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Abstract. Narrow operational voltage window can be considered as one of the greatest 

limitations for aqueous polymer electrolytes. Using freeze-thaw hydrogel preparation method 

we have synthesized wider potential window electrolytic polyvinyl alcohol (PVA)/Na2SO4 and 

PVA/K2SO4 electrolytes. Supercapacitors (SC) have been assembled using novel porous 

polyisoprene and carbon black composite electrodes. Our SC exhibit pressure sensitive 

properties therefore this effect is deeper explored here, giving explanation for capacitance 

increase during pressure application. It is found that up to 2 MPa the capacitance increases due 

to greater interface between electrode and electrolyte. 

1.  Introduction 

Supercapacitors (SC) are short term energy storage devices which are used to give fast energy boosts 

when needed. Modern SC are expected to bridge the gap between batteries and conventional capacitors 

by providing both high power and energy. Flexible solid-state SC have extra advantages like possibility 

to use them in flexible electronics as well as the absence of liquid electrolyte [1-3]. However, the 

majority of flexible solid-state SCs can operate in a relatively narrow voltage window therefore limiting 

the practical use of these devices. Recently it has been stated that wider operational voltage window can 

be achieved using alkali metal salts as ion sources, e.g. Na2SO4 [4, 5]. 

One of the characteristics determined for SC devices is the ability to sustain stable capacitance during 

mechanical deformation. We have previously demonstrated that instability of capacitance under 

mechanical load can be successfully used for pressure sensing [6]. Mechanical load can decrease 

distance between electrodes, in case of piezoresistive material it can increase or decrease resistance of 

electrode, change the dielectric permittivity of layer between electrodes or facilitate greater interface 

between electrode and electrolyte. 

Here we present a compressible solid-state SC with an operational voltage window of 4.4 V. 

PVA/Na2SO4 and PVA/K2SO4 were chosen to obtain such wide operational window in these poly(vinyl 

alcohol) cryogel electrolytes. Cryogel electrolytes containing H3PO4 and KOH, reported in literature [7-

12], were also prepared to establish a comparison with pH neutral salts (Na2SO4 and K2SO4). 

Electrochemical characterization gives us information about limitations and energy storage properties 

of our device. We have investigated how separate parts of the whole supercapacitor device influence 
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capacitance changes when it is subjected to mechanical load, therefore increasing our knowledge about 

interaction of SC components under pressure. 

2.  Results and discussion 

Main components contributing to successful solid-state double-layer SC are carbon-based electrodes 

with current collector and ion conducting electrolyte. For electrodes flexible electro-conductive porous 

polyisoprene rubber was prepared to allow deformation to take place in our device. As in regard to 

electrolyte we chose to favour polymer hydrogel electrolyte, specifically cryogels, which are prepared 

by freeze-thaw method. 

2.1.  Porous electrode materials 

Electro-conductive composite material was created by mixing polyisoprene rubber (PI) solution in 

chloroform with conductive carbon particles and blowing agent ChKhZ-5 particles dispersed in 

chloroform. The solvent was evaporated, and composite material was vulcanized under pressure. Main 

steps of composite material preparation are shown in figure 1.a, where last step shows crosslinked 

porous rubber samples ready to be used as electrodes. Special care was taken when crosslinking 

electrode material. First, composite material was molded by pressure in 140 °C temperature for 1.5 

minutes. Then this pressure was removed, and crosslinking was continued at higher rate at 160 °C 

temperature. ChKhZ-5 thermally decomposes at temperature range 150-170 °C so pores are formed 

simultaneously with crosslinks as sample is not subjected to pressure in this stage. 

We started by preparing three different electro-conductive polymer composites – PICB25, PIAC70 

and PIGr65. Sample name shows that polyisoprene (PI) has been used as binder and carbon black (CB, 

PRINTEX-XE2), activated carbon (AC, Sigma Aldrich) and graphene (Gr, CheapTubes) as active 

electrode material where number shows phr (parts per hundred rubber). Phr values were chosen to be 

close to maximum content achievable. Electro-conductivity of these materials was measured in 

temperature range from 12 °C to 58 °C (figure 1.b). It is clearly seen that PICB25 sample shows superior 

electro-conductivity in comparison to other two materials reaching 7.4 S m-1 conductivity at room 

temperature (25 °C) while for PIAC70 it is 0.07 S m-1 and 0.03 S m-1 for PIGr65. CB was chosen for 

further use in samples because it possesses the highest electro-conductivity.  

