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Abstract

As known, Y2O3 nano-clusters considerably increase radiation resistance of reactor con-
struction materials. To model the nano-cluster formation kinetics, we propose the sim-
plest possible mathematical model and perform kinetic Monte Carlo (KMC) simulations.
We extended the KMC simulated results to the experimentally relevant times using au-
toregressive integrated moving average forecasting. Within the model, we have studied
prototypical attractive interaction energies and particle concentrations, and compared the
simulations with experiments. We have observed the standard Lifshitz-Slyozov-Wagner
(LSW) theory, predicting the average cluster radius growth with time, R ∼ t1/p, with
p=3 in the long-time limit, for weak (0.1 eV) mutual particle attraction. However, the
respective cluster growth rates in these KMC simulations are overestimated compared to
the experiments. The best agreement with experiment is obtained for a medium (0.3 eV)
and strong (0.5 eV) attractions, when nano-cluster formation occurs during intermediate
asymptotic time scale, where power order p ranges from 5 to 7.6 depending on interaction,
without reaching actually the LSW long-time limit. Such a stronger interaction leads also
to a more compact {110}–faceted nano-clusters.

Keywords: Y2O3 nano-clusters, Oxide dispersion strengthened (ODS) steels,
Coarsening, Ostwald ripening, Kinetic Monte Carlo

1. Introduction

New alloy materials with improved radiation damage resistance at elevated tempera-
tures are required for future fission and fusion reactors [1]. In particular, Fe-Cr based
ferritic steels with ultra high concentration of Y-O (or Y-Ti-O) nano-clusters are promi-
sing candidates for such materials [2]. However, it is a technological challenge to produce
an alloy with a uniform distribution of nano-sized oxide clusters. One of the possibilities
is to perform the mechanical alloying (of steel and yttria) with the following thermo-
mechanical treatment [3, 4]. There are number of conditions in alloy processing that
affect the final nano-cluster distribution, including: chemical composition of the alloyed
materials (in particular, the amount of Ti adatoms [5, 6]), temperature and duration of
the annealing stage [7–12].

In recent years there is a rising interest to establish experimentally the oxide nano-
cluster growth kinetics. The average cluster radius time dependence in the form

R ∼ t1/p (1)
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with various power orders, p, (3 – LSW regime, 5 – pipe diffusion, or ≈6) was propo-
sed to interpret the experiments [7–12]. To understand the underlying processes, oxide
nano-cluster formation and growth experimental studies where accompanied by extensive
theoretical studies using ab initio, first principle KMC methods as well as thermodynamic
approach [13–16]. KMC simulations were used to study Y2O3 precipitation kinetics in
α-iron as well as the effect of supersaturation [13]. The effect of vacancies on mobility of
Y, Zr, Ti atoms was also studied from first principles [14]. The dislocation pipe diffusion
(p=5) was proposed as a dominant mechanism in the semi-empirical thermodynamic and
kinetic studies of oxide precipitation [15].

In this paper, using KMC simulations we study the precipitation process, starting
from nano-cluster homogeneous nucleation till the cluster growth via Ostwald ripening
(OR) mechanism, with a particular emphasis on the cluster growth kinetics. We use
simplified Y2O3 formation model that allows us to make a direct quantitative comparison
of an average cluster radii, cluster growth rate and cluster density with both available ex-
perimental and theoretical data. In the KMC simulations, we use the standard model and
the pair algorithm approach [17] that was successfully applied earlier for studying com-
plex kinetics both in 2D catalytic systems [18–20] and void self-organization in 3D [21].
In order to forecast cluster growth kinetic results beyond the scope of KMC calculation
limits, we complement the KMC simulations with the autoregressive integrated moving
average (ARIMA) method [22].

2. Physical basis of the model

Experimental observations demonstrate that on one hand, the cluster structures ari-
sing in the oxide dispersion strengthened (ODS) steels depend on the chemical compo-
sition of the material, i.e., the structures are determined microscopically by the particle
types involved in the cluster formation and their interaction potentials. On the other
hand, we are interested in the non-equilibrium structure formation kinetics in such a sy-
stem of mobile and interacting particles. Formally, the kinetics of the microscopic model
can be studied using KMC method. However, there are principal difficulties, since the
underlying physical process of particle cluster formation is of the OR type. OR descri-
bes the time evolution of an inhomogeneous structure, where small cluster of particles
dissolve and redeposit onto larger ones. In this study the characterization of OR process
kinetics is of a particular interest, especially by approaching the long-time limit.

The studies of such asymptotics by KMC method is far from trivial. OR process is
characterized by the time power law Eq. (1). Therefore, to obtain the non-redundant
information, the time interval of data sampling should increase exponentially and simu-
lation time should cover several orders of magnitude. With such a sampling, the number
of large clusters, that are the primary objects of interest, is decreasing approximately
exponentially in the long-time limit thus worsening the statistics. For example, in or-
der to extend the simulation for a few (exponential) steps with identical statistics, one
needs to increase twice the lattice size. As the result, the computer time required for
simulations increases eightfold. One can propose naively to extrapolate to the long-time
limit of KMC simulations using LSW theory [23, 24]. This approach, however, has some
shortcomings. On one hand, the LSW theory operates with two competitive concepts of
diffusion and reaction. Particle interactions are incorporated in the theory indirectly by
using macroscopic surface tension and reaction rate. (In general a surface tension might
depend on the size of the clusters and position of parameters in the phase diagram [25]).
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Then, the theory predicts different OR behavior, see Eq. (1), in the long-time limit for
either diffusion (p=3) or reaction (p= 2) limited cases, respectively. It is predicted that
the proportionality coefficients depend on solubility concentration and thus the rates are
independent of total particle concentration in the system.

