

I

x

y
tg

Y

X
  (9.5) 

 

 

Figure 9.2 
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Stresses at oblique bending. Strength condition 

Maximum normal stresses occuring at the points most remote from the 

neutral line, symetric crossing points, e.g., rectangle (see Fig. 9.2), points В and 

D are of the same size but with different signs. They are worked out by formula  
 
















Y

Y

X

X

W

M

W

M

min

max , (9.6) 

 

where XM  and YM  are bending moments in relation to the main axes in 

the most loaded dangerous crossing section. 
 

For the elastic materials, which cross-cuts have two symmetry axes the 

strength condition by normal stresses at oblique bending is  
 

  

Y
W

Y
М

X
W

X
М

max
. (9.7) 

 

Shearing stresses at oblique bending are determined as a sum of 

shearing stresses X , Y  obtained from the cross-cut forces ,XQ  YQ  
 

.
22
YX    (9.8) 

 

The shearing stresses components ,Y  Z  are calculated by 

D.I. Zhuravskyi formula 
 

;

1 Y

sh
YX

X
Ib

SQ




              .

2 X

sh
XY

Y
Ib

SQ




  (9.9) 

 

 

 

 
Deformations at oblique bending 

In general, for sections with different values of axial inertia moments, in 

other words, when YX II   and  tgtg  , the neutral line is not perpendicular 

to the force line, but deviated in the direction to the axis of minimum moment 

of crossing inertia. 

Since the direction of absolute bending f  and the neutral line are always 

orthogonal (Fig. 9.3), the beam at the oblique bending bends not in the force 

plain, but in some other plain where the bending rigidity is less. 
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Oblique bending is brought to two plane ones. Using the principle of 

superposition, the displacements Xf  and Yf  in each of main planes are 

determined. 

The absolute bending of the beam f  (see Fig. 9.3) at oblique bending is 

evaluated as a geometrical sum of bendings 
 

.
22

YX fff   (9.10) 

 

The direction of absolute bending is determined by angle  
 
















Y

X

f

f
arctg , 

 

equal with angle  . 
 

 
 

Figure 9.3 
 

The oblique bending phenomenon is dangerous for cross-cut that are 

significantly different from the moments of inertia with respect to the major 

central crossing axes (e.g., the I-axis). Beams with such cross-cuts bend a little 

when bending in the plane of greatest rigidity; but even at slight angles of 

inclination of the external forces actions plane to the plane of greatest rigidity in 

beams, there is a significant deviation of the absolute bending line toward the 

least rigidity. 
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Task 11 

Choosing the beam section at oblique bending deformation 

 

For the given beam (Fig. for task 11, Table for task 11) choose a 

rectangular cross-cut, when relation of the beam height to its length is 2bh , 

and placing sides b  and h  parallel to axes X  and Y  most rationally. Evaluate 

the position of the neutral axis in the dangerous cross-cut of the beam. Draw the 

spatial diagram of distribution of normal stresses in the dangerous cross-cut. 

Determine the absolute displacement of the cross-cut pointed А at the figure, 

provived ;m1a  material of the beam is steel St.3; MPa102
5

Е ; 

  MPa160 . 

 

Plan of solving the task: 

 

1. Lay out given loads on axes X  and Y . Write down the functions of 

shearing forces and bending moments in horizontal and vertical planes. 

2. Draw the diagrams of shearing forces and bending moments in the 

horizontal and vertical planes. 

3. Determine the dangerous cross-cut and its rational position in relation 

to the load. 

4. Determine the cross-cut dimensions of the beam with the condition of 

strength under normal stresses. 

5. Evaluate the position of the neutral line in the dangerous cross-cut of 

the beam and draw a spatial diagram of distribution of normal stresses in the 

crossing. 

6. Determine horizontal, vertical and absolute bending deflections of the 

beam at crossing A . 
 

Table for task 11 
 

Nr kN/m,q  kN,F  kNm,M    (degree) 

1  5 12 12 0 

2  6 10 10 90 

3  8  8  8 180 

4 10  6  6 270 

5 12  5  5 360 

6  5 12 12 0 

7  6 10 10 90 

8  8  8  8 180 

9 10  6  6 270 

0 12  5  5 360 
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Figure for task 11 
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Figure for task 11 (continued) 
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Example of solving the task 11 

Choosing the beam section at oblique bending deformation 

 

For the given beam (Fig. 9.4 а) choose a rectangular cross-section, when 

relation of the beam height to its length is 2bh , and placing sides b  and h  

parallel to axes X  and Y  most rationally. Evaluate the position of the neutral 

line in the dangerous cross-section of the beam. Draw the spatial diagram of 

distribution of normal stresses in the dangerous cross-section. Determine the 

absolute displacement of the cross-section pointed А at the figure, provived 

;m1a  material of the beam is steel St.3; MPa102
5

Е ;   MPa160 . 

 

Solution 

 

Separate force F  into vertical and horizontal components: 
 

;kN54,345sin545sin 


FFX  
 

.kN54,345cos545cos 


FFY  
 

Load the beam in vertical (Fig. 9.4 b) and horizontal planes (Fig. 9.4 e). 

Draw the diagrams of shear (cutting) forces (Fig. 9.4 c, f) and bending moments 

(Fig. 9.4 d, g). These diagrams are drawn by characteristic points, values of 

shearing forces and bending moments on the segments bounds. Using this 

method, we do without making equations of shear (cutting) forces and bending 

moments. From the diagrams analysis, we find dangerous cross-section – this is 

cross-section B , where there are: 
 

;kNm08,12XM    .kNm08,37YM  
 

Rationally place the cross-section of the beam in relation to the external 

load (Fig. 9.5), using condition XY MM  . 

For the scheme (Fig. 9.5 b) the axial moments of the cross-section 

resistance are 

3
2

3

2

6
b

hb
W X 


 ;    3

2

3

1

6
b

bh
WY 


 . 

 

For the scheme (Fig. 9.5 c) the axial moments of the cross-section 

resistance are 

3
2

3

1

6
b

bh
W X 


 ;    3

2

3

2

6
b

hb
WY 


 . 
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Figure 9.4 
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Figure 9.5 
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From the condition of the rational placement of the beam cross-section in 

relation to axes X  and Y  and the dangerous cross-section (cross-section B ), 

determined by the diagrams of bending moments (see Fig. 9.4 d, g), take the 

rational scheme drawn in Fig. 9.5 c, for which XY WW  . 

Write down the strength condition by normal stresses at oblique bending 

for the chosen cross-section (Fig. 9.5 c) 
 

  

Y

Y

X

X

W

M

W

M
max . 

 

From the strength condition, determine the width of the rectangular cross-

section 
 

 
m.0831,0

10160

08,375,108,1235,13
3

3
3 











YX MM
b  

 

Take ,mm85b  correspondingly, the cross-cut height mm.170h  

Write down the equation of the neutral line in the dangerous beam cross-section 

,000  x
I

M
y

I

M

Y

Y

X

X  

where 

;m1087010
12

5,817

12

488
33










bh
I X  

 

.m10348010
12

175,8

12

488
33










hb
IY  

 

Substituting the values, obtain 
 

;0

103480

1008,37

10870

1008,12
08

3

08

3




















xy  

then 

;767,0 00 xy    ;767,0

0

0


x

y
tg   .5,37


  

 

In Fig. 9.6 the rational placement of the beam cross-section relative to the 

load and the location of the neutral line are shown. 

To draw the spatial diagram of stresses distribution on the contour of the 

dangerous cross-section, normal stresses  in the junction points of this cross-

section (seе Fig. 9.6) are determined by formula  
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,













 i

Y

Y
i

X

X
i x

I

M
y

I

M


 
 

where ,ix  iy  are coordinates of the junction section points: 
 

;m105,8
2

1


x    ;m1025,4
2

1


y  
 

;m105,8
2

2


x    ;m1025,4
2

2


y  
 

;m105,8
2

3


x    ;m1025,4
2

3


y  
 

;m105,8
2

4


x    .m1025,4
2

4


y  
 

Determine the stresses at the junction section points: 
 

;MPa150

103480

105,81008,37

10870

1025,41008,12

8

23

8

23

1 
































  

 

  ;MPa3291592   
 

  ;MPa15091593   
 

  .MPa3291594   
 

 

By the obtained results, draw the diagram of distribution of normal 

stresses at the cross-section (see Fig. 9.6). 

 
 

Figure 9.6 
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Determine deflexion of the beam in section A  using graphic-analytical 

method of solving Mohr integral. 

Vertical deflexion in point A  determine by formula 
 

;

3

1







Y

Ciiver
A

IE

M
f


 

 

where i  is the area of the diagram of bending moments from external 

loads of the i-segment (Fig. 9.5 d); 

СiM  
is the value of the bending moment from the singular load (force) 

(Fig. 9.5 h),   that  lies  under   the  gravity  (weight)   center  

of і-diagram (Fig. 9.5 i). 
 

Respectively, 
 

, 
232211

Y

CCCver
A

IE

MMM
f







 

 

where ;kNm77,1154,3
2

1 2
1                       ;m667,01 CM  

 

;kNm54,8154,8
2

2                       ;m5,12 CM  
 

  ;kNm77,1154,808,12
2

1 2
3         .m667,13 CM  

 

Having substituted the values, obtain 
 

.m7,9m0097,010

10870102

667,177,15,154,8667,077,1 3

85











ver
Af  

 

Horizontal deflection in point A  work out by formula  
 

;

7

4







X

Ciihor
A

IE

M
f


 

 

or 
 

;
7654 7654

X

CCCChor
A

IE

MMMM
f
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where ;kNm616
2

4                                             ;m5,04 CM  

 

  ;kNm77,71654,21
2

1 2
5                        ;m667,05 CM  

 

;kNm54,21154,21
2

6                                 ;m5,16 CM  

 

  ;kNm77,7154,2108,37
2

1 2
7                 .m667,17 CM  

 

Substituting the values, obtain 
 

       
mm.7,710

103480102

667,177,75,154,21667,077,75,06 3

85











hor
Af  

 

Absolute section of deflextion in point A  equals 
 

      .mm4,127,77,9
22

22


hor
A

ver
AA fff  
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10. JOINT ACTION OF BENDING WITH TORSION 

 

Joint action of bending with torsion is a type of resistance to combined 

stress in which external forces acting on the beam cause the following internal 

force factors: torque, bending moments and shear (cutting) forces. 

Under the action of bending and torsion in the cross section of the beam 

there are normal stresses from the bending moment in two planes and tangential 

shear stresses from torsion and shear forces. 

Most shafts (straight bars of round or annular cross-section) undergo 

simultaneous bending and torsion deformations. 

When calculating the shafts, the torque and bending moments are taken 

into account. Shear (cutting) forces are not considered, as the corresponding to 

them tangential (shear) stresses are relatively small. 

With the combined action of bending and torsion, the material element in 

the dangerous section is in a plane stress state (Fig. 10.1). 

The maximum normal and tangential 

(shear) stresses for round shafts are 

determined by formula  

 

                   
3

0

32

d

M

W

M BNBN






  ; 

 

                     
3

16

d

M

W

M TR

P

TR






  , 

 

where 20WW P  ; 

              Figure 10.1               , law of parity of tangential  

(shear) stresses. 

 

Normal and tangential stresses reach the greatest value on a shaft surface. 

To determine the bending moment, the bending of the shaft in two 

mutually perpendicular planes (vertical and horizontal) is considered. Diagrams 

of bending moments in two planes and total are drawn. The values of bending 

moments in the characteristic sections are reduced to the total (equivalent) by 

the formula  
 

.
22
YZBN MMM   

 

Dangerous sections of the shaft are determined by comparing the plots of 

the total bending moments and torque. Sections are dangerous, where BNM  and 

TRM  simultaneously reach the highest values. 



 145 

Under the simultaneous action of normal and tangential (shear) stresses, 

the strength of the material is evaluated by one of the theories of strength. 

Theories of strength are used for their intended purpose, i.e. the first and 

second theory are used for brittle materials, the third and fourth for the plastic 

ones; Mohr and Pisarenko-Lebedev theories are used for materials with 

different yield strengths during tension and compression. 

The calculation of shaft strength at resistance to combined stress is 

carried out by the reduced (equivalent, calculation) moment RM   eqvM . It is 

determined depending on the accepted theory of strength:  
– according to the third theory of strength  (maximum tangential stresses) 

 

;
22
TRBNR MMM   

 

– according to the third theory of strength  (energetic)  

 

.75,0
22
TRBNR MMM   

 

Condition of strength under the joint action of bending with torsion  

 

 


 




3

0

32

d

M

W

M RR
eqv , 

 

where eqv  is the equivalent (calculation) normal stress; 

 0W  is the axial moment of the beam resistance section for the round 

cross-section 32
3

0 dW   . 



 146 

Task 12 

Calculation of the shaft for bending with torsion 

 

Steel transmission shaft (Fig. for task 12, Table for task 12) rotates at 

speed n  rpm and transmits the power through two driven pulleys of belt 

transmission given in table 12. Diameters of the pulleys: cm601 D , 

cm402 D , cm303 D ; distance cm100a ; material is steel 45, 

  MPa.100  Find the diameter of the shaft from the condition of strength. 
 

Plan of solving the task: 

1. Determine the power on the pulley (from the condition of power 

balance) where it is not specified. 

2. Determine the torques on each pulley, the torques on the shaft sections 

and draw a diagram of the torques.  

3. Determine the pressure transmitted by each pulley to the shaft, 

assuming that the tension of the leading branch of the belt is twice more than 

the tension of the driven, ii tT 2 . 

4. Determine the values of the components of the pressure forces acting in 

the horizontal and vertical planes. 

5. Draw the diagrams of bending moments in the horizontal and vertical 

planes.  

6. Determine the total bending moments in the characteristic cross-

sections of the shaft. Draw a diagram of the total bending moments. 

7. Determine the calculation moment using the third theory of strength. 

8. Determine the diameter of the shaft from the condition of strength. 
 

Table for task 12 
 

Nr 
1a  

(degree) 

2a  
(degree) 

3a  
(degree) 

rpm,n  kW,1P  kW,2P  kW,3P  

1   0 270 360 150 - 10 20 

2  90   0 180 100 10 - 20 

3 180 270   0 200 10 20 - 

4 270 360   0 300 - 30 40 

5 360   0   90 400 30 - 40 

6   0  90 180 500 30 40 - 

7  90 180 270 600 - 50 60 

8 180 270 360 700 50 - 60 

9 270 360   0 800 50 60 - 

0  90   0 180 900 - 90 50 
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Figure for task 12 
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Figure for task 12 (continued) 
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Example of solving the task 12 

Calculation of the shaft for bending with torsion 

 

Steel transmission shaft rotates at speed rpm300n  and transmits the 

power through two driven pulleys of belt transmission kW701 P  and 

kW403 P  (Fig. 10.2 a). Diameters of the pulleys are: cm601 D , 

cm402 D , cm303 D . Inclination angle of pulleys are ,301   

,2402    1803  (on Fig. 10.2 the angles are indicated from the axe Y ), 

distance .cm100a  The material of the shaft is steel 45;   .MPa100  Find 

the diameter of the shaft from the condition of strength. 

 

Solution 
 

From the balance of power determine the power on the pulley transmitted 

by the driven pulley 
 

kW.1104070312  PPP  
 

The values of the moments transmitted by the pulleys determine by 

formula 

ii PM  , 
 

where   is the angular speed of the shaft, determine it by formula 
 

1
s4,31

30

300

30













n
. 

 

Torques on pulleys: 
 

;kNm23,24,31701 M  
 

;kNm50,34,311102 M  
 

.kNm27,14,31403 M  
 

Using the sections method, draw a diagram of torques TRM  (Fig. 10.2 b). 

Determine the tensile forces of the belt drives by the formula 
 

iii DMt 2 . 

Respectively 
 

;kN43,7
6,0

23,22
1 


t     ;kN5,17

4,0

50,32
2 


t      .kN47,8

3,0

27,12
3 


t  
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The pressure force on the shaft at the pulley fits is determined by the 

formula 
 

.3 ii tF   

That is 
 

;kN3,2243,731 F  
 

;kN4,525,1732 F  
 

.kN4,2547,833 F  
 

Resolve the pressure forces into vertical and horizontal components: 
 

;kN2,1130sin3,2230sin11  FF Z  
 

;kN3,1930cos3,2230cos11  FF Y  
 

;kN4,4560sin4,5260sin22  FF Z  
 

;kN2,2660cos4,5260cos22  FF Y  
 

;03 ZF  
 

.kN4,2533  FF Y  
 

Consider the vertical plane (Fig. 10.2 c). 

Vertical components of the reaction of supports A  and B  are determined 

from the equilibrium equations: 
 












;0124;0

;0234;0

21

12

ZZZA

ZZZB

FFBM

FFAM

 
 

then 

 

;kN4,28
4

22,1134,45



ZA

 
 

.kN8,5
4

22,1114,45



ZB

 
 

Verification:   ZZZZ BFFAZ 12  
 

                           .04,454,458,52,114,454,28   
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Figure 10.2 
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Determine the bending moments in the characteristic points of the vertical 

plane: 
 

;0
B
Y

A
Y MM  

 

;kNm4,2814,281  Z
K
Y AM  

 

;kNm4,1114,4524,2812 2  ZZ
L
Y FAM  

 

.kNm8,518,51  Z
C
Y BM  

 

Draw the diagrams of bending moments in the vertical plane (Fig. 10.2 d). 

Consider a horizontal plane (Fig. 10.2 e). 

Determine the supporting reactions: 
 

  ;0BM      ;01234 312  YYYY FFFA      ;kN4,16YA  
 

  ;0AM        ;01234 213  YYYY FFFB       .kN9,15YB  
 

Verification:   YYYYY BFFFAY 312  
 

                                   ;06,516,519,154,253,192,264,16   
 

that is the supporting reactions are determined correctly. 

Determine the bending moments in the characteristic points of the 

horizontal plane: 
 

;0
B
Z

A
Z MM  

 

;kNm4,1614,161  Y
K
Z AM  

 

;kNm6,612,2624,1612 2  YY
L
Z FAM  

 

.kNm9,1519,151  Y
C
Z BM  

 

Draw a diagram of bending moments in horizontal plane (Fig. 10.2 f). 

Determine the total bending moments in the characteristic cross-sections 

of the shaft by formula 
 

.
22
ZYBN MMM 
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Find: 

;0
B
BN

A
BN MM  

 

;kNm8,324,164,28
22


K
BNM  

 

;kNm2,136,64,11
22


L
BNM  

 

.kNm9,169,158,5
22


C
BNM  

 

Draw a diagram of the total bending moments (Fig. 10.2 g). 

From the analysis of the diagrams TRM  (see Fig. 10.2 b) and BNM  

(see Fig. 10.2 g) find the dangerous section; it is section K in which 
 

;kNm8,32
BN

M    .kNm5,3TRM  

 

Determine the calculation moment using the third theory of strength. 
 

kNm.335,38,32
2222
 TRBNR MMM  

 

From the condition of strength under joint action of bending and torsion 
 

  ,
32

3
0

max 


 





d

M

W

M RR  

 

determine the diameter of the shaft 
 

 
,m10149

10100

0,333232 3
3

3
3














RM
d  

 

accept     .mm150d  
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11. STABILITY OF CENTRALLY-COMPRESSED RODS  

 

The conditions of strength and rigidity are supplemented by the condition 

of stability, which provides preserving of the original form of equilibrium of the 

structure or its individual elements under the action of a given load.  

Loads at which stability is lost are called critical and the corresponding 

states are called critical states.  

The danger of loss of stability arises for thin-walled structures such as 

flexible rods, long compressed rods, plates and shells.  

The critical force is the largest value of the compressive force applied 

centrally, to which the rectilinear form of 

equilibrium of the rod is stable. The bend caused 

by the loss of stability of the rectilinear shaped 

rod is called the longitudinal bend.  

Due to the curvature of the axis in the cross- 

sections of the rod there are two internal force 

factors – the longitudinal force FN   and 

bending moment BNM  (Fig. 11.1). Therefore, the 

curved rod undergoes both deformations of 

central compression and transverse bending.  

Figure 11.1  
 

Determination of critical loads is an important part of the calculation of 

structure and makes it possible to avoid loss of stability by introducing the 

appropriate stability margin coefficient.  
 

F

F
n

CR
ст  . 

 

To ensure stability, it is necessary that the compressive force F  acting on 

the rod is less than critical CRF . The rod stability is sufficient if 1стn . The 

value of the coefficient of stability depends on the purpose of the rod and its 

material. For steels 3...8,1стn ; for cast iron 5,5...5стn ; for wood 

2,3...8,2стn . 

