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I. INTRODUCTION

The purpose of this report is to discuss some of the

elementary concepts of the theory of ideals in a ring. Some

emphasis is given to a consideration of the properties of and

relationships among minimal and maximal prime ideals, the

radical of an ideal, and primary ideals.

The theory discussed in this report is based, of course,

on the theory of groups and the theory of rings. Thus the

primary purpose of this section is to list the basic definitions

and theorems from group and ring theory which will be needed.

Definition 1.1 . Let G be a non-empty set of elements such

that for any two elements a,b€:G a sum a + b eG is uniquely

defined. Let a, b and c be arbitrary elements of G not

necessarily distinct. Then the set G (together with the

operation of addition) is said to be an additive abelian group

if addition has the following three properties:

(i) (a + b) + c = a + (b + c)

(ii) a + b = b + a

(iii) There is at least one x€G such that

a + x = b.

It is shown in elementary group theory that Definition 1.1

1This denotes the first definition in the first section.
The notation, a.b, where a is the number of the section and b
is the number of the theorem, lemma, or definition in that
section, is used throughout this report.



implies the existence of a unique additive Identity, OeG, and

the existence for each element aeG of a unique additive inverse,

-aeG.

Definition 1.2 . Let G be an additive abelian group. Let

H be a non-empty subset of G. Then H is called a subgroup of

G if H is itself an additive abelian group with respect to the

operation of addition in G.

Definition 1.3 . Let H
±

(i = 1,2,...) be a set of subsets

of a set S. Then the set K of elements common to the H^ is

called the intersection of the subsets H
i#

Theorem 1.1 . The intersection of subgroups of an

additive abelian group G is a subgroup of G.

Definition 1.4 . Let R be a non-empty set of elements such

that for any two elements a,beR a sum a + b6R and a product

abeR are uniquely defined. Let a, b and c be arbitrary elements

of R not necessarily distinct. Then the set R (together with

the operations of addition and multiplication) is said to be a

ring if addition and multiplication have the following three

properties:

(i) With respect to addition R is an

additive abelian group,

(ii) a(bc) = (ab)c

(iii) a(b + c) = ab + ac, (b + c)a = ba + ca



If multiplication in a ring R has the additional property:

(iv) ab - ba

then R is called a commutative ring. If multiplication in R

does not satisfy property (iv), then R is said to be non-

commutative.

Definition 1.5 . Let R be a ring. Let S be a non-empty

subset of R. Then S is called a subring of R is S is itself

a ring with respect to the operations of addition and

multiplication in R.

If a non-empty subset M of a ring R is closed under

addition and subtraction, then M is called a module. Note that

any subgroup H of the additive group of R is a module since

a + b<cH and a + (-b) = a - beH for every pair a,beH.

II. THE CONCEPT OP AN IDEAL

To begin this section, it is necessary to make the

following definition:

Definition 2.1 . A non-empty subset A of a ring R is

called an ideal in R if it satisfies the following postulates:

(1) With respect to the operation of addition, A is a

subgroup of the additive group of R.

(2) ar,ra cA for each aeA and reR.

There are other useful, equivalent definitions of an ideal



in a ring R. This fact is stated as the following theorem:

Theorem 2.1 . If A is a non-empty subset of a ring R such

that ar,ra€A for each aeA and r€R, then all of the following

statements are equivalent:

(i) A is an ideal.

(ii) With respect to the operation of addition,

A is a subgroup of the additive group of R.

(iii) A is a module,

(iv) If a,b€A, then a - beA.

Proof : Assume that (i) is true. Then (ii) is true by

Definition 2.1, and (i) implies (ii).

Next, assume that (ii) is true. Then for any a eA and

any b € A; a + b€Aby closure under addition. Since each

element b € A has an additive inverse -be A, then a - b e A,

A is a module by definition, and (ii) implies (iii).

By the definition of a module in a ring R, it follows,

trivially, that (iii) implies (iv).

Finally, assume that (iv) is true, then for any a €A,

a - a = is in A and, hence, - a = -a is in A. Thus, if A

contains any element a, it also contains its additive inverse.

It is obvious then that if a e A and b€ A, a-(-b) a + b is in

A. This establishes the fact that A is an additive subgroup of

R, and It follows that A is an ideal in R. Therefore, (iv)

implies (i), and the proof is complete.

An ideal A In a ring R is, then, by the preceding



definitions, simply a "special" subring of R with the property

that it contains the product of any element of the ring R by

any element of the subring A. It is readily seen that every

ring has two trivial ideals--the whole ring, which is called

the unit ideal, and the single element zero, which is called

the zero ideal. These two ideals are called improper ideals.

Any other ideal in a ring is said to be proper. Any ring which

contains only the two improper ideals is said to be simple.

Theorem 2.2 . If A is an ideal in a ring R, then A is a

subring of R.