On the other hand, the KMC simulations are based on the microscopic model with a
given particle interaction, concentration and temperature. The surface tension originates
from attractive particle interactions, that lead to formation of clusters, and is not introdu-
ced directly in the model. Moreover, no assumption is made regarding the slowest process
and the particle concentration effects can be studied directly. The topmost advantage is
that KMC allows us to explore the whole process of particle cluster formation, starting
from nucleation till OR regime, and determine the intermediate asymptotic kinetics that
arise before the LSW long-time limit. In such the case, the asymptotics corresponds to
the auto-model solution between two limiting parameter values (two times tmin and tmax).
In other words, for observation times, t, (tmin<t<tmax) the characteristic distributions
are obtained using similarity transform. Correspondingly, the kinetics of the process is
characterized by fundamental time power laws [26, 27].

Importance of the intermediate asymptotic is due to the following specific features
of the ODS steel experiments: a few nanometer large clusters typically grow during a
few hours (or a few hundred of hours in dedicated kinetics studies) according to Eq. (1)
with a power orders p=5 or 6.28 interpreted as the pipe diffusion [11] . However, as
shown in this paper, similar power orders could arise also as an intermediate asymptotic
before reaching the LSW regime. These results hold for a simple 3D model with particle
diffusion and interaction, without any other (e.g., pipe) diffusion mechanism.

In the KMC simulations of intermediate asymptotics, development of the detailed
microscopic model could cause substantial difficulties. Such a model requires knowledge
of all the elementary microscopic processes including all types of relevant particles, their
interactions and mobility parameters and is indeed actively developed during last years,
see [13–16]. On one hand, such an approach with interaction estimates from the first-
principle calculations [28, 29], when used in KMC simulations [20], might lead within the
uncertainty of parameters to a wide variety of system behaviors. On the other, precise
interaction energies between particles determine mainly the short-range order of particles
within the clusters rather than the asymptotic time dependence of average cluster radius.
Therefore, in this paper, we simplify the process of detailed Y2O3 cluster formation in
ODS steels to study the fundamental cluster growth laws.

3. Model

The detailed models that take into account different types of particles (Y, Ti, O and
Fe vacancies), their microscopic interactions and diffusion where used in previous KMC
simulations [13, 30–32]. However, in this paper, since the focus is on the intermediate-
and long-time kinetics of the cluster growth, we propose the simplified Y2O3 nano-cluster
formation model in α-iron based on the following assumptions. (i) Since the kinetics is
governed mainly by the particle transport, we consider the yttria nano-clusters as objects
without the inner structure. We assume that clusters are formed by the effective particles,
A, (that represent Y, O atoms and Fe vacancies) with concentration, cA, and can be
characterized by an effective nearest neighbor (NN) attractive interaction, ε. The latter
is our only fit parameter in the model and describes the average interactions between A
particles.
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D0 [m2/s] Eact [eV] ν0 [s−1]d ν(1100◦C) [s−1]

10−5 3.10a 1015 4×103

8.0×10−7 2.26b 1014 5×105

2.4×10−6 2.14c 3×1014 4×106

Table 1: Experimentala [13, 37] and theoretical b[14], c[36] mobility parameters for Y particles in α-iron.
dEstimates of attempt frequencies are obtained from Eq. (3).

Let us estimate the concentration of particles A that correspond to a typical Y2O3 con-
centration of 0.3 wt % in ODS steels. The Y2O3 unit concentration per site (occupancy)
could be found from

cY2O3 =
0.3wt%/AY2O3

0.3wt%/AY2O3 + 99.7wt%/AFe
, (2)

where AY2O3 = 226 u and AFe = 56 u are atomic weights of Y2O3 and Fe, respectively.
We assume that Y2O3 forms a coherent [16] bixbyite structure [33] (lattice constant 1.06
nm [34]) within the α-iron lattice (lattice constant a0=0.286 nm [35]). For a bixbyite
structure additional Fe vacancies are required to be built-into nano-cluster leading to a
Y2O3VacFe3 complex unit that occupies 8 Fe body-centered cubic (bcc) lattice sites. Then
A particles (site) concentration is found from cA = 8 cY2O3 that for Y2O3 concentration
of 0.3 wt % corresponds to cA = 0.006.

Extension of the model, by addition of different particle sorts, have negligible effect
on concentration. For example, when 0.1Ti is added to the system, the A particle con-
centration increases till cA ∼ 0.007, if Ti doesn’t build into Y2O3 cluster structure and
each Ti atom within the cluster requires additional bcc Fe site. Contrary, if Ti builds
into the existing Y2O3 bixbyite structure cluster by occupying existing there Fe vacancies,
the A particle concentration remains unchanged. For a completeness of definition, let us
introduce a monomer concentration, c′0, by excluding the volume occupied by all clusters.

(ii) The mobility of A particles should correspond to the slowest moving particles
that form Y2O3 bixbyite structure. Since the clusters grow in a layer by layer mode, the
slowest moving particle will provide the rate limiting step. In a general form A particle
jumps to the NN empty lattice site are characterized by the diffusion coefficient

D = D0 exp[−Eact/(kBT )] = l2ν/z = l2ν0/z exp[−Eact/(kBT )] , (3)

where l is jump length, z number of NN and ν0 attempt frequency. In the bcc lattice
with eight nearest neighboring sites (z = 8) the jump length is l =

√
3a0/2.

