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Chapter 1

Introduction

1.1 Background

Due to the demands for higher standards of living, travel has become easier and more
affordable, and the problem of travel planning has gained attention recently.

Travel planning is still an important and troublesome task before departure. For
example, a tourist may require assistance for planning his/her trip:“ How to visit the
most popular landmarks if I would like to leave the hotel at 9:00 while I need to take the
train at 20:00.”. Based on those considerations, the service of automatical travel route
planning is required.

To deal with the demand for travel route planning, it addresses three main issues:

1. Where to go: Recommend user the popular and interesting landmarks to visit;

User information

(time budget etc. )

Landmark information 

(type land location etc. )

����������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������
����������������������������������������������������������������������������������������������������������������������������

Landmark Evaluation

Finalized Travel route

Sequential Travel Route 

Generation

������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������
������������������������������������������������������������������������������������������������������������������������������������������������������������

Landmark  

Recommendation

Ch.2 Language-specific + data-source-
specific considerations

Ch.3 Japanese-based landmark activity 
extraction

Ch.4 Seasonal-specific activity 
discrepancy analysis

Ch.5 Lighting condition and landmark  
visibility considerations

Ch.6 Time consumption consideration

Figure 1.1: The flow of travel recommendation.
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2 CHAPTER 1. INTRODUCTION

2. What to see: Recommend activities that users can experience for each landmark;

3. How to go: Recommend a travel route by integrating landmarks based on the user’s
multiple constraints (time, budget, etc.).

For issue (1), conventional recommendation services, such as TripAdvisor [69],con-
centrated on recommending the most famous landmarks in a city or a region. For
example, the Golden Gate Bridge shall be recommended if we set the target destination
as San Francisco. In detail, through users’ historical trajectories, the popularity of each
landmark can be evaluated based on factors such as the number of visitors and the overall
satisfaction ratings.

However, this way of landmark recommendation may not be satisfying every user.
Thus, researches considering the personalized preferences of users have attracted exten-
sive attention in recent years [6, 20, 59].

With the rapid development of mobile devices, huge amounts of user-contributed
geo-data can available on the Internet. Several location-based social network (LBSN)
services such as FourSquare, Twitter and Facebook provide rich geographic and check-in
information, and travel website such as TripAdvisor provide millions of travel comments
recording users’ unique travel experiences [36, 56]. This data benefits researchers to
explore interesting landmarks for travel recommendations [30, 67, 70, 86].

Most of the existing studies mainly focus on the user’s general preferences as essential
factors for landmark recommendation [3, 32, 55, 81, 83].

Nevertheless, it is pointed out that users from different language groups have different
satisfaction rating behaviors [16, 72]. In an instance, Japanese users intend to rate
landmarks lower than Chinese and English users. Thus, we should also pay attention to
how deviances in languages will influence landmark recommendation.

Moreover, due to a large amount of those data, how to efficiently co-operate data from
various sources is still a challenge, landmark information including landmark coverages,
satisfaction ratings, and type descriptions do largely vary across different data sources.

For issue (2), rather than provide a user with a list of individual landmarks, it is
helpful to point out what exactly the attractiveness of each landmark is. Compared with
common information searching, it may be too difficult for a user who is not familiar
with the destination city or landmark to raise a question. For example, when visiting an
art museum, people often intend to ask a general question such as What can I see? or
What is on the exhibition now?. Thus, how to automatically generate meaningful activity
examples with detailed descriptions is important.

In addition, instead of recommending a series of landmarks, suitable and representa-
tive seasonal activities of each landmark should also be recommended at the same time.
Taking the Meguro-gawa (River) in Tokyo as an example, it is famous for cherry flower
(Sakura) viewing during the period of March to April, while the cherry flower viewing
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is not unavailable during the other months. Therefore, the seasonal activity differences
for each landmark should be included in order to match users’ travel time schedule.

For issue (3), several studies focused on providing the travel route that allows users to
visit each landmarks on the recommendation list [77]. But users are not able to visit all
the landmarks under most conditions due to the limitations of travel time. By concerning
with the user’s time budget, some researchers focus on generating travel routes for a
sequence of landmarks based on the route distance and landmark attractiveness [37,77].

However, there is still an issue that a user may arrive at a landmark beyond the business
time of the landmark. As mentioned in [29], the satisfaction of visiting landmarks is
highly related to the arrival time. In other words, a good travel route should guarantee
that a user can visit the landmark during its business time, and meanwhile, the total
visiting time should not exceed the user’s time limitation.

Moreover, as safety is another vital factor in traveling especially for users who are
unfamiliar with the destination [23,68], how to construct a safe route for users should be
taken into account either.

In the first half of this dissertation, the personalized landmark and landmark activ-
ity recommendation algorithms are proposed in Chapter 2, Chapter 3 and Chapter 4
using online travel comments while dealing with the issues of collaborating multiple
data sources and identify language impact as mentioned above. It refers to Landmark
Evaluation and Landmark Recommendation in Fig. 1.1

In the last half of this dissertation (Chapter 5 and Chapter 6), time-concerning
travel route recommendation algorithm, safe and comprehensive route recommendation
algorithm are proposed. It refers to Sequential Travel Route Generation in Fig. 1.1

In this dissertation, we propose three recommendation algorithms in support of
personalized landmark and landmark activity recommendations with data-source-specific
and language-specific considerations to cope with the discrepancies between users from
different backgrounds, followed by proposing a document-level sentiment prediction
algorithm for comment quality improvement. We also propose two travel route planning
algorithms in terms of safety and comprehensive route recommendation and one-day
travel route recommendation.
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1.2 Dissertation Overview

This dissertation is organized as follows:
Chapter 2 [A Personalized Landmark Recommendation Algorithm for Language-

Specific Users by Open Data Mining] proposes a personalized landmark recommen-
dation algorithm aiming at exploring new sights into the determinants of landmark
satisfaction prediction. We gather 1,219,048 user-generated comments in Tokyo, Shang-
hai and New York from four travel websites. We find that users have diverse satisfaction
on landmarks according to their preferred languages and travel websites. With those
findings, we propose an effective algorithm for personalized landmark satisfaction pre-
diction. Our algorithm provides the top-6 landmarks with the highest satisfaction to users
for a one-day trip plan in Tokyo, Shanghai, and New York. The results show that our
proposed algorithm has better performances than previous studies from the viewpoints
of landmark recommendation and landmark satisfaction prediction.

Chapter 3 [A Travel Decision Support Algorithm: Landmark Activity Extrac-
tion from Japanese Travel Comments] proposes an algorithm to construct activity
queries and extract meaningful examples as detailed descriptions based on the linguistic
characteristics of Japanese. The proposed algorithm concentrates on analyzing the fea-
sibility of exploring landmark activity queries and representative examples from travel
comments To deal with those two questions, we utilize the advantages of travel comments
posted by thousands of other travelers. The proposed algorithm includes 4 steps: (1)
phrase all comments in the entire comment set; (2) obtain the keyword for each land-
mark; (3) construct the query with the keyword in step (2); (4) extract top-5 examples
with the query. An evaluation of activity-example extraction is conducted in two case
studies through 18,939 travel comments. Based on the experimental results, with a rela-
tively small scale of travel comments, it still allows us to explore rich landmark activity
information.

Chapter 4 [Landmark Seasonal Travel Distribution and Activity Prediction
Based on Language-specific Analysis] proposes a seasonal activity　 prediction algo-
rithm based on user comments over the period of 2012 to 2017 in different language
groups. We take advantage of online user comments which provide visiting time for
each landmark and detailed activity description. With the accumulation of 417,787
user comments on TripAdvisor for 300 landmarks in three big cities, we analyze the
language-specific differences in travel distributions. After that, the prediction of future
travel distribution for each language group is generated. Then potential peak and off
seasons of each landmark are distinguished and representative seasonal activities are ex-
tracted through comment contents for peak and off-seasons, respectively. Experimental
results in the three cities show that the proposed algorithm is more accurate in terms of
peak season detection and seasonal activity prediction than previous studies.
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Chapter 5 [A Safe and Comprehensive Route Finding Algorithm for Pedestrians
Based on Lighting and Landmark Conditions] proposes a safe and comprehensive
route finding algorithm for pedestrians based on lighting and landmark conditions. Safety
and comprehensiveness can be predicted by the five possible indicators: (1) lighting
conditions, (2) landmark visibility, (3) landmark effectiveness, (4) turning counts along
a route, and (5) road widths. We first investigate the impacts of these five indicators on
pedestrians’ perceptions of safety and comprehensiveness during route findings. After
that, a route finding algorithm is proposed for pedestrians. In the algorithm, we design the
score based on the indicators (1), (2), (3), and (5) above and also introduce a turning count
reduction strategy for the indicator (4). Thus we find out a safe and comprehensive route
through them. In particular, we design daytime score and nighttime score differently
and find out an appropriate route depending on the periods. Experimental simulation
results demonstrate that the proposed algorithm obtains higher scores compared to several
existing algorithms. We also demonstrate that the proposed algorithm can find out safe
and comprehensive routes for pedestrians in real environments by questionnaire results.

Chapter 6 [A Personalized Landmark and Route Recommendation Algorithm
for a One-Day Trip] proposes a personalized travel recommendation algorithm with
time planning for a one-day trip. The proposed algorithm consists of three steps: (1)
recommend top-6 personalized landmarks based on landmark categorization and region
clustering; (2) build a travel map to generate all possible travel routes based on top-6
personalized landmarks in step (1); (3) generate a realistic travel route for a one-day visit
based on evaluations on the number of landmarks to visits and travel time consumptions.
Experimental results confirm the advantages of our proposed algorithm beyond previous
studies from the viewpoints of landmark recommendation precision and travel time
optimization.

Chapter 7 [Conclusion] summarizes this dissertation and presents future works.



Chapter 2

A Personalized Landmark
Recommendation Algorithm for
Language-Specific Users by Open Data
Mining1

2.1 Introduction
Travelers usually try to perceive a general image about how travel destinations or land-
marks will be like before the departure. Due to this sense, it is not surprising that users’
travel decisions are strongly influenced by travel comment contents in many aspects
including where to go, and what to see and do [6, 20, 59].

Several studies focus on predicting users’ satisfaction on landmarks through social
media comments [55], some of which try to discover the connectedness between users’
travel behaviors and backgrounds [72]. Those studies take into consideration new ideas
for efficiently predicting users’ satisfaction on landmarks but their accuracy is often
limited to the sample size (mostly, the number of samples N ≤ 600) and the usage of
a single data source. Moreover, deviance in language discrepancies is not considered
though users from different backgrounds have different satisfaction rating behaviors [16].

In this chapter, we utilize large datasets using heterogeneous open data sources
and divide users into three languages (Chinese, English and Japanese) groups. We
firstly collect 1,219,048 user-generated comments from the travel websites of Ctrip [13],
Jaran [31], 4travel [1] and TripAdvisor [69] for 194 landmarks in Tokyo, Japan, 189
landmarks in Shanghai, China and 196 landmarks in New York, USA. We analyze users’
average satisfaction on landmarks and landmark coverage differences between the travel

1Technical contents in this chapter have been presented in the publications ⟨4⟩ and ⟨5⟩.

6
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websites in three cities. Then we extract 1,046,395 user comments from 1,219,048
user comments and divide them into three languages groups. Users’ language-specific
satisfaction and favorable landmark types are examined. Finally, an algorithm is proposed
to predict the users’ satisfaction over each landmark according to their preferences on
landmark types, languages and travel websites.

Our contributions are highlighted as follows:

• We analyze data-source-specific and language-specific landmark satisfaction dif-
ferences with 1,219,048 user comments through four travel websites.

• We analyze pairwise landmark type relationships in order to correct error types in
the existing travel websites.

• We propose a personalized landmark recommendation algorithm based on land-
mark satisfaction prediction. Our algorithm can recommend landmarks that fit the
user’s preferences with an accuracy over 82% and successfully predicts the user’s
satisfaction on landmark with the error rate lower than 7.5%, which outperforms
the previous studies.

This chapter belongs to Landmark Evaluation and Landmark Recommendation in
Fig. 1.1.

2.2 Related Works
Travel comments are a clear reflection of how users’ travel experiences satisfy their
expectation [36, 56]. For example, when their experiences exceed their expectation,
there usually will be of a 5-star rating. Otherwise, when their experiences fail to meet
their expectation, there usually will be of a 2-star rating or less.

With the consideration of the experience-expectation, there are two challenges that
we have to face for reliable personalized travel route recommendation.

(1) Collaborating multiple data sources: Many studies have made an attempt to
discover user travelogues (comments, GPS trajectory, check-in data etc.) to increase the
diversity and quantity of experimental data [30,67,70,86]. In an instance, Zhou et.al [86]
and Sun [67] extract users’ preferences by photo tags through Flickr. However, it is found
that landmark information including landmark coverages, satisfaction ratings, and type
descriptions do largely vary across different data sources, but existing studies on travel
recommendation using travelogues usually use the sole data source. For example, the
Rainbow Bridge in Tokyo has a high rating of 4.5 stars on Ctrip2, while the rating of
it is 4.0 stars on TripAdvisor 3. In other words, it is helpful to consider discrepancies

2http://you.ctrip.com/sight/tokyo294/132603.html
3https://www.tripadvisor.jp/AttractionReview-g14134368-d555410.html
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between different data sources for more reliable landmark recommendation.
(2) Identify language impact: Most of the existing studies only focus on the user’s

general preferences as essential factors for landmark recommendation [3, 55, 81]. Nev-
ertheless, it is pointed out that users from different language groups have different
satisfaction rating behaviors [16]. In an instance, Japanese users intend to rate land-
marks lower than Chinese and English users. Thus, we should also pay attention to how
deviances in languages will influence landmark recommendation.

2.3 Problem Statement

2.3.1 Notations

Key notations used in this chapter are listed in Table 2.1. Key concepts include the
followings.

• Type: Category that a landmark belongs to. We mainly concentrate on eight
types of landmarks: History, Nature, Entertainment, Art, Sport, Food and Drink,
Shopping, and Night Life inspired by [81].

• Type weight: User’s rating for 8 landmark types ranging from 1–5 (very dislike to
very like).

• Data source:　 Four leading websites which are frequently used including Ctrip,
Jaran, 4travel and TripAdvisor.

• Language: Three main languages groups in the three websites including Chinese,
English, and Japanese.

• User profile: Includes the user’s type weights, frequently used websites and lan-
guages.