Proof : Since A is a non-empty subset of R, it is only

necessary to show that multiplication is closed. Consider any

two elements a€A and be A. Because A is a subset of R, aeR

and b€R. Hence, by the definition of an ideal, ab€A.

Of course, a subring A of a ring R is not necessarily an

ideal in R. For example, let A be the set of all integers, and

let R be the set of all rationals. Then 3€A and 1/2 £R, but

(1/2)3 - 3/2 € A.

It should be noted that the case often arises in which A

does satisfy postulate (l) of Definition 2.1, but either ar € A

for aeA, reR or rag A -for a^A, r € R is not satisfied. If A

satisfies postulate (1) of Definition 2.1, and is closed under

multiplication on the right by elements of R, A is called a

right ideal. If A satisfies postulate (l) of Definition 2.1 and

is closed under multiplication on the left by elements of R, A



is called a left ideal. If A is closed under multiplication on

•both the right and the left by elements of R, it is called a

two-sided ideal or simply an ideal. Note that a two-sided ideal

is a left (right) ideal, but a left (right) ideal may or may not

be a two-sided ideal.

Throughout this report, statements made about an ideal will

hold equally well for right or left ideals provided appropriate

changes are made simply in the notation, or in the wording of

the statement. It will be convenient, with this understanding,

to limit the discussion to two-sided ideals.

III. ELEMENTARY CALCULUS OP IDEALS

In this section, three basic ways of combining ideals are

discussed. These are known as addition, multiplication, and

intersection.

First, consider addition of ideals.

Definition 3.1 . If A and B are given ideals in a ring R,

the set C of all elements of the form a + b for aeA and b£B

is called the sum of A and B and is denoted by A + B.

Theorem 3.1 . The set C = A + B is an ideal.

Proof ; Suppose x ,x
2
<=C and r e R

Then, x^^ = a
1
+ b-j^ and x

2
= a

g + b
2

in which a-^ag € A and b-j^bgeB,



and x
x
+ x

2
= (a

1
+ a

g ) + (b
1
+ b

2 )

X
l " X

2
= (a

i " S
2

} + (b
l " V

rx. = ra, + rb
1

x r = a r + b r.

However, a, + a 2 , a]_ - a
2 , ra-^, a^eA

b
l
+ b2' b

l " V rV b
i
r€B -

Hence by Definition 3.1

x
x
+ x

2
, x

±
- x

2 , rx
2

, x
1
r6C

and therefore C is an ideal.

From Definition 3.1, it is readily seen that A + B = B + A.

Also, if A,, A
2 , and A, are any three ideals in R, then

A
l
+ (A

2
+ V = (A

1
+ V + A

3
because A

i
+ (A

2 * V and

(A
n
+ A

p ) + A- both consist of elements of the form a
1

+ a
2
+ a^

for a
i
eA

i
(i = 1,2,3).

Definition 3.2 . If A and B are given ideals in R, the set

2
C of all elements of the form^a b with a^A and b

±
€ B is

called the product of A and B and is denoted by AB.

It is to be understood that ^ represents an arbitrary
finite sum with one or more terms.
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Theorem 3.2 . The set C = AB is an ideal.

Proof : Suppose x,, x
2
£C and reR.

Then, x-j^ = a^ + a
2
b
2 + ... + a

n
bn

2
= a^ + a2b2 + . . . + a^

in which a
± , a]_€A and bk , t>

k
£B,

and x + x
2
= a

1
b
1
+ a

2
b
2
+ . . . + a

n
b
n

+ a
l
b
l + • • • + a>m

xl " x2 = a
l
b
l + a 2b2 + • • • + Zrfin

+ (-a{)bi + ... + (-ai)b^

rx
±

= (ra
1
)b

1
+ ... + (ra

n
)b
n

x^r = a
1
(b

1
r) + ... + a

n
(b
n
r).

However, -aJ, ra
±
€ A and b^eB.

Hence by Definition 3.2,

x, + x
2 , x

1
- x

2 , rx
1 , and x^vzC,

and C is an ideal.

Since R is not necessarily commutative, the statement

AB = BA is not generally true. However, if A-j_, A2 , and A^

are any three ideals in R, A (A A ) = (A A )A because A (AgA^)

and (A,A
2
)A_ both consist of elements of the form a

11
a
2i

a
-ai

in



which a €A for J = 1,2,3.

Consider next the intersection of a set of ideals in a

ring R.

Theorem 3.3 . The intersection of any non-empty set S of

ideals in a ring R is an ideal in R.

Proof : Since the zero ideal is contained in every ideal,

the intersection is non-empty. Each of the ideals in S is a

subgroup of the additive group of R. By Theorem 1.1, the

intersection is a subgroup of the additive group of R, and

postulate (1) of Definition 2.1 is satisfied. Postulate (2)

of the same definition is satisfied because the elements of the

intersection are necessarily contained in each of the ideals of

the given set.

A given non-empty set K of elements in a ring R determines

uniquely an ideal in R which is the intersection of all ideals

in R containing the set K.

