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Abstract
Colorimetric gas sensing is demonstrated by thin films based on ultrasmall TiO2 nanoparticles (NPs) on Si substrates. The NPs are

bound into the film by p-toluenesulfonic acid (PTSA) and the film is made to absorb volatile organic compounds (VOCs). Since the

color of the sensing element depends on the interference of reflected light from the surface of the film and from the film/silicon sub-

strate interface, colorimetric detection is possible by the varying thickness of the NP-based film. Indeed, VOC absorption causes

significant swelling of the film. Thus, the optical path length is increased, interference wavelengths are shifted and the refractive

index of the film is decreased. This causes a change of color of the sensor element visible by the naked eye. The color response is

rapid and changes reversibly within seconds of exposure. The sensing element is extremely simple and cheap, and can be fabri-

cated by common coating processes.

229

Introduction
The apparent color change in materials induced by structural

changes has the potential for applications in sensors with

power-free detection and naked-eye readout [1]. Most common-

ly, the visually perceptible color change of the material is ob-

served in well-ordered structures consisting of building blocks

or cavities having uniform size and spacing. It is possible to

change or modulate this structural color by changing the inter-

particle distance by means of a physical or chemical external

stimulus. Well-known examples of these materials are opals and

inverse opals: three-dimensional photonic crystals where the
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colors are caused by the periodic variation of the refractive

index [2]. Tuneable optical properties in opals are observed by

the shift of the Bragg reflection peak of visible light, or by

varying the refractive index contrast by liquid or gas infiltration

in inverse opals [3-5]. The latter demonstrate an excellent color

response with great potential for optical gas detection.

Although a large variety of sensing arrays of periodic well-

ordered inverse opal structures has been fabricated, it is still a

challenge to fabricate inverse opal structures by straightforward

and cost effective large-scale processes. Because of this, it is

necessary to improve the fabrication processes of photonic crys-

tals further. Another possibility is the development of complete-

ly different color-responsive materials utilising simpler struc-

tures or detection principles. Here, we demonstrate an alterna-

tive spin-coated thin film of ultrasmall TiO2 nanoparticles

(NPs) for a colorimetric gas sensor. The functional thin film is

extremely simple, consisting of TiO2 NPs and the elastic

binding agent p-toluenesulfonic acid (PTSA) on a Si substrate.

It is not necessary to use particles with narrow size distribu-

tions of diameters in well-ordered structures, which is a main

requirement for other materials providing naked-eye optical gas

detection (e.g., inverse opals). The sensing range of the current

system is comparable to inverse opal systems. Zhang et al.

demonstrated that a silole-infiltrated SiO2 inverse opal photonic

crystal exhibit a colorimetric response to diethyl ether from

600–1300 ppm, and to petrol ether from 600–1000 ppm

(1.95–4.24 mg/L and 2.17–3.62 mg/L, respectively) in air [6].

Lu et al. demonstrated a peak shift in the extinction spectrum of

approximately 15 nm for ethanol vapor concentrations from

0–10000 ppm in metal-organic framework containing colloidal

silica crystals [7]. The current sensor system, which is simpler

and also cheaper to fabricate, gives a peak shift of approxi-

mately 4 nm in this concentration range.

The color of TiO2 NPs thin films changes here after the absorp-

tion of volatile organic compounds (VOCs) into the PTSA

binding agent between the NPs and the subsequent swelling of

the film. Thus, the film thickness and the optical path length of

the light in the film are changed. This varies the interference

wavelengths of light reflected by the substrate and the thin film.

The change of thickness and the apparent color of the

functional TiO2 NP thin films is rapid, and also changes revers-

ibly within seconds of exposure. The sensor exhibits a gradual

color change from yellow to green/blue upon exposure, and also

a selectivity to different VOCs with the highest response (i.e.,

the largest shift of interference maxima and minima) to

isopropanol. In the present work results obtained using

one typical thin film are presented. However, experiments

were repeated with several thin films all showing similar behav-

ior.