2.3.2 Problem definition

Our personalized travel route recommendation problem in this chapter is defined as
follows: Given a set of landmarks and a user’s profile, recommend top-k landmarks that
fit the user profile. As it is difficult for users to directly derive explicit answers from the
travel comments, we correlate and analyze travel comments by exploring differences in
various website and language groups, and recommend a series of personalized landmarks.
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Table 2.1: Notation description

Notation Description
l landmark
L a set of landmarks
u user
web travel website
lang language
w weight for a landmark type
t landmark type

LT a set of 8 landmark types
ls language-specific satisfaction
ds data-source-specific satisfaction

2.4 Data-Collect Process
We collect user comments from four leading travel websites in Ctrip (China) [13], Jaran
(Japan) [31], 4travel (Japan) [1], and TripAdvisor (United States) [69], with the aim to
deal with the small sample size issue in the previous studies as discussed in Section 6.1.
A data-collection program was developed in R, which took approximately 20 days to
crawl all the data.

All user comments collected from each website was before February 1st, 2018, and
Tokyo, Shanghai and New York are famous travel destinations. Particularly, the landmark
which is labeled as “region”, for example, “Shibuya District”, is not considered as it does
not have a specific type or location. Let NL be the number of total landmarks in each
website. Then we have for Tokyo, NL = 835 in Ctrip, NL = 1140 in Jaran, and
NL = 1336 in TripAdvisor; for Shanghai, NL = 4420 in Ctrip, NL = 1497 in 4travel, and
NL = 1680 in TripAdvisor, and for New York, NL = 631 in Ctrip, NL = 227 in 4travel,
and NL = 4450 in TripAdvisor. We extracted top-k ranked landmarks (we set k = 100),
each of which has at least five user comments from each website.
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Since Jaran is the website for Japanese sightseeing, we extract user comments for
Tokyo using it but it does not contain landmarks in other countries. Instead, we use
4travel.jp to extract user comments including Japanese for Shanghai and New York.

For each landmark in a travel website, we collected each user’s satisfaction on the
landmark, comment content and the time of writing. User’s satisfaction on each landmark
is five-scale rated from 1 (very dislike) to 5 (very like). We also collected the rank of the
landmark at each travel website Note that, how to rank landmarks at every travel website
is not open. It can be just decided based on the user satisfaction and the number of user
comments on each website.

As a result, 1,219,048 user comments were collected for further research (seeTable 4.1).
After data collection, we conducted language-detection through R. Three represen-

tative characters, including Chinese (de), English (is) and Japanese (no), were utilized to
distinguish a specific language.

The statistics of user comments from three travel websites in three cities is shown in
Table 4.1. As a result, the statistics show that Ctrip mainly includes Chinese users as the
ratio of Chinese comments is always over 99%, and thus we consider Ctrip’s comments
all as Chinese comments. Similarly, we consider Jaran’s comments all as Japanese
comments. In cases of Tokyo and New York, we also consider Ctrip’s comments all as
Chinese comments, and Jaran’s and 4travel’s all as Japanese comments. In addition, other
languages in TripAdvisor provides a ratio no more than 13.89% of the total comment
set. For this reason, we only concentrate on Chinese, English and Japanese for language-
specific analysis in Section 2.6.

2.5 Data-Source-Specific Analysis

In this section, we investigate variances between different groups of users. Data-source-
specific analysis are conducted. Subsequently, it is found that data-source-specific widely
do exist and it suggests that this should be considered as an important factor in the
personalized landmark recommendation.

2.5.1 Comparison of Landmark Coverage

We investigate the coverage ratio of top-k ranked landmarks between the websites in three
cities (see Fig. 2.3). “Coverage” is the ratio of landmarks in one website’s top-k ranked
landmarks that also occur in the other websites’ top-k ranked landmarks. The lower the
coverage ratio is, the higher the landmark uniqueness of each website is. Fig. 2.3 shows
that the coverages of landmarks dramatically differ in the different websites in all city
cases. For example, in the case of New York, when k = 10, the coverage ratios of all
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(a) Tokyo.
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(b) Shanghai.
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(c) New York.

Figure 2.1: Data-source-specific landmark coverage ratio among Ctrip, Jaran, 4travel
and TripAdvisor.

the three websites are more than 90%. When k ≥ 50, the coverage ratios of all the three
websites degrade to 76% or less.

Filtering is one of the most convenient methods in the landmark recommendation [60]
but it usually assumes that the coverages of landmarks in all data sources always stay
100%. Oppositely, our results suggest that the coverages of landmarks remarkably vary
by the travel websites. Therefore, our findings highlight the importance of collaborating
heterogeneous data sources to resolve the problem of usage of a single data source as we
discuss in Section 6.1.
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2.5.2 Comparison of Average Satisfaction

The data-source-specific average satisfaction ASweb
k of the top-k landmarks in a travel

website web is defined as follows:

ASweb
k =

∑k
i=1 ds(li)web

k
(2.1)

where ds(li)web is the data-source-specific satisfaction and it is the average of all users’
satisfaction for the i-th ranked landmark l in a particular travel website. Then we compare
the differences between average satisfaction for the top-k ranked landmarks in the four
websites (see in Fig. 2.2).

In Fig. 2.2, Jaran always has the lowest average satisfaction in the case of Tokyo,
and 4travel has the lowest average satisfaction in the cases of Shanghai and New York.
On the other hand, Ctrip and TripAdvisor has higher average satisfaction than Jaran or
4travel. This might be explained as the differences between various travel website user
groups. In other words, Ctrip and TripAdvisor users tend to have a higher satisfaction
rate on landmarks.

2.5.3 Comparison of Type Information

A landmark type represents the characteristics of the landmark. However, every travel
website has its own way to describe types. Thus we have re-arranged all landmarks’
types into eight types of Art, Entertainment, Food and drink, History, Nature, Night
life, Shopping, and Sport. Let LT be a set of these eight landmark types. It is worth
mentioning that, a landmark can have more than one types, for example, “Statue of
Liberty” has two landmark types of Art and History.

We combine the landmarks and their types of the top-100 ranked landmarks in each
website and the results are shown in Table 2.3. In an instance of landmark combination,
we have 100 landmarks in each website in Tokyo and obtain totally 194 different land-
marks by discarding the redundant ones. In detail, “Yu Garden” in Shanghai is labeled as
Art and History in Ctrip, Nature in TripAdvisor and Art and Nature in 4travel. Then we
combine all the types in the three websites and discard the redundant parts. The refined
types for “Yu Garden” are Art, History and Nature.

It is interesting that a travel website provides more type information for its local or
domestic landmarks compared with foreign landmarks. This can be explained by the
travel website companies are more familiar with the local landmarks, and may describe
the landmarks with more details.

Our average type number is of a maximum improvement rate of 27.71% compared
with the original four travel websites (see Table 2.3). The results indicate that it is
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(a) Tokyo.
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(b) Shanghai.
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(c) New York.

Figure 2.2: Data-source-specific average satisfaction among Ctrip, Jaran, 4travel and
TripAdvisor.

necessary to collaborate information among different data sources to enrich landmark
type information.

2.6 Language-specific analysis

In this section, we investigate variances between different groups of users. Language-
specific analysis are conducted. Subsequently, it is found that anguage-specific discrep-
ancies widely do exist and it suggests that this should be considered as an important
factor in the personalized landmark recommendation.
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Figure 2.3: An example of data-source-specific landmark coverage in Tokyo. Red mark:
Ctrip, yellow mark: Jaran, blue mark: TripAdvisor

2.6.1 Comparison of average satisfaction

We analyze the user average satisfaction based on language discrepancies in three cities
using the user comments in TripAdvisor. In total, 92523 user comments are used for the
case of Tokyo; 50810 user comments are used for the case of Shanghai and 674219 user
comments are used for the case of New York.

The language-specific average satisfaction for Chinese is calculated as the average
satisfaction of all Chinese users’ satisfaction on the top-k ranked landmarks in each city
as follows. The average satisfaction for Japanese and English is calculated similarly.

ASlang,TripAdvisor
k =

∑k
i=1 lslang,TripAdvisor(li)

k
(2.2)

where lslang,TripAdvisor(li) is the average of all lang users’ satisfaction for the i-th ranked
landmark li in TripAdvisor, where lang is either of Chinese, English or Japanese.

Fig. 2.4 portrays the results of language-specific average satisfaction in three cities.
Chinese and English users average satisfaction is relatively similar and is always higher
than Japanese users’ average satisfaction. Even though Japan shares a great cultural
similarity with China, Japanese users’ average satisfaction is significantly deviating from
the Chinese groups.

From Table 2.4, it shows that the sane conclusion that Chinese and English users’
average satisfaction is relatively similar, while Japanese users’ average satisfaction is
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Table 2.3: Landmark type comparison with Ctrip, Jaran, 4travel and TripAdvisor.

Tokyo k Total landmark type Average landmark type Improvement rate
Ctrip 100 146 1.46 +23.97%
Jaran 100 178 1.78 +1.69%

TripAdvisor 100 158 1.58 +14.56%
Ours 194 351 1.81 -

Shanghai k Total landmark type Average landmark type Improvement rate
Ctrip 100 178 1.78 +2.25%

4travel 100 161 1.61 +13.05%
TripAdvisor 100 152 1.52 +19.74%

Ours 189 344 1.82 -

New York k Total landmark type Average landmark type Improvement rate
Ctrip 100 184 1.84 +13.13%

4travel 100 163 1.63 +27.71%
TripAdvisor 100 205 2.05 +1.54%

Ours 196 408 2.08 -

Table 2.4: Language-specific average satisfaction among Ctrip, Jaran and TripAdvisor
in Tokyo.

Language Average Satisfaction
Chinese 4.35
English 4.27
Japanese 4.12

significantly deviating from the other two language groups.

To sum up, the results say that users from different cultural backgrounds value
the landmark’s average satisfaction differently and the conclusion stays the same no
matter which city’s data we use. Therefore, it is crucial to examine the users’ language
backgrounds into consideration for accurate satisfaction prediction.
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(a) Tokyo.
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(b) Shanghai.
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(c) New York.

Figure 2.4: Language-specific average satisfaction among Chinese, English and
Japanese.

2.6.2 Comparison of overall type preference

We assume that all users have similar preferences on landmark types no matter which
language they use and we demonstrate our assumption as follows:

We calculate frequencies and ranks of the eight landmark types for the three language
groups using 1,038,087 user comments for each city. In order to visualize the similarities
between the three language groups, we calculate the cosine similarity cosim of the type
preferences in two ways:

We first define a vector

®tr(lang) = (rArt, rEntertainment, . . . , rSport) (2.3)
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for a language lang, where ®rt is defined that, if the landmark type t is the i-th rank in the
language lang, then rt is (1/i) in this language in each city. For example, in the case of

®tr(Chinese) in Shanghai, Art is the second place then rArt = 1/2 = 0.5 and Sport is the
last place with rSport = 1/8 = 0.125.

In the same way, we define the other vector as follows:

®t f (lang) = ( fArt, fEntertainment, . . . , fSport) (2.4)

for a language lang, where ft is the frequency of the landmark type t in the language
lang in each city. For example, in the case of ®t f (Chinese) in Shanghai, fArt and fSport

become 0.26 and 0.00, respectively.
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Then Eqn. (2.5) shows the cosimr value weighted by the type rank and Eqn. (2.6)
shows the cosim f value weighted by the type frequency:

cosimr(langi, lang j) =
< ®tr(langi) · ®tr(lang j) >
∥ ®tr(langi)∥ · ∥ ®tr(lang j)∥

(2.5)

cosim f (langi, lang j) =
< ®t f (langi) · ®t f (lang j) >
∥ ®t f (langi)∥ · ∥ ®t f (lang j)∥

(2.6)

where < ®v1 · ®v2 > shows the inner product of two vectors ®v1 and ®v2 and ∥ · ∥ shows
the L2 norm.

The results of cosimr and cosim f are shown in Fig. 2.5. It can be seen that the cosimr

values or the cosim f values between the three language groups are of high similarities
over 0.82. The results indicate that the users’ overall preferences of landmark types
do not have a direct association with the language that they use. This confirms our
assumption at the beginning of this subsection.

Thus, we concentrate on the users’ personalized preferences on landmark types, rather
than taking the users’ overall preferences into account.

2.7 Personalized Landmark Recommendation algorithm

2.7.1 Landmark Database Establishment
We build a landmark database of three cities. After combining types and eliminating
redundant landmarks, 194 landmarks are kept for Tokyo, 189 landmarks are kept for
Shanghai and 196 landmarks are kept for New York.

Unfortunately, error types still exist in some cases. For example, in the case of
Jimbocho Bookstore Area (a bookstore street), it is labeled as Art + History + Shopping
in one website, where Shopping seems not proper. Thus, we analyze the relationship
between type pairs. Fig. 2.6 presents the top-3 strong relations between the eight
types. The size of the circle of each type shows the frequency at which it occurs in the
database and the thickness of an arrow link between a pair of types shows how strong
the relationship is.

Then we conduct the pairwise comparison between types for each landmark. If one
pair of types is not included in the top-3 relations, then it refers that the relation between
the pair is not strong enough and it will be labeled as a potential error pair. Error pairs are
manually re-checked. For example, History does not has a strong relation with Shopping
and we discard the type of Shopping for Jimbocho Bookstore Area.

Our finalized database contains 579 landmarks and 1103 types (see Table 2.3). Each
landmark l in the finalized database include:
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Figure 2.6: Representation of pairwise type relations.

• a language-specific satisfaction rating lslang(l) for each language lang, which is
defined by the average satisfaction over all the comments to l in a specific language.

• a data-source-specific satisfaction satisfaction dsweb(l) for every travel website
web, which is defined by the average satisfaction over all the comments to l in a
specific website.

2.7.2 Satisfaction prediction

In order to predict user’s satisfaction on every landmark, we propose a mathematical
model to simulate the relation between user satisfaction and three variables, which are
user’s preferences on landmark types, user’s language(s) and commonly visited travel
website(s). We consider a linear relation, which is used in many related studies [15].
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We introduce Su,l as the prediction satisfaction on a landmark l of a user u. Stype
u,l is

the satisfaction on l depending on u’s type preferences. Likewise, Slang
u,l and Sweb

u,l are the
the satisfaction on l depending on u’s commonly used language(s) and travel website(s),
respectively. Su,l is as follows:

Su,l = α × Stype
u,l + β × Slang

u,l + (1 − α − β) × Sweb
u,l + θ (2.7)

where α and β are the two constants weighting the significance of the three variables
(0 ≤ (α + β) ≤ 1). In an instance, if α = 1, Su,l is only affected by the type preferences.
We have both α and β equal to 1/3 for the following analysis, which we assume that the
three variables to be of equivalent importance. The calculation of the three variables is
introduced as follows:

For Stype
u,l , firstly, a user is required to rate his/her preference w(t) on each landmark

type t with a five-scale rating: very dislike (1), dislike (2), fair (3), like (4), and very like
(5). Let LT(l) be a set of types that the landmark l contains and then Stype

u,l is computed
as follows:

Stype
u,l =

∑
t∈LT(l) w(t)
|LT(l)| (2.8)

where |LT(l)| is how many landmark types that LT(l) has.
For Slang

u,l , lslang(l) is a language-specific satisfaction of a landmark l for a specific
language lang and LS(l) is a set of language-specific satisfactions of all the languages
that l has. If the user’s language is lang and l has the corresponding satisfaction lslang(l),
then Slang

u,l is equal to ls(l)lang. Otherwise, Slang
u,l is the average of its other languages

satisfaction as below:

Slang
u,l =

{
lslang(l) (if LS(l) includes lang)∑

all languages lslang(l)
|LS(l)| (otherwise)

(2.9)

where |LS(l)| represents how many language-specific satisfaction that LS(l) has.
For Sweb

u,l , dsweb(l) is a data-source-specific satisfaction in a specific travel website
web for l and DS(l) is a set of data-source-specific satisfactions of all the websites that
l has. If the user’s preferred website is web, and l has the corresponding satisfaction
dsweb(l), then Sweb

u,l is equal to dsweb(l). Otherwise, Sweb
u,l is the average of its other travel

website satisfaction as below:

Sweb
u,l =

{
dsweb(l) (if DS(l) includes web)∑

all websites dsweb(l)
|DS(l)| (otherwise)

(2.10)

where |DS(l)| shows how many travel website satisfaction that DS(l) includes.
In addition, we set a bonus constant θ as an error parameter [15]. Let θ = (n(l) −1)+

0.1, where n(l) represents the number of times the landmark l included in the top-100
ranked landmarks in a city among the three travel websites .
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Figure 2.7: Evaluation result on landmark recommendation precision.