The equilibrium of absolutely rigid solid can be stable, indifferent and 

unstable. It can be similarly referred to a deformed solid.  

The long rod under the action of axial compressive load undergoes three 

forms of equilibrium: stable, indifferent, unstable.  
The compressed rod is in the state of stable equilibrium (Fig. 11.2 a) if 

the compressive force F does not exceed the critical value CRF . That is, if the 

rod is slightly bent by some transverse load and then when this load is removed, 

the rod will align again and take the initial position.  



 155 

The equilibrium form of a compressed rod is indifferent (Fig. 11.2 b) if 

the compressive force reaches a certain value equal to the critical force. With a 

slight deviation from the initial position, under the action of shear force, the rod 

does not return back.  

When the value of the compressive force exceeds the critical, the 

rectilinear form of equilibrium of the rod becomes unstable, the rod loses its 

original shape (Fig. 11.2 c).  

 

 
 

Figure 11.2 

 

The loss of stability of the rod may occur even when the stress under the 

action of a critical force has not reached the limit of proportionality.  

The smallest value of the compressive force at which the rod loses the 

ability to keep a rectilinear shape is called critical and is indicated СRF . 

The task of determining the magnitude of the critical force was first 

solved by the academician of the St. Petersburg Academy of Sciences Leonard 

Euler in 1744. Euler’s formula 
 

 
,

2

min
2

l

IE
FCR










 
 

where E  is the elasticity modulus of the first kind; 

 minI  is the minimum axial moment of inertia of the rod cross-

section; 

   is the coefficient of reduction of length depends on the method 

of fixing the ends of the rod; 

 l  is the length of the rod. 
 

в) 
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Ways of fixing the ends of the rod are shown in Fig. 11.3. 

 

 
Figure 11.3 

 

Use of Euler’s formula. Yasinsky’s formula 

Euler’s formula is obtained from the differential equation of the curved 

axis of the rod with hinged ends. The Euler's formula is derived basing on 

Hooke's law, which is valid until the stress in the material does not exceed the 

limit of proportionality.  
 

;prCR                  
 

,
2
max

2

2

min
2

prCR

E

Al

IE









 







  

 

where A  is the area of the rod cross-section; 

 max  is maximum flexibility of the rod; depends on the geometry of 

the rod, ways of fixation of its ends. It is determined by 

formula 
 

min

max
i

l



 , 

 

where mini  is minimum radius of inertia of the rod cross-section, depends 

on geometric parameters. It is determined by formula 
 

AIi minmin  . 
 

Euler's formula is used for flexibilities that are greater than the ultimate 

flexibility of the rod 0  which depends on the material of the rod and is 

determined by formula  
 

pr

E









2

0 . 
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Euler’s formula is used when the flexibility of the rod is greater or 

equal to the ultimate flexibility of the material from which it is made  
 

0max   . 
 

As the example, the ultimate flexibility of the steel St.3 can be 

determined, for which 200pr  MPa, modulus of elasticity 5
102 E  MPa. 

 

  100102001010214,3
6652

0  . 
 

For low-carbon steel rods, Euler’s formula is used when their flexibility 

100 . Similarly the ultimate flexibility of other materials is determined. In 

particular, for cast iron 800  ; for wood 1100  . 

If the flexibility of the rods is less than the ultimate one, in particular, 

for steels 100...40 , Yasinsky’s empirical formula is used to determine 

stresses  

max  baCR , 
 

where ,a  b  are coefficients that depend on the material of the rod. For steel 

St.3 these values are equal 
 

MPa310a ;  .MPa14,1b  

If flexibility is 40 , rods can be calculated for strength under simple 

compression without taking into account the danger of the longitudinal bending, 

that is by formulas 

AF ;     cmCRcmye nn   . 

The graph of the dependence of critical stresses on flexibility for rods 

made of low-carbon steel is shown in Fig. 11.4. 
 

 
 

Figure 11.4 
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Note that: 

1) at small values of   the critical stress is equal to the yield strength 

yeCR   ; 

2) at average values of   the critical stress is less than the yield strength 

but more than the proportionality limit yeCRpr   ; 

3) at large values of   the critical stress is less than the proportionality 

limit prCR   . 

The value of the critical force that can be applied to the rod is obtained in 

the following sequence. Determine: 

a) ultimate flexibility 0 ;  

b) maximum actual flexibility of the rod max . 

c) with 0  and max , to determine the critical stresses, use one of the 

following formulas: 

- when   0max                  Euler’s formula,       2
max

2
 ECR  ; 

- when   0max  ср       Yasinsky’s formula, max  baCR ; 

- when   ,max ср               formula for compression,     yeCR   ; 

d) with CR  find    AF CRCR   . 

The allowable value of the force applied to the rod is defined as 
 

  стCR nFF  . 
 

In calculations of stability, the critical stress is as destructive as the yield 

strength or strength limit in calculations of strength. Therefore, the concept of 

allowable stability stress  ST  is introduced, which is defined as part of the 

critical stress  

  стCRST n  . 
 

The stability condition requires that the stress occuring during 

compression does not exceed the allowable stability stress  
 

 ST
A

F
 

max . 
 

However, the calculation of the allowable stability stress is complicated 

by the fact that the critical stress depends not only on the properties of the 

material, but also on the flexibility of the rod. Therefore, the concept of the 

coefficient of reduction of the main allowable strength stress when 

calculating the stability is introduced  
 

 

 




ST
 , 

 

where    is the allowable strength stress under compression   nye  . 
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The coefficient   for each material can be determined at any value of 

flexibility. Its value for certain materials is given in Annex 5.  

Thus, the condition of stability is  
 

 


 



A

Fmax . 

 

Three types of tasks are solved with stability condition. 

Choosing the cross-section of the rod or project calculation.  

This calculation is carried out by determining the cross-sectional area 

from the condition of stability  
 

  


F
A . 

 

Determining of allowable load from the condition of stability is 

performed similarly to p.1, except for the last action, instead of which the 

allowable load is calculated. 

Verification calculation. Stability test, i.e. compliance with the condition 

of stability. Perform in the following sequence: 

- determine the minimum moment of inertia of the rod cross-section and 

the minimum radius of inertia (with the same fixation in the main planes); 

- flexibility of the rod is calculated; 

- choose the reduction factor of the main allowable stress  ; 

- obtained data are substituted in a condition of stability and their 

performance is verified. 

There is no single solution to this task, because the inequality includes 

two unknown quantities: the cross-sectional area A  and the coefficient   

which depends on still undetermined cross-sectional dimensions, its shape and 

the length of the rod. The task is solved by the method of successive 

approximations with verification of intermediate results using the stability 

condition. In the first approximation, the random value of the reduction factor 

of the main allowable stress, approximately  =0,5…0,6, is taken. 

Determining the size of the cross-section of the rod during stability is 

complicated by the fact that it is not known in advance in which range the 

actual flexibility of the rod will occur, i.e. which of the formulas to use: 

Euler’s, Yasinsky’s or for simple compression.  
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Task 13 

Calculation of stability of compressed rod 

 

For the given rod (Fig. for task 13, Table for task 13) choose the elements 

of its cross-section from the condition of stability. Material of the elements is 

steel St.3;   MPa160 ; 1000  . Elements of the rod are welded to each 

other.  

 

Plan of solving the task: 

 

1. Draw the given  scheme,   placing  the  elements  (angles,  channels  or 

I-beams) under the rod. 

2. Determine the plane of the minimum rigidity (the plane in which the 

axis is deformed when the force reaches a critical value).  

3. Carry out the calculation of the rod stability in the plane of maximum 

flexibility, using the table of assortment for shaped rolling (Annexes 1, 2, 3, 4) 

and the table of coefficients of reduction of the main allowable stress (Annex 5).  

 

 
 

Figure for task 13 
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Table for task 13 
 

Nr F , 

kN 

l , 

m 

Cross-section Nr F , 

kN 

l , 

m 

Cross-section 

1 130 2,5 

 

6 130 2,0 

 

2 180 4,5 

 

7 180 2,5 

 

3 100 1,5 

 

 
 

8 100 4,0 

 

 

4 80 3,0 

 

 
 

9 80 2,0 

 

 
 

5 90 3,5 

 

0 90 6,0 
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Example of solving the task 13 

Calculation of stability of compressed rod 

 

For the given rod (Fig. 11.5 a) choose the I-beam section. Material of the 

rod is steel St.3;   MPa160 ; 1000  ; kN200F ; .m3l  

 
Figure 11.5 

 

Solution 

Place the cross-section under the rod (Fig. 11.5 b). 

Calculation is carried out by the method of approximation.  

The first approximation, take the value of the coefficient of longitudinal 

bending 5,01  .  

From the condition of stability determine the cross-sectional area  

 
.cm25m100,25

101605,0

200 224

31 











F
A  

From the standard GOST 8239-56 (Annex 1) choose І-beam Nr 10 for 

which: ,cm4,25
2

1 bA  ,cm12,21 yi  .cm51,71 zi  

Determine the flexibility of the rod in two planes: 

71
12,2

3005,0
1 







y

Y
i

l
 ; 

.20
51,7

3005,0
1 







z

Z
i

l
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Since 11 ZY   , the calculation is made in the plane XOZ  

(see Fig. 11.5 b). Using the method of linear interpolation, we determine the 

specified value of the coefficient of longitudinal bending, which corresponds to 

the flexibility .711 Y  From the Table (Аnnex 5) write out: 

when 70 ; 81,0 ;    when 80 ; 75,0 . 

Determine the coefficients of reduction of the main allowable stress for 

flexibility 711 Y  

.804,01
10

75,081,0
81,0

/
1 


  

 

Determine the actual stress 
 

.MPa7,78

104,25

10200

4

3

1

1. 










дв

acs
A

F
  

 

Determine the allowable stress 
 

    .MPa129160804,0
/

11.   als  
 

Understress makes 
 

 

 
%,7,38%100

129

1297,78
%100

1.

1.1.







als

alsacs




 which is 

unacceptable. 
 

The second approximation, we take  
 

652,0
2

804,05,0

2

/
11

2 








 . 

Then 

224

32 cm2,19m102,19
10160652,0

200






A . 

 

Accept I-beam Nr 16 (Аnnex 1), for which ;cm2,20
2

2 bA  

;cm70,12 yi  .cm57,62 zi   

Determine the flexibility of the rod  
 

,88
70,1

3005,0
2 


Y  

which corresponds 
 

.702,08
10

69,075,0
75,0

/
2 
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Actual stress 
 

.MPa99

102,20

10200

4

3

2. 










acs  

Allowable stress  
 

  .MPa112160702,02. als  
 

Understressing makes 
 

%6,11%100
112

99112



, which is more than 5%. 

 

The third approximation, we take 
 

677,0
2

702,0652,0

2

/
22

3 








 . 

Then 

.cm5,18m105,18

10160677,0

200 224

33 






A  

 

Take I-beam Nr 14 (Аnnex 1), for which ;cm4,17
2

3 bA  ;cm55,13 yi  

cm.73,53 zi  

Determine flexibility 
 

,97
55,1

3005,0
3 


Z  

that corresponds  

.627,07
10

60,069,0
69,0

/
3 


  

Actual stress  
 

.MPa115

104,17

10200

4

3

3. 










acs  

 

Allowable stresses  
 

  .MPa100160627,03. als  
 

Overstressing makes %15%100
100

100115



, which is unacceptable. 

Therefore, for this rod we take I-beam cross-section Nr 16, for which the 

understress is 11,6 %, because for the rod with I-beam cross-section Nr 14 

overstressing is 15 %, which is unacceptable. 
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12. DYNAMIC LOADS. 

DETERMINING IMPACT STRESSES AND DISPLACEMENTS 

 

Dynamic load is load which is partially or completely caused by the 

forces of inertia (at accelerated movement of parts, during their rotation and 

oscillation), as well as at instantaneous load and impact. The same structural 

elements and their material are deformed differently depending on how they are 

loaded: statically or dynamically.  

The peculiarity of fracture under dynamic action of forces is that plastic 

materials, such as low-carbon steel, demonstrate brittle properties under 

instantaneous (impact) load, i.e. they are destroyed without significant residual 

deformations and at much lower deformation energy. Mechanical 

characteristic of material, which reflects its ability to resist impact loads, is 

called impact viscosity. Impact strength is characterized by the area of the stress 

diagram    before failure (see Chapter 2). The modules of elasticity under 

dynamic loading are also different than under the static one. In strength of 

materials, approximate theory of impact is used, taking into consideration that 

Hooke’s law is kept, the modules of elasticity are unchanged and there is 

no energy dissipation during impact.  

Operation of some machines (pressing, driving in piles, etc.) is 

accompanied by an impact load, for example, a load Q  falling from a certain 

height h  on a stationary elastic system. At the moment of impact, stresses and 

deformations reach the maximum values in a structure. 

 

Impact load by a free-falling body 

In the systems in which the load is falling there may occur different kinds 

of deformations: compression (Fig. 12.1 a), bending (Fig. 12.1 b, c), torsion 

(Fig. 12.1 d). 

To obtain the formulas of strength and rigidity under such a load (in 

approximate form) the following assumptions are taken: 

1. Acceleration and inertia force of the body causing the impact increase 

without changing the direction from zero to the final value.  

2. Body under impact has only one degree of freedom. 

3. Body that impacts is absolutely rigid and does not deform; impact is 

elastic, but the bodies after the impact displace together (without bounce). 

4. Deformations of the body under the impact are elastic and Hooke’s law 

is acceptable to it.  

5. Mass of the elastic system is neglected in approximate calculations. 

6. Energy dissipation during impact is neglected. Kinetic energy of the 

falling load is completely converted into potential energy of elastic system. 
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Let us consider the simplest case of the impact load of a vertical column 

by a free-falling perfectly rigid body (Fig. 12.1 a). 

 

 
Figure 12.1 

 

It is impossible to use the D’Alembert principle in this case, because the 

acceleration is unknown when the column itself is deformed. Using the law of 

conservation of energy, we make the equation of energy balance of the system 

falling body – structure for the moment of maximum displacement Dl  
 

colT UK  , (12.1) 
 

where TK  is kinematic energy of the falling body with taking into account 

its displacement (together with the dynamic shortening of the 

column by Dl ) up to stop at the end of the maximum 

displacement of impact point  
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 DT lhQK  . (12.2) 
 

Potential energy of elastic deformation that will accumulate during such 

shortening of the column  
 

DD lNU 
2

1
, (12.3) 

 

where DN  is maximum internal force during elastic deformation,  

QN D   is unknown parameter as well as Dl . 

We write down the relations between these parameters, assuming that 

Hooke's law is satisfied: 
 

AE

lN
l

D
D




 ,   then  

l

AEl
N

D
D


 . 

 

The energy of deformation will be corresponding to (12.3) 
 

l

AEl
U

D

2

2


 . (12.4) 

 

Due to the balance of energy (12.2) and (12.4) compare  
 

 
l

AEl
lhQ

D
D

2

2


 . (12.5) 

 

Write down the quadratic equation in the simplest way  
 

0
222












AE

hlQ
l

AE

lQ
l DD . (12.6) 

 

Expression 
AE

lQ




 is shortening of the column (according to Hooke’s law) 

under the static action of the weight Q , i.e. it is SТl  (displacement of the 

cross-section of the elastic system from the static action of the load). 

Dynamic shortening can be obtained as  
 

hllll SТSТSТD  2
2 , (12.7) 

or 

DSТ

SТ

SТD kl
l

h
ll 


















2
11 . (12.8) 

 

The expression in brackets is considered to be the impact coefficient of a 

free-falling body.  
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When 0h , that is when the body falls from zero height (or under the so-

called instantaneous application of force 211 Dk .  

In most cases elastic deformations are much less than h , therefore the 

coefficient of impact can be taken  
 

SТ

D
l

h
k




2
. (12.9) 

 

The larger the denominator, the smaller Dk  is. This means that a more 

susceptible to deformation (less rigid) system is stronger under impacts and 

vibrations.  

When obtaining the dependence for the coefficient of impact, the own 

mass of the deformed body is neglected. This is acceptable only for 

approximate calculations.  

Similarly, determine the displacement and stress of the beam under the 

axial impact (Fig. 12.2). 

 

 
 

Figure 12.2 

 

Based on the linear relationship between force and displacement, it can be 

written down that  
 

DSTD k  ;                ,DSTD k   
 

where D , D  are dynamic normal and tangential (shear) stresses; 

ST , ST  are static normal and tangential (shear) stresses determined 

in the structural elements from the static action of the 

load. 
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Task 14 

Determining maximum dynamic stresses 

and displacements under the impact 

 

For the given elastic system (Fig. for the task 14, Table for the task 14) 

determine the maximum stresses under the impact that occur during falling of 

the load N100Q  from the height m5,0h  and the displacement value (see 

table for the task Nr 14) in the direction of the impact. The material of the 

elastic system is steel;  ;m2l  .cm4d  
 

Plan of solving the task: 
 

1. Determine the types of deformation for which the  structural elements 

work. 

2. Draw the diagrams of internal force factors under static action of the 

load Q . 

3. Determine the maximum static stresses in the structural elements. 

4. Determine the static displacement in the given cross-section.  

5. Determine the static displacement in the place of impact.   

6. Determine the coefficient of impact (without considering the own mass 

of the elastic system). 

7. Determine the maximum dynamic stresses. 

8. Determine displacement during the impact in the given cross-section 

( ver
Af  або B ).  

Table for task 14 
 

Nr cm,D  Displacement 

1  4,5 ver
Af  

2  4,0 B  

3  5,0 ver
Af  

4  6,0 B  

5  7,0 ver
Af  

6  8,0 B  

7  9,0 ver
Af  

8 10,0 B  

9 11,0 ver
Af  

0 12,0 B  
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Figure for task 14 
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Figure for task 14 (continued) 
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Example of solving the task 14.1 
 

For the given elastic system (Fig. 12.3 a) determine the maximum stresses 

that occur under the impact of the load N100Q  falling from the height 

m5,0h  and the value of displacement in the cross-section on which the load 

is falling. Given: ;Pa102
11

E  ;m2l  ;cm4d  .cm5D  
 

Solution 
 

The given rod system (Fig. 12.3 b) works for such kinds of deformation: 

segments ,AB  BC  – symmetrical transverse bending.  

Determine the maximum internal force factors under the static load 

.N100Q  Draw the diagram of bending moments (Fig. 12.3 c). 

Segment ,AB  cross-section B : .Nm100. BBNM  

Segment BC , .Nm100. BCBNM  

Determine maximum static stresses. 

Segment B :  

MPa9,15
1028,6

100

6
01

.
. 




W

M
ВBN

BSТ , 

where 

.m1028,6cm28,6
32

4

32

363
33

01









 d

W  

Segment BC :   
 

,MPa15,8
103,12

100

6
02

.
. 




W

M
ВСBN

BCSТ  

where 

.m103,12cm3,12
32

5

32

363
33

02









 D

W  

 

Determine the static displacement in the cross-section on which the load 

is falling by the graphoanalytical method of solving the Mohr integral 

(Fig. 12.3 d, e)  
 







 22

02

11

01

11
CCST M

IE
M

IE
l 

 

 

;m1093,5

10

1

6,30

1200

56,12

67,050

102

1 3

811
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Figure 12.3 
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where       ;501100
2

1
1     ;20021002   

 

;67,01
3

2
1 CM    ;12 CM

 
 

;m1056,12cm56,12
64

4

64

484
44

01









 d

I  

 

.m106,30cm6,30
64

5

64

484
44

02









 D

I  

 

Find the coefficient of impact  
 

.0,14

1093,5

5,02
11

2
11

3













SТ

D
l

h
k

 
 

Determine dynamic stresses in the construction elements: 

cross-section B , 
 

.MPa223149,15..  DBSTВD k  
 

segment BC , 
 

.MPa1141415,8. ВCD  
 

Vertical bending of cross-section A  during the impact  
 

,mm831493,5..  DАSТAD klf  
 

where .. STAST ll   
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Example of solving the task 14.2 
 

For the given elastic system (Fig. 12.4) determine the maximum stresses 

that occur under the impact of the load N100Q  falling from the height 

m5,0h  and the value of displacement in the cross-section B  on which the 

load is falling. Given: ;MPa102
5

E  ;m2l  ;cm4d  ;cm4D  

MPa.108
4

G  
 

Solution 

The given rod system (Fig. 12.4 a) works for such kinds of deformation: 

segments BA  and AC  – bending; segment CK  – torsion. 