Definition 3.3 . The intersection of all ideals in a ring

R which contain a given non-empty set K Of elements of R is

called the ideal generated by K.

Definition 3.4 . Let K be a non-empty set of elements of

R which generates an ideal A. Then K is said to be a basis of

the ideal A.

The special case in which the basis K consists of a single

element of R will be considered in the following section.
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IV. PRINCIPAL IDEALS

Definition 4.1 . An ideal in R generated by one element a

of R is called a principal ideal. It is denoted by (a).

Consider in detail the set E of elements which make up the

ideal (a) in the ring R. Because ae(a), a - a = e(a), and

it follows that - a = -a €(a). Since (a) is closed under

addition:

a + a + a + ... + a = na (n = 1,2,. . . ) € (a),

[-a] + [-a] + ... + £-a] = n[-a] (n.= l,2,...)e (a)

= na (n = -1,-2,..
. ) € (a),

= na (n = 0) e (a).

Thus, na-e (a) for all ngl. (The set of all integers).

By Definition 2.1, ae(a) and reR implies that ra, ar €(a),

but note that "a" denotes a particular single element of R. It

follows that elements of the form ras, with r, s^R and a, the

generator of (a), are contained in (a).

Hence, (a) is made up of a set E of elements such that

if e eE then:

e = na + ra + as +^"p as (n £1, and r,s,r ,s.€R).
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Because the difference,

fn a + r a + as
]
+^" ^as

« (i^ - n
2
)a + (p

1
- r

2
)a + a(s

1
- s

2 ) +g r
k
aV

n
2
a + V + aS

2
+^ r

j
aS

j

is a member of the set E,E is closed under subtraction.

If any member of the set E is multiplied on the right by

any u£R, the product is a member of the set E as the following

lemma shows.

Lemma 4 ._!. |"na + ra + as +^" z^asJ u =

(l) mau + rau + asu +^ riasiu "

at +^ v1awi e E

Proof : Consider each of the terms of (l). If n>0,

then nau = au + au + ... + au to n terms,

but au + au + ... + au - a(u + u + ... + u).

Hence, nau = a(nu) for n>0. If n«cO,

then nau = (-n)(-a)u » (-au) + (-au) + ... + (-au)

to -n terms,

but (-au) + (-au) + ... + (-au) =

a(-u) + a(-u) + ... + a(-u) = a(-n)(-u).

Hence, nau = a(nu) for n<0. If n = 0, then nau = 0(au) =

= a(0). Thus all terms of the form nau can be written in the
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form at 1# Because asu = a(su), terms of this form can be

written in the form at
2

. Finally, it is obvious that elements

of the form rau and r^aSjU = r^s^u) can be written in the

form v-jaw^.

If a member of the set E is multiplied on the left by any

u^R, the product is a member of the set E as the following

lemma shows.

Lemma 4.2 . u Tna + ra + as +^ r
i
as

i]
-

(2) [una + ura + uas +^' ur
;j_

as
jJ

Jva +^ v
j_

aw
j_1

e E

Proof : -Consider each of the terms of (2). Any una = (nu)a

and any ura = (ur)a can obviously be written in the form va.

Any uas and any (ur
i
)as

1
can be written in the form v

i
aw

i .

Therefore, the set E generated by the element a e R is an

ideal in R, and the following theorem holds.

Theorem 4.1 . In an arbitrary ring R:

(a) ="Sa + ra + as +^ r
±
as

±
n£I and r,s,r

jL
,s

i
CRj .

If the ring R is commutative, the set E reduces to a much

simpler form.

Theorem 4.2 . In a commutative ring R
c

:

(a) = < na + at 1 n €1 and t eRjv ••
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Proof ; This follows easily from Theorem 4.1. Because

multiplication of elements of Rc is commutative, all finite

sums of the form ^?±
as

±
- ^ar^ and all expressions of the

form ra + as = a(r + s) can he reduced to a single term.

It is convenient at this point to introduce some concepts

and notations which will be needed in later sections.

Consider the ideal A + B which is the sura of the two ideals

A and B in a ring R . A + B contains A and B, and any ideal in

R which contains both A and B obviously contains the ideal
c

A + B. It follows that A + B is the intersection of all ideals

which contain both A and B. For this reason, the sum A + B is

sometimes denoted (A,B).

If K = -Ta ,a ,...,a ] is a basis of an ideal A in R
q

, then

A is just the sum of the principle ideals (a^ (i = l,2,...,m).

However, instead of writing ((a
1 ), (a

2 ), ..., (a
ffl
)), the more

common notation (a
1

, a
2 , ..., aj will be used. Similarly, if

M is an ideal in R and a €R^ then M + (a) will be denoted by
c c

(M,a). Note that from the above and Theorem 4.2 it follows

that in R the elements of (M,a) are of the form

b + na + at (b €M, n€l, and t€R
c ) .

Certain commutative rings have the interesting property

that every ideal that they contain is a principal ideal.