2.8 Experimental Results

2.8.1 Experimental settings

In this chapter, the experimental areas are set to be Tokyo, Shanghai and New York and
the 194, 196 and 189 landmarks in our database are, respectively, used for landmark
recommendation for each city. The algorithm is coded in R.

We test our algorithm with 12 different user profiles. We have interviewed 12 users,
aging from 20–60, 4 males and 8 females. They are 6 Japanese users, 4 Chinese users
and 2 English users. They are also 4 Ctrip users, 4 Jaran users, 1 Jaran and 4travel
user and 3 TripAdvisor users. 12 users have visited at least three landmarks in Tokyo,
Shanghai and 10 users have visited at least three landmarks in New York.

2.8.2 Landmark type recommendation precision

In this subsection, landmark type recommendation precision of our algorithm is analyzed.
Users were required to fill in a questionnaire about the preferences with the five-scale
rating on the landmark types, also their commonly used languages, and commonly used
travel websites were recorded.

The proposed algorithm first calculates the Su,l values for each landmark l in the
database by the user’s profile. Duration time on a landmark usually takes around 1–2
hours, we assume that a user visits at most 6 landmarks in a one-day trip.

Our algorithm provides each user with the top-6 landmarks with the highest pre-
diction satisfaction Su,l . Three other algorithms are used for comparisons. Random
algorithm randomly recommends six landmarks through the top-100 ranked landmarks
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in TripAdvisor, Popular-first algorithm recommends the top-6 ranked landmarks in Tri-
pAdvisor and the algorithm in [55] recommends six landmarks that match the user’s type
preferences. The six recommended landmarks are recorded as lrec

i (i = 1, 2, . . . , 6). Each
trail in each city is implemented by a sub-dataset with 50 randomly selected landmarks.

Next, we compare the precision of the six recommended landmarks of our proposed
algorithm with that of the other three comparison algorithms. We consider that the
landmark type t fits the user’s preferences if the user has rated three points or more to t.
Then the number of true positives (TP) is defined by the number of the recommended
landmarks’ types that successfully fits the user’s preferences. We consider that the
landmark type t fails to fit the user’s preferences if the user has rated two points or less to
t. Then the number of false positives (FP) is defined by the number of the recommended
landmarks’ types that fails to fit the user’s preferences.

For example, in the case of Tokyo, assume that the ratings of the user u1 to the
landmark types of Art and Nature are four and five points, respectively. Assume also that
our algorithm recommends for the user u1 the first landmark lrec

1 = Sensoji, of which
types are labeled by Art and Nature in our database. Then TP for Sensoji is two and its
FP is zero, since the two types Art and Nature fit the user’s preferences. The computation
of TP and FP for the other five recommended landmarks is the same. Then the precision
for a user u can be obtained by:

Precision(u) = TP
TP + FP

(2.11)

Fig. 2.7 shows the average precision of 12 users by our proposed algorithm, Random
algorithm, Popular-first algorithm and the algorithm in [55]. For Random algorithm,
it is reasonable that it obtained the lowest precision because landmarks are randomly
extracted with no concerns over landmarks types or user preferences. Popular-first algo-
rithm recommends the top-6 ranked landmarks rated by a group of users in TripAdvisor.
This algorithm improves precision as it considers users’ general preferences. However,
because this algorithm does not take the user’s personalized preferences into considera-
tion and hence our proposed algorithm’s precision is around 10% higher than that of the
Popular-first algorithm.

In [55], although it considers users’ personalized preferences, it has poor perfor-
mances with only around 60% precision. Because it is restricted to a small sample size
of N = 500, as we discussed in Section 6.1 and it fails to resolve the problem of medium
satisfaction (1, 2, 3 and 4 points). Pantano et al. assume that a user only has the very
dislike (0 points) and the very like (5 points). But the truth is that the ratio of very
dislike (0 points) cases in our landmark database rarely exists, which means 0 point cases
should be considered less important compared with the medium satisfaction groups.
Thus medium preferences should be considered rather than dividing users’ preferences
into only two extreme negative or positive groups.
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2.8.3 Landmark satisfaction prediction accuracy
We evaluate if our proposed accurately predicts the user’s real satisfaction. The three
lists, each of which contains 30 landmarks randomly chosen from each city database, are
prepared and the users were required to write their real satisfaction on the landmarks in
the list which they have visited before as many as possible. A user’s real satisfaction on
a landmark l is denoted as realSu,l . Through the questionnaires, 30 valid realSu,l values
were used as the ground-truths for each city.

We compare our proposed algorithm with two baseline algorithms as follows:

• M AP (moving average predictor) represents the users’ average satisfaction in a
certain period [21], where we set the period from 2017.1.1–2019.1.1.

• AV M AP (a variation moving average predictor) represents a landmark’s expecta-
tion satisfaction computed by the Dirichlet distribution [35].

Both the MAP and the AVMAP use a single data source.
The prediction precision is analyzed by (a) average error rate, (b) maximum error

rate (-/+) and (c) standard deviation (SD). Error rate E R is computed by:

ER =
|preSu,l −real Su,l |

realSu,l
× 100% (2.12)

where preSu,l is the predicted satisfaction of a user u on a landmark l by our algorithm,
the MAP, or the AVMAP, and realSu,l is a user u’s the real satisfaction on a landmark l.

Table 6.4 lists the comparison results. In Table 6.4, it indicates that the proposed
algorithm has the lowest error rate around 7% which is better than the MAP and the
AVMAP, where only a single travel website comment data is used. This indicates that
our proposed algorithm is effective in predicting users’ satisfaction on landmarks in any
cases and it is necessary to use multiple travel website data for better prediction accuracy.

Generally speaking, our proposed algorithm is very effective in predicting users’
satisfaction on landmarks.
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2.9 Conclusion
We propose an algorithm that can effectively predict user’s satisfaction on a landmark
by the user’s preferences on landmark type, language and travel websites. The results
demonstrate that our proposed algorithm has a high degree of precision in terms of the
landmark recommendation and landmark satisfaction prediction compared with previous
studies.

In the future, we need to further confirm the effectiveness of merging data sources,
and conduct language-specific analysis for other languages such as Korea and German.



Chapter 3

A Travel Decision Support Algorithm:
Landmark Activity Extraction from
Japanese Travel Comments1

3.1 Introduction

Travel decisions are grounded in the real experiences of users’ travelogues. Due to
sense, investigations on travelogues potentially leads to more reliable travel decisions
than simply browsing web pages [58].

Many existing studies utilized travelogues to predict travel activities/purposes us-
ing open-domain data such as Twitter and Facebook. These studies includes activity
classifications [14, 39], location extractions [27, 75] and daily activity pattern predic-
tions [12, 26]. Cui et al. [14] predicted general 4 types of activities for each landmark
using Twitter contents. Lian et al. [39] recognized users’ activity types based check-in
and transition histories. Hoang et al. [27] identified location-related information in social
media contents. Cranshaw et al. [12] focused on mapping daily activity area patterns in
urban cities and Hasan et al. [26] used geo-location data to identify activity categories
and then predicted weekly activity patterns of individual users. To fully explore the
value of large-scale travelogues in travel decision making, there still are issues remaining
unsolved.

(1) Dissemination of information: These travelogue data were collected directly from
SNS (Social Networking Service) which contains a large amount of irrelevant information
including promotions and advertisements [?,9]. This disadvantage may result in the time-
consuming data cleaning process. Thus, it is important and efficient to use reliable data
such as travel comments on trustworthy travel sites such as TripAdvisor [20].

1Technical contents in this chapter have been presented in the publications ⟨2⟩.

28
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(2) Limited information-searching capability: Compared with common information
searching, it may be too difficult for a user who is not familiar with the destination city
or landmark to raise a question. For example, when visiting an art museum, people often
intend to ask a general question such as What can I see? or What is on the exhibition
now? rather than a specific question such as Is that painting painted in 1800?. The input
question query such as Why do people like bass low frequencies on music in [62] is not
available in the travel searching case. Thus, how to automatically generate the query is
important.

(3) Ambitious description: After inputting the question query, we should search for
information related. Short messages such as tags or event phrases may be helpful for
describing the landmarks but still could be less meaningful sometimes. For example,
most of the tags for Sensoji on Twitter are geo-tags such as #Tokyo and #ExploreTokyo
which is ambitious and does not include any details of activities. Thus, illustrating a
series of specific examples, such as The 80’s painting exhibition is great!, will better
help users make travel decisions.

(4) Lack of Japanese analysis: Furthermore, most of the query searching problems
are implemented in English while the differences among languages are not considered
yet. Thus, to fill in the blank in Japanese information searching. We focus on the
investigation of travel comments written by Japanese users.

In this chapter, to deal with those issues mentioned above, we propose an algorithm
to construct activity queries and extract meaningful examples as detailed descriptions.
Our contributions are highlighted as follows:

• Extract activity keywords based on three types of frequency factors (Section 3.4.2).

• Construct activity queries with considerations on Japanese linguistic features (Sec-
tion 3.4.3).

• Develop the activity score to select representative activity examples (Section 3.4.3).

• Two case studies applying the algorithm with 18,939 comments on Jaran (a
Japanese travel website) [31] (Section 3.5).

This chapter belongs to Landmark Evaluation and Landmark Recommendation in
Fig. 1.1.

3.2 Data-Collect Process
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The goal of our proposed algorithm is to extract interesting activities for a landmark
based on a large corpus of travelogues. In other words, we ensure our algorithm so as
to match the domain nature of travelogues and problem domain as much as possible.
Instead of using travelogues such as tweets of which contents are not limited to travel
experiences but also other reports such as food, sports, and health, we set our data
domain as a corpus of travel comments obtained from the professional travel website.
The advantages of using travel comments are as follows:

1. Using travel comments is efficient and convenient as the traditional data-cleaning
process conducted by crowdsources is no longer needed. This is because non-
experiential information such as advertisements in Tweets rarely exists in travel
comments on big travel websites [20].

2. A travel comment usually is longer than a tweet which has the limitation of 140
characters. The median length of comments that we collected is over 40 Japanese
characters (see Table 3.1). It means that a travel comment usually contains around
2-3 completed sentences in Japanese. This advantage ensures the informativeness
of each comment.

To sum up, due to these two advantages, using travel comments is convenient and
could guarantee the quality of our experimental datasets.

In this chapter, we set Tokyo as the target city, and Jaran [31], which is domestic
travel website, as the target website in Japan. We focused on 5 famous public landmarks
in Tokyo on Jaran, which are

• 三鷹の森ジブリ美術館 ( Ghibli Museum)

• 浅草寺 (Senso Temple)

• 上野動物園 (Ueno Zoo)

• 国営昭和記念公園 (Showakinen Koen)

• 明治神宮 (Meiji Jingu)

For each landmark, we collected all travel comments of it through its full timeline.
Table 3.1 summarizes the data statistic of travel comments collected. All travel comments
were written before November, 20182 and were collected through a data-collection
program in R. Comments written in English (less than 1%) and comments only contained
photos were not included. As a result, 18,939 travel comments were accumulated in
Japanese.

2The date is users’ visiting date, not the written date.
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3.3 Problem definition
Given a landmark, the goal is to explore potential activity descriptions that may benefit
users in travel decision making. The inputs contain a landmark name and a large corpus
of travel comments in Japanese. The outputs are the most likely activity query and top-5
examples in the form of an activity-example table. In summary, our activity-example
extraction algorithm for a landmark is described as follows:

Step A1: Phrase all comments in the entire comment set.

Step A2: Obtain the keyword using the algorithm described in Section 3.4.2.

Step A3: Construct the query with the keyword using the algorithm described in Sec-
tion 3.4.3.

Step A4: Extract top-5 examples with the query using the algorithm described in Sec-
tion 3.4.4.

3.4 Activity-Example Extraction algorithm
The goal in this section is to provide user with the most important activity information,
thus only the most representative noun is extracted and only examples related to that
are extracted. Note that, if information of other activities are further required, those
information can be extracted by searching the second, third important noun repeating the
steps in section 3.4.2-3.4.4.

3.4.1 Japanese Linguistic feature

Japanese is quite different from English. For the sake of clear understanding, we introduce
three basic structures in Japanese. Unlike English, there is no space between words in
Japanese. For this reason, in order to better understand the structures of Japanese, we
separate each important elements for each sentence in the following three examples.

1. 金さんは　男性です。 (Kin is a male.)

2. 金さんが走る。 (Kin runs.)

3. 金さんは　優しいです。 (Kin is thoughtful.)

Those structures can be generally considered as S (Subject)+ ST (Statement) as
Japanese is a topic-prominent language [57]. In example (1), ST is male which is a N
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Table 3.2: Example of element phrasing.

Example 1
ジブリの作品が好き

(Like the works by Ghibli)
Element ジブリ の 作品 が 好き

POS Noun AUX Noun AUX Adjective verb

Example 2
ジブリの世界観に浸れる

(Immersed into the world of Ghibli)
Element ジブリ の 世界観 に 浸れる

POS Noun AUX Noun AUX Verb

noun. In example (2), ST is run which is a V verb. In example (3), ST is thought f ul
which is an A adjective.

Moreover, there are usually AUX auxiliary words between segments in Japanese. In
example (1),は is the AUX , and it connects the parts金さん (Kin) and男性 (male) and
is similar to the meaning of is in English. In example(2),が is the AUX , and it connects
the parts金さん (Kin) and走る (run) which emphasizes the subject金さん (Kin).