Experimental
Titania NPs were synthesised using a method described by

Scolan and Sanchez [8] with slightly modified parameters

[9,10]. Commercially available titanium(IV) butoxide (Sigma-

Aldrich, reagent grade), p-toluenesulfonic acid (PTSA) (Sigma-

Aldrich, reagent plus), acetylacetone (acac) (Sigma-Aldrich,

reagent plus), butanol (Sigma-Aldrich) and deionised water

were used as precursors. The solvent (butanol) was dried using

CaH2 and distilled before use. The molar ratio between PTSA

and titanium(IV) butoxide was set to 0.2, that between acac and

titanium(IV) butoxide was set to 3, and that between water and

titanium(IV) butoxide was set to 10. In a typical synthesis 9.0 g

of titanium(IV) butoxide was dissolved in 30.0 g of butanol,

7.953 g of acac was added. A solution of PTSA was prepared

by dissolving 1.2072 g of PTSA in 5.6087 g of DI water. An

amount of 5.6769 g of the solution was added dropwise to the

reaction mixture. The reaction was carried out overnight under

reflux conditions. The nanoparticles were washed twice with

methanol using centrifugation at 12000g for 1 h. The synthesis

was optimized to obtain ultrasmall nanoparticles (roughly 3 nm

in diameter) to attain a high sample surface area. Our modified

synthesis protocol had a NP yield more than 50% after washing.

Thin films based on TiO2 nanoparticles were prepared from the

NP colloidal solution (5.9% by mass in ethanol) by spin coating

on Si(100) substrates in ambient atmosphere. The substrates

were cleaned prior to coating with ethanol to remove small dust

particles. The rotation frequency during spin coating was

3000 rpm and coating time was 0.5 min. The obtained NP-based

precursor films were aged at room temperature under ambient

conditions for four days. The purpose of this ageing was to

allow the remaining solvent to evaporate slowly, in order to

prevent the cracking of the films. After ageing, the films con-

sisted of PTSA-covered TiO2 NPs. PTSA could have been re-

moved by annealing, but the aged films were not heated up, to

maintain the ability of the films to swell.

A Sopra GES-5E variable angle spectroscopic ellipsometer was

used to determine the thickness (d) and optical properties

(refractive index n, absorption coefficient k) of the films using

the “Winelli II” software. Film thickness and optical constants

were determined from the ellipsometric parameters tan ψ and

cos Δ [11]. All the main parameters (d, n, and k) were obtained

using a Levenberg–Marquardt non-linear regression algorithm.

Ellipsometric measurements were generally performed at inci-

dence and reflectance angles of 75°. TiO2 films made from NPs

were modelled as homogeneous mixtures of supposedly dense

materials, with the addition of voids for the adjustment of n and

k. The optical properties of the thin films were examined in air

under ambient conditions. The optical constants given here are

those measured at 633 nm wavelength.
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Using ellipsometry, the refractive index of the film was

modelled between 1.2–4.5 eV at a wavelength of 633 nm. The

three-layer stack (silicon substrate/silicon oxide/TiO2 film/mix-

ture of TiO2 and voids) was used for modelling and fitting both

thickness and refractive index using the standard three-angle

data sets.

X-ray photoelectron spectroscopy (XPS) was used for investi-

gating the chemical state and elemental composition of the

NP-based films after different treatments. XPS measurements

were conducted using a surface station equipped with an elec-

tron energy analyzer (SCIENTA SES 100) and a non-mono-

chromatic twin anode X-ray tube (Thermo XR3E2), with char-

acteristic energies of 1253.6 eV (Mg Kα1,2 FWHM 0.68 eV)

and 1486.6 eV (Al Kα1,2 FWHM 0.83 eV). All XPS measure-

ments were conducted under ultra-high vacuum (UHV) condi-

tions. The binding energy scales for the XPS experiments were

referenced to the binding energy of Ti4+ 2p3/2 (458.6 eV). To

estimate the overall atomic concentrations of different com-

pounds and elements, the average matrix relative sensitivity

factors (AMRSF) procedure [12] and the transmission function

of our instrument were used. The raw data were processed using

the Casa XPS software [13]. Data processing involved removal

of Kα and Kβ satellites, removal of the background and fitting

of the components. Background removal was carried out using

Tougaard background; for fitting, the Gauss–Lorentz hybrid

function was used (GL 70, Gauss 30%, Lorentz 70%). How-

ever, the absolute amounts of different compounds and ele-

ments have to be considered cautiously, and are given to outline

trends and estimates only. Due to the possible deviation of the

surface region from chemical homogeneity in the working range

of photoelectron spectroscopy (surface region with a thickness

of up to three electron mean free paths), some signals might be

amplified or suppressed.

For calculation of XPS spectra, the GPAW program [14,15]

was used, which is a real-space uniform grid-based all-electron

DFT code implemented in the projector augmented-wave

(PAW) [16]. The ground-state energy was calculated with the

geometry obtained from Gaussian 09 calculations using PBE

functionals and a grid spacing of h = 0.16 Å. For C, O, S and N

atoms core electrons were excited one by one to obtain the

excited-state energies using the same calculation parameters as

for the ground state, and adding a local combination of atomic

orbital modes.

