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Abstract 

The effect of irradiation with GeV heavy ions (U, Au, Bi) on the structure and mechanical 

properties of MgO single crystals was studied. The methods of nanoindentation, dislocation 

mobility, optical absorption and photoluminescence (PL) spectroscopy, X-ray diffraction and 

atomic force microscopy were used for damage characterization. The ion-induced increase of 

hardness and reduction of dislocation mobility was observed. The depth profiles of hardness, 

dislocation mobility and PL were investigated, and the contribution of electronic and nuclear 

loss mechanisms was confirmed. The efficiency of damage vs. average absorbed energy for 

heavy and light ions was compared. The change in the mechanism of plastic deformation at 

indentation was observed after severe irradiation due to the immobilization of dislocations by 

ion-induced extended defects. The results show that MgO single crystals maintain integrity 

and micro-plasticity at indentation, and exhibit improved hardness after irradiation with swift 

heavy ions at fluences up to 7×10
13

 ions/cm
2
.  

 

Highlights 

 The variation of hardness, dislocation mobility and PL along the path of SHI in MgO is 

investigated. 

 The contribution of electronic and nuclear stopping mechanisms to damage and hardening 

is confirmed.  

 The efficiency of damage by irradiation with heavy and light ions is compared. 

 The dislocation mechanism of plastic deformation in heavily irradiated MgO is exhausted.  
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1. Introduction 

MgO single crystals exhibiting high radiation and thermal resistance are promising as 

a construction material for nuclear and related applications. Therefore, acute issues are 

applicability studies of radiolysis-resistant refractory oxides, such as MgO, under conditions 

of severe irradiation with high-energy particles, in particular, with swift heavy ions (SHI), 

energy losses of which are of the same order of magnitude as for fragments of nuclear fission. 

The basic criteria for technological applications include not only suitability of 

functional properties but also the ability to maintain mechanical integrity and acceptable 

plasticity under severe irradiation. MgO is known as a brittle material under conditions of 

macroscopic deformation at room temperature but exhibits significant plasticity under local 

deformation at the micro- and nano-scale.  

Much effort in the radiation damage studies of MgO, MgO-based spinels and related 

ionic crystals was devoted to the formation of primary radiation defects and their aggregates 

[1-8]. It is well established that irradiation with SHI at the stage of track overlapping creates 

also defect clusters and extended defects, such as dislocations [9-12]. 

Defect aggregates and extended defects play an important role in the mechanical 

properties of irradiated ionic crystals, while the single defects are of minor importance [13]. 

The most prominent extended defects are ion-induced nano-size dislocation loops whose 

presence in MgO under different types of irradiation (neutrons, electrons, swift ions) is 

revealed in numerous studies using transmission electron microscopy (TEM) technique [5, 9, 

10, 14-16]. The nanoindentation method as a local probe sensitive to the presence of 

dislocations and aggregate defects can be effectively used in investigations of the evolution of 

extended defects [13, 17]. 

A number of publications are devoted to the investigation of dislocation structures 

produced during micro- and nanoindentation [18, 19]. However, the role of ion-induced 

dislocations in the modification of mechanical properties and the evolution of dislocation 

structures along the ion path under conditions of severe irradiation are poorly understood.   

In our recent study, the depth profiles of damage and hardening in MgO single crystals 

irradiated by relatively light ions (N and Kr) were studied [20]. The role of dislocations and 

the contribution of electronic excitation and elastic collision mechanisms to damage was 

considered. Here we extend our study to GeV energy heavy ions, such as U, Bi, and Au, 

which have high energy loss in MgO (up to 38 keV/nm) and higher potential to produce 

damage and modify properties.   

 

2. Experimental 

The samples of MgO single crystals (MTI, Ca, USA) with a purity of 99.85 % (the main 

impurities: Ca (0.13%), Fe, and Cr) were prepared by cleaving of crystals along (100) 

crystallographic planes to the thickness of about 1mm and the size of about 10×10 mm
2
. The 

crystals were irradiated at the UNILAC of GSI, Darmstadt with GeV energy U, Au, Bi and Kr 

ions at fluences 5×10
11

 – 7 ×10
13

 ions/cm
2
 (Table 1). The irradiations were performed at room 

temperature and at nearly normal incidence of the ion beam to the (100) face of crystals. In 

selected experiments, the grazing incidence of ion beam at 50° against the normal was also 

used. The energy loss and the range of ions were calculated using SRIM 2008.04 [21]. The 
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ion range was in all cases less than the sample thickness, thus the ions were stopped within 

the crystal.  

 

Table 1. Irradiation parameters of MgO single crystals. 