Thus, our goal is to construct a query with a structure of S (Subject)+ ST (Statement)
and we consider S is a noun.

For each comment, we extract the dependency relationships and part of speech
tags (POS) through RMeCab [61]. Table 3.2 shows two examples of phrased travel
comments in Japanese. Note that, we do not consider the differences of tenses in the
phrasing process. Also, POS including prefix and postfix are not considered either.

3.4.2 Keyword finding
Based on the discussion in Section 3.4.1 above, to construct a query, we first identify the
noun N for the subject S. N should be representative, in other words, N is the keyword
for the landmark.

The comment set Il contains all comments for the landmark l, and L is a set of all
landmarks. In order to extract the most representative keyword, we uses the concept of
TF − IDF and evaluate each noun n ∈ Il via TF and IDF. In details, TF is the words
which are frequently occurs in comments of a landmark (TF), while IDF is the words
rarely appears in comments of other landmarks.

We mainly focus on three types of frequencies as in [75]. The first frequency is noun
frequency (n f ), the second on is comment frequency (c f ), and the last one is landmark
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Table 3.3: Example of the keyword ranking for Ueno Zoo.

Noun Rank
パンダ (Panda) 1st
動物園 (Zoo) 2nd
子供 (Child) 3nd

frequency (l f ). Then, for a noun n and a landmark l, we compute n f (Il, n) which is
the number of appearances that have n in Il . In order to avoid the overestimation of n f
caused by the repetition of the same noun in the same comment, we introduce c f (Il, n)
which means the number of comments that include n in Il .

Moreover, words such as 人（people） and 私（I） should be excluded as those
words may be frequently appear but do not contribute to activity descriptions much. To
deal with the problem, we compute l f (IL, n) which is the number of comments having n
in the entire comment set IL .

The keyword noun score KNS of a noun n is computed as follows using these three
types of frequencies:

KNS(n) ∝ n f (Il, n) × c f (Il, n)
l f (IL, n)

(3.1)

A noun n is labeled as the keyword key if KNS(n) is the largest for all n ∈ Il .
Table 3.3 shows an example list of keyword ranking for Ueno Zoo.

In addition, geo-specific nouns which represent a landmark’s spatial locations such
as Shanghai and China may frequently appear, but those words are noisy terms as it has
fewer associations with activities. In an instance, Shanghai often comes with a comment
It is garden/park/building in Shanghai. To quantify the keyword extraction, if a keyword
key is a geo-specific noun, then we use the noun with the second high KNS(n) value.

In summary, our keyword find algorithm for a landmark l is described as follows:

Step K1: For a landmark l, extract the keyword key of it as follows:

(1-1) Calculate n f , c f and l f values for a noun n.

(1-2) Calculate KNS(n).

Step K2: Select the non-geo-specific noun with the highest KNS(n) value as the keyword
key.
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Figure 3.1: Query construction.
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3.4.3 Query construction
After extracting the keyword key, we complete the query with the part of statement ST
through:

1. Clustering: We search for 3-grams phrases using key obtained in Section 3.4.2
among Noun, Verb, Adjective, Adjective verb, Adverb. Users may express their
personal experiences in different ways when writing the comments, and this re-
sults in identifying queries with substantially the same meanings. To handle this
problem, we cluster similar 3-grams phrases based on the cosine similarity. If the
cosine similarity between two 3-grams phrases is

over the threshold dth (we set dth = 0.67 in the experiment), then we merge the
phrases. The cluster name is the most repeated elements in the cluster.

2. Query Representation: We extract the most hit element phrase from the cluster.
Then, we predict the AUX between any two elements in the element phrase. Given
two elements e1,作品 (Wokr, Noun) and e2,好き (Like, Adjective verb) (see query
representation in Fig 3.1), let A be a set of all aux’s in the IL , and for aux ∈ A, we
define two probability factors:

• The first probability factor is generic probability gp(IL, aux, e1, e2), it is the
probability of aux connects Noun and Adjectiveverb in the entire comment
set IL .

• The second probability factor is specific probability sp(Il, aux, e1, e2), it is the
probability that aux connects 作品 (Wokr) and 好き (Like) in the comment
set of the landmark Il .

With these two types of probability factors, we define a connection probability
cp(aux, e1, e2) predicting the relationship between aux and two elements e1, e2 as follows:

cp(aux, e1, e2) ∝ gp(IL, aux, e1, e2) × sp(Il, aux, e1, e2) (3.2)

We consider that the aux with the highest cp(aux, e1, e2) value connects e1 and e2. By
repeating connecting all elements in the element phrase, we finally obtain a complete
query q.

3.4.4 Example searching
The next step is to find representative comments match the query q. We define a scoring
mechanism called activity score AS to select example comments. We select comments
containing or partly containing the query q and score them by AS.

To score each comment, we use three factors:
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Figure 3.2: Coverage factor.

1. Comparison factor: It is widely used in decision making [34]. This factor is
computed as a binary variable. It is 1 when the query q appears in the comment
and otherwise it is 0.

2. Coverage factor: It is defined as the percentage of a query q contained in a comment
and it is normalized between 0 and 1 (see Fig. 3.2).

3. Length factor: A comment with a longer length is more informative. The factor
is also normalized between 0 to 1 compared with all comments in Il . The longest
comment is 1 and the shortest one is 0.

We define the AS through a weighed linear relationship:

AS = w1 f1 + w2 f2 + w3 f3 (3.3)

　
when wi is the weight for i − th factor. f1, f2, f3 represents comparison, coverage

and length factors, respectively. At last, top-5 comments are picked as the examples for
detailed descriptions of the landmark activity.
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3.5 Experimental Result
Our goal is to process a full dataset of travel comments, but we first implement the small-
scale test to confirm the effectiveness of our proposed algorithm. In this section, we
evaluate two case studies by deriving meaningful activity queries and example comments.

3.5.1 Experimental settings
We evaluate the quality of experimental results in the following criteria:

• Whether the constructed queries are meaningful

• Whether the extracted examples are proper.

We use the 18,939 collected in Section 3.2 as the entire comment set IL .
For the first case study, we have a subset of all Japanese travel comments for the

Ghibli Museum with 1936 comments during the period of May 2007 to October 2018
3. For the second case study, we have a subset of all Japanese travel comments for the
Ueno Zoo with 4170 comments during the period of April 2006 to October 2018 4.

We invited 5 volunteers as evaluators. 3 of them are in computer science and
engineering fields. 2 of them are English speakers, and the other 3 volunteers are
Japanese and English speakers. All of them are not authors of this chapter.

For each study case, we derived one query and corresponding examples with top-5 AS
values. The query and examples were originally in Japanese and translated into English
lately. Volunteers were asked to first rate to what extent they understood the queries with
a scale from 1 (do not understand)–5 (fully understand), and then, they were asked to
rate the relevance of the top-5 examples, from 1 (least relevant)–5 (most relevant). Based
on the ground-truth, we calculated normalize Discounted Cumulative Gain (nDCG) to
evaluate the quality of the obtained examples.

We invited 5 volunteers as evaluators. 3 of them are in computer science and
engineering fields. 2 of them are English speakers, and the other 3 volunteers are
Japanese and English speakers. All of them are not authors of this chapter.

For each study case, we derived one query and corresponding examples with top-5 AS
values. The query and examples were originally in Japanese and translated into English
lately. Volunteers were asked to first rate to what extent they understood the queries with
a scale from 1 (do not understand)–5 (fully understand), and then, they were asked to
rate the relevance of the top-5 examples, from 1 (least relevant)–5 (most relevant). Based
on the ground-truth, we calculated normalize Discounted Cumulative Gain (nDCG) to
evaluate the quality of the obtained examples.

3https://www.jalan.net/kankou/spt_13204cc3302011245/
4https://www.jalan.net/kankou/spt_13106cc3310040182/
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Table 3.4: nDCGp of our proposed algorithms in two case studies.

Case 1: Case 2:
Ghibli Museum Ueno Zoo

Avg. nDCG1 1.000 1.000
Avg. nDCG2 0.900 1.000
Avg. nDCG3 0.920 0.952
Avg. nDCG4 0.966 0.991
Avg. nDCG5 0.969 0.992

Evaluations on query construction

For the evaluation of query quality, we compared our proposed algorithm with two
baseline algorithms with disabling parts of our algorithm as follows:

• Keyword query: It has the most hit noun as a query based on steps from Sec-
tion 3.4.2.

• Incomplete query: It constructs a query based on steps from Section 3.4.2 to
Section 3.4.3 without predicting the AUX’s.

Table 3.5 shows the results of query evaluation. Generally speaking, it is observed
that our algorithm outperforms the other two algorithms in both case studies. Our
algorithm is at least 10% higher than the other two baseline algorithms. It is interesting
to mention that in case 2, there is no AUX between一番 (most) and人気 (popular) by
our proposed algorithm due to the common usage in Japanese.

• Ours vs Keyword query: Since the word Panda is more comprehensive compared
to the word Ghibli, which is a Japanese word. Thus, Keyword query obtained a
higher score in case 2 than that in case 1. On the other hand, it indicates that
our algorithm is useful to help users have a more comprehensive image of the
landmark activity dealing with descriptions in the foreign languages that they are
not familiar with.

• Ours vs Incomplete query: Although Incomplete query provides more information,
our algorithm has a completed query rather than a bag of words. Thus, it is
reasonable that our algorithm is easier to understand and obtains higher scores in
both case studies.
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Table 3.5: Results on query construction.

Case 1: Ghibli Museum
Algorithm Avg. score Query

Ours 4.2
ジブリの作品が好き )

(Like the works by Ghibli)

Keyword query 2.6
ジブリ

(Ghibli)

Incomplete query 3.2
ジブリ+作品+好き
(Ghibli+Work+Like)

Case 2: Ueno Zoo
Algorithm Avg. score Query

Ours 4.4
パンダが一番人気

(Panda is the most popular)

Keyword query 3.4
パンダ　

(Panda)

Incomplete query 4.0
パンダ+一番+人気

(Panda+Most+Popular)

Evaluations on nDCG

To extract the top-5 examples, we evaluated each comment using AS. We set the
following weights for the three factors in AS with w1 = 0.25, w2 = 0.5 and w3 = 0.25,
which achieved the best performance according to the prior experiments.

Then, DCG is computed firstly as follows:

DCGp = r1 +

p∑
i=2

ri

log(i) (3.4)

where ri is the score of i− th example, and DCGp is the accumulated score at ith example.
As DCG depends on the size of the extracted examples, the more examples are

extracted, the larger DCG becomes. In other words, it is not explicitly to figure out
whether the extracted examples are qualified or not. Thus, to further normalize the
results we compute nDCG either as follows.
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Table 3.6: Example comments for Ghibli-museum.

Query Examples AS

ジブリの作品が好きな方には一度は行ってみ
て [...] トトロだけではなく他作品も含めて
[...]

0.782

ジブリの作品が好き
(Like the works by
Ghibli)

昔からジブリの作品が好きでよく見ていま
す。ここはジブリの世界に入り込んだ [...]

0.774

ジブリの作品が好きなので、リピートしてい
ます。何度行っても、童心に帰れて [...]

0.774

[...]ジブリの作品が好きで暇さえあれば見て
います。ジブリ美術館に行くとジブリの世界
[...]

0.772

[...]ジブリの作品の紹介、短編映画の公開、ネ
コバス、天空の城ラピュタの再現 [...]

0.717

nDCGp =
DCGp

IDCGp
(3.5)

where IDCGp is the ideal rank.
The results are listed in Table 3.4. Our algorithm achieves high nDCG values

in both case studies at any ranks. It indicates that our extracted examples are quite
relevant to the landmark activity descriptions and can help users better understand what
is interesting to do and see when visiting the landmark. Generally speaking, according to
the experimental results, our algorithm could benefit users in the better travel decision-
making process.

Extracted examples

The top-5 examples extracted for two case studies are listed in Table 3.6 and Table 3.7.
The queries contained in the examples are bold.

In case 1, 1st example to 4th example contains the complete query (ジブリの作品が
好き (Like the works by Ghibli)), while 5th example contains a part of the query (ジブ
リの作品 (The works by Ghibli)). For better understanding, English translations of first
to fifth examples of Ghibli Museum are listed as follows:

• People who like the works by Ghibli should go there. Reservation is needed. It
does not only include Totoro but also includes other works of Ghibli[...].
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Table 3.7: Example comments for Ueno Zoo.

Query Examples AS

[...]パンダが一番人気であることが分かりま
す。食事中のパンダは [...]

0.810

パンダが一番人気
(Panda is the most
popular)

[...]パンダが一番人気でとても可愛いくて癒
されます。アリクイなど他にも [...]

0.779

[...]パンダが一番人気だけど、珍しい変テコ
な動物もいっぱいいてビックリします [...]

0.774

[...]パンダが一番人気だと思います。入り口
入って右側にパンダのエリアがある [...]

0.774

[...]パンダが一番人気で多くの人が行列をし
て見ていました。パンダがえさを食べてる姿
[...]

0.771

• Pretty like the works by Ghibli a long time ago and I often watch the movies. It
feels like getting in the world of Ghibli [...].

• [...] I like the works by Ghibli, I have been there for several times. Whenever you
go to the museum, It feels like going back to your childhood time [...] .

• [...] I like to watch to the works by Ghibli in my spare time, movies trailers. If you
go there, it feels like getting in the world of Ghibli [...] .

• [...] There are introductions of the works by Ghibli, movies trailers, models of the
cat bus, Castle Laputa in the Sky [...] .

In case 2, all examples contain the complete query (パンダが一番人気 (Panda is the
most popular) ). For better understanding, English translations of first to fifth examples
of Ghibli Museum are listed as follows:

• [...] Pandas are the most popular. It is great to have a chance to see panda slowly
eating[...].

• [...] Pandas are the most popular and are so cute that heal the soul. There are
other animals such as anteater [...].

• [...] Pandas are the most popular, also it is so surprising that there so many other
rare animals [...].
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• [...] I think Pandas are the most popular. The panda area is on the right side of
the zoo entrance [...].

• [...] Because Pandas are the most popular, I saw them after waiting a lot in lines.
Pandas were eating their food [...].

3.6 Conclusion
In this chapter, we concentrate on answering the question: Can we accurately and directly
tell users what to do and see during their visits via previous travel comments?

Based on the experimental results, with a relatively small scale of travel comments,
it still allows us to explore rich landmark activity information.

For future works, we are continuing to deepen our works and intend our scope to
other language-specific travel comments such as English and Chinese. Meanwhile, the
workloads of the applications will be evaluated.