Determine the maximum internal force factors under the static load 

N100Q  (Fig. 12.4 b). 

Segment ,BA   A ;  .Nm1001100. ABNM  

Segment ,AC  cross-section C ;  .Nm2002100. CBNM  

Segment ,CK     .Nm200. CTRM  

Draw the diagrams of internal force factors (Fig. 12.4 c). 

Determine the maximum static stresses. 

Cross-section A :   ,MPa9,15
28,6

100

01

.
. 

W

M ABN
AST  

 

where     .m1028,6cm28,6
32

4

32

363
33

01









 d

W  

 

Cross-section C :   MPa,7,18
7,10

200

02

.
. 

W

M CBN
CST  

 

where      .m107,10cm7,10
6

4

6

363
32

02






Dd

W  

 

Cross-section CK :  MPa,9,15
6,12

200

.


P

TR
CKST

W

M
  

 

where      .m106,12cm6,12
16

4

16

363
33










 D
W P  

Determine the static displacement in the cross-section on which the load 

is falling 

m,0466,000679,0398,0..  BNSTTRSTST lll

 

where TRSTl .  is displacement of the segment from the torsion strain of the 

segment CK  

;m,039802,019902.  TRSTl  



 176 

 
 

Figure 12.4 
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;rad0199,0

101,25108

2200

810

.













P

CKCKTR

IG

lM


 
 

;m101,25cm1,25
32

4

32

484
44










 D
I P

 
 

BNSTl .  is displacement of the section B  under the bending deformation of 

BC  segment, determined by the graphoanalytical method of 

solving the Mohr integral (Fig. 12.4 d) 
 

  






 3322

0201

11

.

1
CC

C

BNST
MM

IEIE
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where  ;501005,01             ;667,01 CM

    ;10011002             ;5,12 CM  

   ;503                        ;667,1667,013 CM  
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Determine the coefficient of impact  
 

.74,5
0466,0

5,02
11

2
11 
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Determine the maximum dynamic stresses and displacements of the 

section B  at the time of falling of the load: 
 

;MPa3,9174,59,15..  DASTАD k  
 

;MPa10774,57,18..  DCSTCD k  
 

;MPa3,9174,59,15
..

 DCKSTCKD
k  

 

.m268,074,50466,0  DSTD kf   
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Аnnex 1 

 
 

Rolled steel.   І-beams. Assortment. ГОСТ 8239-89 
 

Shape 

num-

bers 

Dimensios Section 

area 

,A  

sm
2
 

Reference values for axes 

xx   yy   

h  b  d  t  XJ  XW  xi  XS  YJ  YW  yi  

mm sm
4
 sm

3
 sm sm sm

4
 sm

3
 sm 

10 100 55 4,5 7,2 12,0 198 39,7 4,06 23,0 17,9 6,49 1,22 

12 120 64 4,8 7,3 14,7 350 58,4 4,88 33,7 27,9 8,72 1,38 

14 140 73 4,9 7,5 17,4 572 81,7 5,73 46,8 41,9 11,5 1,55 

16 160 81 5,0 7,8 20,2 873 109 6,57 62,3 58,6 14,5 1,70 

18 180 90 5,1 8,1 23,4 1290 143 7,42 81,4 82,6 18,4 1,88 

20 200 100 5,2 8,4 26,8 1840 184 8,28 104 115 23,1 2,07 

22 220 110 5,4 8,7 30,6 2550 232 9,13 131 157 28,6 2,27 

24 240 115 5,6 9,5 34,8 3460 289 9,97 163 198 34,5 2,37 

27 270 125 6.0 9,8 40,2 5010 371 11,2 210 260 41,5 2,54 

30 300 135 6,5 10,2 46,5 7080 472 12,3 268 337 49,9 2,69 

33 330 140 7,0 11,2 53,8 9840 597 13,5 339 419 59,9 2,79 

36 360 145 7,5 12,3 61,9 13380 743 14,7 423 516 71,1 2,89 

40 400 155 8,0 13,0 71,4 18930 947 16,3 540 665 85,9 3,05 

45 450 160 6,6 14,2 83,0 27450 1220 18,2 699 807 101 3,12 

50 500 170 9,5 15,2 97,3 39120 1560 20,1 899 1040 122 3,28 

55 550 180 10,0 16,5 113 54810 1990 22,0 1150 1350 150 3,46 

60 600 190 10,8 17,8 131 75010 2500 23,9 1440 1720 181 3,62 
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Аnnex 2 

 
 

Rolled steel.  U-beam. Assortment. ГОСТ 8240-89 

 

Shape 

num-

bers 

Dimensios Section 

area 

,A  

sm
2
 

Reference values for axes 

xx   yy   

0z  
h  b  d  t  xJ  xW  xi  yJ  yW  yi  

mm sm
4
 sm

3
 sm sm

4
 sm

3
 sm sm 

5 50 32 4,4 7,0 6,16 22,8 9,10 1,92 5,61 2,75 0,954 1,16 

6,5 65 36 4,4 7,2 7,51 48,6 15,0 2,54 8,70 3,68 1,08 1,24 

8 80 40 4,5 7,4 8,98 89,4 22,4 3,16 12,8 4,75 1,19 1,31 

10 100 46 4,5 7,6 10,9 174 34,8 3,99 20,4 6,46 1,37 1,44 

12 120 52 4,8 7,8 13,3 304 50,6 4,78 31,2 8,52 1,53 1,54 

14 140 58 4,9 8,1 15,6 491 70,2 5,60 45,4 11,0 1,70 1,67 

16 160 64 5,0 8,4 18,1 747 93,4 6,42 63,3 13,8 1,87 1,80 

18 180 70 5,1 8,7 20,7 1090 121 7,24 86,0 17,0 2,04 1,94 

20 200 76 5,2 9,0 23,4 1520 152 8,07 113 20,5 2,20 2,07 

22 220 82 5,4 9,5 26,7 2110 192 8,89 151 25,1 2,37 2,21 

24 240 90 5,6 10,0 30,6 2900 242 9,73 208 31,6 2,60 2,42 

27 270 95 6,0 10,5 35,2 4160 308 10,9 262 37,3 2,73 2,47 

30 300 100 6,5 11,0 40,5 5810 387 12,0 327 43,6 2,84 2,52 

33 330 105 7,0 11,7 46,5 7980 484 13,1 410 51,8 2,97 2,59 

36 360 110 7,5 12,6 53,4 10820 601 14,2 513 61,7 3,10 2,68 

40 400 115 8,0 13,5 61,5 15220 761 15,7 642 73,4 3,23 2,75 
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Аnnex 3 

 
 

Equal leg angle steel rolled steel. Assortment. ГОСТ 8509-86 
 

Shape 

numbers 

Dimensios Section 

area 

,A  

sm
2
 

Reference values for axes 

b  d  R  
xx   

0z  
xJ  xi  

mm sm
4
 sm sm 

1 2 3 4 5 6 7 8 

2 20  
3 

4 
3,5 

1,13 

1,46 

0,40 

0,50 

0,59 

0,58 

0,60 

0,64 

2,5 25  
3 

4 
3,5 

1,43 

1,86 

0,81 

1,03 

0,75 

0,74 

0,73 

0,76 

2,8 28 3 4 1,62 1,16 0,85 0,80 

3,2 32  
3 

4 
4,5 

1,86 

2,43 

1,77 

2,26 

0,97 

0,96 

0,89 

0,94 

3,6 36  
3 

4 
4,5 

2,10 

2,75 

2,56 

3,29 

1,10 

1,09 

0,99 

1,04 

4 40  
3 

4 
5 

2,35 

3,08 

3,55 

4,58 

1,23 

1,22 

1,09 

1,13 

4,5 45




 
3 

4 

5 

5 

2,65 

3,48 

4,29 

5,13 

6,63 

8,03 

1,39 

1,38 

1,37 

1,21 

1,26 

1,30 

5 50




 
3 

4 

5 

5,5 

2,96 

3,89 

4,80 

7,11 

9,21 

11,2 

1,55 

1,54 

1,53 

1,33 

1,38 

1,42 

5,6 56




 
3,5 

4 

5 

6 

3,86 

4,38 

5,41 

11,6 

13,1 

16,0 

1,73 

1,73 

1,72 

1,50 

1,52 

1,57 

6,3 63




 
4 

5 

6 

7 

4,96 

6,13 

7,28 

18,9 

23,1 

27,1 

1,95 

1,94 

1,93 

1,69 

1,74 

1,78 
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Аnnex 3  (continued) 
 

Equal leg angle steel rolled steel. Assortment. ГОСТ 8509-86 

(continued) 
 

1 2 3 4 5 6 7 8 

7 70









 

4,5 

5 

6 

7 

8 

8,0 

6,20 

6,86 

8,15 

9,42 

10,7 

29,0 

31,9 

37,6 

43,0 

48,2 

2,16 

2,16 

2,15 

2,14 

2,13 

1,88 

1,90 

1,94 

1,99 

2,02 

7,5 75









 

5 

6 

7 

8 

9 

9 

7,39 

8,78 

10,1 

11,5 

12,8 

39,5 

46,6 

53,3 

59,8 

66,1 

2,31 

2,30 

2,29 

2,28 

2,27 

2,02 

2,06 

2,10 

2,15 

2,18 

8 80




 

5,5 

6 

7 

8 

9 

8,63 

9,38 

10,8 

12,3 

52,7 

57,0 

65,3 

73,4 

2,47 

2,47 

2,45 

2,44 

2,17 

2,19 

2,23 

2,27 

9 90




 

6 

7 

8 

9 

10 

10,6 

12,3 

13,9 

15,6 

82,1 

94,3 

106 

118 

2,78 

2,77 

2,76 

2,75 

2,43 

2,47 

2,51 

2,55 

10 100














 

6,5 

7 

8 

10 

12 

14 

16 

12 

12,8 

13,8 

15,6 

19,2 

22,8 

26,3 

29,7 

122 

131 

147 

179 

209 

237 

264 

3,09 

3,08 

3,07 

3,05 

3,03 

3,00 

2,98 

2,68 

2,71 

2,75 

2,83 

2,91 

2,99 

3,06 

11 110  
7 

8 
12 

15,2 

17,2 

176 

198 

3,40 

3,39 

2,96 

3,00 

12,5 125









 

8 

9 

10 

12 

14 

16 

14 

19,7 

22,0 

24,3 

28,9 

33,4 

37,8 

294 

327 

360 

422 

482 

539 

3,87 

3,86 

3,85 

3,82 

3,80 

3,78 

3,46 

3,40 

3,45 

3,53 

3,61 

3,68 

14 140




 
9 

10 

12 

14 

24,7 

27,3 

32,5 

466 

512 

602 

4,34 

4,33 

4,31 

3,78 

3,82 

3,90 
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Аnnex 4 
 

 
 

Unequal leg angle rolled steel. Assortment. ГОСТ 8510-86 

 

Shape 

numbers 

Dimensios 

Section 

area 

,A  

sm
2
 

Reference values for axes 

B  b  d  R  

xx   yy   11 xx   11 yy   

xJ  xi  yJ  yi  

Distance from the 

center of gravity 

 0y   0x  

mm sm
4
 sm sm

4
 sm sm sm 

1 2 3 4 5 6 7 8 9 10 11 12 

2,5/1,6 25 16 3 3,5 1,16 0,70 0,78 0,22 0,44 0,86 0,42 

3,2/2 32 20  
3 

4 
3,5 

1,49 

1,94 

1,52 

1,93 

1,01 

1,00 

0,46 

0,57 

0,55 

0,54 

1,08 

1,12 

0,49 

0,53 

4/2,5 40 25  
3 

4 
4,0 

1,89 

2,47 

3,06 

3,93 

1,27 

1,26 

0,93 

1,18 

0,70 

0,69 

1,32 

1,37 

0,59 

0,63 

4,5/2,8 45 28  
3 

4 
5 

2,14 

2,80 

4,41 

5,68 

1,43 

1,42 

1,32 

1,69 

0,79 

0,78 

1,47 

1,51 

0,64 

0,68 

5/3,2 50 32  
3 

4 
5,5 

2,42 

3,17 

6,17 

7,98 

1,60 

1,59 

1,99 

2,56 

0,91 

0,90 

1,60 

1,65 

0,72 

0,76 

5,6/3,6 56 36




 
3,5 

4 

5 

6,0 

3,16 

3,58 

4,41 

10,1 

11,4 

13,8 

1,79 

1,78 

1,77 

3,30 

3,70 

4,48 

1,02 

1,02 

1,01 

1,80 

1,82 

1,86 

0,82 

0,84 

0,88 

6,3/4,0 63 40




 

4 

5 

6 

8 

7,0 

4,04 

4,98 

5,90 

7,68 

16,3 

19,9 

23,3 

29,6 

2,01 

2,00 

1,99 

1,96 

5,16 

6,26 

7,28 

9,15 

1,13 

1,12 

1,11 

1,09 

2,03 

2,08 

2,12 

2,20 

0,91 

0,95 

0,99 

1,07 
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Аnnex 4 (continued) 
 

Unequal leg angle rolled steel. Assortment. ГОСТ 8510-86 

 continued) 
 

 

1 2 3 4 5 6 7 8 9 10 11 12 

7/4,5 70 45  
4,5 

5 
7,5 

5,07 

5,59 

25,3 

27,8 

2,23 

2,23 

8,25 

9,05 

1,28 

1,27 

2,25 

2,28 

1,03 

1,05 

7,5/5 75 50





 
5 

6 

8 

8 

6,11 

7,25 

9,47 

34,8 

40,9 

52,4 

2,39 

2,38 

2,35 

12,5 

14,6 

18,5 

1,43 

1,42 

1,40 

2,39 

2,44 

2,52 

1,17 

1,21 

1,29 

8/5 80 50  
5 

6 
8 

6,36 

7,55 

41,6 

49,0 

2,56 

2,55 

12,7 

14,8 

1,41 

1,40 

2,6 

2,65 

1,13 

1,17 

9/5,6 90 56




 
5,5 

6 

8 

9 

7,86 

8,54 

11,18 

65,3 

70,6 

90,9 

2,88 

2,88 

2,85 

19,7 

21,2 

27,1 

1,58 

1,58 

1,56 

2,92 

2,95 

3,04 

1,26 

1,28 

1,36 

10/6,3 100 63





 

6 

7 

8 

10 

10 

9,59 

11,1 

12,6 

15,5 

98,3 

113 

127 

154 

3,2 

3,19 

3,18 

3,15 

30,6 

35,0 

39,2 

47,1 

1,79 

1,78 

1,77 

1,75 

3,23 

3,28 

3,32 

3,40 

1,42 

1,46 

1,50 

1,58 

11/7 110 70




 
6,5 

7 

8 

10 

11,4 

12,3 

13,9 

142 

152 

172 

3,53 

3,52 

3,51 

45,6 

48,7 

54,6 

2 

1,99 

1,98 

3,55 

3,57 

3,61 

1,58 

1,6 

1,54 

12,5/8 125 80




 

7 

8 

10 

12 

11 

14,1 

16 

19,7 

23,4 

227 

256 

312 

356 

4,01 

4 

3,98 

3,95 

73,7 

83,0 

100 

117 

2,29 

2,28 

2,26 

2,24 

4,01 

4,05 

4,14 

4,22 

1,8 

1,84 

1,92 

2 

14/9 140 90  
8 

10 
12 

18 

22,2 

364 

444 

4,49 

4,47 

120 

146 

2,58 

2,56 

4,49 

4,58 

2,02 

2,12 
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Аnnex 5 
 

Coefficients   of reduction of the main allowable stress 
 

Flexibility 

of rods  

 

i

l



  

Steel 

types 

St.ОС, 

St.2,  

St.3, 

St.4 

Steel 

St.5 

Steel 

 
Cast iron Wood 

0 1,00 1,00 1,00 1,00 1,00 

10 0,99 0,98 0,97 0,97 0,99 

20 0,96 0,95 0,95 0,91 0,97 

30 0,94 0,92 0,91 0,81 0,93 

40 0,92 0,89 0,87 0,69 0,87 

50 0,89 0,86 0,83 0,57 0,80 

60 0,86 0,82 0,79 0,44 0,71 

70 0,81 0,76 0,72 0,34 0,60 

80 0,75 0,70 0,65 0,26 0,48 

90 0,69 0,62 0,55 0,20 0,38 

100 0,60 0,51 0,43 0,16 0,31 

110 0,52 0,43 0,35 — 0,25 

120 0,45 0,36 0,30 — 0,22 

130 0,40 0,33 0,26 — 0,18 

140 0,36 0,29 0,23 — 0,16 

150 0,32 0,26 0,21 — 0,14 

160 0,29 0,24 0,19 — 0,12 

170 0,26 0,21 0,17 — 0,11 

180 0,23 0,19 0,15 — 0,10 

190 0,21 0,17 0,14 — 0,09 

200 0,19 0,16 0,13 — 0,08 
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Аnnex 6 
 

Areas   and coordinates Cz  of the gravity center of simple figures  
 

Figure    Cz  
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MAIN DEFINITIONS OF STRENGTH OF MATERIALS 

 

 

Strength of materials is the science of engineering methods for 

calculating the strength, rigidity and durability of machines and structures 

elements. 

Strength is the ability of material or structure to withstand mechanical 

stress without fracture. 

Rigidity is  the ability of the structure and its elements to withstand 

elastic deformations, i. e. the ability to perceive external loading without 

changing the geometric dimensions and shape. 

Durability  is the ability of the structure or its elements to retain, under 

the action of given forces, the initial shape of the elastic equilibrium. 

Rod (bar) is a body of prismatic shape where one size (length) is much 

bigger than the other two (transverse) dimensions. 

Plate is the prismatic (cylindrical) body in which one size (thickness) is 

much smaller than two others. 

Shell is a body restricted by two curvilinear surfaces, the distance 

between which (thickness) is small in comparison with other dimensions. This 

is a plate with curved middle surface. Examples: walls of thin-walled tanks, 

walls of boilers, domes of building structures, hulls of aircrafts, rockets, 

submarines. 

Solid (massive body) is the body which dimensions are of the same order 

in all (three) directions. Examples: foundations of structures, retaining walls, 

foundations of powerful presses and machine tools. 

Calculation scheme is the real object, free of insignificant features. More 

than one calculation scheme may be developed for the same object, depending 

on the load features and operating conditions. 

Tensile-compressive is a type of deformation in which only longitudinal 

(axial) force N occurs in the cross sections of a straight bar. 

Shear. Is the type of deformation, in which the cross-section of the rod 

(bar) only shear (cutting) force Q acts. The shear deformation results in 

material fracture. Rivets, bolts, keys, seams of welded joints undergo shear. 

Torsion is type of deformation in which only torque moment TRМ , acts 

in the cross sections of the rod. The circular cross-section rod (bar) transmiting 

power during rotational motion is called the shaft. Torsion is often accompanied 

by bending or other deformation. 

Direct lateral bending is type of deformation in which the bending 

moment BNМ  and the shear (cutting)  force Q occur at the cross sections of the 

beam. The bending rod (bar) is called the beam. This bending occurs in axes, 

bridge and floor beams, gear-wheel teeth, leaf springs. 
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Complex strength is the combination of two or more simple types of 

deformation, such as: bending + torsion; compression + bending, etc. 

Diagram is the graph showing the distribution of internal forces factors 

or displacements along the axis of the rod. Diagrams are lined 

perpendiculary to the axis of the rod (bar). 

The tangential (shear) stress is the intensity of the tangent forces at the 

given point of section. 

The normal stress is the intensity of normal forces at the given point of 

section. 

Tension (compression) is the type of deformation (type of resistance) in 

which only longitudinal (axial, normal) force N  or XN  directed along the 

axis of the rod (bar) and applied at the center of cross-section gravity occurs. 

The limit of proportionality, in this section deformation is proportional 

to the load, the highest stress, at which Hooke law is correct. 

The limit of elasticity, up to this stress the material retains its elastic 

properties (no residual deformations occur in the sample at load removal). 

The yield strength is the stress at which the increase of plastic 

deformation of the sample at constant load occurs, this is the main mechanical 

characteristic for evaluation the durability of plastic materials (steels). 

The tensile strength is the stress at which the fracture of the sample 

material occurs, that is, the conditional stress that corresponds to the highest 

load that the sample can withstand up to fracture. 

The allowable stresses are those in which the safe work of the part is 

guaranteed. 

The static moment of the plane figure area with respect to the axis 

lying in the same plane is the sum of the products of the areas of elementary 

planes at their distance from that axis. 