Ions Ion energy, MeV Range, μm Fluence, ions.cm
-2 

238
U 2046 56 10

13
 

209
Bi 1003 34.8 5.10

11
-5.10

12
 

209
Bi 2150 67 10

12
 

197
Au 2187 72 5.10

12
-7.10

13
 

84
Kr [20] 147 13 5.10

12
-10

15
 

 

X-ray diffraction (XRD) and optical spectroscopy were used for the characterization 

of ion-induced damage. The depth profiles of color centers were studied by a confocal laser 

scanning spectromicroscopy using continuous-wave laser excitation (532 nm, max power 150 

mW) and spectroscopic registration of the color center photoluminescence emission (PL) at a 

wavelength around 760 nm. The accuracy of the depth measurements was 0,5 m. The 

experimental details can be found in Ref. [22]. 

The evolution of extended defects was studied by nanoindentation, dislocation 

mobility and chemical etching techniques. Ion-induced changes of micro-mechanical 

properties were characterized by the Nanoindenter G200 (Agilent, USA) equipped with 

Berkovich and Vickers diamond tips. Measurements were performed in ambient air at room 

temperature using the standard (BASIC) and continuous stiffness (CSM) measurement 

techniques.  The nanoindenter was calibrated using a reference sample of fused silica. The 

hardness, Young’s modulus and standard deviation of the measurements were calculated from 

experimentally obtained loading/unloading curves by means of the Oliver-Pharr method [23]. 

The obtained results were averaged from 10 individual measurements. The depth profiles of 

hardness and modulus were measured on surfaces prepared by cleaving the samples along the 

direction of an ion beam. The measurements were performed at a constant indentation depth 

(150 nm) ensuring small indents and a reasonable amount of data points with good statistics 

(average standard deviation 0.16 GPa). The distance of indents from the irradiated surface 

corresponding to the penetration depth of ions was measured by optical microscopy with an 

accuracy of 1,5 m. The ion-induced effect was expressed as the relative variation of 

hardness: (H-H0)/H0, where H0 and H is the hardness of non-irradiated and irradiated crystal, 

correspondingly. Taking into account the size effect in indentation hardness [24], the hardness 

tests on pristine and irradiated samples were performed at the same indentation depth. 

The indentation hardness tests were complemented with the measurements of 

dislocation mobility [13]. The relative variation of dislocation arm length around imprints (l0-

l)/l0 served as a parameter quantitatively characterizing the effect of dislocation braking on 

ion-induced defects as obstacles. Ion-induced and indentation-induced dislocations were 

revealed by a short time (5 seconds) selective chemical etching in a hot aqueous FeCl3 
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solution [25] and subsequent imaging by atomic force microscopy (AFM) in the tapping 

mode.  

3. Results and discussion 

 

3.1 XRD, optical and photoluminescence spectroscopy 

XRD data of pristine and ion-irradiated crystals in the range of MgO (200) reflection 

confirm the crystallinity of irradiated samples (Fig. 1a). However, the broadening of the (200) 

peak in samples exposed to severe irradiation (2.2 GeV Au, Ф=7×10
13

 ions/cm
2
) indicates the 

accumulation of ion-induced structural defects in significant concentration.  

The optical absorption spectra of MgO irradiated with swift Au and U ions (Fig. 1b) 

consist of a strong band at 250 nm assigned to a large amount of ion-induced neutral and 

charged oxygen vacancy centers (F
+
 and F type centers), a weak band at 355 nm ascribed to 

complex color centers (F2), and the band at 575 nm due to unidentified aggregate defects. The 

insert shows the effect of fluence on evolution of 575 nm band for Au ions. This band is also 

well-established in the absorption spectra of neutron-irradiated crystals [26-29]. Neutrons are 

stopped in solids mainly by elastic collision (nuclear) mechanism. 

The aggregate color centres are of interest due to their possible involvement in the 

modification of mechanical properties. In order to obtain depth profiles of defect aggregates 

absorbing at 575 nm, the PL measurements were performed on freshly prepared MgO 

surfaces using a confocal laser scanning spectromicroscopy at 532 nm cw laser excitation. 

The wavelength curve of PL emission for irradiated crystals displays a broad complex peak at 

760 nm. Fig. 1 c shows the variation of PL along the ion path for samples irradiated with Kr, 

Bi and Au ions, which have different penetration depth.  The maximum of PL is observed at 

the end-of-range region where nuclear energy loss of ions reaches the maximum (as shown 

for Au ions). The intensity of PL is low in the remaining part of range where the electronic 

stopping mechanism plays the dominating role. The result confirms that the highest 

concentration of luminescent aggregate defects at given fluences is located in the tail part of 

range. Such result is not surprising taking into account that the contribution of nuclear 

stopping mechanism in the case of swift heavy ions is of importance only in the tail part of the 

ion range. The similarity of damage processes here with those in neutron-irradiated MgO can 

be expected.  