Chapter 4

Landmark Seasonal Travel
Distribution and Activity Prediction
Based on Language-specific Analysis1

4.1 Introduction
With the flourish of social media, it brings new insights into intelligent travel recommen-
dation. Travelers usually try to perceive a general image about how the travel destination
will be like before the departure and, due to this sense, it is not surprising that users will
check the comments made by former users on the trustworthy travel websites such as Tri-
pAdvisor [20]. These comments represent users’ personal travel experiences and users’
tourism decisions are strongly influenced by comment contents in many aspects [2].
Websites such as TripAdvisor and Yelp have influenced the way that users decide where
to go, when to go and what to see and do during holiday. [59].

In this chapter, we propose an algorithm that can effectively predict seasonal activity
for a landmark for language-specific users. Specifically, we describe the following points:

• How users’ travel distribution varies through language backgrounds and how the
travel distributions in each language group changes between years.

• Current studies often recommend popular activities through user comments in 12
months. Can we target peak seasons ahead and only check the user comments in
the peak seasons in order to reduce computation time on loading and reading data?

• TF-IDF are recently used in textual data retrieval (See Section 2.3 in detail). Can
we improve its performance on the activity extraction that alleviates the demands
of extraction for recently appeared activities?

1Technical contents in this chapter have been presented in the publications ⟨3⟩.

44
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This chapter belongs to Landmark Evaluation and Landmark Recommendation in
Fig. 1.1 and our contributions are highlighted as follows:

1. We collect 417,787 user-generated comments on TripAdvisor for each of the top-
100 ranked landmarks in Tokyo, Shanghai, and New York City. Those comments
are divided into three languages groups, including Chinese, Japanese and English.

2. We analyze the differences in travel distribution for each landmark among three
language groups and differences in yearly travel distribution for each language
group.

3. The future travel distribution for each landmark in each language is predicted
by seasonal ARIMA, SARIMA. All the travel distributions are divided into two
clusters based on seasonality. Peak-off seasons in each landmark can be detected
based on its seasonality.

4. We introduce an exponential TF-IDF (ETF-IDF) to extract the most suitable sea-
sonal activity in the recent years. Based on experimental results in three cities,
our algorithm has a better performance in terms of language-specific peak-off
season detection and language-specific seasonal activity recommendation which
outperforms the previous studies [5, 33].

4.2 Related work
Many travel recommendation systems have been developed for travel decision support.
Existing works on popular landmarks recommendation includes the four types of social
media data, GPS trajectory [41, 73, 85] , check-in logs [39, 75], geo-tags [43, 52], and
travel logs [25, 56].

Instead of recommending a series of landmarks, suitable and representative seasonal
activities of each landmark should also be recommended at the same time. Taking the
Meguro-gawa (River) in Tokyo as an example, it is famous for cherry flower (Sakura)
viewing during the period of March to April, while the cherry flower viewing is not
unavailable during the other months. Therefore, the seasonal activity differences for
each landmark should be included in order to match users’ travel time schedule.

For seasonal analysis , Liang et al. [40] and Yamasaki et al. [78] analyze the differences
of travel distributions in different seasons without high-lightening any seasonal activity
information. Fang et al. [17] extracting seasonal activities based on word frequencies in
each month. However, words such as "cherry flower" are highly appeared in comments
of all months, although flower viewing is only available during March-April. It indicates
that word extraction only based on word frequencies is invalid in some cases.
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Table 4.1: The statistics of user comments from TripAdvisor in Tokyo, Shanghai and
New York.

City User Chinese English Japanese
Tokyo 88,175 6,546 42,733 39,252

Shanghai 38,850 5,524 19,119 14,207
New York City 290,762 7,050 173,878 110,834

Total 417,787 19,120 235,374 164,293

In addition, some social media data corpus can be unreliable. For example, geo-tags
are often given with non-geographical posts [11], such as “explorejapan” and textual
contents of how they feel that the landmarks are often unstructured or ambiguous [42],
as the language used in social media such as Twitter and Facebook deviates from normal
language usage. For example, users tend to use emoji, abbreviation or acronyms such
as “www” (many laughs in Japanese) and the detailed activities, what they have done
during the visit, are usually missing.

Thus, those issues in current studies make the data collection and filtering process
time-consuming and degrade the accuracy of activity estimation.

To overcome the challenges that we discussed above, we leverage the advantages
of TripAdvisor with a large amount of trustworthy travel comments. Also, we extract
landmarks’ seasonal activities through peak seasons. Thus, for a word such as "cherry
flower", although it frequently appears in comments of all months in landmarks such as
Meguro-gawa, we only consider this word as the representative words for peak-seasons
such March and April.

4.3 Data source and data-collect process

We collect user comments from TripAdvisor (United States) [69], which is one of the
biggest leading travel websites.

Collecting data from TripAdvisor provides the two advantages: Firstly, TripAdvisor
offers large quantities of free user-generated comments which have high availability.
Secondly, we can group users comments based on the languages accordingly. TripAd-
visor supports multiple languages interfaces on the user comment, and hence language
division is possible. Therefore, the two issues, lack of language deviance consideration
and unstructured and ambiguous textual data, in the previous studies as discussed in
Section 6.1 can be resolved.
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A data-collection program was developed using R and it collected user comments of
the 100-ranked landmarks in three popular travel destinations, Tokyo (TYO), Shanghai
(SHA), and New York City (NYC). All the user comments collected from TripAdvisor
are during the period of 1st January 2012 to 31st December 2017. Particularly, the
landmark which is labeled as “region”, for example “Shibuya District”, is not included
as it does not have a specific type or location. Finally, it took about 10 days to crawl the
user comment data.

For each landmark, we collected each user’s comment content and the time of writing.
We also collected the rank of each landmark, where the rank of each landmark is decided
by the user satisfaction and the number of user comments on the travel website.2

Language detection was developed through R, where the representative characters
in the comment content, such as English (is), were used to automatically identify a
language. Table 4.1 shows the statistics of user comments in TripAdvisor. As user
comments in Chinese, English, and Japanese are available in all the landmarks. On the
other hand, user comments besides the three languages are excluded in some landmarks.
For example, in the case of Shinagawa Aquarium in Tokyo, user comments in French
is excluded. In this sense, for language-specific analysis in Section 4.4.1, we focus on
totally 417,787 user comments consisting of Chinese, Japanese and English.

4.4 Observation of travel distribution

4.4.1 Comparison of language-specific travel distribution

We analyze the travel distribution from the years 2014–2017 of the top-100 ranked
landmarks in the collected dataset for each language group in the three cities. “Travel
distribution” of each year for a landmark l in a particular language group lang is described
by:

T Dlang
l = {deslang

l,1 , deslang
l,2 , ..., deslang

l,11 , deslang
l,12 } (4.1)

where deslang
l,i is the density of comments appeared in i-th month for a particular language

group lang in the entire comment set for l. deslang
l,i is defined by:

deslang
l,i =

N lang
l,i

12∑
k=1

N lang
l,k

(4.2)

2Note that, how to rank landmarks on every travel website is not open. It is just decided based on user
satisfaction and the number of user comments.
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(a) Tokyo Camii (Church), Tokyo.
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(b) Shanghai former provisional government site
of the Republic of Korea (Historic spot), Shang-
hai.

Figure 4.1: Examples of landmark with language-specific travel distributions.
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(a) Meiji Jingu (Temple), Tokyo.
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(b) Central Park (Park), New York City.

Figure 4.2: Examples of landmark without language-specific travel distributions.

where N lang
l,i is the number of comments for l in the i-th month for a particular language

group lang.
Figs. 4.1 (a) and (b) show the examples of landmarks that is with obvious differences

in its language-specific travel distributions in Shanghai and Tokyo. Figs. 4.2 (a) and
(b) show the examples of landmarks that is without obvious differences in its language-
specific travel distributions in Tokyo and New York City.

To find the differences of travel distribution for different language groups, we calculate
the cosine similarity cosimlangi, j

l between T Dlangi
l and T Dlangj

l .
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(a) Tokyo. (b) Shanghai.

(c) New York City.

Figure 4.3: The number of Ndi f f ,θ in Tokyo, Shanghai and New York.

cosimlangi, j
l =

< TD
l angi
l

· TD
l ang j
l

>

∥TD
l angi
l
∥ · ∥TD

l ang j
l
∥

(4.3)

where < v1 · v2 > shows the inner product of two vectors v1 and v2 and ∥ · ∥ shows the
L2 norm.

If a landmark has cosimlangi, j
l ≤ θ in any two of language groups, then we consider it as

a landmark that there are obvious differences in its language-specific travel distribution.
Ndi f f ,θ is defined by the number of landmarks that have obvious differences in its
language-specific travel distribution in the top-100 ranked landmarks at the level of θ.

We set θ = 0.7, 0.8, 0.9 and the results are shown in Fig. 4.3. The Ndi f f value
increases as θ increases. Even though θ is set at a low level of 0.7, we still have a
high Ndi f f value in any city cases. Thus, it is necessary to consider language-specific
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Figure 4.4: DTW distance comparison of language-specific yearly travel distribution in
Tokyo, Shanghai and New York City, 2014–2017.

differences in the landmark activity recommendation.

4.4.2 Comparison of yearly travel distribution
Most of the current studies simply use the average travel distribution as the future ones.
Instead, it is better for us to consider the changes between years because the popular
landmark activity may differ from year to year. To confirm our assumption, we use a
dynamic time warping algorithm (DTW algorithm) to analyze the dissimilarity between
years quickly [38].

The DTW algorithm is an algorithm that compares the similarities between two series.
It aims at finding the optimum match between them under certain restrictions [48]. It is
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widely used in the field of data mining to compensate for some demerits of Euclidean
distance.

For each language, let T Dyl and T Dy+k
l be two travel distribution vectors with the

length of 12 defined by:

T Dyl = {desyl,1, desyl,2, . . . , desyl,12} (4.4)

T Dy+k
l = {desy+k

l,1 , desy+k
l,2 , . . . , desy+k

l,12 } (4.5)

where desyl,i is the density of i-th month in the year k for landmark l for a particular
launguage. For 1 ≤ i ≤ 12, let ni and mi be the integers of 1 ≤ ni ≤ 12 and 1 ≤ mi ≤ 12
The goal of the DTW algorithm is to find a mapping path p = {(n1,m1), . . . , (n12,m12)}
such that the total DTW(T Dyl ,T Dy+k

l ) distance on this path is minimized [48], where

DTW(T Dyl ,T Dy+k
l ) =

12∑
i=1
|desyl,ni − desy+k

l,mi
|. (4.6)

Then, the average numbers of DTW(T Dyl ,T Dy+k
l ) for the top-100 ranked landmarks

in Tokyo, Shanghai and New York are calculated for the three language groups for
y = 2012 and k = 1, 2, 3, 4, 5. Fig. 4.4 shows the results in the three city cases. It
is obvious that the DTW distance between two travel distributions increases when k
increases in all the language groups. It means that the travel distribution varies each year
and can be more closely mirrored by that in a year close to it. Thus, the results confirm
that we cannot simply use the average value of travel distribution to predict the future
travel distribution.

4.5 Travel distribution algorithm

4.5.1 Travel distribution prediction by seasonal ARIMA (SARIMA)
Future travel distribution prediction

The goal of this step is to predict the accurate future travel distribution over seasonality
and yearly changes. Therefore, we use the SARIMA to realize that [63].

In our proposed seasonal ARIMA (SARIMA) model, the seasonal AR (autoregressive
model) term and MA (moving-average model) term generate the prediction of T D2018
with data obtained from 2014–2017. The shorthand notation of our proposed model is
as follows:

SARIMA : (p, d, q)(P,D,Q)S (4.7)

where p, d and q represents the three non-seasonal terms including non-seasonal AR
order, non-seasonal differencing, and non-seasonal MA order. Similarly, P, D and Q
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Forecasts from ARIMA(0,0,0)(0,1,0)[12]
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Figure 4.5: Prediction of travel distribution in 2018 for Chidorigafuchi of Japanese group
by SARIMA. The travel distribution in 2018 is from period 5–6 and parameters used are
(0,1,1)(0,1,0)[12].

represents the three seasonal terms including seasonal AR order, seasonal differencing,
and seasonal MA order. S is the time span of regular travel distributions repeats, and we
set S = 12 (months per year).

For the parameters set, the parameters used to predict the distribution of 2018 are
the ones that best fits the distribution of 2017 based on the data of 2014–2016. Also,
we always set q = 1 to create the exponential decay of importance of the past travel
distribution with the consideration of yearly differences in Section 4.4.2. Fig. 4.5 shows
an example of the Chidorigafuchi (a large Park in Tokyo). In the x-axis, 1 to 4 correspond
to the years of 2014 to 2017 and 5 corresponds to the year 2018.

Seasonality clustering

In addition, SARIMA can automatically detect the seasonality in those travel distribu-
tions. Seasonality means a regular pattern of changes in a time sequence recurring
every S time intervals. The landmarks with the obvious seasonality are clustered into
C1 whereas the landmarks that do not have the obvious seasonality are clustered into C2.
As shown in the examples in Fig. 4.1, it is clear that Fig. 4.1 (a) and (b) has the obvious
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Figure 4.6: Peak-off season detection for Chidorigafuchi for Japanese group in Tokyo.

seasonality (peak seasons) in July and September for the Japanese group. Oppositely,
Fig. 4.2 (a) and (b) has no seasonality in any language groups.

Unlike the previous studies which take great costs to analyze all comments, in our
algorithm, only the seasonal activities in the peak seasons of the landmark in C1 will
be extracted and the seasonal activity of a random month of the landmark in C2 will be
extracted.

4.5.2 Seasonal activity extraction

Peak-off season detection by SAX

After dividing all landmark travel distributions into two clusters, we first identify the
exact peak-off seasons for travel distributions in C1. We use the Symbolic Aggregate
approximation (SAX) which is fast symbolic approximation of time series and could be
applied to any time series analysis [66]. Each travel distribution is transformed into a
sequence of three levels, which includes a (off season), b (middle season) and c (peak
season). Note that, before processing with SAX, the values of time series should be
normalized. For more details, see [66]. Fig. 4.6 shows an example of peak-off season
distribution in Chidorigafuchi, Tokyo.
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Seasonal activity extraction by exponential TF-IDF (ETF-IDF)

We have pre-processed each user comment d for every landmark l in the language lang
in the format as follows:

[u][l][lang][y][m][w1][occu1]...[wn][occun] (4.8)

where [u] is the user id, y and m are the writing year and the month of the comment, wi

is a noun appeared in the comment and occui is the how many times wi appeared in the
comment.

We improve the basic model of TF-IDF [45]. In TF-IDF, for a noun wi in a comment
d j , the weight Wwi,dj is given by:

Wwi,dj = TFwi,dj × log
N

DFwi
(4.9)

where TFwi,dj is the number of occurrences of wi in a comment d j (which is equal to
[occui]), DFwi is the number of comments including the term wi, and N is the total
number of used comments.