The axial moment of inertia of a plane figure with respect to the axis 

lying in the same plane is the sum products over the whole area by the 

elementary areas squared by their distance from that axis. 

Central axes are the axes that pass through the center of gravity of the 

plane figure. 

The polar moment of inertia of the plane figure with respect to the pole 

lying in the same plane is the sum of the product of the areas of the elementary 

plane by the squares of their distances from the pole. 

Main axes of inertia are axes in relation to which the axial moments of 

inertia of the section (plane figure) reach the maximum and minimum values. 

The main moments of inertia of the section are the axial moments of 

inertia relatively to the principal axes. 
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The principal central axes are the main axes that pass through the center 

of gravity of the section (plane figure). If the figure has at least one axis of 

symmetry, then this axis will always be one of the main central axes. 

The main central moments of inertia of the section (plane figure) are 

the moments of inertia with respect to the principal central axes. 

Shear is a type of deformation in which at any cross-section of the bar 

only shear (cutting) force Q  acts.  

The shear deformation resulting in material fracture is shear. 

Torsion is a type of deformation in which only torque moment TRM  

occurs at any cross-section of the bar. 

The circular cross-section bar, which operates for torsional deformation, 

is called the shaft. 

The torque diagram is the graph showing the law of torque change 

along the bar length is called. 

Complex stressed condition. The set of normal and tangential (shear) 

stresses occurring on planes crossing the given point characterize the stressed of 

the body at that point. 

Bending is the bar resistance state in which bending or change of the 

curvature of its axis occurs. The bar that works in bending is called the beam. 

Flat, or straight, bending is the case of bending in which the beam axis 

is curved in the direction of external forces and loads, i.e. in the same plane 

with external forces. 

Straight transverse bending is a type of deformation in which the shear 

(cutting) force Q  and bending moment BNM  occur in the cross-sections of 

the beam. If the shear force does not occur, then it is the pure bending. 

All forces, active and reactive are the beam loads. 

Shear (cutting) force at any cross-section of the beam is equal to the 

algebraic sum of the projections of all external forces acting on the right or left 

of the intersection on the axis perpendicular to the axis of the beam. 

Bending moment at any cross section of the beam is equal to the 

algebraic sum of the moments of all external forces acting to the right or left of 

the intersection relatively to the center of gravity of the section. 

Linear displacement  AA xyy   of the gravity center of the section in 

the direction perpendicular to the undeformed axis of the beam, which is 

referred to as deflection.  

Angular displacement  AA x  is a slope of the elastic curve around 

the neutral axis of the section relative to its initial position.  

Redundant (auxiliary) beam is a given beam without external loads.  
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Statically indeterminate systems are systems in which the reactions of 

junctions and internal forces are impossible to determine by the equilibrium 

equations only. 

The main system is statically determinate geometrically unchangeable 

system made of statically indetermitate one is defined.  

Oblique bending is a complex type of deformation. It occurs when the 

plane of absolute bending moment action does not coincide with any of its main 

planes, i.e. planes drawn through the beam axis and the main axis of cross-cut 

inertia. 

The neutral (zero) section line is a geometric place of the points where 

normal stresses equal zero. This line must run through the weight centre of the 

cross-cut.  

Joint action of bending with torsion is a type of resistance to combined 

stress in which external forces acting on the beam cause the following internal 

force factors: torque, bending moments and shear (cutting) forces. 

The critical force is the largest value of the compressive force applied 

centrally, to which the rectilinear form of equilibrium of the rod is stable. The 

bend caused by the loss of stability of the rectilinear shaped rod is called the 

longitudinal bend.  

The smallest value of the compressive force at which the rod loses the 

ability to keep a rectilinear shape is called critical and is indicated СRF . 

Dynamic load is load which is partially or completely caused by the 

forces of inertia (at accelerated movement of parts, during their rotation and 

oscillation), as well as at instantaneous load and impact. 

Mechanical characteristic of material, which reflects its ability to resist 

impact loads, is called impact viscosity. 
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MAIN FORMULAS OF STRENGTH OF MATERIALS 
 

Hooke law 
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Tensile-compression strength condition  
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Condition of rigidity of the shaft at rotation (torsion) 
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Bending strength condition under normal stresses 
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Tensile strength condition D.I. Zhuravsky formula (bending) 
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Strength conditions under bending according to shear stresses 
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Approximate differential equation of the bent axis of the beam  
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Equation of the curved axis of the beam 
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Mohr integral which spans all the length of the beam  
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General formula for determining displacements under bending  
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Writing down the equation of strain compatability (continuity of 

displacements) for the equivalent system as the condition of zero equality of 

displacements by the direction of any removed junction 
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Normal stress at oblique bending at any cross-cut point, e.g. at point C  

with coordinates Cx  and Cy , is found as algebraic sum of normal stresses 

from the components of the bending moment XM  and YM , 
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Equation of the neutral line at oblique bending 
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Stresses at oblique bending  
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Strength condition by normal stresses at oblique bending is  

 

  .
max

 

Y
W

Y
М

X
W

X
М

 
 

Shearing stresses at oblique bending are determined as a sum of 

shearing stresses X , Y  obtained from the cross-cut forces ,XQ  YQ  
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Absolute bending of the beam  

 

.
22

YX fff   

 

Direction of absolute bending is determined by angle  

 
















Y

X

f

f
arctg . 

 

 



 194 

Condition of strength under the joint action of bending with torsion  
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According to the third theory of strength  (maximum tangential 
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Euler’s formula  
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Yasinsky’s formula  
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Maximum flexibility of the rod 
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PERSONALITIES 
 

 

 

Robert Hooke 

 

Robert Hooke (28 July [O.S. 18 

July] 1635 – 3 March 1703) was an 

English scientist and architect, a polymath, 

recently called "England's Leonardo", who, 

using a microscope, was the first to 

visualize a microorganism. An 

impoverished scientific inquirer in young 

adulthood, he found wealth and esteem by 

performing over half of the architectural 

surveys after London's great fire of 1666. 

Hooke was also a member of the Royal 

Society, by now the world's oldest 

continuously operating scientific society, 

and since 1662 was its curator of 

experiments. Hook was also the Professor 

of Geometry at Gresham College. 

As an assistant to physician Thomas Willis and to physical scientist 

Robert Boyle, Hooke built the vacuum pumps used in Boyle's experiments on 

gas law, and himself conducted experiments. In 1673, Hooke built the earliest 

Gregorian telescope, and then he observed the rotations of the planets Mars and 

Jupiter. Hooke's 1665 book Micrographia spurred microscopic investigations. 

Thus observing microscopic fossils, Hooke endorsed biological evolution. 

Investigating in optics, specifically light refraction, he inferred a wave theory of 

light. And his is the first recorded hypothesis of heat expanding matter, air's 

composition by small particles at larger distances, and heat as energy. 

In physics, he approximated experimental confirmation that gravity heeds 

an inverse square law, and first hypothesised such a relation in planetary 

motion, too, a principle furthered and formalised by Isaac Newton in Newton's 

law of universal gravitation. Priority over this insight contributed to the rivalry 

between Hooke and Newton, who thus antagonized Hooke's legacy. In geology 

and paleontology, Hooke originated the theory of a terraqueous globe, disputed 

the literally Biblical view of the Earth's age, hypothesised the extinction of 

organism species, and argued that fossils atop hills and mountains had become 

elevated by geological processes. Hooke's pioneering work in land surveying 

and in mapmaking aided development of the first modern plan-form map, 
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although his grid-system plan for London was rejected in favour of rebuilding 

along existing routes. Even so, Hook was key in devising for London a set of 

planning controls that remain influential. 
 

Life and works 

Much of what is known of Hooke's early life comes from an 

autobiography that he commenced in 1696 but never completed. Richard 

Waller mentions it in his introduction to The Posthumous Works of Robert 

Hooke, M.D. S.R.S., printed in 1705. In the chapter Of Dr. Dee's Book of 

Spirits, Hooke argues that John Dee made use of Trithemian steganography, to 

conceal his communication with Queen Elizabeth I. The work of Waller, along 

with John Ward's Lives of the Gresham Professors (with a list of his major 

works) and John Aubrey's Brief Lives, form the major near-contemporaneous 

biographical accounts of Hooke. 
 

Early life 

Robert Hooke was born in 1635 in Freshwater on the Isle of Wight to 

Cecily Gyles and John Hooke, a Church of England priest, the curate of 

Freshwater's Church of All Saints. Father John Hooke's two brothers, Robert's 

paternal uncles, were also ministers. A royalist, John Hooke likely was among a 

group that went to pay respects to Charles I as he escaped to the Isle of Wight. 

Expected to join the church, Robert, too, would become a staunch monarchist. 

Robert was the youngest, by seven years, of four siblings, two boys and two 

girls. Their father led a local school as well, yet at least partly homeschooled 

Robert, frail in health. The young Robert Hooke was fascinated by observation, 

mechanical works, and drawing. He dismantled a brass clock and built a 

wooden replica that reportedly worked "well enough". He made his own 

drawing materials from coal, chalk, and ruddle (iron ore). 

On his father's death in 1648, Robert inherited 40 pounds. With it, he 

bought an apprenticeship. Although he went to London to begin apprenticeship, 

he studied briefly with Samuel Cowper and Peter Lely, and soon entered 

Westminster School, in London, under Dr. Richard Busby. Hooke quickly 

mastered Latin and Greek, studied Hebrew some, mastered Euclid's Elements, 

and began his lifelong study of mechanics. 

Hooke may have been among a group of students that Busby taught in 

parallel to the school's main courses. Contemporary accounts call him "not 

much seen" in school, apparently true of others positioned similarly. Busby, an 

ardent and outspoken royalist (he had the school observe a fast-day on the 

anniversary of the King's beheading), was by all accounts trying to preserve the 

nascent spirit of scientific inquiry that had begun to flourish in Carolean 

England but which was at odds with the literal Biblical teachings of the 

Protectorate. To Busby and his select students the Anglican Church was a 

https://en.wikipedia.org/wiki/Richard_Waller_(d._1715)
https://en.wikipedia.org/wiki/Richard_Waller_(d._1715)
https://en.wikipedia.org/wiki/John_Dee
https://en.wikipedia.org/wiki/Johannes_Trithemius
https://en.wikipedia.org/wiki/Steganography
https://en.wikipedia.org/wiki/Elizabeth_I_of_England
https://en.wikipedia.org/wiki/John_Ward_(academic)
https://en.wikipedia.org/wiki/John_Aubrey
https://en.wikipedia.org/wiki/Freshwater,_Isle_of_Wight
https://en.wikipedia.org/wiki/Isle_of_Wight
https://en.wikipedia.org/wiki/All_Saints%27_Church,_Freshwater
https://en.wikipedia.org/wiki/Charles_I_of_England
https://en.wikipedia.org/wiki/Iron_ore
https://en.wikipedia.org/wiki/Peter_Lely
https://en.wikipedia.org/wiki/Westminster_School
https://en.wikipedia.org/wiki/Richard_Busby
https://en.wikipedia.org/wiki/Euclid%27s_Elements
https://en.wikipedia.org/wiki/Mechanics


 197 

framework to support the spirit of inquiry into God's work, those who were able 

were destined by God to explore and study His creation, and the priesthood 

functioned as teachers to explain it to those who were less able. This was 

exemplified in the person of George Hooper, the Bishop of Bath and Wells, 

whom Busby described as "the best scholar, the finest gentleman and will make 

the completest bishop that ever was educated at Westminster School". 
 

Science 

Mechanics 

In 1660, Hooke discovered the law of elasticity which bears his name and 

which describes the linear variation of tension with extension in an elastic 

spring. He first described this discovery in the anagram "ceiiinosssttuv", whose 

solution he published in 1678 as "Ut tensio, sic vis" meaning "As the extension, 

so the force." Hooke's work on elasticity culminated, for practical purposes, in 

his development of the balance spring or hairspring, which for the first time 

enabled a portable timepiece – a watch – to keep time with reasonable accuracy. 

A bitter dispute between Hooke and Christiaan Huygens on the priority of this 

invention was to continue for centuries after the death of both; but a note dated 

23 June 1670 in the Hooke Folio (see External linksbelow), describing a 

demonstration of a balance-controlled watch before the Royal Society, has been 

held to favour Hooke's claim. 

It is interesting[to whom?] from a twentieth-century vantage point that 

Hooke first announced his law of elasticity as an anagram. This was a method 

sometimes used by scientists, such as Hooke, Huygens, Galileo, and others, to 

establish priority for a discovery without revealing details. 

Hooke became Curator of Experiments in 1662 to the newly founded 

Royal Society, and took responsibility for experiments performed at its weekly 

meetings. This was a position he held for over 40 years. While this position 

kept him in the thick of science in Britain and beyond, it also led to some 

heated arguments with other scientists, such as Huygens (see above) and 

particularly with Isaac Newton and the Royal Society's Henry Oldenburg. In 

1664 Hooke also was appointed Professor of Geometry at Gresham College in 

London and Cutlerian Lecturer in Mechanics. 

On 8 July 1680, Hooke observed the nodal patterns associated with the 

modes of vibration of glass plates. He ran a bow along the edge of a glass plate 

covered with flour, and saw the nodal patterns emerge. In acoustics, in 1681 he 

showed the Royal Society that musical tones could be generated from spinning 

brass cogs cut with teeth in particular proportions. 
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Blaise Pascal 

 

Blaise Pascal (19 June 1623 – 19 

August 1662) was a French 

mathematician, physicist, inventor, 

writer and Catholic theologian. He was 

a child prodigy who was educated by 

his father, a tax collector in Rouen. 

Pascal's earliest work was in the natural 

and applied sciences, where he made 

important contributions to the study of 

fluids, and clarified the concepts of 

pressure and vacuum by generalising 

the work of Evangelista Torricelli. 

Pascal also wrote in defence of the 

scientific method. 

In 1642, while still a teenager, he started some pioneering work on 

calculating machines. After three years of effort and 50 prototypes, he built 20 

finished machines (called Pascal's calculators and later Pascalines) over the 

following 10 years, establishing him as one of the first two inventors of the 

mechanical calculator.  

Pascal was an important mathematician, helping create two major new 

areas of research: he wrote a significant treatise on the subject of projective 

geometry at the age of 16, and later corresponded with Pierre de Fermat on 

probability theory, strongly influencing the development of modern economics 

and social science. Following Galileo Galilei and Torricelli, in 1647, he 

rebutted Aristotle's followers who insisted that nature abhors a vacuum. Pascal's 

results caused many disputes before being accepted. 

In 1646, he and his sister Jacqueline identified with the religious 

movement within Catholicism known by its detractors as Jansenism. Following 

a religious experience in late 1654, he began writing influential works on 

philosophy and theology. His two most famous works date from this period: the 

Lettres provinciales and the Pensées, the former set in the conflict between 

Jansenists and Jesuits. In that year, he also wrote an important treatise on the 

arithmetical triangle. Between 1658 and 1659, he wrote on the cycloid and its 

use in calculating the volume of solids. 

Throughout his life, Pascal was in frail health, especially after the age of 

18; he died just two months after his 39th birthday.  

Early life and education 

Pascal was born in Clermont-Ferrand, which is in France's Auvergne 

region. He lost his mother, Antoinette Begon, at the age of three. His father, 
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Étienne Pascal (1588–1651), who also had an interest in science and 

mathematics, was a local judge and member of the "Noblesse de Robe". Pascal 

had two sisters, the younger Jacqueline and the elder Gilberte. 

In 1631, five years after the death of his wife, Étienne Pascal moved with 

his children to Paris. The newly arrived family soon hired Louise Delfault, a 

maid who eventually became an instrumental member of the family. Étienne, 

who never remarried, decided that he alone would educate his children, for they 

all showed extraordinary intellectual ability, particularly his son Blaise. The 

young Pascal showed an amazing aptitude for mathematics and science. 

Particularly of interest to Pascal was a work of Desargues on conic 

sections. Following Desargues' thinking, the 16-year-old Pascal produced, as a 

means of proof, a short treatise on what was called the "Mystic Hexagram", 

Essai pour les coniques ("Essay on Conics") and sent it – his first serious work 

of mathematics – to Père Mersenne in Paris; it is known still today as Pascal's 

theorem. It states that if a hexagon is inscribed in a circle (or conic) then the 

three intersection points of opposite sides lie on a line (called the Pascal line). 

Pascal's work was so precocious that Descartes was convinced that 

Pascal's father had written it. When assured by Mersenne that it was, indeed, the 

product of the son and not the father, Descartes dismissed it with a sniff: "I do 

not find it strange that he has offered demonstrations about conics more 

appropriate than those of the ancients," adding, "but other matters related to this 

subject can be proposed that would scarcely occur to a 16-year-old child."  

In France at that time offices and positions could be – and were – bought 

and sold. In 1631, Étienne sold his position as second president of the Cour des 

Aides for 65,665 livres. The money was invested in a government bond which 

provided, if not a lavish, then certainly a comfortable income which allowed the 

Pascal family to move to, and enjoy, Paris. But in 1638 Richelieu, desperate for 

money to carry on the Thirty Years' War, defaulted on the government's bonds. 

Suddenly Étienne Pascal's worth had dropped from nearly 66,000 livres to less 

than 7,300. 

Like so many others, Étienne was eventually forced to flee Paris because 

of his opposition to the fiscal policies of Cardinal Richelieu, leaving his three 

children in the care of his neighbour Madame Sainctot, a great beauty with an 

infamous past who kept one of the most glittering and intellectual salons in all 

France. It was only when Jacqueline performed well in a children's play with 

Richelieu in attendance that Étienne was pardoned. In time, Étienne was back in 

good graces with the cardinal and in 1639 had been appointed the king's 

commissioner of taxes in the city of Rouen – a city whose tax records, thanks to 

uprisings, were in utter chaos. 

In 1642, in an effort to ease his father's endless, exhausting calculations, 

and recalculations, of taxes owed and paid (into which work the young Pascal 
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had been recruited), Pascal, not yet 19, constructed a mechanical calculator 

capable of addition and subtraction, called Pascal's calculator or the Pascaline. 

Of the eight Pascalines known to have survived, four are held by the Musée des 

Arts et Métiers in Paris and one more by the Zwinger museum in Dresden, 

Germany, exhibit two of his original mechanical calculators. Although these 

machines are pioneering forerunners to a further 400 years of development of 

mechanical methods of calculation, and in a sense to the later field of computer 

engineering, the calculator failed to be a great commercial success. Partly 

because it was still quite cumbersome to use in practice, but probably primarily 

because it was extraordinarily expensive, the Pascaline became little more than 

a toy, and a status symbol, for the very rich both in France and elsewhere in 

Europe. Pascal continued to make improvements to his design through the next 

decade, and he refers to some 50 machines that were built to his design. 

Philosophy of mathematics 

Pascal's major contribution to the philosophy of mathematics came with 

his De l'Esprit géométrique ("Of the Geometrical Spirit"), originally written as a 

preface to a geometry textbook for one of the famous "Petites-Ecoles de Port-

Royal" ("Little Schools of Port-Royal"). The work was unpublished until over a 

century after his death. Here, Pascal looked into the issue of discovering truths, 

arguing that the ideal of such a method would be to found all propositions on 

already established truths. At the same time, however, he claimed this was 

impossible because such established truths would require other truths to back 

them up – first principles, therefore, cannot be reached. Based on this, Pascal 

argued that the procedure used in geometry was as perfect as possible, with 

certain principles assumed and other propositions developed from them. 

Nevertheless, there was no way to know the assumed principles to be true. 

Pascal also used De l'Esprit géométrique to develop a theory of definition. 

He distinguished between definitions which are conventional labels defined by 

the writer and definitions which are within the language and understood by 

everyone because they naturally designate their referent. The second type would 

be characteristic of the philosophy of essentialism. Pascal claimed that only 

definitions of the first type were important to science and mathematics, arguing 

that those fields should adopt the philosophy of formalism as formulated by 

Descartes. 

In De l'Art de persuader ("On the Art of Persuasion"), Pascal looked 

deeper into geometry's axiomatic method, specifically the question of how 

people come to be convinced of the axioms upon which later conclusions are 

based. Pascal agreed with Montaigne that achieving certainty in these axioms 

and conclusions through human methods is impossible. He asserted that these 

principles can be grasped only through intuition, and that this fact underscored 

the necessity for submission to God in searching out truths. 
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Contributions to the physical sciences 

Pascal's work in the fields of the study of hydrodynamics and hydrostatics 

centered on the principles of hydraulic fluids. His inventions include the 

hydraulic press (using hydraulic pressure to multiply force) and the syringe. He 

proved that hydrostatic pressure depends not on the weight of the fluid but on 

the elevation difference. He demonstrated this principle by attaching a thin tube 

to a barrel full of water and filling the tube with water up to the level of the 

third floor of a building. This caused the barrel to leak, in what became known 

as Pascal's barrel experiment. 