The crystalline phases of the titania NPs were examined by

measuring room-temperature Raman spectra of the films pre-

pared on a fused silica substrate using a Renishaw micro-

Raman set-up equipped with a 514 nm continuous mode argon

ion laser, of approximate spectral resolution 1.5 cm−1.

The AFM measurements, with the purpose of investigating the

thickness of the films before and after exposure to VOCs, were

conducted using a Veeco AFM. Typically, the tapping mode

was utilized in order to provide an optimal performance.

OTESPA AFM tips (manufactured by Bruker) were used. To

measure thickness of films, they were scratched with stainless

steel tweezers and the step height of the scratch was measured.

To ensure that only the film was scratched away (and not the

substrate) scratching was carried out using different forces; the

results were similar. The position of the bottom of the scratch

was measured from three different places and so was the sur-

face of the film; the measurements were averaged. In case of

AFM measurements the films were exposed to ethanol vapor by

placing them in a Petri dish and dropping ethanol in the vicinity

of the sample.

Optical transmission and reflection measurements were con-

ducted with a Cary 5000 (UV–vis–NIR) spectrometer (Agilent

Technologies) during the exposure of the film in a gas flow cell.

The spectrometer was equipped with an internal diffuse reflec-

tance accessory (DRA). The DRA was configured so that both

diffuse reflectance and specular reflectance were measured. The

flow cell was attached to the measurement window of the DRA

and was fastened securely.

The flow cell (Figure 1) was constructed using 1 mm thick

soda-lime glass, a 150 µm thick separator, and a silicon

monocrystal plate covered with the TiO2 NPs film. The gas

inlet and outlet were introduced through the glass plate. The

separator was placed between the TiO2 NP-covered silicon

monocrystal, and the monocrystal was sealed hermetically to

the glass plate using epoxy resin, forming a flow through the

cell. VOC/air mixtures were prepared by using an automatic

pipette and dropping the required amounts of the specific VOC

to a 2.5 L glass jar through a 3 mm opening in the cap, the jar

was equipped with a magnetic stirrer to homogenize the gas

mixture. Before filling the syringe with 20 mL of the gas mix-

ture the gas was stirred for 3 min. During measurements, 20 mL

of air with certain amounts of VOC vapor was injected with a

syringe through the cell and the reflectance spectra were

measured. After measurements, the cell was purged with

200 mL clean air and the measurements with every VOC were

repeated twice and then the next VOC/air mixture was

measured.

The hydrodynamic diameter and the respective size distribution

of the NPs were measured in ethanol using dynamic light scat-

tering (DLS, Zetasizer Nano ZSP, Malvern Instruments). The

microstructural features of the nanoparticles were studied by a

transmission electron microscope (TEM, Tecnai G20, FEI)

operated at 200 kV.
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Figure 2: Working principle of the sensor element: the light reflected from the surface of the film and from the film/substrate interface will interfere.
Left: situation before absorption of VOCs; right: situation after absorption of VOCs. The optical path length is changed by the absorbed VOC mole-
cules due to the twofold mechanism: (i) physical swelling of the film (d→d + Δd) and (ii) decrease of the refractive index of the film (n→n − Δn). Black
circles mark NPs; blue area on the left panel represents PTSA; and grey area on the right panel represents a mixture of PTSA and VOC.

Figure 1: Construction of the flow cell for reflectance measurements.

Results and Discussion
Optical gas sensors based on porous Bragg stacks utilize the

phenomenon of analyte vapor being absorbed in the pores of the

stack, which changes the effective refractive index of the indi-

vidual layers [1,17,18]. Our objective was to demonstrate a

simpler and more cost-effective system utilizing the gas absorp-

tion in films and the subsequent swelling of the films, which

changes the interference maxima and minima of light reflected

from the surface of the film and from the film/substrate inter-

face, as schematically demonstrated in Figure 2. The functional

thin film is extremely simple, consisting of TiO2 NPs (the mean

size of 3 nm was measured by TEM and DLS, Figure 3a and

Figure 3e) and the binding agent PTSA on a Si substrate. It is a

colorimetric gas sensor based on a single-layer NP film

(Figure 2), where the NPs in the film are distributed rather

randomly. PTSA absorbs VOCs and the thickness of the film

increases (also the refractive index decreases) changing the

interference color. Neither VOCs nor PTSA react with the TiO2

NPs.

Raman measurements demonstrated that the NPs bound into the

film were in the anatase crystal phase (see Figure 3b) and had

good crystallinity. The main anatase Raman band (Eg) had

slightly shifted from 144 cm−1 (the typical value for anatase

TiO2 powders) to 151 cm−1. Such a shift has been explained by

a small diameter (some nanometers) or the nonstoichiometry of

the nanoparticles [19]. As will be demonstrated, the measured

XPS spectra show a stoichiometric composition of the NP mate-

rial. Therefore in our case, the shift of the Raman peak to

151 cm−1 was caused by the small mean diameter of the nano-

particles (ca. 3 nm).