The luminescence measurements give no full information about the concentration of 

the aggregate centers we are looking for. The evolution of structural damage during 

irradiation possibly could involve concentration quenching of luminescence and stress-

promoted non-radiative decay processes as it was observed for luminescent F3
+
 and F2 centers   

in radiation sensitive LiF crystals [30]. However, it should be noted that the PL signal in our 

experiments (Fig.1 c) is comparatively strong and almost independent of fluence (5.10
12

 

Bi/cm
2
, 10

13
 Au/cm

2
 and 10

15 
Kr/cm

2
) thus showing no indications of luminescence 

quenching in the investigated range of doses.  
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3.2 The depth profiles of hardness in ion-irradiated MgO 

 

The hardness tests were performed on profile surfaces obtained by cleaving the 

irradiated crystals along the direction of ion beam. An optical micrograph of the profile 

surface reveals the irradiated zone as a striped structure oriented along the direction of the ion 

beam (Fig. 2a). The depth of the etched zone nearly coincides with the ion range calculated by 

SRIM. The micrographs indicate also the presence of swelling-induced stresses that can affect 

the evolution of damage structures. The long-range bending stresses at high fluences can 

exceed the dislocation yield stress and relax by the formation of dislocation slip lines on 

(110)45 planes as it was observed earlier for ion-irradiated LiF crystals [31]. Besides, the shear 

stress arises along the interface between irradiated and non-irradiated parts of the crystal, 

which manifests as a bright zone in the polarized light (Fig. 2b).  
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Fig. 1. XRD (a), optical absorption spectra (insert shows the effect of fluence on 575 nm band 

absorbance for 2,2 GeV Au ions) (b) and the depth profiles of laser-excited red 

photoluminescence for MgO irradiated with different ions (c).   

 

 

 

 

Fig. 2. Optical micrograph of the profile surface of irradiated crystal (after etching) (a), the 

zone of swelling- induced shear stress (in polarized light) (b). The direction of an ion beam is 

indicated by arrows.    
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Fig. 3. Depth profiles of hardness and calculated energy loss in MgO samples irradiated with 

2.2 GeV Au (a) and 1 GeV Bi ions (b) at different fluences. 

 

 

The depth profiles of hardness in samples irradiated with GeV energy Au and Bi ions 

at different fluences are shown in Fig. 3. The increase of hardness is observed at fluences 

corresponding to the stage of track overlapping. The hardness increases with increasing the 

fluence (and begins to saturate at > 10
13 

ions/cm
2
.
 
 The hardness at saturation reaches an 

upper limit (H=15-16 GPa, hardening effect 40-45 %). In the major part of ion range, the 

depth profile of hardness correlates with the depth behavior of calculated electronic energy 

loss. An exception is the end-of-range region where the hardened zone at Ф=7×10
13

 ions/cm
2
 

becomes broadened towards the end of range and the hardening effect even displays a second 

maximum (Fig. 3a) that points to the significant contribution of the nuclear stopping 

mechanism to damage. No or small contribution of the nuclear mechanism to hardening was 

observed at Ф <10
12

 ions/cm
2
. 

The indentation plasticity in ion-irradiated MgO was calculated from the loading-

unloading curves obtained by nanoindentation tests [23]. The results for pristine crystals show 

comparatively high micro-plasticity (~72%).  A slight reduction of plasticity is observed in 

I. Manika, J. Maniks, R. Zabels, R. Grants, A. Kuzmin, K. Schwartz, 
Depth profiles of damage creation and hardening in MgO irradiated with GeV heavy ions, 

Nucl. Instrum. Methods Phys. Res. B 461 (2019) 77-82.



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

8 
 

irradiated samples. However, even after irradiation with the highest fluence (7×10
13

 Au/cm
2
) 

the indentation plasticity remains high enough (66%). The Young modulus calculated from 

the nanoindentation data in pristine crystals was about 340 GPa. In irradiated crystals, the 

modulus increased, however, the magnitude of the effect was small (few %). 

 

 

3.3 Dislocation mobility in ion-irradiated MgO 

 

Hardness tests were complemented with measurements of dislocation mobility [13, 

20]. Dislocation structures generated during micro- and nano-indentation tests in MgO have 

been studied in detail in [19, and references therein]. It is well established that indentation on 

a (100) surface creates four dislocation wings which belong to <110> {110}45 slip system 

with slip planes inclined at 45
o 

to the (001) surface and four dislocation wings which belong 

to <110>{110}90 slip planes oriented perpendicular to the (001) surface.  