By 1647, Pascal had learned of Evangelista Torricelli's experimentation 

with barometers. Having replicated an experiment that involved placing a tube 

filled with mercury upside down in a bowl of mercury, Pascal questioned what 

force kept some mercury in the tube and what filled the space above the 

mercury in the tube. At the time, most scientists contended that, rather than a 

vacuum, some invisible matter was present. This was based on the Aristotelian 

notion that creation was a thing of substance, whether visible or invisible; and 

that this substance was forever in motion. Furthermore, "Everything that is in 

motion must be moved by something," Aristotle declared. Therefore, to the 

Aristotelian trained scientists of Pascal's time, a vacuum was an impossibility. 

How so? As proof it was pointed out: 

Light passed through the so-called "vacuum" in the glass tube. 

Aristotle wrote how everything moved, and must be moved by something. 

Therefore, since there had to be an invisible "something" to move the 

light through the glass tube, there was no vacuum in the tube. Not in the glass 

tube or anywhere else. Vacuums – the absence of any and everything – were 

simply an impossibility. 

Following more experimentation in this vein, in 1647 Pascal produced 

Experiences nouvelles touchant le vide ("New experiments with the vacuum"), 

which detailed basic rules describing to what degree various liquids could be 

supported by air pressure. It also provided reasons why it was indeed a vacuum 

above the column of liquid in a barometer tube. This work was followed by 

Récit de la grande expérience de l'équilibre des liqueurs ("Account of the great 

experiment on equilibrium in liquids") published in 1648. 

The Torricellian vacuum found that air pressure is equal to the weight of 

30 inches of mercury. If air has a finite weight, Earth's atmosphere must have a 

maximum height. Pascal reasoned that if true, air pressure on a high mountain 

must be less than at a lower altitude. He lived near the Puy de Dôme mountain, 

4,790 feet (1,460 m) tall, but his health was poor so could not climb it. 
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Legacy 

In honour of his scientific contributions, the name Pascal has been given 

to the SI unit of pressure, to a programming language, and Pascal's law (an 

important principle of hydrostatics), and as mentioned above, Pascal's triangle 

and Pascal's wager still bear his name. 

Pascal's development of probability theory was his most influential 

contribution to mathematics. Originally applied to gambling, today it is 

extremely important in economics, especially in actuarial science. John Ross 

writes, "Probability theory and the discoveries following it changed the way we 

regard uncertainty, risk, decision-making, and an individual's and society's 

ability to influence the course of future events." However, Pascal and Fermat, 

though doing important early work in probability theory, did not develop the 

field very far. Christiaan Huygens, learning of the subject from the 

correspondence of Pascal and Fermat, wrote the first book on the subject. Later 

figures who continued the development of the theory include Abraham de 

Moivre and Pierre-Simon Laplace. 

In France, prestigious annual awards, Blaise Pascal Chairs are given to 

outstanding international scientists to conduct their research in the Ile de France 

region. One of the Universities of Clermont-Ferrand, France – Université Blaise 

Pascal – is named after him. The University of Waterloo, Ontario, Canada, 

holds an annual math contest named in his honour.  

 

 

 

Sir Isaac Newton 

 

Sir Isaac Newton (25 December 1642 – 20 

March 1726/27[a]) was an English 

mathematician, physicist, astronomer, 

theologian, and author (described in his own day 

as a "natural philosopher") who is widely 

recognised as one of the most influential 

scientists of all time and as a key figure in the 

scientific revolution. His book Philosophiæ 

Naturalis Principia Mathematica (Mathematical 

Principles of Natural Philosophy), first 

published in 1687, laid the foundations of 

classical mechanics. Newton also made seminal 

contributions to optics, and shares credit with 

Gottfried Wilhelm Leibniz for developing the 

infinitesimal calculus. 
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In Principia, Newton formulated the laws of motion and universal 

gravitation that formed the dominant scientific viewpoint until it was 

superseded by the theory of relativity. Newton used his mathematical 

description of gravity to prove Kepler's laws of planetary motion, account for 

tides, the trajectories of comets, the precession of the equinoxes and other 

phenomena, eradicating doubt about the Solar System's heliocentricity. He 

demonstrated that the motion of objects on Earth and celestial bodies could be 

accounted for by the same principles. Newton's inference that the Earth is an 

oblate spheroid was later confirmed by the geodetic measurements of 

Maupertuis, La Condamine, and others, convincing most European scientists of 

the superiority of Newtonian mechanics over earlier systems. 

Newton built the first practical reflecting telescope and developed a 

sophisticated theory of colour based on the observation that a prism separates 

white light into the colours of the visible spectrum. His work on light was 

collected in his highly influential book Opticks, published in 1704. He also 

formulated an empirical law of cooling, made the first theoretical calculation of 

the speed of sound, and introduced the notion of a Newtonian fluid. In addition 

to his work on calculus, as a mathematician Newton contributed to the study of 

power series, generalised the binomial theorem to non-integer exponents, 

developed a method for approximating the roots of a function, and classified 

most of the cubic plane curves. 

Newton was a fellow of Trinity College and the second Lucasian 

Professor of Mathematics at the University of Cambridge. He was a devout but 

unorthodox Christian who privately rejected the doctrine of the Trinity. 

Unusually for a member of the Cambridge faculty of the day, he refused to take 

holy orders in the Church of England. Beyond his work on the mathematical 

sciences, Newton dedicated much of his time to the study of alchemy and 

biblical chronology, but most of his work in those areas remained unpublished 

until long after his death. Politically and personally tied to the Whig party, 

Newton served two brief terms as Member of Parliament for the University of 

Cambridge, in 1689–90 and 1701–02. He was knighted by Queen Anne in 1705 

and spent the last three decades of his life in London, serving as Warden (1696–

1700) and Master (1700–1727) of the Royal Mint, as well as president of the 

Royal Society (1703–1727). 

Early life 

Isaac Newton was born (according to the Julian calendar, in use in 

England at the time) on Christmas Day, 25 December 1642 (NS 4 January 

1643[a]) "an hour or two after midnight", at Woolsthorpe Manor in 

Woolsthorpe-by-Colsterworth, a hamlet in the county of Lincolnshire. His 

father, also named Isaac Newton, had died three months before. Born 

prematurely, Newton was a small child; his mother Hannah Ayscough 
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reportedly said that he could have fit inside a quart mug. When Newton was 

three, his mother remarried and went to live with her new husband, the 

Reverend Barnabas Smith, leaving her son in the care of his maternal 

grandmother, Margery Ayscough (née Blythe). Newton disliked his stepfather 

and maintained some enmity towards his mother for marrying him, as revealed 

by this entry in a list of sins committed up to the age of 19: "Threatening my 

father and mother Smith to burn them and the house over them." Newton's 

mother had three children (Mary, Benjamin and Hannah) from her second 

marriage.  

From the age of about twelve until he was seventeen, Newton was 

educated at The King's School, Grantham, which taught Latin and Greek and 

probably imparted a significant foundation of mathematics. He was removed 

from school and returned to Woolsthorpe-by-Colsterworth by October 1659. 

His mother, widowed for the second time, attempted to make him a farmer, an 

occupation he hated. Henry Stokes, master at The King's School, persuaded his 

mother to send him back to school. Motivated partly by a desire for revenge 

against a schoolyard bully, he became the top-ranked student, distinguishing 

himself mainly by building sundials and models of windmills.  

In June 1661, he was admitted to Trinity College, Cambridge, on the 

recommendation of his uncle Rev William Ayscough, who had studied there. 

He started as a subsizar – paying his way by performing valet's duties – until he 

was awarded a scholarship in 1664, guaranteeing him four more years until he 

could get his MA. At that time, the college's teachings were based on those of 

Aristotle, whom Newton supplemented with modern philosophers such as 

Descartes, and astronomers such as Galileo and Thomas Street, through whom 

he learned of Kepler's work. He set down in his notebook a series of 

"Quaestiones" about mechanical philosophy as he found it. In 1665, he 

discovered the generalised binomial theorem and began to develop a 

mathematical theory that later became calculus. Soon after Newton had 

obtained his BA degree in August 1665, the university temporarily closed as a 

precaution against the Great Plague. Although he had been undistinguished as a 

Cambridge student, Newton's private studies at his home in Woolsthorpe over 

the subsequent two years saw the development of his theories on calculus, 

optics, and the law of gravitation. 

In April 1667, he returned to Cambridge and in October was elected as a 

fellow of Trinity. Fellows were required to become ordained priests, although 

this was not enforced in the restoration years and an assertion of conformity to 

the Church of England was sufficient. However, by 1675 the issue could not be 

avoided and by then his unconventional views stood in the way. Nevertheless, 

Newton managed to avoid it by means of special permission from Charles II. 

His studies had impressed the Lucasian professor Isaac Barrow, who was 
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more anxious to develop his own religious and administrative potential (he 

became master of Trinity two years later); in 1669 Newton succeeded him, only 

one year after receiving his MA. He was elected a Fellow of the Royal Society 

(FRS) in 1672.  

Middle years. Mathematics 

Newton's work has been said "to distinctly advance every branch of 

mathematics then studied." His work on the subject usually referred to as 

fluxions or calculus, seen in a manuscript of October 1666, is now published 

among Newton's mathematical papers. The author of the manuscript De analysi 

per aequationes numero terminorum infinitas, sent by Isaac Barrow to John 

Collins in June 1669, was identified by Barrow in a letter sent to Collins in 

August of that year as "[...] of an extraordinary genius and proficiency in these 

things."  

Newton later became involved in a dispute with Leibniz over priority in 

the development of calculus (the Leibniz–Newton calculus controversy). Most 

modern historians believe that Newton and Leibniz developed calculus 

independently, although with very different mathematical notations. 

Occasionally it has been suggested that Newton published almost nothing about 

it until 1693, and did not give a full account until 1704, while Leibniz began 

publishing a full account of his methods in 1684. Leibniz's notation and 

"differential Method", nowadays recognised as much more convenient 

notations, were adopted by continental European mathematicians, and after 

1820 or so, also by British mathematicians. 

Such a suggestion fails to account for the calculus in Book 1 of Newton's 

Principia itself and in its forerunner manuscripts, such as De motu corporum in 

gyrum of 1684; this content has been pointed out by critics [Like whom?] of 

both Newton's time and modern times. 

His work extensively uses calculus in geometric form based on limiting 

values of the ratios of vanishingly small quantities: in the Principia itself, 

Newton gave demonstration of this under the name of "the method of first and 

last ratios" and explained why he put his expositions in this form, remarking 

also that "hereby the same thing is performed as by the method of indivisibles."  

Because of this, the Principia has been called "a book dense with the 

theory and application of the infinitesimal calculus" in modern times and in 

Newton's time "nearly all of it is of this calculus." His use of methods involving 

"one or more orders of the infinitesimally small" is present in his De motu 

corporum in gyrum of 1684 and in his papers on motion "during the two 

decades preceding 1684". 

Newton had been reluctant to publish his calculus because he feared 

controversy and criticism. He was close to the Swiss mathematician Nicolas 

Fatio de Duillier. In 1691, Duillier started to write a new version of Newton's 
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Principia, and corresponded with Leibniz. In 1693, the relationship between 

Duillier and Newton deteriorated and the book was never completed. 

Starting in 1699, other members [who?] of the Royal Society accused 

Leibniz of plagiarism. The dispute then broke out in full force in 1711 when the 

Royal Society proclaimed in a study that it was Newton who was the true 

discoverer and labelled Leibniz a fraud; it was later found that Newton wrote 

the study's concluding remarks on Leibniz. Thus began the bitter controversy 

which marred the lives of both Newton and Leibniz until the latter's death in 

1716.  

Newton is generally credited with the generalised binomial theorem, valid 

for any exponent. He discovered Newton's identities, Newton's method, 

classified cubic plane curves (polynomials of degree three in two variables), 

made substantial contributions to the theory of finite differences, and was the 

first to use fractional indices and to employ coordinate geometry to derive 

solutions to Diophantine equations. He approximated partial sums of the 

harmonic series by logarithms (a precursor to Euler's summation formula) and 

was the first to use power series with confidence and to revert power series. 

Newton's work on infinite series was inspired by Simon Stevin's decimals.  

When Newton received his MA and became a Fellow of the "College of 

the Holy and Undivided Trinity" in 1667, he made the commitment that "I will 

either set Theology as the object of my studies and will take holy orders when 

the time prescribed by these statutes [7 years] arrives, or I will resign from the 

college." Up until this point he had not thought much about religion and had 

twice signed his agreement to the thirty-nine articles, the basis of Church of 

England doctrine. 

He was appointed Lucasian Professor of Mathematics in 1669, on 

Barrow's recommendation. During that time, any Fellow of a college at 

Cambridge or Oxford was required to take holy orders and become an ordained 

Anglican priest. However, the terms of the Lucasian professorship required that 

the holder not be active in the church – presumably,[weasel words] so as to 

have more time for science. Newton argued that this should exempt him from 

the ordination requirement, and Charles II, whose permission was needed, 

accepted this argument. Thus a conflict between Newton's religious views and 

Anglican orthodoxy was averted.  

Mechanics and gravitation 

In 1679, Newton returned to his work on celestial mechanics by 

considering gravitation and its effect on the orbits of planets with reference to 

Kepler's laws of planetary motion. This followed stimulation by a brief 

exchange of letters in 1679–80 with Hooke, who had been appointed to manage 

the Royal Society's correspondence, and who opened a correspondence 

intended to elicit contributions from Newton to Royal Society transactions. 
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Newton's reawakening interest in astronomical matters received further 

stimulus by the appearance of a comet in the winter of 1680–1681, on which he 

corresponded with John Flamsteed. After the exchanges with Hooke, Newton 

worked out proof that the elliptical form of planetary orbits would result from a 

centripetal force inversely proportional to the square of the radius vector. 

Newton communicated his results to Edmond Halley and to the Royal Society 

in De motu corporum in gyrum, a tract written on about nine sheets which was 

copied into the Royal Society's Register Book in December 1684. This tract 

contained the nucleus that Newton developed and expanded to form the 

Principia. 

The Principia was published on 5 July 1687 with encouragement and 

financial help from Edmond Halley. In this work, Newton stated the three 

universal laws of motion. Together, these laws describe the relationship 

between any object, the forces acting upon it and the resulting motion, laying 

the foundation for classical mechanics. They contributed to many advances 

during the Industrial Revolution which soon followed and were not improved 

upon for more than 200 years. Many of these advancements continue to be the 

underpinnings of non-relativistic technologies in the modern world. He used the 

Latin word gravitas (weight) for the effect that would become known as 

gravity, and defined the law of universal gravitation.  

In the same work, Newton presented a calculus-like method of 

geometrical analysis using "first and last ratios", gave the first analytical 

determination (based on Boyle's law) of the speed of sound in air, inferred the 

oblateness of Earth's spheroidal figure, accounted for the precession of the 

equinoxes as a result of the Moon's gravitational attraction on the Earth's 

oblateness, initiated the gravitational study of the irregularities in the motion of 

the Moon, provided a theory for the determination of the orbits of comets, and 

much more.  

Newton made clear his heliocentric view of the Solar System–developed 

in a somewhat modern way because already in the mid-1680s he recognised the 

"deviation of the Sun" from the centre of gravity of the Solar System. For 

Newton, it was not precisely the centre of the Sun or any other body that could 

be considered at rest, but rather "the common centre of gravity of the Earth, the 

Sun and all the Planets is to be esteem'd the Centre of the World", and this 

centre of gravity "either is at rest or moves uniformly forward in a right line" 

(Newton adopted the "at rest" alternative in view of common consent that the 

centre, wherever it was, was at rest).  

Newton's postulate of an invisible force able to act over vast distances led 

to him being criticised for introducing "occult agencies" into science. Later, in 

the second edition of the Principia (1713), Newton firmly rejected such 

criticisms in a concluding General Scholium, writing that it was enough that the 
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phenomena implied a gravitational attraction, as they did; but they did not so far 

indicate its cause, and it was both unnecessary and improper to frame 

hypotheses of things that were not implied by the phenomena. (Here Newton 

used what became his famous expression "hypotheses non-fingo"). With the 

Principia, Newton became internationally recognised. He acquired a circle of 

admirers, including the Swiss-born mathematician Nicolas Fatio de Duillier.  

Later life 

In the 1690s, Newton wrote a number of religious tracts dealing with the 

literal and symbolic interpretation of the Bible. A manuscript Newton sent to 

John Locke in which he disputed the fidelity of 1 John 5:7 the Johannine 

Comma and its fidelity to the original manuscripts of the New Testament, 

remained unpublished until 1785.  

Newton was also a member of the Parliament of England for Cambridge 

University in 1689 and 1701, but according to some accounts his only 

comments were to complain about a cold draught in the chamber and request 

that the window be closed. He was, however, noted by Cambridge diarist 

Abraham de la Pryme to have rebuked students who were frightening locals by 

claiming that a house was haunted.  

Newton moved to London to take up the post of warden of the Royal 

Mint in 1696, a position that he had obtained through the patronage of Charles 

Montagu, 1st Earl of Halifax, then Chancellor of the Exchequer. He took charge 

of England's great recoining, trod on the toes of Lord Lucas, Governor of the 

Tower, and secured the job of deputy comptroller of the temporary Chester 

branch for Edmond Halley. Newton became perhaps the best-known Master of 

the Mint upon the death of Thomas Neale in 1699, a position Newton held for 

the last 30 years of his life. These appointments were intended as sinecures, but 

Newton took them seriously. He retired from his Cambridge duties in 1701, and 

exercised his authority to reform the currency and punish clippers and 

counterfeiters. 

As Warden, and afterwards as Master, of the Royal Mint, Newton 

estimated that 20 percent of the coins taken in during the Great Recoinage of 

1696 were counterfeit. Counterfeiting was high treason, punishable by the felon 

being hanged, drawn and quartered. Despite this, convicting even the most 

flagrant criminals could be extremely difficult, however, Newton proved equal 

to the task.  

Disguised as a habitué of bars and taverns, he gathered much of that 

evidence himself. For all the barriers placed to prosecution, and separating the 

branches of government, English law still had ancient and formidable customs 

of authority. Newton had himself made a justice of the peace in all the home 

counties. A draft letter regarding the matter is included in Newton's personal 

first edition of Philosophiæ Naturalis Principia Mathematica, which he must 
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have been amending at the time. Then he conducted more than 100 cross-

examinations of witnesses, informers, and suspects between June 1698 and 

Christmas 1699. Newton successfully prosecuted 28 coiners.  

Newton was made President of the Royal Society in 1703 and an 

associate of the French Académie des Sciences. In his position at the Royal 

Society, Newton made an enemy of John Flamsteed, the Astronomer Royal, by 

prematurely publishing Flamsteed's Historia Coelestis Britannica, which 

Newton had used in his studies.  

In April 1705, Queen Anne knighted Newton during a royal visit to 

Trinity College, Cambridge. The knighthood is likely to have been motivated 

by political considerations connected with the parliamentary election in May 

1705, rather than any recognition of Newton's scientific work or services as 

Master of the Mint. Newton was the second scientist to be knighted, after Sir 

Francis Bacon.  

As a result of a report written by Newton on 21 September 1717 to the 

Lords Commissioners of His Majesty's Treasury, the bimetallic relationship 

between gold coins and silver coins was changed by Royal proclamation on 22 

December 1717, forbidding the exchange of gold guineas for more than 21 

silver shillings. This inadvertently resulted in a silver shortage as silver coins 

were used to pay for imports, while exports were paid for in gold, effectively 

moving Britain from the silver standard to its first gold standard. It is a matter 

of debate as to whether he intended to do this or not. It has been argued that 

Newton conceived of his work at the Mint as a continuation of his alchemical 

work.   

Newton was invested in the South Sea Company and lost some £20,000 

(US$3 million in 2003) when it collapsed in around 1720. Toward the end of 

his life, Newton took up residence at Cranbury Park, near Winchester with his 

niece and her husband, until his death in 1727. His half-niece, Catherine Barton 

Conduitt, served as his hostess in social affairs at his house on Jermyn Street in 

London; he was her "very loving Uncle", according to his letter to her when she 

was recovering from smallpox. 