It is known that experimentally determined Y particle diffusion, Table 1, is the slowest
while mobilities of Fe vacancies, Ti and O are much higher. However, experimental and
theoretical Y particle diffusion coefficient estimates (and hopping rates), Table 1, differ
by several orders of magnitude at the experimentally relevant temperature 1100◦C. It is
proposed in Ref. [36] that Y diffusion in experiments could be altered by oxygen and
Fe vacancies, which strongly bound Y atom. Since we are interested in the effective Y
diffusion estimate, where complex microscopic jump details are already taken into account
(similarly to the effective A particle that accounts for Y, O, Fe vacancies) further we use
the experimental Y hopping rate estimates by Alinger and Hin [13, 37].

In computer simulations, we consider bcc lattice of size L×L×L = V (where L is
lattice side length which varies from L = 80 till 240a0) with N = 2V/a3

0 sites and
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periodic boundary conditions. Particles A are distributed randomly within the lattice at
the beginning of simulations. Particles are mobile and can hop to the nearest free site.
This step is implemented in KMC simulations using the pair algorithm and the standard
model dynamics [17]. The pair algorithm contains the following steps:

• A NN pair is randomly selected from all possible pairs in the bcc lattice.

• If the pair contains a single vacancy, O, and particle, A, (OA or AO), the hoping
step (exchange of positions AO or OA, respectively) is performed, if a random
number (RN) normalized to unity is less that step rate, ναβ,

ναβ =
2ν

1 + exp (−(nα − nβ)ε/(kBT ))
, (4)

where α and β are the first and second site of the pair. The jump rate of a single
free particle, ν, from Eq. (3) is modified, ναβ, in Eq. (4) to take into account
the interaction between particles. The standard model dynamics [17] allows us to
introduce the step rate symmetrically (irrespective of the direction of the jump, e.g,
OA
AO) unlike to, e.g., the Metropolis dynamics [38]. The negative interaction
energy used for a pair of particles in NN positions, ε, corresponds to their mutual
attraction; nα and nβ are the numbers of occupied NN positions in the initial and
final configurations, respectively. Here it is convinient to introduce a dimensionless
interaction energy ε = ε/(kBT ).

• Time is updated by a fixed increment

∆t =
1

Nν
(5)

and the algorithm returns to the first step, until the final simulation time is rea-
ched. In the KMC simulations, we use dimensionless time τ = tν and return to
dimensional time, t, only when we make a comparison with experimental results.

The long-time behavior (LSW-type power laws) are examined in KMC at the temperature
1100 ◦C for three particle concentrations, cA, (0.005, 0.1, and 0.2), and three prototy-
pical interaction energies, ε: weak (−0.1), medium (−0.3), and strong (−0.5 eV) that
correspond to the dimensionless interactions ε = −0.85, −2.54, and −4.23, respectively.
In order to increase the accuracy of KMC simulations, we repeat and average results of
10 calculations, unless specified otherwise.

4. KMC simulation analysis

4.1. Phase diagram

In order to analyze the spatial particle structures, we define a particle cluster as a
connected (in nearest neighbor (NN) sense) group of A particles in the bcc lattice. Clus-
ter formation strongly depends on both, A particle concentration, cA, and dimensionless
interaction energy, ε, as shown in the solubility-supersolubility diagram, Fig. 1. Similarly
to Ref. [39], we find here three zones: (i) the stable (unsaturated) zone where sponta-
neous nucleation and cluster growth is impossible; (ii) The metastable (supersaturated)
zone, where spontaneous nucleation is improbable, but a cluster seed placed in the me-
tastable zone would experience growth; (iii) The unstable (supersaturated) zone, where
spontaneous nucleation is probable, but not inevitable.

5



0.5 1 2 3 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(i)

(ii)

(iii)

(a) (b)

(c) (d)

Figure 1: Solubility–supersolubility phase diagram (a). Three zones could be distinguished: (i) the
stable, (ii) the metastable and (iii) the unstable. KMC simulations demonstrate particle aggregation
(full circles), single large cluster growth (open circles), and no cluster growth regimes (down triangles),
respectively. Solubility estimates from KMC, cGT

∞ , are given by squares. A solubility, cA∞(ε), and two
supersolubility, cnuc(ε), fit to the Arrhenius equations are shown by solid and dashed/dotted lines,
respectively. Snapshots of average cluster size, rn, Eq. (8), for (b) weak (ε = −0.85) r105866 = 6.7 nm,
(c) medium (ε = −2.54) r1801 = 1.7 nm and (d) strong (ε = −4.23) r123 = 0.7 nm interactions at
time τ = 3.3×106 and particle concentration cA=0.1. Each data point is obtained from a single KMC
calculation.

The solubility concentration, c∞(ε), that separate the stable-(i) and the metastable-(ii)
zone can be found from KMC simulations that lead to an equilibrium configuration with a
single spherical cluster with a radius, r, surrounded by single particles (flow of particles to
and from the cluster are equal). KMC simulations that give such a configuration, might
bypass the OR stage when just a single nucleus (and thus a single cluster) is created in the
lattice often after a prolonged incubation period, see empty circles in Fig. 1. The solubility
concentration, cGT∞ (ε), can be estimated using the equilibrium monomer concentration,
c′0(τ → ∞), at a single spherical cluster by excluding the volume of the cluster and the
well-known Gibbs-Thomson relation [40]

c′0(τ →∞) = cGT∞ (ε) exp

(
lc
r

)
, where (6a)

lc =
2γv1

kBT
, (6b)