Theorem 4.3 . In the commutative ring I of integers

every ideal is a principal ideal.
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Proof : Let A be any ideal in I. If A is the zero ideal,

then A = (0) is a principal ideal. Assume A ^ (0). Then A

contains some integer m ^ 0. If A contains m, then A contains

-m and it follows that A contains at least one positive integer.

Let d be the smallest positive integer in A. If n is any

integer, then n = qd + r for q,r^I and d>r?0. If n€A, then

n - qd = re A, and r = because d>r70 contradicts the

assumption that d is the smallest positive integer in A. Hence,

any ne A is of the form qd and A = S" qd
j
qe Ij . But by

Theorem 4.2, fqd \

q£I\ = (d), and the proof is complete.

In the commutative ring I of integers it has been shown

that every ideal is principal. Suppose (m) is an ideal in

I, then all elements in (m) are of the form km for k€I.

If a,be(m), then a - be(m), since (m) is closed under

subtraction. Hence, a - b = km, but this is the familiar

definition of congruence modulo m. This is a specific case of

the concept of congruence modulo an ideal which will be needed

in the next section.

Definition 4.2 . Let M be any ideal in a ring R
e

. If

a - b e M, then a is said to be congruent to b modulo the ideal

M. This is denoted by a = b(M).

It follows that a^ 0(M) is simply another way of

expressing a € M.
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V. PRIME IDEALS AND THE RADICAL OF AN IDEAL

For the purposes of the rest of this report, the rings

under consideration will all be commutative rings. To avoid

possible confusion, however, commutative rings will continue

to be denoted by R
c .

Before a definition of a prime ideal is given it is

necessary to define divisibility.

Definition 5.1 . Let B be an ideal in a ring Rc . If a is

an element of B, then a - oeB which implies asO(B), and a is

said to be divisible by the ideal B. This is denoted by B ) a,

If all the elements of an ideal A are divisible by B, then the

ideal A is said to be divisible by the ideal B. Moreover, if

ACB, then B is called a proper divisor of A.

Definition 5.2 . An ideal P in a ring Rc is a prime ideal

if and only if:

P ) ab implies P \ a or P | b.

This definition of a prime ideal is somexvhat analogous to

one of the properties of a prime integer. Thus, the ideals

(p) for p a prime integer are prime ideals in the ring I of

integers.

There are, however, other equivalent definitions which

are sometimes more useful. These are stated as the following

theorem.
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Theorem 5.1 . The following necessary and sufficient

conditions that an ideal P be a prime ideal are equivalent:

(i) P j ab implies P | a or P
|

b.

(ii) ab=EO(P) implies a^O(P) or b=0(P).

(iii) abeP Implies a€P or be P.

Proof : This follows trivially from definitions 5.1 and

5.2.

It should be noted that the above conditions can be stated

in other logically equivalent forms. For example , (iii) could

be stated as: a£P and b£P implies ab^P.

Definition 5.3 . A set M is called a multiplicative

system if the product of elements of M is always an element

of M.

Since the null set satisfies Definition 5.3 vacuously, it

will be considered as a multiplicative system.

Throughout this report the set of elements of Rc not in

the ideal P, the complement of P, will be denoted by C(P).

Theorem 5.2 . The ideal P is a prime ideal in R
c

if and

only if C(P) is a multiplicative system.

Proof : Let P be a prime ideal. Then by the logical

equivalent of part (iii) of Theorem 5.1, a^P and b^P imply

ab^P. However (a^P and b ^P imply ab j^P) is equivalent to

(a,t£C(P) implies abec(P)), and (a,t£C(P) implies ab<2C(P))

implies that C(P) is a multiplicative system. Hence, if P is
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a prime ideal then C(P) is a multiplicative system. The

converse can be shown by simply reversing these steps.

Definition 5.4 . Let A be any ideal in R
c

. Then RadA is

the set of all elements z€Rc for which there exists a positive

integer r (possibly depending on z) such that z
r
e A. RadA is

called the radical of the ideal A.

Theorem 5.3 . RadA is an ideal in R
c .

Proof ; Let z ,z
2
^RadA. Then z^Zg2 e A for r^rg

r i 1

positive integers. Let r = i^ + r
2

then (z
1

- z
2 ) = 2 raij

z
i
z
2

in which i>0, j>0, i + j = r for i,j, and m^ integers. In

each term °? £f m
i<3

- z
i
z2> either i2: r

i
or J ^ r2* If i ~ r

l
then

of course i = r
1 + k, where k is some non-negative integer, and

r + k r.k ,

z
l
= z

l
1 = z

1
z
1
eA. Similarly, if j>r2

then zg£A. In

either case z*z|sA. Hence, ^ m
i
,z^z^ = (z

1
- z

2 )

r€ A, and it

follows that z
x

- z
2

"S RadA.

Also, for any a«Rc , (az-L)
1' = a

rz^€A which implies

az-jC RadA.