Death 

Newton died in his sleep in London on 20 March 1727 (OS 20 March 

1726; NS 31 March 1727).[a] His body was buried in Westminster Abbey. 

Voltaire may have been present at his funeral. A bachelor, he had divested 

much of his estate to relatives during his last years, and died intestate. His 

papers went to John Conduitt and Catherine Barton. After his death, Newton's 

hair was examined and found to contain mercury, probably resulting from his 

alchemical pursuits. Mercury poisoning could explain Newton's eccentricity in 

late life.  
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Leonhard Euler 

 

Leonhard Euler (15 April 1707 – 

18 September 1783) was a Swiss 

mathematician, physicist, astronomer, 

geographer, logician and engineer who 

made important and influential 

discoveries in many branches of 

mathematics, such as infinitesimal 

calculus and graph theory, while also 

making pioneering contributions to 

several branches such as topology and 

analytic number theory. He also 

introduced much of the modern 

mathematical terminology and notation, 

particularly for mathema-tical analysis, 

such as the notion of a mathematical 

function. He is also known for his work 

in mechanics, fluid dynamics, optics, astronomy and music theory. 

Euler was one of the most eminent mathematicians of the 18th century 

and is held to be one of the greatest in history. He is also widely considered to 

be the most prolific, as his collected works fill 92 volumes, more than anyone 

else in the field. He spent most of his adult life in Saint Petersburg, Russia, and 

in Berlin, then the capital of Prussia. 

A statement attributed to Pierre-Simon Laplace expresses Euler's 

influence on mathematics: "Read Euler, read Euler, he is the master of us all." 

Early life 

Leonhard Euler was born on 15 April 1707, in Basel, Switzerland, to Paul 

III Euler, a pastor of the Reformed Church, and Marguerite née Brucker, 

another pastor's daughter. He had two younger sisters, Anna Maria and Maria 

Magdalena, and a younger brother, Johann Heinrich. Soon after the birth of 

Leonhard, the Eulers moved from Basel to the town of Riehen, Switzerland, 

where Leonhard spent most of his childhood. Paul was a friend of the Bernoulli 

family; Johann Bernoulli, then regarded as Europe's foremost mathematician, 

would eventually be the most important influence on young Leonhard. 

Euler's formal education started in Basel, where he was sent to live with 

his maternal grandmother. In 1720, at age thirteen, he enrolled at the University 

of Basel. In 1723, he received a Master of Philosophy with a dissertation that 

compared the philosophies of Descartes and Newton. During that time, he was 

receiving Saturday afternoon lessons from Johann Bernoulli, who quickly 
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discovered his new pupil's incredible talent for mathematics. At that time 

Euler's main studies included theology, Greek and Hebrew at his father's urging 

to become a pastor, but Bernoulli convinced his father that Leonhard was 

destined to become a great mathematician. 

In 1726, Euler completed a dissertation on the propagation of sound with 

the title De Sono. At that time, he was unsuccessfully attempting to obtain a 

position at the University of Basel. In 1727, he first entered the Paris Academy 

Prize Problem competition; the problem that year was to find the best way to 

place the masts on a ship. Pierre Bouguer, who became known as "the father of 

naval architecture", won and Euler took second place. Euler later won this 

annual prize twelve times. 

Career 

Saint Petersburg 

Around this time Johann Bernoulli's two sons, Daniel and Nicolaus, were 

working at the Imperial Russian Academy of Sciences in Saint Petersburg. On 

31 July 1726, Nicolaus died of appendicitis after spending less than a year in 

Russia. When Daniel assumed his brother's position in the mathematics/physics 

division, he recommended that the post in physiology that he had vacated be 

filled by his friend Euler. In November 1726 Euler eagerly accepted the offer, 

but delayed making the trip to Saint Petersburg while he unsuccessfully applied 

for a physics professorship at the University of Basel. 

Euler arrived in Saint Petersburg on 17 May 1727. He was promoted from 

his junior post in the medical department of the academy to a position in the 

mathematics department. He lodged with Daniel Bernoulli with whom he often 

worked in close collaboration. Euler mastered Russian and settled into life in 

Saint Petersburg. He also took on an additional job as a medic in the Russian 

Navy. 

The Academy at Saint Petersburg, established by Peter the Great, was 

intended to improve education in Russia and to close the scientific gap with 

Western Europe. As a result, it was made especially attractive to foreign 

scholars like Euler. The academy possessed ample financial resources and a 

comprehensive library drawn from the private libraries of Peter himself and of 

the nobility. Very few students were enrolled in the academy to lessen the 

faculty's teaching burden. The academy emphasized research and offered to its 

faculty both the time and the freedom to pursue scientific questions. 

The Academy's benefactress, Catherine I, who had continued the 

progressive policies of her late husband, died on the day of Euler's arrival. The 

Russian nobility then gained power upon the ascension of the twelve-year-old 

Peter II. The nobility, suspicious of the academy's foreign scientists, cut funding 

and caused other difficulties for Euler and his colleagues. 
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Conditions improved slightly after the death of Peter II, and Euler swiftly 

rose through the ranks in the academy and was made a professor of physics in 

1731. Two years later, Daniel Bernoulli, who was fed up with the censorship 

and hostility he faced at Saint Petersburg, left for Basel. Euler succeeded him as 

the head of the mathematics department. 

On 7 January 1734, he married Katharina Gsell (1707–1773), a daughter 

of Georg Gsell, a painter from the Academy Gymnasium. The young couple 

bought a house by the Neva River. Of their thirteen children, only five survived 

childhood. 

Berlin 

Concerned about the continuing turmoil in Russia, Euler left St. 

Petersburg on 19 June 1741 to take up a post at the Berlin Academy, which he 

had been offered by Frederick the Great of Prussia. He lived for 25 years in 

Berlin, where he wrote over 380 articles. In Berlin, he published the two works 

for which he would become most renowned: the Introductio in analysin 

infinitorum, a text on functions published in 1748, and the Institutiones calculi 

differentialis, published in 1755 on differential calculus. In 1755, he was 

elected a foreign member of the Royal Swedish Academy of Sciences. 

In addition, Euler was asked to tutor Friederike Charlotte of Brandenburg-

Schwedt, the Princess of Anhalt-Dessau and Frederick's niece. Euler wrote over 

200 letters to her in the early 1760s, which were later compiled into a best-

selling volume entitled Letters of Euler on different Subjects in Natural 

Philosophy Addressed to a German Princess. This work contained Euler's 

exposition on various subjects pertai-ning to physics and mathematics, as well 

as offering valuable insights into Euler's personality and religious beliefs. This 

book became more widely read than any of his mathematical works and was 

published across Europe and in the United States. The popularity of the 

"Letters" testifies to Euler's ability to communicate scientific matters effectively 

to a lay audience, a rare ability for a dedicated research scientist. 

Despite Euler's immense contribution to the Academy's prestige, he 

eventually incurred the ire of Frederick and ended up having to leave Berlin. 

The Prussian king had a large circle of intellectuals in his court, and he found 

the mathematician unsophisticated and ill-informed on matters beyond numbers 

and figures. Euler was a simple, devoutly religious man who never questioned 

the existing social order or conventional beliefs, in many ways the polar 

opposite of Voltaire, who enjoyed a high place of prestige at Frederick's court. 

Euler was not a skilled debater and often made it a point to argue subjects that 

he knew little about, making him the frequent target of Voltaire's wit. Frederick 

also expressed disappointment with Euler's practical engineering abilities: 

I wanted to have a water jet in my garden: Euler calculated the force of 

the wheels necessary to raise the water to a reservoir, from where it should fall 
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back through channels, finally spurting out in Sanssouci. My mill was carried 

out geometrically and could not raise a mouthful of water closer than fifty paces 

to the reservoir. Vanity of vanities! Vanity of geometry! 

 

Personal life 

Eyesight deterioration 

Euler's eyesight worsened throughout his mathematical career. In 1738, 

three years after nearly expiring from fever, he became almost blind in his right 

eye, but Euler rather blamed the painstaking work on cartography he performed 

for the St. Petersburg Academy for his condition. Euler's vision in that eye 

worsened throughout his stay in Germany, to the extent that Frederick referred 

to him as "Cyclops". Euler remarked on his loss of vision, "Now I will have 

fewer distractions." He later developed a cataract in his left eye, which was 

discovered in 1766. Just a few weeks after its discovery, a failed surgical 

restoration rendered him almost totally blind. He was 59 years old then. 

However, his condition appeared to have little effect on his productivity, as he 

compensated for it with his mental calculation skills and exceptional memory. 

For example, Euler could repeat the Aeneid of Virgil from beginning to end 

without hesitation, and for every page in the edition he could indicate which 

line was the first and which the last. With the aid of his scribes, Euler's 

productivity on many areas of study actually increased. He produced, on 

average, one mathematical paper every week in the year 1775. The Eulers bore 

a double name, Euler-Schölpi, the latter of which derives from schelb and 

schief, signifying squint-eyed, cross-eyed, or crooked. This suggests that the 

Eulers may have had a susceptibility to eye problems. 

Return to Russia and death 

In 1760, with the Seven Years' War raging, Euler's farm in 

Charlottenburg was ransacked by advancing Russian troops. Upon learning of 

this event, General Ivan Petrovich Saltykov paid compensation for the damage 

caused to Euler's estate, with Empress Elizabeth of Russia later adding a further 

payment of 4000 roubles – an exorbitant amount at the time. The political 

situation in Russia stabilized after Catherine the Great's accession to the throne, 

so in 1766 Euler accepted an invitation to return to the St. Petersburg Academy. 

His conditions were quite exorbitant – a 3000 ruble annual salary, a pension for 

his wife, and the promise of high-ranking appointments for his sons. All of 

these requests were granted. He spent the rest of his life in Russia. However, his 

second stay in the country was marred by tragedy. A fire in St. Petersburg in 

1771 cost him his home, and almost his life. In 1773, he lost his wife Katharina 

after 40 years of marriage. 

Three years after his wife's death, Euler married her half-sister, Salome 

Abigail Gsell (1723–1794). This marriage lasted until his death. In 1782 he was 
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elected a Foreign Honorary Member of the American Academy of Arts and 

Sciences. 

In St. Petersburg on 18 September 1783, after a lunch with his family, 

Euler was discussing the newly discovered planet Uranus and its orbit with a 

fellow academician Anders Johan Lexell, when he collapsed from a brain 

hemorrhage. He died a few hours later. Jacob von Staehlin-Storcksburg wrote a 

short obituary for the Russian Academy of Sciences and Russian mathematician 

Nicolas Fuss, one of Euler's disciples, wrote a more detailed eulogy, which he 

delivered at a memorial meeting. In his eulogy for the French Academy, French 

mathematician and philosopher Marquis de Condorcet, wrote: 

il cessa de calculer et de vivre – ... he ceased to calculate and to live. 

Euler was buried next to Katharina at the Smolensk Lutheran Cemetery 

on Goloday Island. In 1785, the Russian Academy of Sciences put a marble 

bust of Leonhard Euler on a pedestal next to the Director's seat and, in 1837, 

placed a headstone on Euler's grave. To commemorate the 250th anniversary of 

Euler's birth, the headstone was moved in 1956, together with his remains, to 

the 18th-century necropolis at the Alexander Nevsky Monastery. 

Contributions to mathematics and physics 

Euler worked in almost all areas of mathematics, such as geometry, 

infinitesimal calculus, trigonometry, algebra, and number theory, as well as 

continuum physics, lunar theory and other areas of physics. He is a seminal 

figure in the history of mathematics; if printed, his works, many of which are of 

fundamental interest, would occupy between 60 and 80 quarto volumes. Euler's 

name is associated with a large number of topics. 

Euler is the only mathematician to have two numbers named after him: 

the important Euler's number in calculus, e, approximately equal to 2.71828, 

and the Euler–Mascheroni constant γ (gamma) sometimes referred to as just 

"Euler's constant", approximately equal to 0.57721. It is not known whether γ is 

rational or irrational. 

Mathematical notation 

Euler introduced and popularized several notational conventions through 

his numerous and widely circulated textbooks. Most notably, he introduced the 

concept of a function and was the first to write f(x) to denote the function f 

applied to the argument x. He also introduced the modern notation for the 

trigonometric functions, the letter e for the base of the natural logarithm (now 

also known as Euler's number), the Greek letter Σ for summations and the letter 

i to denote the imaginary unit. The use of the Greek letter π to denote the ratio 

of a circle's circumference to its diameter was also popularized by Euler, 

although it originated with Welsh mathematician William Jones. 
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Jean-Baptiste le Rond d'Alembert 

 

Jean-Baptiste le Rond d'Alembert (16 

November 1717 – 29 October 1783) was a 

French mathematician, mechanician, physicist, 

philosopher, and music theorist. Until 1759 he 

was, together with Denis Diderot, a co-editor 

of the Encyclopédie. D'Alembert's formula for 

obtaining solutions to the wave equation is 

named after him. The wave equation is 

sometimes referred to as d'Alembert's 

equation, and the Fundamental theorem of 

algebra is named after d'Alembert in French. 

Early years 

Born in Paris, d'Alembert was the 

natural son of the writer Claudine Guérin de 

Tencin and the chevalier Louis-Camus Destouches, an artillery officer. 

Destouches was abroad at the time of d'Alembert's birth. Days after birth his 

mother left him on the steps of the Saint-Jean-le-Rond de Paris [fr] church. 

According to custom, he was named after the patron saint of the church. 

D'Alembert was placed in an orphanage for foundling children, but his father 

found him and placed him with the wife of a glazier, Madame Rousseau, with 

whom he lived for nearly 50 years. She gave him little encouragement. When 

he told her of some discovery he had made or something he had written she 

generally replied, 

You will never be anything but a philosopher - and what is that but an ass 

who plagues himself all his life, that he may be talked about after he is dead.  

Destouches secretly paid for the education of Jean le Rond, but did not 

want his paternity officially recognised. 

Studies and adult life 

D'Alembert first attended a private school. The chevalier Destouches left 

d'Alembert an annuity of 1200 livres on his death in 1726. Under the influence 

of the Destouches family, at the age of 12 d'Alembert entered the Jansenist 

Collège des Quatre-Nations (the institution was also known under the name 

"Collège Mazarin"). Here he studied philosophy, law, and the arts, graduating 

as baccalauréat en arts in 1735. 

In his later life, d'Alembert scorned the Cartesian principles he had been 

taught by the Jansenists: "physical promotion, innate ideas and the vortices". 

The Jansenists steered d'Alembert toward an ecclesiastical career, attempting to 

deter him from pursuits such as poetry and mathematics. Theology was, 

however, "rather unsubstantial fodder" for d'Alembert. He entered law school 
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for two years, and was nominated avocat in 1738. 

He was also interested in medicine and mathematics. Jean was first 

registered under the name "Daremberg", but later changed it to "d'Alembert". 

The name "d'Alembert" was proposed by Frederick the Great of Prussia for a 

suspected (but non-existent) moon of Venus.  

Career 

In July 1739 he made his first contribution to the field of mathematics, 

pointing out the errors he had detected in Analyse démontrée (published 1708 

by Charles-René Reynaud) in a communication addressed to the Académie des 

Sciences. At the time L'analyse démontrée was a standard work, which 

d'Alembert himself had used to study the foundations of mathematics. 

D'Alembert was also a Latin scholar of some note and worked in the latter part 

of his life on a superb translation of Tacitus, for which he received wide praise 

including that of Denis Diderot. 

In 1740, he submitted his second scientific work from the field of fluid 

mechanics Mémoire sur la réfraction des corps solides, which was recognised 

by Clairaut. In this work d'Alembert theoretically explained refraction. 

In 1741, after several failed attempts, d'Alembert was elected into the 

Académie des Sciences. He was later elected to the Berlin Academy in 1746 

and a Fellow of the Royal Society in 1748.  

In 1743, he published his most famous work, Traité de dynamique, in 

which he developed his own laws of motion.  

When the Encyclopédie was organised in the late 1740s, d'Alembert was 

engaged as co-editor (for mathematics and science) with Diderot, and served 

until a series of crises temporarily interrupted the publication in 1757. He 

authored over a thousand articles for it, including the famous Preliminary 

Discourse. D'Alembert "abandoned the foundation of Materialism" when he 

"doubted whether there exists outside us anything corresponding to what we 

suppose we see." In this way, d'Alembert agreed with the Idealist Berkeley and 

anticipated the transcendental idealism of Kant.[citation needed] 

In 1752, he wrote about what is now called D'Alembert's paradox: that the 

drag on a body immersed in an inviscid, incompressible fluid is zero. 

In 1754, d'Alembert was elected a member of the Académie des sciences, 

of which he became Permanent Secretary on 9 April 1772.  

In 1757, an article by d'Alembert in the seventh volume of the 

Encyclopedia suggested that the Geneva clergymen had moved from Calvinism 

to pure Socinianism, basing this on information provided by Voltaire. The 

Pastors of Geneva were indignant, and appointed a committee to answer these 

charges. Under pressure from Jacob Vernes, Jean-Jacques Rousseau and others, 

d'Alembert eventually made the excuse that he considered anyone who did not 

accept the Church of Rome to be a Socinianist, and that was all he meant, and 
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he abstained from further work on the encyclopaedia following his response to 

the critique.  

He was elected a Foreign Honorary Member of the American Academy of 

Arts and Sciences in 1781.  

Legacy 

In France, the fundamental theorem of algebra is known as the 

d'Alembert/Gauss theorem, as an error in d'Alembert's proof was caught by 

Gauss. 

He also created his ratio test, a test to see if a series converges. 

The D'Alembert operator, which first arose in D'Alembert's analysis of 

vibrating strings, plays an important role in modern theoretical physics. 

While he made great strides in mathematics and physics, d'Alembert is 

also famously known for incorrectly arguing in Croix ou Pile that the 

probability of a coin landing heads increased for every time that it came up 

tails. In gambling, the strategy of decreasing one's bet the more one wins and 

increasing one's bet the more one loses is therefore called the D'Alembert 

system, a type of martingale. 

 

 

 

Thomas Young 

 

Thomas Young (13 June 1773 – 10 

May 1829) was a British polymath who made 

notable contributions to the fields of vision, 

light, solid mechanics, energy, physiology, 

language, musical harmony, and Egyptology. 

He "made a number of original and insightful 

innovations" in the decipherment of Egyptian 

hieroglyphs (specifically the Rosetta Stone) 

before Jean-François Champollion eventually 

expanded on his work. 

Young has been described as "The Last 

Man Who Knew Everything". His work 

informed that later done by William Herschel, 

Hermann von Helmholtz, James Clerk 

Maxwell, and Albert Einstein. Young is credited with establishing the wave 

theory of light, in contrast to the particle theory of Isaac Newton. Young's work 

was subsequently supported by the work of Augustin-Jean Fresnel. 

Biography 

Young belonged to a Quaker family of Milverton, Somerset, where he 

https://en.wikipedia.org/wiki/American_Academy_of_Arts_and_Sciences
https://en.wikipedia.org/wiki/American_Academy_of_Arts_and_Sciences
https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Ratio_test
https://en.wikipedia.org/wiki/Series_(mathematics)
https://en.wikipedia.org/wiki/D%27Alembert_operator
https://en.wikipedia.org/wiki/Probability
https://en.wikipedia.org/wiki/D%27Alembert_system
https://en.wikipedia.org/wiki/D%27Alembert_system
https://en.wikipedia.org/wiki/Martingale_(betting_system)
https://en.wikipedia.org/wiki/Polymath
https://en.wikipedia.org/wiki/Visual_perception
https://en.wikipedia.org/wiki/Solid_mechanics
https://en.wikipedia.org/wiki/Physiology
https://en.wikipedia.org/wiki/Language
https://en.wikipedia.org/wiki/Harmony
https://en.wikipedia.org/wiki/Egyptology
https://en.wikipedia.org/wiki/Rosetta_Stone
https://en.wikipedia.org/wiki/Jean-Fran%C3%A7ois_Champollion
https://en.wikipedia.org/wiki/The_Last_Man_Who_Knew_Everything
https://en.wikipedia.org/wiki/The_Last_Man_Who_Knew_Everything
https://en.wikipedia.org/wiki/William_Herschel
https://en.wikipedia.org/wiki/Hermann_von_Helmholtz
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/James_Clerk_Maxwell
https://en.wikipedia.org/wiki/Albert_Einstein
https://en.wikipedia.org/wiki/Wave_theory_of_light
https://en.wikipedia.org/wiki/Wave_theory_of_light
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Augustin-Jean_Fresnel
https://en.wikipedia.org/wiki/Quaker
https://en.wikipedia.org/wiki/Milverton,_Somerset


 218 

was born in 1773, the eldest of ten children. At the age of fourteen Young had 

learned Greek and Latin and was acquainted with French, Italian, Hebrew, 

German, Aramaic, Syriac, Samaritan, Arabic, Persian, Turkish and Amharic. 