γ =
(zs − zb)ε

2s1

, (6c)

cA∞(ε) = c0
∞ exp(−k∞|ε|) , (6d)

where lc is the capillarity length and v1 volume of a single particle. The specific interfacial
energy, γ, using a simplified bond-counting model could be estimated from Eq. (6c), where
s1 is a single-particle exposed surface area, zs and zb are numbers of occupied bonds for
a particle at the surface and in the bulk of the cluster, respectively. For compact clusters
formed by {110}–facets (Fig. 1c,d) the number of bonds can be estimated as zs = 6 and
zb = 8, respectively, that, in turn, leads to a surface area, s1 = πr2

1. The solubility cGT∞ (ε)
estimates obtained using Eqs. (6a–6c) are shown by square symbols in Fig. 1. On the
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other hand, the solubility concentration, c∞(ε), can be estimated in the Arrhenius form
Eq. (6d) [41], where c0

∞ = 1.0 and k∞ = 4.0, see solid line in Fig. 1. (The c0
∞ coincides with

the bulk concentration in the T →∞ limit, while k∞ = 4.0 corresponds to half of the bcc
lattice coordination number [41].) Both estimates agrees well, c∞(ε) ≡ cGT∞ (ε) = cA∞(ε),
indicating that Eqs. (6) are self-consistent, except for weak interactions, |ε| < 1. In the
latter case the particle cluster is loose, see Fig. 1b, and the simple interfacial energy
estimates Eq. (6c) are no longer applicable, since for diffuse clusters there exist no simple
estimate of the occupied surface bound number, zs, and exposed particle surface, s1.

Determination of metastable-(ii) and the unstable-(iii) zone separation (the superso-
lubility curve) is more challenging, since its position, among other things, is affected by
the history of the sample [39]. In KMC simulations we find that weak attraction and
small concentration strongly suppress cluster nucleation and thus hinder the reaching of
the critical cluster size, see down-triangles in Fig. 1. Moreover, there is a region in the
unstable zone where just a single particle cluster is formed in the lattice after a certain
incubation time, see open circles in Fig. 1. The incubation time increases either by ap-
proaching the supersolubility curve in the phase diagram and/or by decreasing the lattice
size. The supersolubility curve, cnuc(ε), can be estimated in the Arrhenius form

cnuc(ε) = c0
nuc exp(−knuc|ε|) , (7)

however, with some uncertainty. Here we define that there is no spontaneous nucleation
in a KMC simulation run, when for a 3D lattice of size, L = 120a0, no stable clusters
are formed during τ = 4×106 (16 min at 1100 ◦C). It should be noted, that larger lattice
sizes or longer waiting times can still initiate nucleation. Then for the supersolubility
approximation Eq. (7) the two fits are possible: (i) a more conservative approach – when
cnuc(ε) is proportional to c∞(ε) with c0

nuc = 2.5 and knuc = 4.0 (dashed line in Fig. 1),
or (ii) less conservative approach, that is based on our definition of absent-nucleation in
KMC simulations, that leads to the parameters c0

nuc = 1.5 and knuc = 3.5 (dotted line in
Fig. 1).

Particle nucleation and growth takes place in the KMC simulations when the starting
random distribution of A particles exceeds the supersolubility curve, cA ≈ c′0(τ = 0) >
cnuc(ε), for a given interaction energy, ε, and temperature, T , see phase diagram (full
circles) in Fig. 1. It should be noted that the largest concentration that could be randomly
distributed in the bcc lattice without formation of percolating cluster, cA . 0.18 (the
bond percolation threshold [42]). For subpercolation concentrations two scenarios are
possible with the advance of time – nucleation still continues if the remaining monomer
concentration (taking into account the cluster excluded volume) is sufficient, c′0(τ) >
cnuc(ε). However, if the monomer concentration decreases below the supersolubility limit,
c′0(τ) < cnuc(ε), the nucleation is suppressed. In the latter regime, the existing clusters
could grow on the expense of either other clusters (OR) or, in a case of a single cluster,
on other monomers if c′0(τ) > c′0(τ →∞).

4.2. Particle distribution function

Let us now quantitatively analyze the cluster growth in the unstable-(iii) zone. By
performing the cluster analysis we find sizes, n, of each cluster in the lattice at time, τ .
Due to two atoms in the bcc unit cell, we can estimate the cluster volume as vn = n a3

0/2.
Then assuming that a cluster of n particles has a spherical shape, the corresponding
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Figure 2: Cluster density analysis in the limit of weak attraction, ε = −0.85: (a) PDF, (b) average
cluster radius dependence on nmin (nmin independent average cluster radius, R(τ), marked as dotted
gray lines), and (c) accuracy of average cluster radius estimates. R(τ) accuracy estimate marked by
down triangles in (c) and plotted as a horyzontal lines in (b). Data are obtained from a single KMC
simulation with parameters: L = 240a0, cA = 0.1, ε = −0.1 eV, T = 1100 ◦C.

cluster radius could be found as

rn =

(
3n

8π

)1/3

a0 . (8)

The number of clusters is examined using the particle distribution function, f(r, τ),
(PDF) [24]. The PDF is a discrete function due to an integer number of particles in a
cluster, n, see Eq. (8):

f(r, τ) = {f(r1, τ), f(r2, τ), . . . , f(rnmax , τ)} , where (9a)

f(rn, τ) =
1

V
lim

∆rn→0

M (rn, rn + ∆rn, τ)