With considerations of deviance in years in Section 4.4.2, to obtain the weight
W′
wi,dj
(y + 1,m) of wi in a particular month m in the future year y + 1, we define the

exponential TF-IDF (ETF-IDF) as follows:

W′
wi,dj
(y + 1,m) =

α × (Wwi,dj (y,m)) + (1 − α) ×W′
wi,dj
(y − 1,m)

(4.10)

α is the smoothing or decay factor defined by α = 2/(1+Y ), where Y is the total number
of years [51].

We extract the most weighted noun in peak seasons for a landmark in C1 and extract
the most weighted noun in a random month for a landmark in C2 by ETF-IDF. The
extracted noun is regarded as the recommended seasonal activity.

We have conducted other textual information retrieval methods including frequency
counts [5] and average word embedding [8], but our preliminary experiments turn out
that the exponential TF-IDF has the best performance.

4.6 Performance evaluation
We evaluate the proposed algorithm on the datasets collected in Section 4.3 with 417,789
user comment from TripAdvisor. We divided the performance evaluation into two parts.

• The first part focuses on the evaluation for seasonality clustering.

• The second part focuses on the comparison with previous studies on seasonal
activity recommendation.
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Table 4.2: Clustering result summary
City Chinese English Japanese

C1 C2 C1 C2 C1 C2

TYO 65% 35% 60% 40% 50% 50%
SHA 40% 60% 47% 53% 54% 56%
NY 51% 49% 52% 48% 68% 32%

Table 4.3: The average number of months used in seasonal activity recommendation
City Chinese English Japanese

C1 C2 C1 C2 C1 C2

TYO ≤3 N/A ≤3 N/A ≤3 N/A
SHA ≤3 N/A ≤3 N/A ≤3 N/A
NY ≤2 N/A ≤3 N/A ≤3 N/A

4.6.1 Seasonality clustering

The clustering results are summarized in Table 4.2 through SARIMA analysis in Sec-
tion 4.5.1. Table 4.2 lists the results of seasonality clustering of the three language
groups in the three cities. Table 4.2 indicates that, for each language group, landmarks
with the obvious seasonality do exist and the ratios of those landmarks are no less than
40%. For C1, only user comments in peak seasons are investigated and, for C2, only user
comments in a randomly chosen month are investigated and it is shown as "N/A".

Unlike the previous studies that investigate user comments in all months, the proposed
algorithm can only search through user comments in at most 3 months according to the
results in Table 4.3. In other words, our algorithm is definitely more effective in extracting
activity noun with around 70% improvement compared with the previous studies.

4.6.2 Comparison with previous studies on activity recommendation

Evaluation criteria

We consider that seasonal activity recommendation is valid if it fits the two conditions
(labeled as ⃝ in Table 4.6) :

• Condition 1: It is an available activity (activity is correct).



56 CHAPTER 4. LANDMARK SEASONAL ACTIVITY

Table 4.4: An example of the most weighted noun extraction for Japanese group in Tokyo

Landmark Cluster Season-activity description
Chidorigafuchi C1 Sakura (Apr)
Meguro-gawa C1 Sakura (Apr), Illumination (Nov–Dec)
Kasai Sea Life Park C2 Tuna (all months)
Sky Tree C2 Observation (all months)
Tokyo Tower C2 Observation (all months)

• Condition 2: The activity is available in the recommended months (the months are
correct).

Then the number of true positives (TP) is defined by the number of the recommended
seasonal activities that successfully fit the two conditions (1) and (2). We consider that the
recommended seasonal activity is invalid if it does not meet both of the two conditions (1)
and (2). The number of false positives (FP) is defined by the number of the recommended
activities that fail to meet either one of the two conditions. We check the official website
for activity information confirmation.

Then the precision can be obtained by:

Precision =
TP

TP + FP
(4.11)

Table 4.4 presents five valid examples of recommended seasonal activities in Tokyo
for Japanese groups. For example, in the case of Meguro-gawa (River), our algorithm rec-
ommends two activities for Japanese groups, Sakura (April) and Illumination (November
to December). Both of the two activities are available according to the information on
official websites. T P, in this case, becomes 2 and FP is 0.

Procedures

We compare the proposed algorithm (Ours) to Ours+TF-IDF, [33] and [5]. For our
proposed algorithm, we use the comments from the years 2014–2017, where Y = 4 and
α = 0.4 for ETF-IDF. Ours+TF-IDF considers no exponential decay in noun extraction.
Jiang et. al [33] divides 12 months into four seasons, with spring, summer, autumn,
and winter and it extracts topic tags for the most popular season by using the frequency
count. Frequency count [5] is a baseline algorithm which extracts the most hit noun as
recommended seasonal activities for all months.
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Table 4.5: Comparison on average precision on activity recommendation.

Algorithm Avg. precision
Ours (Chinese) 63.3%
Ours (English) 63.3%
Ours (Japanese) 66.7%
Ours+TF-IDF1 60.0%
[33]1 56.7%
[5]1 50.0%

1 Used comments in Japanese.

We randomly select 10 landmarks from each city. For Ours, we recommend seasonal
activities for each landmark in three languages groups. In total, 90 trials were carried
out for Ours for each city. For Ours+TF-IDF, [33] and [5], the seasonal activity for each
landmark is derived without language consideration. For these three algorithms, 30 trials
were conducted for each city.

Results analysis

Table 4.5 presents the comparison of average precision on seasonal activity recommen-
dation. It is observed that our algorithm has the best performance with at least 4%
improvement.

Ours (Chinese) vs Ours (English) vs Ours (Japanese): All of them achieve relatively
high average precision in Table 4.5, which confirms the effectiveness of our pro-
posed algorithm. According to the examples in Table 4.6, our proposed algorithm
in English groups did not extract the peak season in November–December, while
the other two groups share the same results. It indicates that it is possible that users
in different groups may have different travel distribution and the language-specific
analysis is necessary. This suggests that, the recommended seasonal activities for
another language group can be used as references in future research.

Ours (Japanese) vs Ours+TF-IDF: According to the example in Table 4.6, both of the
algorithms can successfully detect the two peak seasons, but Ours+TD*IDF does
not take the year deviances which cannot correctly extract the second seasonal
activity. Using the example in Table 4.6, the noun “Illumination” is recently most
weighted in November to December in the year 2016–2017, while the noun of
“Sakura” is weighted the most in November–December in the year 2014–2017.
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Thus, the Ours+TF-IDF take the "Sakaru" as the most important noun. On the
other hand, Ours takes the year deviances into account, and hence the recently
appeared noun “Illumination” can be successfully extracted. This may be the
reason why our algorithm outperforms Ours+TF-IDF.

Ours vs [33]: As the season interval is fixed in [33], it has a possibility that the recom-
mended seasonal activity cannot be available in the entire interval. For example,
in Table 4.6, Ref. [33] extracts “Sakura” in spring, but the “Sakura” only lasts
from March to April but not to March, and hence this is not considered to be valid.
Moreover, Ref. [33] fails to detect the second peak season (November–December).

Ours vs [5]: As Ref. [5] just simply extracts the most appeared noun as the recommen-
dation for all months, it should not be applied to the landmark travel distributions
with seasonality. For example, in Table 4.6, “Sakura” is not available for all
months. Also, it fails to detect the second peak season (November–December).
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Table 4.7: Statistics of error activity recommendation in three cities.
Error type Number Ratio
Type-related 46 47.9%
Location-related 40 41.7%
Others 10 10.4%

Generally speaking, our proposed algorithm is effective in detecting peak-off seasons
and recommended seasonal landmark activities.

4.6.3 Error analysis
Based on the results on Table 4.5, all of our experiments do not exceed 67% precision
level. To further understand what types of errors the proposed algorithm makes, we check
each error and it is found that extractions of non-activity related nouns lead to most of
the errors. Table 4.7 lists three categories of errors. It is found that 89.6% errors belong
to the Type-related and Location-related errors. Thus, we focus on analyzing these two
categories of errors. Two examples of landmarks are shown in Table 4.8 and Table 4.9.
For easy understanding, example comments in Chinese and Japanese are translated into
English. Discussions on these two error categories are as follows:

1. Type-related: Taking the example of “Yoyogi Park” in Table 4.8, unlike “Meguro-
gawa” in Table 4.6 which has a very attractive activity “Sakura”, a park itself
does not have attractive activities to write or record (activity such as “walking”
obviously seems not attractive enough). Thus, users prefer to just describe how
they feel about the landmark itself, such as “Beautiful park for walking [...]”, rather
than to write what they have done in the comments.

So far, we have not considered the writing style differences among different
types of landmarks. How to identify the writing styles in the different type of
landmarks should be investigated in the future.

2. Location-related: For this error category, we assume that description of location
is considered more important than activity. It cannot be ignored that users often
declare the location in textual data. Taking the example of “Yu Yuan” (Garden)
in Table 4.9, for foreign users in English and Japanese groups, they prefer to
use “China” (country) to declare the location. Oppositely, for domestic users in
Chinese group, “China” (country) is not frequently used but they use the more
detailed noun, “Shanghai” (city), to declare the location.
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4.7 Conclusion
We have proposed an algorithm that can effectively predict language-specific seasonal
activity for a landmark, with the experiments through 418,788 user comments from
TripAdvisor. Our proposed algorithm outperforms the other previous studies in terms of
activity recommendation precision.

Moreover, based on additional error analysis, it suggests that future work will con-
centrate on analyzing the writing styles in the different type of landmarks and improving
the quality of user comment data.

As the limited time, we use the user comments on TripAdvisor in this chapter.
Therefore, we will carry out further experiments using the user comments in other two
travel websites including a Chinese travel website and a Japanese travel website.



Chapter 5

A Safe and Comprehensive Route
Finding Algorithm for Pedestrians
Based on Lighting and Landmark
Conditions1

5.1 Introduction
Walking as one of the eco and active transport modes contributes to reducing negative
environmental influences, relieving traffic congestion and benefiting personal health [74].
Safe and comprehensive walking environment can increase the utility of walking [23].
Under a dark environment, especially in the nighttime, pedestrians feel anxiety and face
a potential risk of crimes and violence [18]. Moreover being in a complicated and
unfamiliar environment, pedestrians are easy to get lost [68].

We can have two main issues to consider in the walking environments for pedestrians:

1. Route safety: Potential dangers due to the lack of visual accessibility under the
dark environments causes the route unsafety.

2. Route comprehensiveness: Poor cognition of surrounding environment due to
the inferior ability in route learning makes the route finding more difficult.

To solve the first problem, the common way is to enhance the lighting condition in
public exterior pedestrian areas [24]. In [53], Pain et al. show that improving road lighting
condition could effectively help people reduce the fear of crime, because good lighting
condition can facilitate clear obstacle detection for uneven patches, visual orientation

1Technical contents in this chapter have been presented in the publications ⟨1⟩ and ⟨8⟩.

63
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to observe surrounding road and buildings, facial recognition to promote a sense of
security and general comfort for pedestrians. Also, in [10], Bullough et al. point out that
improving observation and recognition of large objects referred to by landmarks, is very
effective in reducing people’s fear of crimes. In summary, (1) lighting conditions and
(2) landmark visibility are quite significant for increasing pedestrian’s feelings of safety.
Especially, their influence may differ in daytimes and nighttimes and we have to take it
into consideration.

In terms of the second issue concerning the ability of route learning, Spiers et
al. consider the route learning as an internal wayfinding behavior [65]. Sigels et al. points
out the three phases in route-learning process: [64]: (1) the first phase requires the ability
to recognize visualizations of landmarks; (2) the second phase requires the ability to
recall orders of the turns and landmarks associated with a route; (3) the last phase
requires the ability to reconstruct the route based on phases (1) and (2).

Based on this three-phase strategy, many researches demonstrate that proper selection
and representation of landmarks and turning points are effective during wayfinding,
especially for a new environment [19]. To sum up, (2) landmark visibility, (3) how much
every landmark contributes to the route finding, i.e., landmark effectiveness, and (4)
turning counts along a route are quite important in comprehensive route findings. Clearly,
(2) landmark visibility is dependent on lighting, especially in the dark environment, i.e.,
(1) lighting conditions are also important to comprehensive route findings because we
are not able to see well the route if it is unlighted in the nighttimes.

Moreover, (5) road widths have significant impacts both on the safety and compre-
hensiveness of a route. Wide sidewalk roads offer pedestrians enough spaces to walk
at their chosen pace, stand, or merely observe their surroundings. Wider sidewalks also
offer more spaces for landscaping and amenities, making the environment more attractive
and also acting as a buffer between traffic and pedestrians. Furthermore, in [79], they
describe that there are continuing interactions between pedestrians’ walking behaviors
and physical environments, which implies that evaluations should be conducted not only
through objective criteria but also pedestrians’ viewpoint-dependent judgments.

Based on the discussions above, we propose a safe and comprehensive route finding
algorithm for pedestrians based on the lighting and landmark conditions in this chap-
ter. Safety and comprehensiveness can be predicted by the following five indicators
(1) lighting conditions, (2) landmark visibility, (3) landmark effectiveness, (4) turning
counts along a route, and (5) road widths. Note that these indicators affect walking
environments differently during the daytimes and nighttimes. With those indicators, we
propose a safe and comprehensive algorithm. In particular, we design daytime score
and nighttime score differently and find out an appropriate route depending on the time
periods. Experimental simulation results demonstrate that the proposed algorithm ob-
tains higher scores compared to several existing algorithms. We demonstrate that our
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proposed algorithm generates safe and comprehensive routes for pedestrians in the real
environments through pedestrians’ viewpoints.

Our main contributions in this chapter are summarized as:

1. We propose five indicators to affect safe and comprehensive route findings for
pedestrians under different time periods.

2. We also evaluate the impacts on the five indicators through questionnaires and
clarify how they affect safety and comprehensiveness.

3. We design the score to reflect the indicators (1), (2), (3) and (5). Then with a
turning count reduction strategy based on the indicator (4), we propose a safe and
comprehensive route finding algorithm. In particular, we design daytime score
and nighttime score differently and find out an appropriate route depending on the
time periods.

4. Experiments through pedestrians’ viewpoints based on several real outdoor envi-
ronments confirm the effectiveness and efficiency of the proposed algorithm.

This chapter belongs to Sequential Travel Route Generation in Fig. 1.1.

5.2 Related Works
There are several previous works with relevance to safe and comprehensive route findings
for pedestrians. In [44, 50, 82], they consider safety on block crossings or intersections.
On the other hand, in [7,19,49], they use landmarks to improve pedestrians’ route learning
abilities by placing landmarks at junctions or turnings in order to help pedestrians recall
paths better. However, pedestrians require safety and comprehensiveness not only at
intersections but along their entire routes. Some studies have evaluated safety along
the entire route by indicators such as accident risks, lighting conditions, and road lanes.
In [4,47,76,80], although these studies consider some safe indicators, there is a possibility
that the route obtained are complicated due to the lack of eye-catching landmarks and the
difference between the daytimes and nighttimes are unclear and not confirmed. Therefore
the routes suggested by these systems are not always optimal for pedestrian navigation.