One of the factors that influence capacitance of SC is electrode surface area. We added pore forming 

agent ChKhZ-5 to increase surface area of electrode material. We expected that conductivity of material 

could decrease after formation of pores and to solve this we increased CB phr to maximum value we 

could achieve (28) before the material shows decrease of integrity. Porous electrode showed electro-

conductivity of 17 S m-1, which is by 11 S m-1 lower than non-porous material (figure 1.c), but it is still 

a high value for porous rubber composites. 

The goal of this research was to prepare pressure sensitive supercapacitors so we tested how the 

conductivity of electrodes respond to mechanical load. Figure 1.c. demonstrates that for both cases of 

electrodes (porous and non-porous) small piezoresistive effect was observed – uniaxial pressure causes 

conductivity to drop. For SC this means that applied mechanical load slows down the propagation of 

charge to current collectors, because the resistance of electrodes increases. During fast charge-discharge 

cycles this effect could play a negative role. 

By observing the surface of electrode material in figure 1.d we can see that pores are not uniform. 

Uniformity in this case is strongly dependent on content of filler particles, lower content could yield 

more uniform pores and higher porosity, but it would mean sacrificing electro-conductive properties. 
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Figure 1. (a) Preparation technology of electro-conductive rubber starting with sonication of carbon 

particles mixed with CHCl3, proceeded by mixing with PI/CHCl3 solution and evaporation of solvent 

and lastly vulcanization of electrodes. (b) Electro-conductivity measurements of three carbon 

nanostructure composites. (c) Electro-conductivity of porous and non-porous PICB28 electrodes under 

various pressure values. (d) Optical microscopy image of porous PICB28 electrode surface, scale 200 

µm. 

2.2.  Hydrogel electrolytes – preparation and characterization 

The hydrogel electrolyte was synthesized using “Freeze-thaw” method (figure 2.a). PVA (Sigma 

Aldrich, Mw 130000, 99+% hydrolysed) was dissolved in distilled water at 100 °C temperature while 

being vigorously stirred. After complete dissolution it was cooled to room temperature and when clear, 

viscous solution was obtained, 20 wt% of 1 M Na2SO4, K2SO4, KOH or 20 wt% conc. H3PO4 was slowly 

added. This solution was casted in petri dishes and subjected to 3 freeze-thaw cycles in order to prepare 

white, opaque cryogel as shown in figure 2.a. 

 
Figure 2. a) Schematic representation of “Freeze-thaw” method and image of the prepared cryogel 

electrolyte b) Graph showing crystallinity of prepared hydrogels calculated from DSC and 

corresponding Young’s modulus c) Dielectric permittivity measurements when uniaxial pressure is used 

on PVA/K2SO4 hydrogel with smooth ITO electrodes. 

 

PVA hydrogel without any ion conducting additives was also prepared using “freeze-thaw” method 

to determine how Na2SO4 and K2SO4 influence the structure of hydrogel. Differential Scanning 
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Calorimetry (DSC) of hydrogels show that addition of Na2SO4 hasn’t made a great influence on the 

content of crystalline phase and for hydrogels PVA and PVA/Na2SO4 it is respectively 42 % and 44 % 

as evidenced in figure 2.b. In case of PVA/K2SO4 the crystallinity has slightly decreased and is 

around 33%. Interestingly, when H3PO4 and KOH is used as ion source in hydrogel the crystallinity 

dramatically decreases (0 % and 5 %) allowing much higher ion mobility in gel electrolyte. 

Previously the influence of pressure on electrode conductivity was explored. Here we discuss 

influence of mechanical load on dielectric permittivity of hydrogel electrolyte. For this purpose, 

PVA/K2SO4 electrolyte was used. PVA/Na2SO4 showed higher Young’s modulus as seen in figure 2.b 

and could be a better potential candidate for pressure testing, but unfortunately Young’s modulus 

measurements of this hydrogel showed great deviations. Figure 2.c reveals that uniaxial pressure 

decreases the dielectric permittivity when hydrogel electrolyte is used in combination with smooth ITO 

electrodes. The changes in the structure of hydrogel caused by pressure reduces the free volume and 

amorphous phase, hence it decreases the mobility of ions and diminishes their contribution to total 

dielectric permittivity of hydrogel electrolyte layer. 

2.3.  Electrochemical characterization. 

For electrochemical characterization one side of the crosslinked electrode was painted with silver paint 

to create current collector. SC was assembled by sandwiching the PVA/Na2SO4 hydrogel electrolyte 

between two identical electrodes. The operational voltage window was determined using cyclic 

voltammetry (CV). Results show that widest potential windows can be obtained for PVA hydrogels 

using Na2SO4 and K2SO4 (figure 3.a). These same electrolytes show the highest specific capacitance 

(figure 3.b) which is calculated from CV curves. 