Young began to study medicine in London at St Bartholomew's Hospital 

in 1792, moved to the University of Edinburgh Medical School in 1794, and a 

year later went to Göttingen, Lower Saxony, Germany, where he obtained the 

degree of doctor of medicine in 1796 from the University of Göttingen. In 1797 

he entered Emmanuel College, Cambridge. In the same year he inherited the 

estate of his grand-uncle, Richard Brocklesby, which made him financially 

independent, and in 1799 he established himself as a physician at 48 Welbeck 

Street, London (now recorded with a blue plaque). Young published many of 

his first academic articles anonymously to protect his reputation as a physician. 

In 1801, Young was appointed professor of natural philosophy (mainly 

physics) at the Royal Institution. In two years, he delivered 91 lectures. In 1802, 

he was appointed foreign secretary of the Royal Society, of which he had been 

elected a fellow in 1794. He resigned his professorship in 1803, fearing that its 

duties would interfere with his medical practice. His lectures were published in 

1807 in the Course of Lectures on Natural Philosophy and contain a number of 

anticipations of later theories. 

In 1811, Young became physician to St George's Hospital, and in 1814 he 

served on a committee appointed to consider the dangers involved in the 

general introduction of gas for lighting into London. In 1816 he was secretary 

of a commission charged with ascertaining the precise length of the second's or 

seconds pendulum (the length of a pendulum whose period is exactly 2 

seconds), and in 1818 he became secretary to the Board of Longitude and 

superintendent of the HM Nautical Almanac Office. 

Young was elected a Foreign Honorary Member of the American 

Academy of Arts and Sciences in 1822. A few years before his death he became 

interested in life insurance, and in 1827 he was chosen one of the eight foreign 

associates of the French Academy of Sciences. In 1828, he was elected a 

foreign member of the Royal Swedish Academy of Sciences. 

In 1804, Young married Eliza Maxwell. They had no children. 

Research 

Wave theory of light 

In Young's own judgment, of his many achievements the most important 

was to establish the wave theory of light. To do so, he had to overcome the 

century-old view, expressed in the venerable Newton's Opticks, that light is a 

particle. Nevertheless, in the early 19th century Young put forth a number of 

theoretical reasons supporting the wave theory of light, and he developed two 

enduring demonstrations to support this viewpoint. With the ripple tank he 

demonstrated the idea of interference in the context of water waves. With 
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Young's interference experiment, or double-slit experiment, he demonstrated 

interference in the context of light as a wave. 

Young, speaking on 24 November 1803, to the Royal Society of London, 

began his now-classic description of the historic experiment: 

The experiments I am about to relate ... may be repeated with great ease, 

whenever the sun shines, and without any other apparatus than is at hand to 

every one. 

In his subsequent paper, titled Experiments and Calculations Relative to 

Physical Optics (1804), Young describes an experiment in which he placed a 

card measuring approximately 0,85 millimetres (0,033 in) in a beam of light 

from a single opening in a window and observed the fringes of colour in the 

shadow and to the sides of the card. He observed that placing another card in 

front or behind the narrow strip so as to prevent the light beam from striking 

one of its edges caused the fringes to disappear. This supported the contention 

that light is composed of waves. 

Young performed and analysed a number of experiments, including 

interference of light from reflection off nearby pairs of micrometre grooves, 

from reflection off thin films of soap and oil, and from Newton's rings. He also 

performed two important diffraction experiments using fibres and long narrow 

strips. In his Course of Lectures on Natural Philosophy and the Mechanical 

Arts (1807) he gives Grimaldi credit for first observing the fringes in the 

shadow of an object placed in a beam of light. Within ten years, much of 

Young's work was reproduced and then extended by Augustin-Jean Fresnel. 

Young's modulus 

Young described the characterization of elasticity that came to be known 

as Young's modulus, denoted as E, in 1807, and further described it in his 

Course of Lectures on Natural Philosophy and the Mechanical Arts. However, 

the first use of the concept of Young's modulus in experiments was by 

Giordano Riccati in 1782 – predating Young by 25 years. Furthermore, the idea 

can be traced to a paper by Leonhard Euler published in 1727, some 80 years 

before Thomas Young's 1807 paper. 

The Young's modulus relates the stress (pressure) in a body to its 

associated strain (change in length as a ratio of the original length); that is, 

stress = E × strain, for a uniaxially loaded specimen. Young's modulus is 

independent of the component under investigation; that is, it is an inherent 

material property (the term modulus refers to an inherent material property). 

Young's Modulus allowed, for the first time, prediction of the strain in a 

component subject to a known stress (and vice versa). Prior to Young's 

contribution, engineers were required to apply Hooke's F=kx relationship to 

identify the deformation (x) of a body subject to a known load (F), where the 

constant (k) is a function of both the geometry and material under 
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consideration. Finding k required physical testing for any new component, as 

the F=kx relationship is a function of both geometry and material. Young's 

Modulus depends only on the material, not its geometry, thus allowing a 

revolution in engineering strategies. 

Young's problems in sometimes not expressing himself clearly were 

shown by his own definition of the modulus: "The modulus of the elasticity of 

any substance is a column of the same substance, capable of producing a 

pressure on its base which is to the weight causing a certain degree of 

compression as the length of the substance is to the diminution of its length." 

When this explanation was put to the Lords of the Admiralty, their clerk wrote 

to Young saying "Though science is much respected by their Lordships and 

your paper is much esteemed, it is too learned ... in short it is not understood." 

Vision and colour theory 

Young has also been called the founder of physiological optics. In 1793 

he explained the mode in which the eye accommodates itself to vision at 

different distances as depending on change of the curvature of the crystalline 

lens; in 1801 he was the first to describe astigmatism; and in his lectures he 

presented the hypothesis, afterwards developed by Hermann von Helmholtz, 

(the Young-Helmholtz theory), that colour perception depends on the presence 

in the retina of three kinds of nerve fibres. This foreshadowed the modern 

understanding of colour vision, in particular the finding that the eye does indeed 

have three colour receptors which are sensitive to different wavelength ranges. 

Young-Laplace equation 

In 1804, Young developed the theory of capillary phenomena on the 

principle of surface tension. He also observed the constancy of the angle of 

contact of a liquid surface with a solid, and showed how from these two 

principles to deduce the phenomena of capillary action. In 1805, Pierre-Simon 

Laplace, the French philosopher, discovered the significance of meniscus radii 

with respect to capillary action. 

In 1830, Carl Friedrich Gauss, the German mathematician, unified the 

work of these two scientists to derive the Young-Laplace equation, the formula 

that describes the capillary pressure difference sustained across the interface 

between two static fluids. 

Young was the first to define the term "energy" in the modern sense. 

Young's equation and Young-Dupré equation 

Young's equation describes the contact angle of a liquid drop on a plane 

solid surface as a function of the surface free energy, the interfacial free energy 

and the surface tension of the liquid. Young's equation was developed further 

some 60 years later by Dupré to account for thermodynamic effects, and this is 

known as the Young-Dupré equation. 
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Siméon Denis Poisson 

 

Baron Siméon Denis Poisson (21 June 

1781 – 25 April 1840) was a French 

mathematician, engineer, and physicist who 

made many scientific advances. 

Biography 

Poisson was born in Pithiviers, Loiret 

district in France, the son of Siméon Poisson, 

an officer in the French army. 

In 1798, he entered the École 

Polytechnique in Paris as first in his year, and 

immediately began to attract the notice of the 

professors of the school, who left him free to 

make his own decisions as to what he would 

study. In 1800, less than two years after his 

entry, he published two memoirs, one on Étienne Bézout's method of 

elimination, the other on the number of integrals of a finite difference equation. 

The latter was examined by Sylvestre-François Lacroix and Adrien-Marie 

Legendre, who recommended that it should be published in the Recueil des 

savants étrangers, an unprecedented honor for a youth of eighteen. This success 

at once procured entry for Poisson into scientific circles. Joseph Louis 

Lagrange, whose lectures on the theory of functions he attended at the École 

Polytechnique, recognized his talent early on, and became his friend. 

Meanwhile, Pierre-Simon Laplace, in whose footsteps Poisson followed, 

regarded him almost as his son. The rest of his career, till his death in Sceaux 

near Paris, was nearly occupied by the composition and publication of his many 

works and in fulfilling the duties of the numerous educational positions to 

which he was successively appointed.  

Immediately after finishing his studies at the École Polytechnique, he was 

appointed répétiteur (teaching assistant) there, a position which he had occupied 

as an amateur while still a pupil in the school; for his schoolmates had made a 

custom of visiting him in his room after an unusually difficult lecture to hear 

him repeat and explain it. He was made deputy professor (professeur suppléant) 

in 1802, and, in 1806 full professor succeeding Jean Baptiste Joseph Fourier, 

whom Napoleon had sent to Grenoble. In 1808 he became astronomer to the 

Bureau des Longitudes; and when the Faculté des sciences de Paris [fr] was 

instituted in 1809 he was appointed a professor of rational mechanics 

(professeur de mécanique rationelle). He went on to become a member of the 

Institute in 1812, examiner at the military school (École Militaire) at Saint-Cyr 

in 1815, graduation examiner at the École Polytechnique in 1816, councillor of 
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the university in 1820, and geometer to the Bureau des Longitudes succeeding 

Pierre-Simon Laplace in 1827.  

In 1817, he married Nancy de Bardi and with her, he had four children. 

His father, whose early experiences had led him to hate aristocrats, bred him in 

the stern creed of the First Republic. Throughout the Revolution, the Empire, 

and the following restoration, Poisson was not interested in politics, 

concentrating on mathematics. He was appointed to the dignity of baron in 

1821; but he neither took out the diploma nor used the title. In March 1818, he 

was elected a Fellow of the Royal Society, in 1822 a Foreign Honorary Member 

of the American Academy of Arts and Sciences, and in 1823 a foreign member 

of the Royal Swedish Academy of Sciences. The revolution of July 1830 

threatened him with the loss of all his honours; but this disgrace to the 

government of Louis-Philippe was adroitly averted by François Jean 

Dominique Arago, who, while his "revocation" was being plotted by the council 

of ministers, procured him an invitation to dine at the Palais-Royal, where he 

was openly and effusively received by the citizen king, who "remembered" him. 

After this, of course, his degradation was impossible, and seven years later he 

was made a peer of France, not for political reasons, but as a representative of 

French science.  

As a teacher of mathematics Poisson is said to have been extraordinarily 

successful, as might have been expected from his early promise as a répétiteur 

at the École Polytechnique. As a scientific worker, his productivity has rarely if 

ever been equaled. Notwithstanding his many official duties, he found time to 

publish more than three hundred works, several of them extensive treatises, and 

many of them memoirs dealing with the most abstruse branches of pure 

mathematics, applied mathematics, mathematical physics, and rational 

mechanics. (Arago attributed to him the quote, "Life is good for only two 

things: doing mathematics and teaching it.") 

A list of Poisson's works, drawn up by himself, is given at the end of 

Arago's biography. All that is possible is a brief mention of the more important 

ones. It was in the application of mathematics to physics that his greatest 

services to science were performed. Perhaps the most original, and certainly the 

most permanent in their influence, were his memoirs on the theory of electricity 

and magnetism, which virtually created a new branch of mathematical physics.  

Next (or in the opinion of some, first) in importance stand the memoirs on 

celestial mechanics, in which he proved himself a worthy successor to Pierre-

Simon Laplace. The most important of these are his memoirs Sur les inégalités 

séculaires des moyens mouvements des planètes, Sur la variation des constantes 

arbitraires dans les questions de mécanique, both published in the Journal of the 

École Polytechnique (1809); Sur la libration de la lune, in Connaissance des 

temps (1821), etc.; and Sur le mouvement de la terre autour de son centre de 
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gravité, in Mémoires de l'Académie (1827), etc. In the first of these memoirs, 

Poisson discusses the famous question of the stability of the planetary orbits, 

which had already been settled by Lagrange to the first degree of approximation 

for the disturbing forces. Poisson showed that the result could be extended to a 

second approximation, and thus made an important advance in planetary theory. 

The memoir is remarkable inasmuch as it roused Lagrange, after an interval of 

inactivity, to compose in his old age one of the greatest of his memoirs, entitled 

Sur la théorie des variations des éléments des planètes, et en particulier des 

variations des grands axes de leurs orbites. So highly did he think of Poisson's 

memoir that he made a copy of it with his own hand, which was found among 

his papers after his death. Poisson made important contributions to the theory of 

attraction.  

His is one of the 72 names inscribed on the Eiffel Tower. 

Mathematics 

In pure mathematics, his most important works were his series of 

memoirs on definite integrals and his discussion of Fourier series, the latter 

paving the way for the classic researches of Peter Gustav Lejeune Dirichlet and 

Bernhard Riemann on the same subject; these are to be found in the Journal of 

the École Polytechnique from 1813 to 1823, and in the Memoirs de l'Académie 

for 1823. He also studied Fourier integrals. We may also mention his essay on 

the calculus of variations (Mem. de l'acad., 1833), and his memoirs on the 

probability of the mean results of observations (Connaiss. d. temps, 1827, &c). 

The Poisson distribution in probability theory is named after him. 

Mechanics 

In his Traité de mécanique (2 vols. 8vo, 1811 and 1833), which was 

written in the style of Laplace and Lagrange and was long a standard work, he 

showed many novelties such as an explicit usage of momenta: 
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which influenced the work of Hamilton and Jacobi. A translation of Poisson's 

Treatise on Mechanics was published in London in 1842. 

Other works 

Besides his many memoirs, Poisson published a number of treatises, most 

of which were intended to form part of a great work on mathematical physics, 

which he did not live to complete. Among these may be mentioned:  

Nouvelle théorie de l'action capillaire (4to, 1831); 

Théorie mathématique de la chaleur (4to, 1835); 

Supplement to the same (4to, 1837); 
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Recherches sur la probabilité des jugements en matières criminelles et 

matière civile (4to, 1837), all published at Paris. 

In 1815 Poisson studied integrations along paths in the complex plane. In 

1831 he derived the Navier–Stokes equations independently of Claude-Louis 

Navier. 

 

 

 

Dmitrii Ivanovich Zhuravskii 

 

Dmitrii Ivanovich Zhuravskii (Dec. 17 

(29), 1821 – Nov. 18 (30), 1891) (1821–1891) 

was a Russian engineer who was one of the 

pioneers of bridge construction and structural 

mechanics in Russia. 

Zhuravskii attended the Nezhin lycée 

and entered the St. Petersburg Institute of the 

Corps of Railroad Engineers where he was 

influenced by the academician Mikhail 

Ostrogradsky. He graduated from the institute 

as first in his class in 1842. 

In the beginning of his career he took 

part in the surveying and planning of the 

Moscow – Saint Petersburg Railway. In 1857-

58 he led the reconstruction of the Peter and Paul Cathedral in Saint Petersburg. 

In 1871–76 he took part in the reconstruction of the Mariinsky Canal System. 

He was awarded the prestigious Demidov Prize in 1855 by the Russian 

Academy of Sciences. 

The Zhuravskii Shear Stress formula is named after him (derived it in 

1855): 
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where 

V  – total shear force at the location in question; 

Q  – statical moment of area; 

 t  – thickness in the material perpendicular to the shear; 

 I  – moment of Inertia of the entire cross sectional area. 
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Christian Otto Mohr 
 

Christian  Otto  Mohr   (8 October 

1835 – 2 October 1918) was a German civil 

engineer. 

He was born on 8 October 1835 to a 

landowning family in Wesselburen in the 

Holstein region. At the age of 16 attended 

the Polytechnic School in Hannover. 

Starting in 1855, his early working 

life was spent in railroad engineering for 

the Hanover and Oldenburg state railways, 

designing some famous bridges and making 

some of the earliest uses of steel trusses. 

Even during his early railway years, 

Mohr had developed an interest in the 

theories of mechanics and the strength of 

materials. In 1867, he became professor of mechanics at Stuttgart Polytechnic, 

and in 1873 at Dresden Polytechnic. Mohr had a direct and unpretentious 

lecturing style that was popular with his students. In addition to a lone textbook, 

Mohr published many research papers on the theory of structures and strength 

of materials. 

In 1874, Mohr formalised the idea of a statically indeterminate structure. 

Mohr was an enthusiast for graphical tools and developed the method, for 

visually representing stress in three dimensions, previously proposed by Carl 

Culmann. In 1882, he famously developed the graphical method for analysing 

stress known as Mohr's circle and used it to propose an early theory of strength 

based on shear stress. He also developed the Williot-Mohr diagram for truss 

displacements and the Maxwell-Mohr method for analysing statically 

indeterminate structures, it can also be used to determine the displacement of 

truss nodes and forces acting on each member.  

The Maxwell-Mohr method is also referred to as the virtual force method 

for redundant trusses. 

He retired in 1900, yet continued his scientific work in Dresden until his 

death on 2 October 1918. 
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Stepan Prokofyevich Timoshenko 

 

Stepan Prokofyevich Timoshenko 

(December 23, 1878 – May 29, 1972), was a 

Ukrainian, Russian and later, an American 

engineer and academician. He is considered to be 

the father of modern engineering mechanics. An 

inventor and one of the pioneering mechanical 

engineers at the St. Petersburg Polytechnic 

University. A founding member of the Ukrainian 

Academy of Sciences, Timoshenko wrote 

seminal works in the areas of engineering 

mechanics, elasticity and strength of materials, 

many of which are still widely used today. 

Having started his scientific career in the  

 

Russian Empire, Timoshenko emigrated to the 

Kingdom of Serbs, Croats and Slovenes during the Russian Civil War and then 

to the United States.  

Biography 

Timoshenko was born in the village of Shpotovka in the Chernigov 

Governorate which at that time was a territory of the Russian Empire (today in 

Konotop Raion, Ukraine). He studied at a Realschule in Romny, Poltava 

Governorate (now in Sumy Oblast) from 1889 to 1896. In Romny his 

schoolmate and friend was future famous semiconductor physicist Abram Ioffe. 

Timoshenko continued his education towards a university degree at the St 

Petersburg Institute of engineers Ways of Communication. After graduating in 

1901, he stayed on teaching in this same institution from 1901 to 1903 and then 

worked at the Saint Petersburg Polytechnical Institute under Viktor Kirpichov 

1903-1906. In 1905 he was sent for one year to the University of Göttingen 

where he worked under Ludwig Prandtl.  

In the fall of 1906 he was appointed to the Chair of Strengths of Materials 

at the Kyiv Polytechnic Institute. The return to his native Ukraine turned out to 

be an important part of his career and also influenced his future personal life. 

From 1907 to 1911 as a professor at the Polytechnic Institute he did research in 

the earlier variant of the Finite Element Method of elastic calculations, the so-

called Rayleigh method. During those years he also pioneered work on 

buckling, and published the first version of his famous Strength of Materials 

textbook. He was elected dean of the Division of Structural Engineering in 

1909. 
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In 1911 he signed a protest against Minister for Education Kasso and was 

fired from the Kiev Polytechnic Institute. In 1911 he was awarded the 

D.I. Zhuravski prize of the St.Petersburg Ways of Communication Institute that 

helped him survive after losing his job. He went to St Petersburg where he 

worked as a lecturer and then a Professor in the Electrotechnical Institute and 

the St Petersburg Institute of the Railways (1911–1917). During that time he 

developed the theory of elasticity and the theory of beam deflection, and 

continued to study buckling. In 1918 he returned to Kiev and assisted Vladimir 

Vernadsky in establishing the Ukrainian Academy of Sciences – the oldest 

academy among the Soviet republics other than Russia. In 1918–1920 

Timoshenko headed the newly established Institute of Mechanics of the 

Ukrainian Academy of Sciences, which today carries his name. Younger 

brother of Stephen, Serhiy Tymoshenko, was a Ukrainian Minister of 

Communication and participated in the Second Winter Campaign against the 

Soviet regime. 

After the Armed Forces of South Russia of general Denikin had taken 

Kiev in 1919, Timoshenko moved from Kiev to Rostov-on-Don. After travel 

via Novorossiysk, Crimea and Constantinople to the Kingdom of Serbs, Croats 

and Slovenes, he arrived in Zagreb, where he got professorship at the Zagreb 

Polytechnic Institute. In 1920, during the brief liberation of Kiev from 

Bolsheviks, Timoshenko travelled to the city, reunited with his family and 

returned with his family to Zagreb. 