XPS was used to characterize the surface region of the

NP-based film. From the overview spectrum (Figure 3c) the

presence of oxygen, titanium, carbon and sulfur can be seen; no

other elements were detected on the film surface. The Ti 2p

spectrum corresponds well to literature data [20,21] of TiO2,
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Figure 3: Characterization of the synthesized NPs and their thin films bound with PTSA. (a) TEM images of TiO2 nanoparticles; (b) Raman spectrum
of the NP-based thin film showing the existence of the anatase crystal phase (Eg band at 151 cm−1); (c) XPS overview spectrum demonstrating the
presence of titanium, oxygen, carbon and sulfur in the NP-based thin film; (d) Ti 2p photoemission lines typical for Ti4+ do not show the presence of
reduced titanium ions (Ti3+) in TiO2; (e) hydrodynamic size distribution of the NPs (measured by DLS in colloidal dispersion); (f) measured XPS spec-
trum of the C 1s region and calculated XPS spectra for PTSA including sub-bands. Locations of the respective atoms in the PTSA molecule are also
shown (inset).

and fits well with two splines (2p3/2 and 2p1/2) demonstrating

that only Ti4+ (and no Ti3+) is present on the surface

(Figure 3d). The hydrodynamic size of the particles was

measured in colloidal dispersion with DLS. The mean size of

the particles was ca. 3 nm, as can be seen from Figure 3e, and

the size distribution was rather narrow (standard deviation

2.1 nm). The particle suspension in ethanol was stable over

time, and the DLS spectra did not show any sign of aggregates

and agglomerates after one year. Because of the very small

mean size of the nanoparticles sedimentation was also excluded.

The experimental C 1s XPS spectrum (Figure 3f) demonstrates

a strong C 1s peak. To confirm the hypothesis that the carbon in

the films is connected to PTSA (p-toluenesulfonic acid), the ex-

perimental C 1s spectrum was compared to the calculated C 1s

spectrum of PTSA. Therefore, the geometry p-toluenesulfonic

acid in the gas phase was first optimized with Gaussian 09 [22]

using the density functional theory (DFT)-based exchange and

correlation functional Perdew–Burke–Ernzerhof (PBE) [23,24],

and cc-pvtz basis sets [25-28]. The optimized geometry was

then used to calculate the XPS spectra. These were calculated in
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Figure 4: (a) UV–vis reflectance spectra of the film exposed to different ethanol concentrations and cleaned sample. (b) Short-wavelength region of
the previous spectrum at larger scale; (c) Change of the color of the film with increase of the ethanol concentration (no ethanol, ethanol/water 10:90,
ethanol/water 50:50, ethanol/water 90:10).

GPAW using the full core–hole transition potential approach

[29], as described in the Experimental section. The good agree-

ment of the measured C 1s XPS spectrum with the calculated

XPS C 1s spectrum of PTSA demonstrates that carbon in the

films originates from PTSA. Also, the position of the S 2p pho-

toemission line in the overview spectrum (168.2 eV, Figure 3c)

is consistent with the sulfonic acid group [30]. This demon-

strates that the nanoparticles are covered with PTSA molecules,

yielding specific surface properties such as polarity and affinity

towards the specific compounds.

The vapor-sensing ability of the prepared TiO2 NP-based film

was investigated by measuring UV–vis reflectance spectra of

the film exposed to different ethanol concentrations (Figure 4a

and Figure 4b). A clear and systematic wavelength shift as a

result of an increase of the ethanol concentration can be ob-

served in the interference maxima and minima. After each mea-

surement the sample was purified with air and a control mea-

surement was performed. All control spectra were identical with

the initial spectrum measured before the start of the experi-

ments. This demonstrates that ethanol was completely removed

after cleaning with air, and the sample properties (including

initial thickness) were recovered. The shift of the interference

maxima and minima is sufficiently large to give optical

responses visible by the naked eye (Figure 4c). When the

ethanol concentration is increased, the color of the films

changes from yellow to green/blue. The color change was

extremely rapid, occurring within seconds of exposure, which

could be explained by the presence of open pores in the thin

film, thus enhancing the gas diffusion rate. To monitor the color

change, the film was exposed to ethanol vapors by placing dif-

ferent concentrations of ethanol/water mixtures into the Petri

dish located near the sample.