Since z-, - z
2 , az

1 e RadA, RadA is an ideal in R
c .

Suppose P is a prime ideal such that A C P, then it can be

shown that aC.RadA£P. It is obvious from Definition 5A that

ASRadA. If zeRadA, then z^A and z
1
e P. However, if z

1€ P,

by the definition of a prime ideal, z € P, and Rada £P.

Consider the special case, A = P, then PSRadPSP, and it
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follows that a prime Ideal is its own radical.

The primary purpose of the rest of this section is to prove

the important fact that in a commutative ring Rc the radical of

an ideal A is the intersection of all prime ideals containing A.

It is necessary at this point to introduce some material which

will be needed later.

Definition 5.5 . Let otbe a system consisting of one or

more subsets of an arbitrary set -^ with the property that for

any two subsets I^ and L
2
either L^Lg or L^I^. Then ^. is

called a linear system. Moreover, if all subsets of <S£ are also

subsets of a system ^C then ^. is said to be a linear subsystem

of -X? .

For the purposes of this section, «?c will generally be

either a set of ideals in FL or a set of multiplicative systems

in Rc .

Theorem 5A . The union U of any linear system <^. of

ideals in R is an ideal in R
c .

Proof : Let a,b£U, then a e L
1
and b€L2 where L-j^ and L2

are ideals not necessarily distinct in <£ . Since 3- is a

linear system, either L^Lg or L^L-^ Assume, for the

purposes of argument, that L CL Then a€L and bCLg.

Thus, because L2 is an ideal, a - b €L2 and for any r€R
c ,

areL2 . But LgCU. Therefore a - b €U, areU, and U is an

ideal.
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Theorem 5.5 . The union U of any linear system^- of

multiplicative systems of elements of Rc is a multiplicative

system of elements of Rc .

Proof : Let c,d€U. Then ceM1 and d€M2 where M-j^ and M2

are multiplicative systems not necessarily distinct in £C .

Since ^isa linear system, either M^S Mg or MgGM^ Assume

Ml— ^2- Then c€M2> d€M2 and cd ^ M2 since M2 is a

multiplicative system. Now M2£U; therefore cdeU, and U is

a multiplicative system.

Definition 5.6 . Let "^ be a system of one or more subsets

of >2> . A subset M of ^C is said to be maximal in^tif M £=A for

any subset A of SC implies that M = A.

In other words M is maximal in *X if M is inland there

is no subset of *5C which contains M as a proper subset.

The following statement, which will be called the

Maximum Principle, is logically equivalent to the Axiom of

3
Choice, and is sometimes called Zorn's Lemma.

Maximum Principle . If the union of each linear subsystem

of -2* is a subset of -2> , then % has a maximal subset.

Throughout the rest of this report the Maximum Principle

will be considered as an axiom.

3J. Barkley Rosser, Logic for Mathematicians, p. 507,
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Definition 5.7 . Let A be any ideal in R
c . A prime ideal

P in R is said to be a minimal prime ideal belonging to A if

Acp and there is no prime ideal P' such that ASP' C P.

This completes the statement of the necessary preliminary

material. At this point it is necessary to prove three lemmas

which will lead to the proof of the following theorem:

Theorem 5.6 . RadA in Rc is the intersection of all

minimal prime ideals belonging to A.

Lemma 5.1 . Let A be an ideal in R
c , and M a multiplicative

system of .elements of Rc such that Mf)A = 0.
4 Then MSM* where

M* is a maximal multiplicative system such that M H A = and

if N is a multiplicative system such that M C N, then NO A ^ 0.

Proof : Let CLbe the set of all multiplicative systems

1^ in Rc such that M£% and Mi HA = 0. Let £ be any linear

subsystem of d . Then by Theorem 5.5 the union Uof^is a

multiplicative system. Obviously M£U and UQ A = 0; hence

UeOL . By the Maximum Principle, it follows that CUias a

maximal multiplicative system M*. Since M*6 (X , M£M* and

M*H A = 0. Suppose N is a multiplicative system such that

M*C N, then N^Q. ; hence N C\ A ^ 0.

Lemma 5.2 . Let A be an ideal in Rc , and M a multiplicative

system of elements of Rc such that MQA - 0. Then A_£P* where

^Throughout this report the null set is denoted by 0.
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P* is a maximal ideal such that MOP* = 0, and if B is an ideal

such that P*C B, then BOM ^ 0. Also, P* is necessarily prime

Proof : Let Clbe the set of all ideals A± in Rc such that

ASA. and A^M = 0. Let £ be any linear subsystem ofCL.

Then by Theorem 5.4, the union U of & is an ideal. Obviously

A9U and UflM = 0. Hence, U£ OC, . By the Maximum Principle,

it follows that CX has a maximal ideal P . Since P € CX ,

MOP* = 0. Suppose B is an ideal such that P*C B. Then B^GL

and hence B/^M ^ 0.