5.3 Five Indicators for Safe and Comprehensive Pedes-
trians Route Finding

As we mentioned in the previous section, the safety and comprehensiveness of pedestrian
routes must be dependent on the five indicators below:
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(1) lighting conditions,

(2) landmark visibility,

(3) landmark effectiveness,

(4) turning counts along a route and

(5) road widths.

For lighting conditions, landmark visibility, those data can not be directly obtained
from ZENRIN’s map database. For road widths, roads in ZENRIN’s map databased are
labeled as level 1,2,3, etc. which represents different type of roads.

In order to investigate how much these indicators affect pedestrians’ safety and
comprehensiveness, we have conducted the preliminary questionnaires to 40 testers
composed of 20 males and 20 females with ages ranging from 20 to 52. We have used a
five-point scale that one (1) shows “strongly disagreement (not important)” and five (5)
shows ”strongly agreement (very important).”

Based on these questionnaires feedbacks, we assign appropriate scores to every road
during pedestrian route finding.

5.3.1 (1) Lighting Condition

Lighting conditions must contribute to both pedestrians’ feelings of safety and compre-
hensiveness during route findings. Since lighting conditions must differ under different
time circumstances, we have to evaluate them both in the daytimes and nighttimes. For
example, consider an unlighted road intersection in a rural area. We can see the intersec-
tion in the daytime but we may not notice it well in the nighttime due to the poor lighting
conditions.

To confirm the impacts of lighting conditions on route safety and comprehensiveness
between daytimes and nighttimes, 40 pictures of roads with various lighting conditions
under 15 p.m. (daytime) and 19 p.m. (nighttime) were presented to testers (see Fig. 5.1).
Then the testers filled out questionnaires about their feelings on two time periods.

The questionnaire results are summarized in Tables 5.1 and 5.2, where Mean and
SD show the mean points and the standard deviation over 40 testers. “Lighting” has
more than four points in both tables, which indicates that it is highly helpful in safe
and comprehensive route findings in both time periods. Pedestrian’s unsafe feeling and
nervousness can be relieved as good lighting condition provides better views and helps
pedestrians find their locations more easily and accurately.
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Table 5.1: The impact of road lighting conditions on the road safety.
PPPPPPPPPPFactor

Time Daytime Nighttime
Mean SD Mean SD

Lighting 4.25 0.73 4.53 0.50
Unlighting 2.58 0.70 1.95 0.80

Table 5.2: The impact of road lighting conditions on the road comprehensiveness.
PPPPPPPPPPFactor

Time Daytime Nighttime
Mean SD Mean SD

Lighting 4.35 0.69 4.55 0.55
Unlighting 2.93 0.57 1.88 0.64

Moreover, as higher scores were assigned to the nighttimes both in safety and com-
prehensiveness compared to that in the daytimes, it confirms our assumption that the
time-of-day will affect people’s perceptions.

In summary, we have to design the road score taking into account lighting conditions
as well as time periods, daytimes or nighttimes.

5.3.2 (2) Landmark Visibility

Landmarks are objects on land that is easy to see and recognize and must be main lighting
sources. For example, landmarks such as train stations, restaurants, and convenience
stores have bright metal or LED light board outside which is easy and clear to observe. If
a road has many lighting landmarks nearby, it must have a good lighting condition even
in the nighttimes and contribute to both route safety and comprehensiveness according
to the discussions in Section 5.3.1.

Landmark lighting can be evaluated by to what extent we can see the landmark. Now
we evaluate the visibilities of every landmark type through the questionnaires by testers.
Especially we evaluate the discrepancies of landmark visibilities between daytimes and
nighttimes. Testers have completed the questionnaires on how much every landmark
type affects route findings in the daytimes and nighttimes.

Table 5.3 summarizes the landmark types in alphabetical order used in the question-
naire.2 In Table 5.3, the landmark types of which average points are larger than three in

2The landmark types listed in Table 5.3 are also used in the experiments in Sections 5.5 and 5.6. Note
that, we can use another landmark type, such as shrines and hotels/inns in Kyoto area, if needed. In this
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(a) Lighted condition in the daytime.

(b) Unlighted condition in the daytime.

(c) Lighted condition in the nighttime.

(d) Unlighted condition in the nighttime.

Figure 5.1: Example pictures used for visual confirmations on lighting conditions in the
daytime and nighttime.

the daytimes are bank, bus station, convenience store, gas station, hospital, library, park,
post office, shopping mall, sport stadium, temple, and train station. Most of them are
easy to be observed due to their large sizes or special shapes. For a convenience store, it
is common to see in the daily life and thus it must be a very useful guidance although it
is not so large. The landmark types of which average points are larger than three points
in the nighttimes are the convenience store, gas station, hospital, library, restaurant,

sense, Table 5.3 shows an example set of landmark types.
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Table 5.3: The impact of landmark types on the visibility.
Landmark
type t

Daytime Nighttime
Mean SD Mean SD

Bank 3.60 0.88 2.25 0.99
Bus station 4.00 0.53 1.50 0.49

Convenience store 4.00 0.83 4.20 0.88
Gas station 3.90 0.70 3.50 0.70
Hospital 3.70 0.73 3.13 0.64
Library 4.50 0.45 3.10 0.76

Park 3.70 1.16 1.70 1.05
Post office 4.00 0.83 2.90 0.64

Public infrastructure 2.30 1.73 1.25 1.24
Restaurant 2.70 0.73 4.10 0.53

School 1.80 0.99 0.70 0.49
Shopping mall 3.60 1.03 4.10 0.70
Sport stadium 4.00 0.76 3.80 0.76

Temple 3.30 0.49 1.70 0.83
Train station 5.00 0.00 4.90 0.35

shopping mall, sport stadium, and train station. All of them have shiny signboards which
make them easy to catch even at nighttimes.

The average scores in Table 5.3, i.e., “Mean” values in Table 5.3, directly give
the landmark visibilities of a type t in the daytimes and the nighttimes, which are
defined by V(t, day) and V(t, night), respectively. For example, V(t, day) = 1.80 and
V(t, night) = 0.70 if t = School from Table 5.3. The pedestrian route with many visible
landmarks has good lighting conditions and thus it must lead to pedestrians’ safe and
comprehensive feelings.

5.3.3 (3) Landmark Effectiveness

Landmarks can also be helpful for pedestrians locate themselves and find out correct
routes. If pedestrians can observe the appropriate landmarks along their routes, they can
always select the right way quickly and correctly by confirming these landmarks without
anxieties. However, their features differ from each other and thus we design a weight
W(t) for every landmark type t.
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As pedestrians have a tendency to assign a high value to a landmark that is scarce such
as a train station or a large hospital since it gives a feeling of uniqueness or distinctiveness.
Then we can consider W(t) to weigh each landmark type t as follows:

Let L(t) be a set of landmarks in a given area of which type is t. For example, if
there are two parks, Park1 and Park2, and three restaurants, Restaurant1, Restaurant2,
and Restaurant3, in a given area, then L(Park) = {Park1, Park2} and L(Restaurant) =
{Restaurant1,Restaurant2,Restaurant3} in this area. First we compute the frequency,
f (t), for a landmark type t defined by:

f (t) = |L(t)|
A

(5.1)

where |L(t)| is the number of landmarks of the type t in the given area. For the example
above, |L(Park)| = 2 and |L(Restaurant)| = 3 in this area. A is the size of the given
area with the unit of km2. We assign more weights to landmarks with relatively less
quantity. The weight of a landmark type t is given by:

W(t) = 1
f (t) (5.2)

Table 5.4 shows an example of frequency and weight calculation results, which lists
up 15 types of landmarks in Takadanobaba area with the size of 1km2.

5.3.4 (4) Turning Counts
We assume that the typical distance of a pedestrian’s walking route is around 1km which
is justified for a dominant trip or neighborhood walking [46] and ask testers how many
times they can have tolerances on turning counts from their start to goal. Table 5.5
summarizes the results.

In either the day or night, the tolerance of turning counts are around four. As too
many turnings may cause pedestrians to pass the right way or understand when to turn,
the results suggest that turning counts in both the daytimes and nighttimes should not be
over four.

5.3.5 (5) Road Widths
We classify a set of roads into two types: the roads with the width of more than 4m are the
main roads, which are recorded as main general roads in the map database; oppositely,
the narrow roads with the width of up to 4m are the branch roads, which are recorded as
narrow roads in the map database.3 Note that highways are excluded in our pedestrians

3We use a commercial pedestrian road database given by ZENRIN [84], where the roads with the width
of more than 4m are classified into main roads and those with the width of up to 4m are classified into
branch roads.
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Table 5.4: The frequency and weight of landmarks.
Landmark type t Frequency f (t) Weight W(t)

Bank 1.33 0.75
Bus station 10.2 0.10

Convenience store 9.78 0.10
Gas station 0.89 1.13
Hospital 5.33 0.19
Library 2.22 0.45

Park 0.89 1.13
Post office 1.33 0.75

Public infrastructure 1.33 0.75
Restaurant 4.00 0.25

School 8.44 0.12
Shopping mall 0.44 2.25
Sport stadium 1.33 0.75

Temple 2.67 0.38
Train station 0.44 2.25

Table 5.5: The tolerance of turning counts on the route finding.
Time Mean SD

Daytime 4.10 0.79
Nighttime 3.70 0.96

network. We evaluate the impacts of road widths on road safety and comprehensiveness
through the questionnaires by testers.

The results obtained from tester’s feedbacks are summarized in Table. 5.6. Since
the main roads have a higher score than the branch roads, it suggests that road widths
affect pedestrians’ feelings both on safety and comprehensiveness. This is because a
wider road offers clearer sight views whereas a narrow road often come up with crimes,
assault, and intimidating, and it is easy to have pedestrians’ nervous and get lost. In the
nighttimes, both the main roads and the branch roads have lower points. Especially, the
branch roads in the nighttimes have the lowest point.
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Table 5.6: The impact of road widths on the road safety and comprehensiveness.
PPPPPPPPPPFactor

Time Daytime Nighttime
Mean SD Mean SD

Main Road 4.30 0.44 3.90 0.51
Branch Road 3.90 0.79 3.00 0.74

5.4 Safe and Comprehensive Pedestrians Route Finding
Algorithm

The evaluations in Section 5.3 clearly demonstrate the impacts of the five indicators on
pedestrians’ feelings on safety and comprehensiveness on the surrounding environments.
Based on these evaluations, we first design the score to effectively represent the indicators
(1), (2), (3) and (5) discussed in the previous section. Then with considering turning
count reduction based on the indicator (4), we propose a safe and comprehensive route
finding algorithm for pedestrians based on lighting and landmark conditions.

Based on the evaluations in Section 5.3, we first determine how many landmarks may
be observed from every road or edge as lighting sources and guidance while walking
along the road (Section 3.1). Then we give an edge score taking into account the
five indicators to evaluate time-depending route safety and comprehensiveness scores
(Section 3.2). After that, we generate a pedestrian route which can reduce the turning
counts (Section 3.3). Section 3.4 summarizes our proposed algorithm.

5.4.1 Problem Definition

A pedestrian network is given by a graph G = (N, E), where a node ni ∈ N represents a
road crossing point and an edge ei j = (ni, n j) ∈ E corresponds to a road between nodes
ni and n j . The road width for every edge e ∈ E and a set L of landmarks with their
landmark type t are also given beforehand. Let LT be a set of landmark types. Note
that, since we use the 15 landmark types as listed in Table 5.4 in our experimental areas
in Sections 5.5 and 5.6, LT is composed of these 15 landmark types in our experiments,
i.e., LT = {Bank,Bus station, . . . ,Train station}. Time periods (daytime and nighttime)
are also given as inputs. Then the route finding problem here is to find a safe and
comprehensive route from a starting node s ∈ N to a destination node z ∈ N . Fig. 5.2
shows an example of a pedestrian network associated with road widths and landmarks. In
this figure, the blue number shows the node index i of each node ni ∈ N in the pedestrian
network G = (N, E).
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Figure 5.2: An example of a pedestrian network in Shinjuku.

5.4.2 Edge Landmark

We first define an edge landmark. Let e ∈ E be an edge or pedestrian road in a pedestrian
network of G = (N, E). Then for every landmark l ∈ L, we compute the shortest distance
d(l, e) =

[
(xp − xl)2 + (yp − yl)2)

]1/2 between the landmark l and the middle point of
e, where (xp, yp) are coordinates of the middle point p of the edge e and (xl, yl) are
coordinates of the landmark l. 4

To judge whether the landmark l is close enough to the road for observation, we set
Kth to be the threshold value. In Japan, the main road (general road) width is usually
6m–8m and the branch road width is under 4m. In this chapter, we set Kth to be the
half of road width, i.e., 4m for the main roads and 2m for the branch road, to ensure
pedestrians can see the landmarks within these distances [87]. Then, if d(l, e) ≤ Kth,
then the landmark l belongs to the edge e and this landmark is called an edge landmark.
After extraction of all edge landmarks, a set of edge landmarks associated with the edge
e is denoted by L(e).

Let Lt(e) ⊆ L(e) be a set of edge landmarks with landmark type t ∈ LT and then
L(e) can be written by L(e) = ∪

t∈LT
Lt(e).

4The coordinate (xl, yl) of the landmark l corresponds to the representative point registered on the
commercial pedestrian road database that we use.
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(a) SC score in the daytime.
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(b) SC score in the nighttime.

Figure 5.3: Safe and comprehensive routes in the daytime and nighttime.

5.4.3 Edge Score Design

Edge landmarks definitely contribute to lighting conditions and comprehensiveness of
the routes. If an edge has many edge landmarks with higher V(t, day) or V(t, night)
scores as well as W(t), this edge must provide safe feelings and comprehensiveness of
route learning.

Then we can first design the score on landmark effectiveness LE as follows: Let
LE(e, day) and LE(e, night) be scores on landmark effectiveness on every edge e ∈ E
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in the daytimes and nighttimes. They can be calculated by:

LE(e, day) =
∑
t∈LT

|Lt(e)| × V(t, day) ×W(t) (5.3)

LE(e, night) =
∑
t∈LT

|Lt(e)| × V(t, night) ×W(t). (5.4)

where V(t, day) and V(t, night) show the visibilities of the landmark type t during the
daytimes and nighttimes defined by Section 2.2 and W(t) shows the weight of a landmark
type t defined by Section 2.3.

The LE score represents the landmark effectiveness of the edge e, which means how
much edge landmarks impacts on route findings in the daytimes and nighttimes. As
the LE score is defined by the sum of scores of edge landmarks, thus it is obvious to
know that an edge e has a higher LE(e, day) or LE(e, night) value if e has more edge
landmarks.