In the TiO2 NP-based thin films, the incident light is, in part, re-

flected back from the air/film interface and, in part, from the

substrate surface and the light waves interfere. The position of

the maxima and minima of interference depends on the optical

path length difference of the light reflected from the air/film and

film/substrate interfaces. This difference is determined by film

thickness and refractive index [11]. When VOC molecules are

absorbed in NP-based film, swelling occurs, and the optical

path length of the light increases. As a result, the positions of

the interference maxima and minima shift in the reflection spec-

trum, and also the apparent color of the film changes. Swelling

of the film was demonstrated by AFM thickness measurements,

where the thickness of the film, i.e., the height between the sub-

strate and the film surface was measured before and after VOC

exposure. Additionally, changes in the surface structure of the

films under VOC exposure are possible. However, reflectance

modifications in Figure 4 are typical for films with increasing

thickness and therefore we can neglect significant changes in

the surface structure under VOC exposure.

Figure 5 shows the swelling of the film during exposure to the

analyte gas (ethanol). The film thickness was evaluated to be ca.
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305 nm before exposure to ethanol vapors and ca. 345 nm

during exposure, i.e., the measured swelling is about 10%. This

swelling is related to the absorption of VOCs (not adsorption).

Since AFM is used in tapping mode, it would not be able to

show an adsorption layer of gas on the top of sample. However,

beside absorption also adsorption of VOCs can take place and

the coexistence of adsorption and absorption in our NP-based

film deserves further research.

Figure 5: Left: schematic diagram of height profile measurements
before and after absorption of ethanol. Right: AFM height profile of the
NP-based thin film before (blue) and during exposure (grey) to ethanol
vapors.

The key point of our approach is that the optical path length is

changed by absorbed gas molecules due to a double mecha-

nism: (i) physical swelling of the film (d→d + Δd) and (ii) de-

crease of the refractive index of the film (n→n − Δn). Corrobo-

rating the AFM studies, ellipsometry measurements showed a

clear change of thickness and also a change of the refractive

index during exposure to ethanol. The ellipsometry results

showed a swelling of the film of roughly 6% and, at the same

time, a decrease of the refractive index from 2.06 to 1.99, i.e.,

3% measured at 365 nm, and from 1.87 to 1.81, i.e., also 3%

measured at 633 nm. A decrease of the refractive index during

swelling is understandable, taking into account the refractive

index of ethanol (1.36 at 633 nm).

The selectivity to different gases can be achieved by surface

functionalization of the nanoparticles, which was previously

utilized both in localized surface plasmon resonance (LSPR)

devices and porous Bragg stacks [17]. As mentioned before, the

NPs in our samples are covered with PTSA. This functional

coating ensures selectivity and different responses to different

VOCs. Figure 6 shows that the proposed NP film-based sensor

element is more responsive to isopropanol and toluene, and the

response to hexane is much smaller. Toluene probably interacts

strongly with the aromatic ring in PTSA, and isopropanol is

probably more compatible with the polar part of the molecule,

due to the ability to form hydrogen bonding. Different sensitivi-

ties to different VOC vapors can potentially be used to discrimi-

nate between various substances using multiple sensor arrays

with different functional coatings. The presented sensor ele-

ment is very cheap to manufacture and sensitive enough to give

optical responses visible by the naked eye. The response is fast,

and no differences could be noticed in the spectra acquired right

after the introduction of the air/VOC mixture and the spectra

taken 10 s later. The visible response is instantaneous after the

introduction of a VOC vapor.

Figure 6: Optical response of the TiO2 NP-based thin film towards dif-
ferent VOCs (i.e., dependence of the shift of the reflection maximum
on the VOC concentration).

Conclusion
Here, we proposed a simple and cost-effective colorimetric gas

sensing system utilizing the absorption of the analyte into a

PTSA-modified thin film based on TiO2 NPs. Volatile organic

compounds absorb into the PTSA surrounding the nanoparti-

cles, and subsequently cause a significant swelling of the films.

Thus, the optical path length in our NP-based film is changed

by the absorbed gas molecules using a double mechanism:

(i) physical swelling of the film (d→d + Δd) and (ii) decrease of

the refractive index of the film (n→n − Δn). Due to this reason,

in UV–vis reflectance spectra of the NP-based film exposed to

different ethanol concentrations, a clear and systematic wave-

length shift of the interference maxima and minima was ob-

served as a result of the increase in ethanol concentration. It was

also demonstrated that after cleaning the sample with air, the

effect was fully reversible: Ethanol was completely removed,

and the optical properties of the sample were recovered.

Overall, the proposed colorimetric sensor element is very

simple and cheap to manufacture, and is sensitive enough to

give optical responses to analyte gases visible by the naked eye.
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