He is remembered for delivering lectures in Russian while using as many 

words in Croatian as he could; the students were able to understand him well. 

United States 

In 1922 Timoshenko moved to the United States where he worked for the 

Westinghouse Electric Corporation from 1923 to 1927, after which he became a 

faculty professor in the University of Michigan where he created the first 

bachelor's and doctoral programs in engineering mechanics. His textbooks have 

been published in 36 languages. His first textbooks and papers were written in 

Russian; later in his life, he published mostly in English. In 1928 he was an 

Invited Speaker of the ICM in Bologna. From 1936 onward he was a professor 

at Stanford University. 

In 1957 ASME established a medal named after Stephen Timoshenko; he 

became its first recipient. The Timoshenko Medal honors Stephen P. 

Timoshenko as the world-renowned authority in the field of mechanical 

engineering and it commemorates his contributions as author and teacher. The 

Timoshenko Medal is given annually for distinguished contributions in applied 

mechanics.  

In addition to his textbooks, Timoshenko wrote Engineering Education in 

Russia and an autobiography, As I Remember, the latter first published in 
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Russian in 1963 with its English translation appearing in 1968. 

In 1960 he moved to Wuppertal (Western Germany) to be with his 

daughter. He died in 1972 and his ashes are buried in Alta Mesa Memorial 

Park, Palo Alto, California. In 1963 Timoshenko wrote a book As I Remember 

in the Russian language. It was translated into English in 1968 by sponsorship 

of the Stanford University. Jacob Pieter den Hartog (1901-1989), who was 

Timoshenko's co-worker in early 1920s at Westinghouse, wrote a review in the 

magazine Science stating that "… Between 1922 and 1962 he [S.P. 

Timoshenko] wrote a dozen books on all aspects of engineering mechanics, 

which are in their third or fourth U.S. edition and which have been translated 

into half a dozen foreign languages each, so that his name as an author and 

scholar is known to nearly every mechanical and civil engineer in the entire 

world. Then, Den Hartog stressed: "There is no question that Timoshenko did 

much for America. It is an equally obvious truth that America did much for 

Timoshenko, as it did for millions of other immigrants for all over the world. 

However, our autobiographer has never admitted as much to his associates and 

pupils who, like myself often have been pained by his casual statements in 

conversation. That pain is not diminished by reading these statements on the 

printed page and one would have wished for a little less acid and a little more 

human kindness." 

It should be emphasized that the celebrated theory that takes into account 

shear deformation and rotary inertia was developed by Timoshenko in 

collaboration with Paul Ehrenfest (1880-1933), famous Austrian-Dutch 

physicist, as the recent handbook by Elishakoff shows, and thus, should be 

referred to as Timoshenko-Ehrenfest beam theory. This fact was testified by 

Timoshenko. The interrelation between Timoshenko-Ehrenfest beam and Euler-

Bernoulli beam theories was investigated in the book by Wang, Reddy and Lee. 
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Heorhij Stepanowytsch Pyssarenko 

 

Heorhij Stepanowytsch Pyssarenko (* 

30. Oktoberjul./ 12. November 1910greg. in 

Poltawa, Russisches Kaiserreich; 9. Januar 

2001 in Kiew, Ukraine) war ein sowjetisch-

ukrainischer Bauingenieur. 

 

Biografie 

Pyssarenko stammte aus einer 

Kosakenfamilie und studierte Schiffbau am 

Industrie-Institut in Gorki mit dem Abschluss 

1936. Ab 1939 war er zu weiteren Studien 

am Polytechnikum in Kiew, an dem er 1948 

promoviert wurde. Außerdem war er ab 1939 

am Institut für Baustatik der Akademie der 

Wissenschaften der Ukrainischen SSR, das er 

1966 bis 1988 leitete. 1952 bis 1984 leitete er die Abteilung Festigkeitslehre am 

Polytechnikum in Kiew. 

Er gründete eine international bekannte Schule der Festigkeitslehre, 

insbesondere forschte er seit seiner Dissertation über Festigkeit unter extremen 

Bedingungen. 

1957 wurde er korrespondierendes und 1964 volles Mitglied der 

Ukrainischen Akademie der Wissenschaften. 1962 bis 1966 war er deren 

Generalsekretär und 1970 bis 1978 deren Vizepräsident. Im wurde der 

Leninorden verliehen, 1969 und 1980 erhielt er den Staatspreis der Ukraine und 

1982 den sowjetischen Staatspreis. 
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MAIN SYMBOLS OF STRENGTH OF MATERIALS 

 
 

Terms 
 

Symbols Measurements 

Сила 

Force  

longitudinal (axial, normal) force, 

shear (cutting) force, critical force 

F , Q , N  N 

Момент 

Moment  

bending moment, torque moment 
М , Т  Nm 

Абсолютне видовження  

Total longitudinal elongation  

of the rod (absolute longitudinal 

deformation, linear elongation, 

 linear deformation) 

∆l m 

Відносна деформація 

Relative longitudinal  

deformation 
  - 

Модуль пружності  І-го роду 

Modulus of elasticity (modulus of 

elasticity of the first kind, Young’s 

modulus, normal elastic modulus, 

longitudinal elastic modulus) 

E  MPa 

Модуль пружності  ІІ-го роду 

The shear modulus or modulus of 

elasticity of the second type, 

characterizing the material rigidity 

G  MPa 

Коефіцієнт Пуассона 

Mechanical characteristic of the 

material  (coefficient of transverse 

deformation or Poisson) 

  - 

Потужність 

Power 
Р  kW 

Лінійне переміщення  

Linear displacement AA fy ,  m 

Кутове переміщення  

Angular displacement  A  - 
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Terms Symbols Measurements 

Напруження: 

Stresses: 

 

нормальні 

the normal stresses 
  MPa 

дотичні 

the tangential 

(shear) stresses 
  MPa 

допустимі 

the allowable 

stresses 

  ,      MPa 

Границі: 

Limits  

(strength): 

міцності 

the tensile limit t  MPa 

пружності 

of elasticity limit el  MPa 

пропорційності 

of proportionality 

limit 
pr  MPa 

текучості 

the yield limit 
ye  MPa 

Геометричні 

характеристики 

поперечних 

перетинів 

 

Geometric 

characteristics 

of transverse 

sections 

площа 

the area 
A  m

2 

cтатичний момент 

площі 

static moments of 

the section area 

YX SS ,  m
3
 

осьовий момент 

інерції 

the axial moment of 

inertia 

OI  m
4
 

полярний момент 

інерції 

the polar moment of 

inertia 

РI  m
4
 

осьовий момент 

опору 

the axial moment of 

resistance 

OW  m
3
 

полярний момент 

опору 

the polar moment of 

resistance 

PW  m
3
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UKRAINIAN-ENGLISH VOCABULARY 

OF BASIC TERMS 
 

 

ОСНОВНІ ПОНЯТТЯ ОПОРУ МАТЕРІАЛІВ  

BASIC CONCEPTS OF STRENGTH OF MATERIALS 

 

опір матеріалів – strength of materials 

теорія міцності – theory of strength 

припущення (гіпотези) – assumption (hypotheses) 

гіпотеза про суцільність матеріалу 
– 

hypothesis of the material  

continuity 

гіпотеза про однорідність та 

ізотропність  
– 

hypothesis of homogeneity and 

isotropy 

гіпотеза про ідеальну пружність та 

природну не напруженість 

матеріалу 

– 

hypothesis of the ideal elasticity 

and natural tension of the material 

площа – area 

міцність – strength  

жорсткість,  достатня жорсткість – rigidity, sufficient rigidity 

стійкість – durability  

стрижень  (стержень) – rod  

прямий стрижень  – direct rod  

стрижнева система  – rod system 

пластина – plate  

оболонка – shell 

масив (масивне тіло) – solid (massive body)  

навантаження  – load 

зовнішнє навантаження – external load 

статичне навантаження – static load 

динамічне навантаження – dynamic load  

рівномірно розподілене 

навантаження  
– 

evenly distributed load 

навантаження розподілені на лінії – distributed on line load 

інтенсивність розподіленого 

навантаження 
– 

intensity of the distributed load 

силовий фактор – force factor 

внутрішній силовий фактор – internal force factor 

внутрішнє зусилля  – internal force 

зосереджена сила – concentrated force 

рівнодійний – equivalent 
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критична сила – critical force 

сила інерції  – inertia force 

сила тиску  – pressure force 

момент  – moment 

розрахункова схема  – calculation scheme 

деформація (переміщення) – deformation (displacement) 

лінійна деформація (переміщення) – linear deformation (displacement) 

відносна деформація – relative deformation 

відносна зміна об’єму  – relative change in volume 

поздовжня деформація  – longitudinal deformation 

поперечна деформація  – transverse deformation 

плоска система сил – plane system of forces 

система паралельних сил – system of parallel forces 

правило знаків – sign rule 

опуклість  – convexity  

зразок – speciment 

площадка, площина – plane  

запас міцності   

(коефіцієнт запасу міцності) 
– 

margin of safety 

вибір, підбір – choice 

прямокутна система координат – rectangular coordinate system 

початок координат – coordinate origin 

поточна координата – current coordinate 

взаємно перпендикулярні  

площадки 
– 

mutually perpendicular planes 

лінійна залежність  – linear relationship 

закон розподілу  – law of distribution 

прискорення  – acceleration  

ступінь  – degree  

абсолютно жорстке тіло – absolutely rigid body 

пружна деформація  – elastic deformation  

пружна система – elastic system 

конструкція  – construction 

рівняння статики  – static equation 

рівняння рівноваги  – equilibrium equation 

рівновага  – equilibrium  

значення, величина – value 

форма (перетину) – shape  

відома величина – known value 

рівень – level 

шар волокон – fiber layer 

нейтральний шар  – neutral layer 
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верхній шар  – upper layer 

нижній шар  – lower layer 

одиниця вимірювання, розмірність  – measurement 

перевага – advantage 

недолік – drawback 

особливість – peculiarity 

рама – frame  

cумісна дія  – joint action  

дія – action 

розв’язування (розв’язок)  – solution 

двотавр – I-beam 

швелер – U-beam 

коротка балка – short beam 

точний – exact 

умова – condition 

точка  – point 

вектор  – vector 

вузол – nod  

нахил – slope 

вгору – up 

вниз – down (downwards) 

кривизна – curvature 

плоска крива – plane curve 

руйнівний  – destructive 

метод перетинів  – section method 

плоский поперечний перетин – plane cross-section (section) 

нормальний (поперечний) перетин – normal (shear) section 

довільний (косий або похилий) 

перетин 
– 

random (oblique or inclined)  

cross-section 

умовний (уявний) перетин – imaginary section 

небезпечний перетин – dangerous section 

діаграма, епюра – diagram 

розмір – dimension 

висота – height  

ширина  – width 

довжина – length 

діаметр  – diameter  

коло – circle 

кільце
 

– ring
 

круг – round 

центр кола  – circle center 
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прямокутник – rectangle
 об’єм  – volume 

вага  – weight 

центр ваги  – center of gravity (weight)  

 

ЦЕНТРАЛЬНИЙ РОЗТЯГ-СТИСК ПРЯМИХ СТРИЖНІВ 

CENTRAL TENSION AND COMPRESSION OF DIRECT RODS (BARS) 

 

центральний розтяг-стиск  – central tension and compression 

поздовжня (нормальна осьова) сила – longitudinal (normal, axial) force 

модуль пружності  

(модуль Юнга) 
– 

modulus of elasticity  

(Young’s modulus) 

коефіцієнт поперечної деформації 

(коефіцієнт Пуассона) 
– 

coefficient of transverse  

deformation or Poisson 

зсув (зріз) – shear 

поперечна (перерізуюча) сила – cross-cut, shear (cutting) force 

модуль зсуву – shear modulus 

сколювання – chipping 

пластичний матеріал – plastic material 

крихкий матеріал – brittle material 

сталь – steel 

чавун – cast iron 

дерево – wood 

діаграма розтягу  – stress-strain diagram 

границя пропорційності – limit of proportionality 

границя пружності – limit of elasticity 

границя текучості  – yield (strength) limit 

границя міцності  – tensile strength 

потенціальна енергія деформації  – potential deformation energy 

розрахунок на міцність  – strength calculation 

напруження  – stress 

нормальне напруження – normal stress 

дотичне напруження  – tangential (shear) stress 

головне напруження – main (principal) stress 

робоче (фактичне) напруження  – working (actual) stress 

граничне напруження – boundary stress 

допустиме напруження – allowable stress 

коефіцієнт запасу міцності  – strength factor  

умова міцності  – strength condition  

проектний розрахунок – design calculation 

перевірний розрахунок – validation calculation 
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наближений розрахунок – approximate calculation 
 

ГЕОМЕТРИЧНІ ХАРАКТЕРИСТИКИ ПЛОСКИХ ПЕРЕТИНІВ  

GEOMETRIC CHARACTERISTICS OF PLANE SECTIONS 
 

геометрична характеристика 

плоских перетинів  
– 

geometric characteristics 

of plane sections 

площа довільної форми – area of arbitrary shape 

елементарна площа – elementary plane 

статичний момент площі  – static moment of the area 

полярний момент інерції – polar moment of inertia  

осьовий момент інерції – axial moment of inertia  

центральна вісь  – central axіs 

нейтральна вісь – neutral axis 

центральний момент інерції  – central moment of inertia 

головна вісь інерції – main axis of inertia 

головний момент інерції  – main moment of inertia 

головний центральний момент 

інерції  
– 

main central moment of inertia 

головна центральна вісь – principal central axіs   

осьовий момент опору – axial moment of resistance 

полярний момент опору – polar moment of intersection resistance 
 

ЗСУВ. КРУЧЕННЯ 

SHEAR. TORSION 
 

кручення – torsion 

крутний момент – torque moment 

обертаючий момент – rotating moment 

вал – shaft 
 шків (диск) – pulley  

потужність – power 

частота обертання вала – shaft rotation frequency  

кут закручування  – twist angle 

відносний кут закручування  – relative twist angle 
 

ПРЯМИЙ ПОПЕРЕЧНИЙ ЗГИН 

STRAIGHT TRANSVERSE BENDING 
 

прямий поперечний згин – direct lateral bending 

напруження при згині – bending stress 

згинальний момент – bending moment 

консольна балка – cantilever beam
 балка на опорах – supported beam 
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лінійний закон – linear law 
 нижні волокна матеріалу – lower fibers of material 

верхні волокна матеріалу – upper fibers of material 

нейтральні волокна матеріалу – neutral fibers of material 

реакція – reaction 

опорна реакція – support reaction 

відкинута в’язь – rejected link 

активна сила – active force 

реактивна сила – reactive force 

вільний (незакріплений) кінець  – free end 

опора  – support 

шарнірно-рухома опора – hinged-movable support 

шарнірно-нерухома опора – hinged-fixed support 

жорстке закріплення 

затиснення (защемлення) 
– 

rigid fastening,  

rigidly fixed (clamping) 

злом (епюри) – breaking 

закріплення на опорах – fixation on supports 

перевірка  – validation, verification 

правильність  – correctness 

межа, границя  – boundary 

функція – function 

ліва сторона – left side 

права сторона – right side 

екстремальний момент – extreme moment 

лінія нахилена до осі  – line inclined to the axis 

лінія паралельна осі  – line parallel to the axis 

стрибок  – jump 

квадратична парабола  – quadratic parabola 

зростати  – increase 

спадати – decrease 

диференціальна залежність – differential dependency 

похідна – derivative 

недеформована вісь – undeformed axis 

зігнута вісь – bent axis 

вигнута вісь – curved axis 

пружна лінія  – elastic line 

викривлення (спотворення)  – distortion 

прогин – deflection 

кутове переміщення  – angular displacement 

кут повороту  – slope of the elastic curve 

косий згин – oblique bending 

чистий косий згин – pure oblique bending 
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нейтральна лінія перетину  – neutral (zero) crossing line 
 

СКЛАДНИЙ НАПРУЖЕНИЙ СТАН 
COMPLEX STRESSED STATE 

 

складний опір 
– 

complex strength  
(resistance to combined stress) 

складний напружений стан – complex stressed state 
головний елемент – main element 

 головна площина (площадка) – main plane
 головне напруження  – main stress
 більше з головних напружень – maximum main stress 

менше з головних напружень  – minimum main stress 
розрахункове напруження – calculated stress  
лінійний напружений стан  – linear stress state

 плоский напружений стан – plane stress state
  

СТАТИЧНО-НЕВИЗНАЧУВАНІ СИСТЕМИ 
STATICALLY INDETERMINATE SYSTEMS 

 

cтатично невизначувана система – statically indeterminate system 
cтупінь статичної невизначеності  – degree of static indeterminance 
зайвий (надлишковий) зв’язок  – redundant (auxiliary) junction 
відкинутий зв’язок  – removed junction 
незмінна система – unchangeable system 
основна система – main system 
еквівалентна система – equivalent system 
умова нерозривності – condition of continuity 
умова сумісності деформацій – condition of strain compatability 
гіперстатична система – hyperstatic system 
одиничне навантаження  – singular load  
переміщення від одиничного 
навантаження (сили або моменту) 

– 
singular displacement 

одинична сила – singular force 
одиничний момент  – singular moment 
канонічне рівняння – canonic equation 
вільний член рівняння – absolute term of equation 
невідома сила – unknown force 
повне переміщення – complete displacement 
диференціальне рівняння – differential equation 
безпосереднє інтегрування – direct integration 
наближене диференціальне 
рівняння 

– 
approximate differential equation 

рівняння пружної лінії  – equation of the elastic line 
викривлення осі (зміна кривизни 
осі) 

– 
curvature of axis  
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допоміжна балка  – redundant (auxiliary) beam 
многочлен  – polynomial 
перемноження  – multiplication  
розшаровано (побудова епюр 
окремих фігур) 

– 
layered form 

адитивність (безперервність) 
функції  

– 
additivity (continuity) of the function 

 

СТІЙКІСТЬ ЦЕНТРАЛЬНО СТИСНЕНИХ СТРИЖНІВ 
STABILITY OF CENTRALLY-COMPRESSED RODS 

 

критичний стан – critical state 
поздовжній згин – longitudinal bending 
рівновага стійка – stable equilibrium  
рівновага байдужа – indifferent equilibrium  
рівновага нестійка – unstable equilibrium 
коефіцієнт запасу стійкості – stability margin factor  
гнучкість стрижня – flexibility of the rod 
коефіцієнт зменшення основного 
допустимого напруження  

– 
coefficient of reduction of the main 
allowable strength stress 

недонапруження – understressing 
перенапруження  – overstressing 
дійсне напруження  – actual stress  
 

УДАРНІ НАВАНТАЖЕННЯ. ВИЗНАЧЕННЯ  
НАПРУЖЕНЬ І ПЕРЕМІЩЕНЬ ПРИ УДАРІ 

DYNAMIC LOADS. DETERMINING IMPACT 
STRESSES AND DISPLACEMENTS 

 

наближена теорія удару – approximated theory of impact  
удар – impact 
осьовий удар  – axial impact 
коливання – vibration (oscillation) 
миттєве навантаження  – instantaneous load 
ударне навантаження  – impact load 
ударна в’язкість  – impact viscosity 
розсіювання енергії  – energy dissipation 
абсолютно тверде тіло – perfectly rigid body 
вільно падаюче тіло – free-falling body (falling body) 
рівняння балансу енергії  – equation of energy balance 
динамічне вкорочення 
(переміщення) 

– 
dynamic shortening 

вкорочення (переміщення) 
колони (при ударі) 

– 
shortening of the column 

коефіцієнт динамічності  – coefficient of impact  

 



 240 

Ternopil Ivan Puluj National Technical University 
 
 

Department of Technical Mechanics and Agricultural Machinery 

 

Hevko Roman Bogdanovych 

Dovbush Taras Anatoliyovych 

Khomyk Nadya Ihorivna 
Dovbush Anatolii Dmytrovych  

Tson Hanna Bogdanivna 
 

 

STRENGTH OF MATERIALS 
 

COURSE  BOOK 

for practical works 
for the students majoring in  

Industrial Machinery Engineering,  

Applied Mechanics, 

Automobile Transport 

 
Editor: Sofiya Fedak 

 

Translation: Sofiya Fedak, Liliana Dzhydzhora  

 

Typing: Natalia Antonchak 

 

Graphics: Nazar Olender  

 

 

 

 

 

 

 

Edition 50 books 

 