To show that P is necessarily prime, assume that af P ,

b-^P*, and show that ab £ P* for a,b€R . Consider the ideal

(P*,a) = P* + (a). Because a^ P*, it follows that P* C (P ,a)

which implies that there exists at least one element ra^M

such that m
1
e (P*, a)flM.

Let m = p
1
+ r

x
a + i^ (p

][
€ P*, ^e^, i^I)

since all elements of (P* a) are expressible in this form.

Similarly, it can be shown that (P*,b) contains an element

m2 eM which can be expressed in the following form:

m2
= p2 + r

2
b + i

2
b (p2

<b P*, r2 <£Rc , i2
el).
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The product,

m
i
m
2
=

[
P
l

+ r
i
a + i

l
a
] [

P
2
+ ^ + ^J

- PlP2 + Pl
r
2
b + ^l

1^ + r
lP2

a + r
l
r
2
ab + r

l
i
2
ab +

+ i
1
P
2
a + \r

2
a* + i

1
i
2
ab

= P
X
P
2
+ (r

2
b + i

2
b)p

1
.+ (r

x
a + i

1
a)p

2
+

+ ( ri
r
2
+ r

i
i
2
+ i

i
r
2
)ab + i

l
i
2
ab *

Since p-^Pg&P*, m^e P* If abeP*. However r^m^P* since

m^moCM. Therefore, it follows that ab £ P .

Lemma 5.3 . A set P of elements of R
c

is a minimal prime

ideal belonging to the ideal A in Rc if and only if C(P) is a

maximal multiplicative system such that C(P) A = 0.

Proof : First, let P be a set of elements in Rc such that

C(P) = M where M is a maximal multiplicative system such that

MO A = 0. Then by Lemma 5.2 there exists a prime ideal P such

that ACP* and P*AM - 0. Hence, C(P*)f!A = and M£C(P*).

By Theorem 5.2, C(P*) is a multiplicative system, and since M

is a maximal multiplicative system, it follows that C(P ) = M^

= C(P). Therefore, p = P* and hence P is a prime ideal such

that ACP. Now suppose ?^ is a Prime ideal such that A^P-^CP.

Then C(P-,) is a multiplicative system such that C(P1 )OA =

and MCC(P-,). This, however, is a contradiction since M is-

maximal, and it follows that P is a minimal prime ideal
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belonging to A.

To prove the converse, let P be a minimal prime ideal

belonging to A, that is, ASP. Then C(P) - M is a multipli-

cative system such that C(P)HA - 0. By Lemma 5.1, there

exists a maximal multiplicative system M* such that C(P)SM

and m'O A - 0. By the first part of this proof, C(m') = P

is a minimal prime ideal belonging to A. Because H2C(P),

P'S P, but P is minimal, and it follows that P = p'
. Hence,

C(P) = M
1 which implies that C(P) is a maximal multiplicative

system such that C(P)f)A = 0.

Now Theorem 5.6 can be established. It has been shown

that if ACp then RadA .9 p. Hence, RadA is contained in

the intersection of all minimal prime ideals belonging to A.

To complete the proof, it is necessary to show that RadA

contains the intersection of all minimal prime ideals belonging

to A. Suppose a€Rc but a ^ RadA, and let M be the set of all

elements of the form a1 (i - 1,2, ...). Then M is a multipli-

cative system such that MOA = 0. By Lemma 5.1, M£M* where

M* is a maximal multiplicative system such that M*0 A = 0.

Now a£M implies a€M* which in turn implies that a^C(M ).

However by Lemma 5.3, C(M*) is a minimal prime ideal belonging

to A, and it follows that a is not in the intersection of all

prime ideals belonging to A. This completes the proof.

Note that for any ideal A in R
c

there exists at least

one minimal prime ideal belonging to A since RadA is the
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intersection of all minimal prime ideals belonging to A.

Theorem 5.7 . Any prime ideal containing the ideal A

contains a minimal prime ideal belonging to A.

Proof : Let P be any prime ideal such that ASP. Then

C(P)OA = 0. By Theorem 5.2, C(P) is a multiplicative system,

*
and by Lemma 5.1 there exists a maximal multiplicative system M

such that C(P)CM* and M*fi A = 0. It follows from Lemma 5.3

that C(M*) is a minimal prime ideal belonging to A. Also, since

C(P)CM*, C(M*)CP.

VI. MAXIMAL PRIME IDEALS BELONGING TO AN IDEAL

In this section another system of prime ideals, maximal

prime ideals, associated with a given ideal A in a commutative

ring Rc will be considered.

It is necessary to consider first the concept "is related

to".

Definition 6.1 . An element b of Rc is said to be related

to the ideal A if there exists an element r£C(A) such that

breA. If no such element exists, b is unrelated to A.

In other words, an element b of R is unrelated to A if

and only if bx e A implies that xeA.