∆rn
, (9b)

and M (rn, rn + ∆rn, τ) is the number of clusters in volume, V , having radii, r, between
rn and rn + ∆rn at time τ . For the PDF calculation the bin sizes ∆rn in Eq. (9b)
on the one hand should be as small as possible, while on the other hand they should
contain a sufficiently large number of clusters, to reduce the statistical error. In our
PDF estimate, each individual bin size is increased adaptively, till it contains at least two
clusters, M ≥ 2, that ensures the PDF continuity and smoothness, Fig. 2a, especially for
large radius values.
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The average cluster size can be defined as the first momentum, using Eqs. (8,9b)

rnmin
(τ) =

∫
rf(r, τ)dr∫
f(r, τ)dr

=

(
3

8π

)1/3

a0

nmax∑
n=nmin

n1/3M (rn, τ)

nmax∑
n=nmin

M (rn, τ)

, (10)

where the last term here is independent on the bin size ∆r. Radius at nmax should account
for the largest cluster in the lattice, but selection of nmin is a non-trivial task [25] and will
be discussed below. The classical rate theories that estimate time dependence of average
cluster radius neglect the cluster nucleation and coalescence [43]. However, nucleation is
intrinsic process in KMC simulations that is observed in PDF as a number of small-radii
clusters, see, Fig. 2a, when scaled monomer concentration, c′0, exceeds the supersolubility
concentration, cnuc(ε), in Fig. 1. The shape of PDF remains qualitatively similar until
τ = 3×103without the characteristic cluster size present in the system. However, after
this incubation time, the shape of PDF qualitatively changes, from τ = 2.2×104 in
Fig. 2a, when the group of large clusters emerges and is observed as a second maximum
in the PDF. These clusters grow further according to the OR rules and will be in the
focus of our further analysis. The contribution of small clusters in the PDF thus should
be ignored. We achieve this goal by neglecting the cluster sizes smaller that nmin.

In order to set the nmin, let us first determine the rnmin
(τ) dependence on rnmin

. The
average cluster radius increases as clusters with sizes smaller than nmin are excluded
from averaging in Eq. (10), Fig. 2b. Finally, the plateau regions (if present) in rnmin

(τ)
figure correlate with the minima of PDF function, Fig. 2a, and can be used as the nmin
independent average cluster radius estimates by excluding the nucleation contribution

R(τ) = lim
nmin

rnmin
(τ) ≈ const . (11)

When no such plateau region exists, e.g., during the incubation time, we assume that no
characteristic cluster size exists in the system. The accuracy of the average cluster radius
for each rnmin

can be estimated using the standard deviation, S, and Student’s two-sided
t-distribution [44],

S =

√√√√ 1

nmax − nmin

nmax∑
n=nmin

(rn(τ)− rnmin
(τ))2 , (12a)

∆rnmin
(τ) =

S√
nmax − nmin + 1

t1−α/2,nmax−nmin
(12b)

with significance level α = 0.05 and nmax − nmin degrees of freedom, Fig. 2c. From here
the accuracy of the nmin independent average cluster radius, R(τ), can be estimated using
the corresponding rnmin

(down-triangles and horizontal lines in Fig. 2c-b, respectively).
The shape of PDF function changes qualitatively for a medium, ε = −2.54, and

strong, ε = −4.23, interactions, Fig. 3, comparing to the weak one. Namely, with an
increase of time, the number of small clusters decreases in PDF, indicating that particles
for the medium and strong interactions tend to be bound to clusters rather than remain
as monomers. The peculiar PDF behavior is observed in the limit of a strong attraction
and times larger than τ = 1.6×105. Despite the repeating calculations, ten times with

9



0.5 1 2
10

-6

10
-4

10
-2

10
0

10
2

 =  2.0e+01

 =  4.0e+02

 =  8.1e+03

 =  1.6e+05

 =  3.3e+06

0.5 1
10

-4

10
-2

10
0

10
2

 =  2.0e+01

 =  4.0e+02

 =  8.1e+03

 =  1.6e+05

 =  3.3e+06

(b)

(a)

Figure 3: PDF for attractive: (a) medium, ε = −2.54, and (b) strong, ε = −4.23, interactions. Long
living stable clusters of magic numbers n = 15 and 22 corresponding to the maxima of PDF functions at
r15 = 0.35 and r22 = 0.39 nm at τ = 1.6×105 and 3.3×106, respectively are shown in insets of (b). Data
are obtained as average over 10 independent KMC simulation with parameters: L = 80a0, cA = 0.1,
ε = −0.3 (a) and −0.5 eV (b), T = 1100 ◦C.

the following averaging, the PDF function contains several long-living maxima for certain
r values, e.g., r15 = 0.35 and r22 = 0.39 nm, Fig. 3b. These radii correspond to the most
stable {110}–faceted clusters consisting of magic particle numbers n = 15 and n = 22,
respectively. Due to surface particles that has six NN particle pairs (and edges with four
NN pairs) they require more time to be disassembled, see insets in Fig. 3b.