 

 
 

Fig.4. Dislocation rosette around Vickers indents on a pristine crystal (a) and appearance of 

the deformation zone on samples irradiated with Au ions at different fluences (b and c) (after 

etching).  

The pattern of indentation-induced dislocations in pristine and irradiated MgO was 

revealed by etching. A view of the dislocation rosette around the Vickers imprint on (001) 

surface of pristine  MgO is shown in Fig. 4a, where four longer arms belong to half-loops of 

edge dislocations and four shorter – to screw dislocations.  The relative variation of the length 

of edge dislocation arms was used in the measurements of dislocation mobility. The screw 

dislocations are more sensitive to radiation defects, and their arms disappear already at 

moderate fluences (Fig. 4b).  

The measurements of dislocation mobility showed a decrease in the dislocation arm 

length for irradiated MgO (Fig. 4b) due to the braking of dislocations by radiation defects as 

obstacles. The effect increases with the fluence and for the ions used turns to saturation at the 

fluences above 5×10
12 

ions/cm
2
. 
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Fig. 5. The relative variation of hardness, dislocation mobility and energy loss along the ion 

path in MgO irradiated with Au (a) and Bi ions (b). 

 

 

 

 

The comparison of the depth profiles shows that dislocation mobility is more sensitive 

to structural damage than the indentation hardness. Its magnitude at saturation exceeds 70% 

while the ion-induced hardening reaches about 45% (Fig. 5). At moderate fluences, the depth 

profiles of dislocation mobility correlate with the depth behavior of calculated electronic 

energy loss. 

Under conditions of severe irradiation, the appearance of the deformation zone around 

indents changes radically (Fig. 4c). The evolution of deformation zone no longer follows the 

crystallographic directions of dislocation slip but coincides with the stress distribution around 

the indenter where the maximum stress appears against the centres of indenter faces as it is 

observed at indentation on amorphous materials. The result gives an evidence of the 

exhaustion of the dislocation mechanism of plastic deformation in heavily irradiated MgO and 

of the involvement of a non-dislocation mechanism of deformation. Such change of the 
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deformation mode in ion-irradiated MgO was observed earlier at multi-cycling 

nanoindentation and the involvement of a point-defect assisted deformation mechanism was 

suggested [32]. Some contribution of such mechanism was detected already in pristine MgO 

[33]. A similar change of the deformation mechanism was observed earlier for ion-irradiated 

LiF [29, 34]. 

The depth profiles of hardness and dislocation mobility (Fig. 3 and Fig. 5) confirm the 

dominating role of the electronic stopping mechanism of damage in the major part of ion 

range despite to the fact that the formation energy of Frenkel pairs in MgO is higher than the 

energy gap (EFD > Eg) and the energetic criterion for electronic excitation mechanism of 

damage is not fulfilled. Alternative electronic excitation and ionization mechanisms of 

Frenkel defect formation in MgO based on the recombination of hot conduction electrons 

with hole traps or with the holes localized at impurity ions were offered [2, 11]. Favorable 

conditions for the ensuring of such mechanisms - the presence of impurities (Ca, Fe and Cr) 

and ultimate excitation of an electronic subsystem along the tracks [3] - are met also in our 

experiments. In turn, the formation of extended defects by the nuclear mechanism clearly 

manifests in the tail part of range as evidenced by the hardness, dislocation mobility and 

photoluminescence data.  

The results of TEM studies confirm that nano-size dislocation loops of interstitial type 

having the Burgers vector b=a/2 [110] and lying on {110} planes are created in MgO and 

related ionic crystals  under different kinds of irradiation, including electrons, neutrons and 

ions [1, 4, 5, 9, 10, 14-16]. The damage by SHI is localized in tracks [12]. The formation of 

dislocations in track periphery is observed by TEM [15, 17, 35]. An intense accumulation of 

dislocations occurs at the stage of track overlapping.   