It follows from Definition 6.1 that if A is a proper

subset of Rc , then every element of A is related to A. Since

ACRC , C(A) ^ t and there is at least one element r€C(A).
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Let a£A. Then certainly ar € A since A is an ideal in R
c>

To insure that C(A) £ 0, throughout this section it will be

assumed that A ^ Rc .

Definition 6.2 . An ideal B is said to be related to A if

every element of B is related to A; otherwise B is unrelated

to A.

Obviously A is related to A and if BCA, then B is related

tO A.

Theorem 6.1 . Rad A is related to A.

Proof: Let d€Rad A. Then d1 € A for some positive——

—

^
^

integer 1. If i = 1, d is an element of A and hence is related

to A. If i^-1, let j < i be the least positive integer such

that dJ e A. Then dJ-1 ^ A, and d (d«J_1 )€A implies d is

related to A. Thus every element of RadA is related to A, and .

it follows that Rad A is -related to A.

Theorem 6.2 . Let M be the set of all elements of R
Q

which are unrelated to A. Then M is a multiplicative system.

Proof : Let c,d€M, that is, let c,d be unrelated to A.

Suppose cd x£A. Then c(dx)eA, but c unrelated to A implies

dx€A. Similarly, d(x)-£A and d unrelated to A implies xeA.

Hence by the equivalent of Definition 6.1, cd is unrelated to

A and is an eleme./i of M.

A maximal ideal belor j ag to A can now be defined.
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Definition 6.3 . An ideal which is maximal in the set of

all ideals related to A is called a maximal prime ideal

belonging to A.

Theorem 6.3 . An ideal P is a maximal prime ideal

belonging to A if and only if P is related to A but any ideal

N such that NJ5P is unrelated to A.

Proof : Let M be the set of all elements of R
c
unrelated

to A. Then, since A is related to A, MO A = 0. If P is related

to A, then POM = 0. Also, if N is unrelated to A, then

NOM ^ 0. Thus if P is related to A and N is an ideal unrelated

to A such that N3P, by Lemma 5.2 P is a maximal ideal belonging

to A and P is necessarily prime".

If P is a maximal prime ideal belonging to A then by

Lemma 5.2 MOP = and if N is an ideal such that N3P then

NOM £ 0. Hence P is related to A and N is unrelated to A.

Theorem 6.4 . A is contained in every maximal prime

ideal P belonging to A.

Proof : Let a + pt(A,P) with a €A and p € P. Since P is

related to A, pre A for some reC(A). Hence, because

(a + p) r = ar + pre A, a + p is related to A. Since a + p

is any element of (A,P), (A,P) is related to A. Obviously,

P_£(A,P). But P is maximal. Hence P = (A,P) which implies

AC p. Thus the proof is complete.
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Theorem 6.5 . Every element or ideal which is related to

A is contained in a maximal prime ideal belonging to A.

To prove this theorem it is necessary to state and prove

the following lemma:

Lemma 6.1 . If an element b of Rc is related to an ideal

A, then the ideal (b) is related to A.

Proof : Let b be related to A. Then there exists r e (A)

such that breA. Consider any element of (b). It has been

shown that such an element can be expressed in the form nb + bt

(nel, teRc ). Obviously, the product (nb + bt)r = nbr + btr =

nbr + tbrtA. Hence every element of (b) is related to A, and

it follows that (b) is related to A.

Therefore, for the proof of Theorem 6.5, only the case

of an ideal which is related to A need be considered.

Let B be an ideal related to A. Also, let M be the set

of all elements of Rc unrelated to A. Then MflB = 0, and since

A is related to A, MQA = 0. By Lemma 5.2 there exists a

. maximal prime ideal P belonging to A, that is A£p, such that

MAP = 0. Now MOP = implies that P is related to A. Hence

P is maximal in the set of all ideals related to A, and Bcp.

Theorem 6.6 . Every minimal prime ideal belonging to A is

contained in a maximal prime ideal belonging to A.

Proof : To prove this theorem it is only necessary to show

that a minimal prime ideal belonging to A is necessarily
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related to A. Then this theorem follows immediately from

Theorem 6.5.

Let P be a minimal prime ideal belonging to A. Let b be

any element of Rc unrelated to A. Then if it can be shown that

b€C(P), it will follow that all elements of P are related to A.

By Lemma 5.3, C(P) is a maximal multiplicative system such that

C(P)OA = 0. Let M be a multiplicative system such that

M = ^b1
, s, b^ (s€C(P), i = 1, 2, ...)2 .

Since Acp, C(P)cc(A). Hence, seC(P) implies s^A.

Suppose b1 e A. Then beRad A. This is a contradiction since

Rad A is related to A. Therefore b1 ^ A. Now suppose b^s e A.

Let j be the smallest positive integer such that b^s £ A and

b^"1 s € A for some fixed seC(P). Obviously J / 1 because b

is unrelated to A. Hence j>l and we can write b(b^ _1
s) € A.

However, since b^
-1

s £ A, b(b^
-1

s) € A implies b is related to

A which is a contradiction. Thus b^s ^A and it follows that

MOA - 0. Because C(P)Cm, the maximal property of C(P)

implies C(P) = M. Hence b€C(P), and the proof is complete.