4.3. Power laws

Let us now analyse quantitatively the cluster growth kinetic. Earlier different kinetic
laws, Eq. (1), have been proposed for different limiting cases: viscous flow (p = 1),
interfacial control (p = 2), volume diffusion (p = 3), interfacial diffusion (p = 4), and
pipe diffusion (p = 5) [45], respectively. Our KMC simulations correspond to the volume
(3D, p = 3) diffusion case and thus the long-time behavior of the OR process is predicted
by three power laws of the LSW theory

R(τ) ∝ k1τ
1/3 = k′1t

1/3 , (13a)

c′0(τ)− c∞(ε) ∝ k2τ
−1/3 = k′2t

−1/3 , (13b)

ρcl(τ) ∝ k3τ
−1 = k′3t

−1 , (13c)

for average cluster radius, degree of supersaturation and cluster density [23, 40, 43], re-
spectively. Equations (13) are valid for R(τ) � Rc0, where the initial critical radius

10



1

10

10
2

10
4

10
6

10
8

10
10

10
-4

10
-3

10
-2

10
-1

(0.200, -0.85)

(0.100, -0.85)

(0.100, -2.54)

(0.005, -2.54)

(0.100, -4.23)

(0.005, -4.23)

10
-4

10
-3

10
-2

10
-1

10
2

10
4

10
6

10
8

10
10

10
2

10
4

10
6

(a)

(b)

(c)

(d)

Figure 4: Average cluster radius (a) and LSW power law (b-d) asymptotic behavior. KMC simulations
and the corresponding ARIMA(0,2,0) model forecasts are given with and without the solid lines, respecti-
vely. Particle concentration and dimensionless interactions are given as pairs (cA, ε = ε/(kBT )). All
data are obtained as average over 10 independent KMC simulations except (0.1,-0.85) case where a single
calculation is performed. We use L = 80a0 for (0.1,-4.23) and (0.1,-2.54); L = 140a0 for (0.005,-4.23)
and (0.005,-2.54); L = 180a0 for (0.2,-0.85) and L = 240a0 for (0.1,-0.85).

for coalescence corresponding to the starting supersaturation is Rc0 = lcc∞(ε)/(c′0(0) −
c∞(ε)) [23]. This condition is fulfiled in our simulations and we neglect the Rc0 contribu-
tion in Eq. (13).

The increase of average cluster radius, R(τ), with time in KMC simulations demon-
strates strong dependence on particle interaction energy, ε, Fig. 4a. The accuracy of the
KMC estimates are of the order of figure symbols and therefore not shown on the plots. A
weak attraction leads to a faster growth of clusters than a strong one, due to shorter time
needed for particles to detach from existing clusters, leading to a faster disappearance
of small clusters and growth of the large ones. Contrary, a strong attraction increases
time needed for particle detachment and thus slows down the large cluster growth at the
expense of the small ones.

The KMC simulations show that cluster growth kinetics approaches the LSW long-
time limit faster (τ > 106) for weak interaction, while for medium and strong interactions
the long-time limit lies beyond our simulation times and could be estimated only from
below using forecasting results τ > 108 and > 109, respectively, Fig. 4b–d. By comparing
the average cluster radius, rate of cluster growth and cluster concentration, Fig. 4a,b,d,
one can conclude that the weak interaction leads to a small number of fast growing large
clusters (Fig. 1b), while medium and strong interactions produce larger number of slower
growing smaller clusters (Fig. 1c,d).

Particle concentration, cA, plays a principal role in kinetics along with dimensionless
interaction, ε, that determines the conditions for a cluster formation. Thus, for a weak
attraction and small concentration, cA = 0.005, the cluster formation is absent, Fig. 1.
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Figure 5: Average cluster radius scaling with different dimensionless time powers, Eq. (1), demonstrating
intermediate asymptotic regime (horizontal plateau region) for: (a) p=5 (medium interaction) and (b)
p=7.6 (strong interaction), respectively. The abbreviations are identical to Fig. 4.

When cluster formation is possible, the particle concentration most strongly affects the
cluster density in simulations, cA ∝ ρcl, Fig. 4d, while the average cluster radius and the
radius growth rate are only slightly affected, Fig. 4a,b. The degree of supersaturation,
Fig. 4c, for medium and strong interactions demonstrate the tendency towards saturation.
It also implies that in the long-time limit the disparities arising for different concentrations
disappear and monomer concentration (taking into account the cluster excluded volume),
c′0, tends to the solubility concentration, c∞(ε), according to the LSW theory predictions.
Unfortunately, the degree of supersaturation for a weak attraction remains undetermined
(leading to unphysical result c′0 < c∞(ε)) due to simplified bond counting model used
in the interfacial energy, γ, estimate Eq. (6c), that is not applicable for loose clusters,
Fig 1b.

Since the KMC simulations are limited by our computing capabilities, we performed
the power law forecasting until times τ = 109, see symbols without line in Fig. 4a,b,d. The
autoregressive moving average model has been applied earlier for analysis and simulation
of time series containing noise, that arise, e.g., in tokamak experiments [46, 47]. In this
paper, we use autoregressive integrated moving average ARIMA(p,d,q) model [22] that
is well suited for nonstationary series. We found that the ARIMA(0,2,0) is the simplest
parameter-free model that describe the KMC data,

yθ = 2yθ−1 − yθ−2 + ζθ, (14)

where y and θ are the corresponding KMC simulation data in the logarithmic form
and logarithmic time step index, respectively, and ζθ is the noise term at step θ. The
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forecasting, ŷθ+h, for h steps ahead can be done using Eq. (14), see Fig. 4, with the
following accuracy estimate [22]

∆ŷθ+h = uα/2

(
1 +

h−1∑
k=1

k2

)1/2

sζ , (15)

where sζ is the standard deviation of the white noise process ζθ and uα/2 is the deviate
exceeded by a proportion α/2 of the unit normal distribution.

Finally, we note that determination of the kinetics order p from the experimental data
may be hindered by the transition (intermediate) type kinetics. This is especially critical
if the effective particle interaction, ε, is medium or strong and the intermediate kinetics
may be observed at least until times τ = 108 and τ = 109, see Fig. 4, respectively. When
such data are scaled to different p orders, they could demonstrate plateau-like behavior.
However, as demonstrated in our KMC simulations with medium interaction and scaling
with power p = 5, Fig. 5a, the conclusion regarding the pipe type diffusion in this case is
misguided, since instead we are observing the intermediate asymptotic kinetic.