In the present study, the ion-induced dislocations in MgO were revealed by chemical 

etching. The etching procedure was successful for revealing the dislocation loops created at 

indentation (Fig. 4). Nevertheless, the quality of chemical etching of ion-induced dislocation 

loops in MgO was rather poor due to the small size of dislocations and chemical activity of 

irradiated surfaces at etching. To reveal dislocations in ion tracks, the experiments were 

performed on MgO samples irradiated with Bi ions, the energy loss of which is well above the 

critical 22 keV/nm threshold for formation of continuous etchable tracks. The samples were 

irradiated under normal and 50 incidence of the ion beam. The results show that in both 

cases the dislocations (dark etch pits) are ordered in rows along the ion path (Fig. 6) similarly 

as observed for ion-irradiated LiF crystals above the critical 10 keV/nm threshold of 

electronic energy loss [19, 36]. The ion range along the direction of the ion beam for both 

irradiation angles was practically the same. 
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Fig. 6. View of dislocation rows along ion tracks on (001) face for samples irradiated with 2.1 

GeV Bi ions under normal (a) and 50 incidence (b) of the ion beam. Ф= 10
12

 Bi/cm
2
. Arrows 

denote the direction of ion beam.  

 

 

3.4. The comparison of the damage efficiency by heavy and light ions 

In order to compare the ion-induced effects in MgO by ions with a different mass, 

energy and fluence, the dependence of hardening is plotted as a function of average absorbed 

energy estimated as Ea= Eion×Ф/R where Eion is the energy of incoming ions, R is the ion 

range, and Ф is the fluence. The hardness data for each ion at a given fluence were taken from 

the depth profile curves at the position, which nearly corresponds to the Bragg maximum of 

electronic energy loss.  

The results for heavy ions show an increase of the hardening effect at absorbed energies 

above 10
23

 eV/cm
3
 followed by a saturation stage above 10

24
 eV/cm

3
 at which the hardening 

effect approaches ~40% (Fig. 7, curve 1). The hardening data for lighter ions (Kr and N) (Fig. 

7, curve 2) were taken from our previous results [20]. In this case, the hardening effect is 

initiated at an order of magnitude higher average absorbed energy, saturates at Ea=10
25

 

eV/cm
3
 and reaches about 27% that is markedly lower than for heavy ions. However, MgO 

withstands comparatively high fluences of light ions (around10
15

 ions/cm
2
) which are not 

allowed in the case of heavy ions. As shown for Kr ions, the depth profile of hardness in the 

tail part of range displays a maximum where hardness reaches high values (Fig. 7b). The 

hardening vs. absorbed energy curve for Kr ions based on hardness data near the end of range 

is presented in Fig. 7a (curve 3). At fluence Ф=10
15

 Kr/cm
2
, which ensures Ea=10

26
 eV/cm

3
, 

the hardening effect reaches values typical for heavy ions. 
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Fig. 7. (a)Effect of ion-induced hardening of MgO on average absorbed energy for heavy ions 

(Au, Bi, U - curve 1) and lighter ions (Kr, N - curves 2 and 3). 

(b) Depth profiles of hardness for Kr ions at different fluences (data from Ref. [20]) .  

 

4. Conclusion 

The presence of single and complex color centers, defect aggregates and ion-induced 

dislocations have been observed in MgO crystals irradiated with GeV energy heavy ions 

(
238

U, 
209

Bi, 
197

Au).  The accumulation of extended defects under severe irradiation leads to 

an increase of hardness (up to 40 - 45%) and a decrease of dislocation mobility (up to 80%). 

The depth profiles of hardness show also the non-uniformity of damage along the ion path. 

Such heterogeneity of structure leads to formation of stress gradients which can affect the 

mechanical properties at macroscopic scale. 

The comparison of the results for heavy ions with those obtained earlier for light 

projectiles [20] shows stronger damage under heavy ions. However, strong hardening in the 

end part of the range can be reached also by light ions at higher fluences (not allowed for 

heavy ions) due to the contribution of nuclear loss mechanism. 
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 The comparison of the depth profiles of damage in radiation-resistant MgO and 

radiation sensitive LiF shows that despite quantitative differences in ion-induced effects the 

damage behavior in many aspects is similar:  

 The damage in the major part of ion range is dominated by the electronic stopping 

mechanism. An exception is the end-of-range region where at high-fluence irradiation 

(10
13

 - 10
15 

ions/cm
2
) the contribution of the nuclear energy loss mechanism to the 

creation of dislocations and luminescent aggregate defects becomes notable.  

 It is suggested that ion-induced dislocations and aggregate defects in both cases play 

the main role in the modification of mechanical properties (hardness and dislocation 

mobility).  

 After severe irradiation, the dislocation mechanism of plastic deformation becomes 

exhausted due to the immobilization of dislocations by extended defects, and both 

MgO and LiF at indentation behave like amorphous solids. 

The results characterize MgO as a radiation resistant material which survives severe 

irradiation with GeV energy heavy ions at fluences up to 7×10
13

 ions/cm
2
, maintains integrity, 

crystallinity and micro-plasticity, and possesses ion-induced increase of hardness. 
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