 

 
Figure 3. a) CV curves of hydrogel electrolyte SC at 100 mV/s scan speed b) Specific capacitance 

values obtained from CV measurements c) CP results for SC that is charged for 10 s and discharged for 

10 s using various current densities (0.25-2.00 mA cm-2) d) Gravimetric capacitance values calculated 

from charge-discharge curves. 

 

Supercapacitors using PVA/N2SO4 and PVA/K2SO4 were chosen for further testing – for 

chronopotentiometry (CP) measurements. CP results show that when device is charged using various 

current densities for 10 s the maximum voltage increase (V = 3.25 V) is observed when 2 mA cm-2 is 
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used (figure 3.c). The calculated gravimetric capacitance is lower than reported in literature, but it can 

be explained by the shape of electrodes. To allow compression, they have been prepared relatively thick 

which needs a higher amount of active electrode material. The highest gravimetric capacitance was 

obtained for SC using PVA/Na2SO4 and it was 2.8 F g-1 (figure 3.d). 

2.4.  Mechanical load impact on capacitance.  

As it was established previously in subsections 2.1. and 2.2., the uniaxial pressure lowers the 

conductivity of electrode materials, therefore limiting charge distribution rate in electrode material, as 

well as decreases the dielectric permittivity of hydrogel electrolytes. Lower dielectric permittivity means 

that mechanical load should have a diminishing impact on capacitance of supercapacitor. 

Figure 4.a demonstrates that capacitance of SC increases accordingly to applied pressure. As we have 

ruled out impact of increased dielectric permittivity and the electrode area doesn’t increase, then we 

must conclude that capacitance increases due to smaller distance between electrodes and increased 

interfacial contact between electrode and electrolyte when uniaxial pressure is applied. 

 
Figure 4. a) Impact of pressure on capacitance of SC using porous PICB28 and PVA/K2SO4 b) 

“Apparent” dielectric permittivity of SC device depending on the applied pressure. 

 

To determine whether this capacitance increase is mainly due to closer distance between electrodes 

or better interface between electrode and electrolyte we calculated the “apparent” dielectric permittivity. 

Term “apparent” dielectric permittivity was used because it was calculated using the dimensions of 

device as the area of electrode. But in reality the rough and porous surface area of the specific electrode 

should be taken into account when dielectric permittivity is calculated. Therefore, the calculated 

dielectric permittivity is much higher (by 3 orders) than the one obtained from measurements that used 

ITO electrodes (figure 4.b) which is smooth and for which dimensions of device can indeed be used as 

the electrode area. The most interesting about this is the increase of permittivity when pressure up to 2 

MPa is applied. “Apparent” permittivity slightly increases but as we have determined previously with 

measurements using ITO electrodes it should decrease. Hence, we can conclude that better interfacial 

contact is created when pressure up to 2 MPa is applied, which causes higher capacitance. When pressure 

is higher than 2 MPa capacitance increase can be mainly attributed to decrease of distance between 

electrodes because dielectric permittivity doesn’t change as evidenced in figure 4. b. 

3.  Devices and methods 

Electro-conductivity of electrode was measured with Agilent 34970A data acquisition/switch unit. 

Scanning electron spectroscopy images were obtained with Phenom Pro desktop SEM. Electrochemical 

measurements: cyclic voltammetry (CV) and chronopotentiometry (CP) were conducted with VoltLab 

PGZ301 potentiostat at room temperature (22 °C) using Swagelok type cell. Dielectric properties and 

capacitance for mechanical load dependent experiments were measured with Agilent E4980A LCR 

meter while mechanical load was provided by universal material testing machine Zwick/Roell Z2.5. 
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4.  Conclusions 

Use of cryogel electrolyte containing K and Na sulphates allows wider potential window of assembled 

devices, resulting in devices better suitable for integration in circuits. Applied uniaxial pressure 

decreases the conductivity of electrode material limiting charge distribution in electrode material when 

pressure is applied, which is not favourable for pressure sensors. Dielectric constant of electrolyte 

decreases under mechanical load, therefore, pressure should have a diminishing effect on capacitance. 

As can be seen from results effect is opposite – pressure increases the capacitance. We have concluded 

that weaker pressure (up to 2 MPa) increases capacitance mainly due to improvement of interfacial 

conditions. When pressure is higher than 2 MPa capacitance increases mainly due to smaller distance 

between electrodes. 
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