VII. PRIMARY IDEALS

Definition 7.1 . An ideal Q, in the ring Rc is said to be

primary if ab^.Q anda^Q. imply that b1 e Q for some positive

integer i.

A useful equivalent to Definition 7.1 is the following:

An ideal Q in Rc is primary if 3b<=Q and b
k
£ Q for all positive

integers k imply a e Q.
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Note that every prime ideal is a primary ideal. Let P

be any prime ideal. Then by definition ab€ P and a^P imply

b€P. Thus P satisfies the definition of a primary ideal

with 1-1.

Theorem 7.1 . The radical of a primary ideal is a prime

ideal.

Proof : Let Q be a primary ideal. Suppose 3b€RadQ

but a§£Rad Q. Nov/ a ^ RadQ implies no integral power of a is

in Q, but ab<eRadQ implies (ab)^ = aV € Q for some positive

integer j. Since a J ^ Q, (b^e Q by Definition 7.1 and it

follows that b^Rad Q. Hence RadQ is a prime ideal.

In section V it was shown that an ideal and its radical

are contained in exactly the same prime ideals. This fact

and Theorem 7.1 leads to the following statement.

Theorem 7.2 . RadQ is the only minimal prime ideal

belonging to Q if Q is a primary ideal.

Proof ; Since every ideal has at least one minimal prime

ideal belonging to it, let P be a minimal prime ideal belonging

to Q. Then by Definition 5.7, Q£P and there is no prime ideal

P
1

such that Qcp'cP. This is a contradiction unless P = RadQ

since Qcp implies QCRadQcp^ and RadQ is a prime ideal.

Hence RadQ is the only minimal prime ideal belonging to Q.

Theorem 7.3 . If Q / Rc and Q is any primary ideal in R
c ,

then RadQ is the only maximal prime ideal belonging to Q.
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Proof : Because RadQ is a minimal prime ideal belonging

to Q and because Q ^ Rc , there exists a maximal prime ideal P

belonging to Q such that RadQ£P* by Theorem 6.6. Assume

RadQ ^ P*. Then there exists a G Rc such that a £ RadQ and

a € P*. Let ax e Q. Since a ^ RadQ no positive integral power

of a is in Q, and it follows from the definition of a primary

ideal that xcQ. Therefore a is unrelated to Q. Since a€P ,

P* is unrelated to Q. This, however, is a contradiction because

Theorem 6.3 holds since Q ^ Rc , and it would follow that P is

not a maximal prime ideal belonging to Q. Therefore the

assumption that RadQ ^ P* is false, RadQ = P*, and the proof

is complete.

Theorem 7.4 . An ideal Q ^ Rc is a primary ideal if and

only if there exists a prime ideal P which is the unique minimal

prime ideal belonging to Q and the unique maximal prime ideal

belonging to Q.

Proof : If Q is a primary ideal then by Theorems 7.2 and

7.3 there does exist such a prime ideal. It is RadQ. To

complete the proof, it is only necessary to show that if the

prime ideal P is the unique minimal and maximal prime ideal

belonging to Q, then Q is primary. Suppose that ab £Q and

that a^ Q for all positive integers i. Then a
f.
RadQ, which

by Theorem 5.6 is P. Hence by Theorem 6.5 a is unrelated to

Q. That is, ab e Q and a $£ Q imply b £ Q. Hence Q is primary.
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The purpose of this report is to discuss some of the

elementary concepts of the theory of ideals in a ring.

An ideal in an arbitrary ring R is defined and some

elementary operations on ideals — addition, multiplication,

and intersection — are considered.

A principal ideal (a) in an arbitrary ring R is defined.

It is shown to consist of elements of the form:

na + ra + as +^r
i
as

i
(n £ I, and r,s,r

i
,s

1
€ R)

.

Throughout the remainder of the report the discussion is

limited to commutative rings. A principal ideal (a) in a

commutative ring R„ is shown to consist of elements of the

form: na + at (n £ I, t £ R
c ).

Prime ideals and the radical of an ideal are considered

next. A prime ideal P is shown to coincide with its radical,

RadP.

A discussion of minimal prime ideals belonging to an

ideal leads to the important result that the radical of an

ideal A is the intersection of all minimal prime ideals

belonging to A.

Next, the concept "is related to" is discussed and a

maximal prime ideal belonging to an ideal is defined. Some

properties of maximal prime ideals are discussed. An important

result of this discussion is that every minimal prime ideal

belonging to A is contained in a maximal prime ideal belonging

to A.



Finally, a primary ideal Q is defined and an important

relationship among minimal and maximal prime ideals belonging

to Q, RadQ, and Q is established. That is, an ideal Q =£ Rc

is a primary ideal if and only if there exists a prime ideal

P = RadQ which is the unique minimal and maximal prime ideal

belonging to Q.