Similarly, for a strong interaction the horizontal plateau region (for the intermediate
kinetics) is obtained in KMC simulations with p = 7.6, Fig. 5b. Thus, the average cluster
radius growth during intermediate asymptotic stage could be described by, Eq. (1), with
different orders p depending particle interaction, ε, and a stronger interaction leads to
both larger exponent p and longer intermediate stage region.

5. A comparison of computer simulation results with LSW theory and expe-
riments

The characteristic data of a cluster formation and growth (average cluster radius,
R(τ), cluster density, ρcl, and cluster growth rate, k′1) from the KMC simulation at
experimentally relevant time and temperature limits from Fig. 4 are collected in Table 2.
We find that KMC simulations can be performed till τ ∼ 107. ARIMA forecasting allows
one to extend times by several orders, e.g., till τ ∼ 109, however, the accuracy of the
estimates are quickly reducing, Eq. (15). By using the experimental Y particle jump rate
at temperature 1100 ◦C, see Table 1, we find that KMC and ARIMA forecasts correspond
to the physical time estimates of 40 min and 90 h, respectively, Table 2.

In the KMC we have simulated concentration range from cA = 0.005 up to 0.2 (for-
tyfold increase) and found, that such system characteristics as cluster radius and growth
rate are independent on concentration, see e.g., Table 2. We observe that only the cluster
density is highly sensitive to concentration and for twentyfold concentration increase the
cluster density increases by one order. Therefore the KMC concentration, cA = 0.005,
can be well used as an A particle concentration estimate in the considered experiments,
Table 2.

The characteristic data can also be evaluated from the LSW theory, Eq. (13), by using
coefficients [23]

(k′1)
3

= k3
1ν =

4

9
Dlcc∞(ε) , (16a)

(k′2)
3/2

= k
3/2
2 ν−1/2 =

3lcc∞(ε)

2
√
D

, (16b)

k′3 = k3ν
−1 = (2Dlcc∞(ε))−1 . (16c)
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The average cluster radius, R(τ), and growth rate, k′1, predicted by the LSW theory
agree well with the KMC data for a weak attraction (ε = −0.85) (except the cluster
density that is overestimated by two orders of magnitude), since KMC simulations at
times τ = 106 have reached a long-time limit without prolonged intermediate asymptotic
regime, Table 2. Contrary, for medium and strong interactions the LSW regime is still
unreached until τ < 108 and τ < 109, respectively, see Fig. 4a,b,d. As a consequence, the
LSW predictions underestimate the average cluster radii and density, due to the absence
of intermediate asymptotic regime in the LSW theory. At the same time, the ARIMA
forecast demonstrates that in the long-time limit the reaction rate, k′1 approaches the LSW
results for medium and strong interactions, Table 2, and the LSW theory supersaturation
estimates, k2 = 7.4×10−3 and 1.2×10−4, agree well with the simulation data for medium
and strong attractions, respectively, Fig. 4c.

The yttria nano-clusters observed experimentally in ODS alloys have radii of a few
nm and clusters density 1021 − 1023 m−3, see Table 2. A typical annealing time of a
few hours [5] can be extended to several hundred of hours in the dedicated experiments
studying cluster growth kinetics in different temperature limits [9, 11, 12, 37], see Table 2.
It was shown that higher temperatures lead to larger average cluster sizes with smaller
cluster density with increasing reaction rates.

Our KMC simulations support the general trend in both experiments and earlier
KMC simulations [13], that with a decrease of cluster average radii the cluster density
increases, see Table 2. In our simulations decrease of cluster radius and increase of cluster
density at identical times corresponds to an increase of attraction energies (or decrease of
temperature). Alternatively, change of alloy composition by inclusion of different particle
sorts (e.g. Ti, Cr, and W) correspondingly affect the average interaction energy and thus
corresponds to different KMC simulations with different average interactions.

Simulation results using strong interaction, ε = −4.23, (radius 1.5 nm, density 7×1023

m−3, rate 0.25 nm/h1/3, cA = 0.005) with ARIMA forecasting to 90 h at T = 1100◦C
agree quantitatively well with experimental values (radius 2.8 nm, density 5.8×1022 m−3,
rate 0.53 nm/h1/3) at T = 1150◦C. One should note here that experimental temperature
is by 50◦C higher and annealing time is five times longer, 480 h that correspondingly
increase the average cluster radius and decrease cluster density of the KMC simulations.

As a particular example, the experimental data in Table 2 in different temperature
limits may be well fitted within our model using attractive interaction ε = 0.42 eV
(medium–strong type), Fig. 6. On the basis of these calculations we find, that the dimen-
sionless time required to obtain small clusters, e.g., when R(τ) = 1 nm, is independent on
temperature and reaches τ ∼ 107. Similarly, the obtained cluster density ρcl(τ) ∼ 5×1023

m−3 have no dependence on temperature, Fig. 6 d-f, (it should be noted, that cluster
density decreases with time as ρcl ∼ τ−1). However, the physical time that corresponds
to τ ∼ 107 differs considerably with temperature: 22 s (1400◦C), 86 s (1300◦C), and 7 min
(1200◦C). Thus the optimal annealing temperatures to create 1 nm nano-clusters in ODS
steels depends on the ability to control the temperature within the material, e.g., the
higher annealing temperatures require more accurate temperature control at short times.
Annealing the material for longer times would create clusters or larger size and smaller
density. It is clear that the onset of cluster formation in real systems is harder to moni-
tor than in KMC simulations due to its statistical nature and thus a temperature/time
control could be challenging. These findings agree with experimental data, Table 2, that
also demonstrate that smaller cluster radius and higher density is easier to obtain for
moderate temperatures, where temperature time control accuracy has smaller effect on
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Figure 6: Comparison of KMC simulation kinetics with experimental data in different temperature
limits: (a,d) 1400◦C, (b,e) 1300◦C, and (c,f) 1200◦C. For each temperature KMC data obtained from
a single calculation for L = 140a0 and cA = 0.005 using ε = 0.42 eV (down triangles) and ε = 0.46
eV (circles) with ARIMA(0,2,0) model forecast (dashed lines). Experimental data pentagram [9] and
hexagram [11, 12, 37], Table 2, rescaled to dimensionless time using experimental Y particle jump rate,
Table 1.

the cluster kinetics. Different material compositions could alter the average interaction
energy, ε, that is used as a fit parameter in our model.

6. Conclusions

We have performed the KMC simulations, to model the yttrium oxide nano-cluster
formation and growth in ODS steels. Our simple microscopic oxide formation model has
a single particle sort that represents all types of particles involved in cluster formation:
yttrium, oxygen atoms, Fe vacancies, that experience an attractive pairwise interaction.
Within the model, we have established the solubility–supersolubility phase diagram that
(in the particle concentration and attraction energy (temperature) space) separates the
unstable zone of a cluster formation from a stable region, where cluster formation is
suppressed. Three prototypical particle attraction energies – weak, medium and strong
– lead to formation of loose or compact {110}–faceted shape nano-clusters depending on
interaction strength.

The methodology is developed for a particle distribution function analysis, that se-
parates the clusters experiencing the OR growth from contribution of small unstable
clusters. In particular, it allows us to to follow quantitatively and compare the clus-
ter growth characteristics (average cluster radius, their growth rate, degree of solubility
and density) obtained from KMC with both the Lifshitz-Slyozov-Wagner (LSW) theory
predictions and ODS experiments. The results for the weak attraction reach the LSW
predicted long-time behavior during the typical for ODS steel production time of the
order of a few hours. However, these weak interaction results differ strongly from the
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experiments suggesting that the average interaction between particles in real materials
exceeds weak interaction (0.1 eV) estimate.

In turn, KMC simulations demonstrate that for both medium (0.3 eV) and strong (0.5
eV) attractions the LSW long-time limit is still unreached during a few hours and conse-
quentially results differ from LSW predictions. Instead, the simulations demonstrate new
intermediate type kinetics, R ∼ t1/p, that is characterized by different orders p depending
on interaction energy. The cluster growth characteristics obtained in simulations with
a medium and strong attraction quantitatively well agree with experiments with the p
estimates ranging from 5 to 7.6, respectively.

The proposed Y2O3 nano-cluster formation model based on homogeneous nucleation
is the simplest assumption that mimics particle aggregation in ODS steels. Despite its
simplicity, it could provide quantitative estimates and experiment interpretation. The
model is complementary to microscopic detailed models but allows us to focus on the
cluster formation kinetics in the long-time limit. Moreover, it could be useful for a wide
class of systems regarded as many-particle ensembles ranging from numerous physical
applications to biological systems [48].
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R(τ) ρcl(τ) k′1 Annealing
[nm] [m−3] [nm/h1/3] conditions

KMC simulation results:
cA ε τ

0.100 −0.85 3×106 6 5×1022 9.7 1100◦C, 13min

0.100 −2.54 107 2.0
2×1024

2.4 1100◦C, 40min
0.005 2×1023

0.100 −4.23 107 0.7
4×1025

0.9 1100◦C, 40min
0.005 4×1024

ARIMA(0,2,0) forecasts:

0.100 −2.54 1.3×109 7.0
6×1022

1.5 1100◦C, 90h
0.005 5×1021

0.100 −4.23 1.3×109 1.5
5×1024

0.25 1100◦C, 90h
0.005 7×1023

LSW results:
ε zs − zb

−0.85 −2 5 1024 8 1100◦C, 13min
−2.54 −2 1.1 1026 1.2 1100◦C, 40min
−4.23 −2 0.14 1029 0.15 1100◦C, 40min

Experimental results:

Fe–12Cr–2W–0.3Ti–0.25Y2O3
a 9.2 2×1021 3.1 1400◦C, 24h

Fe–12Cr–2W–0.3Ti–0.25Y2O3
a 4.5 1022 1.4 1300◦C, 24h

Fe–12Cr–2W–0.3Ti–0.25Y2O3
a 2.6 1023 0.8 1200◦C, 24h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 6.5 5.2×1021 3.4 1400◦C, 9h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 4.2 2.2×1022 1.7 1300◦C, 27h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 3.7 1.8×1022 0.53 1200◦C, 480h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 2.8 5.8×1022 0.53 1150◦C, 480h

Fe–14Cr–0.3Mo–Ti–0.25Y2O3
b 1.5 4.7×1023 0.052 1000◦C, 21.9kh

Table 2: KMC simulation result estimates from Fig. 4 at times τ = 3×106 (t = 13 min) and τ = 107

(t = 40 min), respectively, where for conversion we have used experimental Y particle jump rate ν =
4×103 s−1 at temperature 1100◦C, see Table 1. The LSW theory predictions are obtained from Eq. (16).
aData are taken from Ref. [9]. bData for alloy MA957 are from Ref. [11, 12, 37].
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