In order to further take into account the road width factor, safety and comprehensive-
ness degrees of an edge e ∈ E in the daytimes and nighttimes are calculated by:

SC(e, day) = LE(e, day) ×Wid(e, day) (5.5)
SC(e, night) = LE(e, night) ×Wid(e, night) (5.6)

where Wid(e, day) and Wid(e, night) show road width factor in the daytimes and night-
times, respectively, and we set these values as listed in Table 5.6, i.e., Wid for a main
road e is given by Wid(e, day) = 4.30 and Wid(e, night) = 3.90, Wid for a branch road
e is Wid(e, day) = 3.90 and Wid(e, night) = 3.00.

Finally, given a threshold value SCth, we mainly consider a set of edges satisfying
SC(e, day) ≥ SCth or SC(e, night) ≥ SCth in route findings in Section 5.4.4.

By introducing SCth above, the algorithm can mainly search a set of roads with high
priority whose SC score is equal to or higher than SCth. We expect that the final route is
composed of safe and comprehensive roads and thus the entire route also must be safe
and comprehensive.

Our preliminary experiments in various areas demonstrated that the average product
sums of landmark visibilities and weights given by Eqs. (5.3) and (5.4) in daytimes
and nighttimes were around 2.44 and 2.31, respectively. The average road width fac-
tors Wid(e, day) and Wid(e, night) were 4.10 and 3.45, respectively. Hence we set
SCth = 2.42×4.10≈10.00 in daytimes and SCth = 2.31×3.45≈8.00 in nighttimes, which
require around one bright landmark. These edges must contribute to both safety and
comprehensiveness by taking into account lighting conditions, landmark visibilities and
road widths.
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(a) The sub-route (a, b) is
searched. We assume that all the
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(b) Since ∠zbc ≤ π/3, the node c
is selected as a next node.
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(c) Since ∠zbd > π/3, the node d
is not selected as a next node.

Figure 5.4: Turing reduction procedure.

5.4.4 Turning Reduction for Route Planning

Reduction of turning counts can ensure the route going towards the destination as accurate
and fast as possible [65]. We realize it by the following strategy:

Assume that the edge (a, b) is just searched as a sub-route (see Fig. 5.4(a)), i.e., the
current edge is (a, b) and the current node is b. The next nodes will be c and d and
assume that the edges (b, c) and (b, d) have SC scores larger than or equal to SCth. Let z
be the destination node.

In this case, since ∠zbc ≤ π/3 (see Fig. 5.4(b)), then we select the edge (b, c) as a
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next sub-route. Likewise, as ∠zbd > π/3 (see Fig. 5.4(c)), the edge (b, d) deviates from
the direction towards the destination node z and will not be selected as a next sub-route.

We set the threshold to be π/3 here since the field of view of single normal human
eye covers around 60 degrees horizontally [28] and pedestrians feel that they go to the
opposite side against the destination if the threshold is greater than π/3 according to our
preliminary experiments.

Let i be a current node and z be the destination node. As in this example, among
the non-visited neighbor nodes with the score of SCth or lager, we select the next node
j with the highest score satisfying ∠zi j ≤ π/3. If there are no such neighbor nodes, we
just select the non-visited neighbor node with the highest SC score among the neighbors.
Note that, if we have no non-visited neighbor nodes here, we backtrack to the previous
node and perform the neighbor node search again.

Our strategy above does not directly reduce the turning counts for route searching
and thus it may not always reduce the turning counts of a generated route. However, we
search a next sub-route within the threshold angle against the destination node as depicted
in Fig. 5.4 and thus the sub-route selected here must have no significant detours against
the destination node. This means that the sub-route directly goes toward the destination
node and we resultantly expect that the turning counts can be reduced indirectly. In fact,
the experiments in Section 5.5 confirm that our strategy above reduces the turning counts
compared to the existing ones.

Note that we will discuss the effectiveness of the threshold π/3 above in Section 5.6.

5.4.5 The Algorithm

Algorithm 1 summarizes our proposed route finding algorithm. After extracting edge
landmarks and setting SC scores for all the edges in a given pedestrian network, we start
the route finding from the start node s. The neighbor node search is done according to
the discussion in Section 5.4.4. We repeat this process until we reach the destination
node z. The obtained route can go towards the destination directly and hence the turning
counts can be reduced. The sum of the SC scores along the obtained route can be large
enough. Overall we believe that our algorithm gives a safe and comprehensive walking
route.

Example 1. Fig. 5.3 portrays an example of our route finding algorithm.
In Fig. 5.3(a), the SC score is given to each road in the daytime. If we search the

shortest route from the start node s to the destination node z, we can have a dotted route.
The number of turnings is four and the sum of all the SC scores along this route becomes
97. If we use our algorithm, we can find out the bold route. The number of turnings
decreased to one and the sum of all the SC scores along this route increases to 116.
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Algorithm 1: Safe and comprehensive route finding algorithm.
Input : Pedestrian network G = (N, E), road widths, a set L of landmarks, start

node s, destination node z, and time periods (daytime or nighttime)
Output
:

Safe and comprehensive route in G

1 begin
2 Extract edge landmarks for each edge e ∈ E from L according to Section 5.4.2;
3 Calculate SC score for each edge e ∈ E according to Section 5.4.3;
4 the edge cost c(e) for each edge e ∈ E;
5 Let i to be a current node; Initialize i ← s;
6 repeat
7 Find a neighbor node of i according to Section 5.4.4 and update the

current node i.
8 until the current node i becomes z;
9 end

Since the route obtained by our algorithm has many visible landmarks and uses the wide
roads, it must be comprehensive to pedestrians.

In Fig. 5.3(b), the SC score is given to every road in the nighttime. In the same
way, the dotted route shows the shortest route whereas our algorithm finds out the bold
route. The route obtained by our algorithm passes through many lighting roads, which
contributes to safe and comprehensive route to pedestrians, even in the nighttime.

5.5 Simulation Evaluation
Our proposed route finding algorithm is implemented in Java running on Nexus 7 with
Android 6.0 and compared it to three conventional route search algorithms including
very recent ones [4, 49, 80].

5.5.1 Setup

We select three typical test fields in Japan including the urban areas of Shinjuku and
Takadanobaba and the rural area of Nishitokyo. Urban areas usually have more land-
marks than rural areas. The total number of landmarks in the test fields of Shinjuku,
Takadanobaba, and Nishitokyo are 472, 237, and 137, respectively.

We assume just one walking distance and thus we set the distance of each route to
be around 1km from the starting node to the destination node. For every test field, we
perform random 50 trails with different starting nodes and destination nodes and compare
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Figure 5.5: Generated routes in Takadanobaba (urban area). (a) Shortest route. (b)
Route generated by [80]. (c) Route generated by [4]. (d) Route generated by our
daymode algorithm. (e) Route generated by [49]. (f) Route generated by our nightmode
algorithm.

the following cases.

Case 1 (Daytime): The four daytime route finding algorithms are compared:

1. Shortest route: We obtain the shortest route from a starting node to a
destination node.

2. The algorithm in [80]: We obtain a pedestrian route based on the risk
(accident rate).

3. The algorithm in [4]: We obtain a pedestrian route based on various safety
index for urban areas.

4. Ours (daytime): Assuming the daytime, we obtain a pedestrian route using
our proposed algorithm.
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Case 2 (Nighttime): The two nighttime route finding algorithms are compared:

1. The algorithm in [49]: Assuming the nighttime, we obtain a pedestrian
route based on the landmark visibility.

2. Ours (nighttime): Assuming the nighttime, we obtain a pedestrian route
using our proposed algorithm.

5.5.2 Comparison results

To illustrate the advantage of our proposed algorithm, three main evaluation criteria are
used to analyze. First, the route distance is the physical distance between the starting
node and the destination node for each route. Then TSC is the sum of all SC scores
along the obtained routes. Lastly, TC is the turning counts along with an entire route.

The results are shown in Tables 5.7–5.9, where the results obtained by the short-
est route algorithm is normalized to 1.00. Fig. 5.5 shows the route examples in the
Takadanobaba area. In these figures, the yellow line represents the outcome of the short-
est route. The purple line represents the outcome of [80]. The orange line shows the
outcome of [4]. The green line represents the outcome of [49]. The blue and red lines
show the outcomes of our daytime result and nighttime result, respectively.

According to Table 5.7, the distances obtained by [4, 49, 80] and our algorithm both
in the daytimes and nighttimes are longer than the shortest routes in every test field. This
demonstrates that by taking safety and comprehensiveness factors into consideration, the
walking distances will be increased definitely.

As listed in Table 5.8, all of the scores obtained by our algorithm are higher than those
obtained by the shortest route algorithm and the other three conventional route finding
algorithms. It indicates that our algorithm must be a positive impact on improving
the safe and comprehensive environment. Note that, as there are many landmarks in
Shinjuku and Takadanobaba areas, the differences in TSC values between daytimes and
nighttimes are not significant. On the other hand, in Nishitokyo area, where not so many
landmarks exist compared to Shinjuku or Takadanobaba, the TSC of values Nishitokyo
area become lower and the differences are relatively larger.

From Table 5.9, all of the turning counts obtained by the other three conventional
route finding algorithm are higher than those obtained by our algorithm. The results
suggest that our turning reduction algorithm in Section 5.4.4 performs better than the
route finding algorithms without considering the turning issue. That is to say, our
algorithm can help pedestrians have the comprehensive understanding of the route.
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Table 5.7: Normalized distance evaluation results of generated routes in three test fields.
Mode Algorithm Shinjuku Takadanobaba Nishitokyo

Daytime Shortest route 1.00 1.00 1.00
[80] 1.55 1.57 1.31
[4] 1.30 1.44 1.18

Ours (daytime) 1.21 1.25 1.15
Nighttime [49] 1.22 1.22 1.08

Ours (nighttime) 1.22 1.24 1.16

Table 5.8: Normalized TSC evaluation results of generated routes in three test fields.
Mode Algorithm Shinjuku Takadanobaba Nishitokyo

Daytime Shortest route 1.00 1.00 1.00
[80] 1.34 1.24 1.06
[4] 1.10 1.12 1.02

Ours (daytime) 1.44 1.39 1.26
Nighttime [49] 1.35 1.24 1.10

Ours (nighttime) 1.46 1.37 1.16

5.5.3 Discussion on turning count threshold

In order to further explain the effectiveness of the threshold π/3 introduced in Sec-
tion 5.4.4, we have conducted the additional experiments to observe the performances of
various thresholds. In the same way as in Section 5.5.2, we have compared the turning
counts generated by each algorithm in 20 routes in the three areas and we set the distance
of each route to be around 1km from the starting node to the destination node.

Table 5.10 summarizes the average number of turning counts over 20 routes. As
described in Section 5.4.4, the human has an eye range from 0 to π/3 for each eye [28]
and thus the turning threshold should not be larger than π/3. Hence we test the three
thresholds of π/3, π/4, and π/6. “∗” in Table 5.10 represents the cases that have the
same number of turning counts compared with the shortest route and “∗∗” represents
the cases that have the decreased number of turning counts compared with the shortest
route. Note that the results are slightly different from the ones in Table 5.9, since we
have randomly reselected the starting node and the destination node in the test areas for
the additional experiments.

From the results in Table 5.10, the turning counts of the three conventional algorithms
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Table 5.9: Normalized TC evaluation results of generated routes in three test fields.
Mode Algorithm Shinjuku Takadanobaba Nishitokyo

Daytime Shortest route 1.00 1.00 1.00
[80] 1.91 1.52 1.16
[4] 1.88 1.56 1.13

Ours (daytime) 0.94 0.97 0.94
Nighttime [49] 1.75 1.54 1.18

Ours (nighttime) 0.90 0.93 0.97

Table 5.10: Turning reduction evaluation results of generated routes in three test fields
(the threshold θ is changed in our algorithm).

Mode Algorithm Shinjuku Takadanobaba Nishitokyo
Daytime Shortest route 2.25 3.15 2.05

[80] 3.50 5.90 2.30
[4] 3.40 6.00 2.30

Ours (θ = π/3, daytime) 2.20∗∗ 3.10∗∗ 2.05∗

Ours (θ = π/4, daytime) 2.45 3.20 2.10
Ours (θ = π/6, daytime) 2.15∗∗ 3.20 2.05∗

Nighttime [49] 3.45 5.50 2.50
Ours (θ = π/3, nighttime) 2.25∗ 3.15∗ 2.05∗

Ours (θ = π/4, nighttime) 2.35 3.20 2.15
Ours (θ = π/6, nighttime) 2.20∗∗ 3.25 2.05∗

[4, 49, 80] are quite increased compared to the shortest route. It suggests that, the more
factors are taken into considerations for route-searching, the more complex the route will
be and thus it will generate redundant turnings.

For our proposed algorithm, when the threshold θ is set to be π/3, π/4, and π/6,
we cannot always guarantee that the turning counts could be decreased in all the cases
compared to the shortest route, but the average values of turning counts do not exceed
10% of the shortest routes.

For the differences between the three thresholds, the results indicate that, even though
the differences between the turning reduction among those three thresholds is not large,
θ = π/3 has the most stable performance as it is the only one that the turning counts are
not increased in all the three areas both in daytime and nighttime.
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Thus we can say that, when the threshold is set to be π/3, it outperforms the other
two thresholds and it is effective in eliminating redundant turning counts compared to
the conventional algorithms.

However, turning count reduction may depend on the area selection, and thus how to
efficiently and accurately reduce the turning counts in all circumstances must be one of
the future works.

5.6 Evaluation by Pedestrians

In this section, we evaluate real outdoor pedestrian routes generated by our algorithm.

5.6.1 Setup

In order to confirm the efficiency and effectiveness of our proposed algorithm, we have
conducted real outdoor evaluation experiments in Takadanobaba area using the routes
shown in Fig. 5.5. 20 testers participated in the experiment. The testers’ mean age was
around 25 (10 males and 10 females).

The experiments of the shortest route, [80], [4] and our daytime routes were carried
out at 15 pm while [49] and our nighttime routes were carried out at 19 pm. All
participants walked themselves followed by an assistant behind recording their walking
times. For each tester, he/she walked along all the six routes separately and then evaluated
the routes with five criteria below:

1. Distance (D)

2. Unit time cost (UTC)

3. Turning count (TC)

4. Safety environment (SE)

5. Comprehensive environment (CE)

D is the physical distance of a route; UTC represents the walking speed [m/s] [54]; TC
shows the total number of turning counts of a route; SE represents how safe the walking
environment is with a score from 1 (not safe) ∼ 5 (very safe) and CE represents the
understanding of the spatial relationship between roads with a score from 1 (very hard to
find the way) ∼ 5 (very easy to find the way). Once walking was completed, the testers
were required to answer the self-report on SE and CE .
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Table 5.11: Experimental results in real environments.
Distance UTC

Mode Algorithm [m] [m/s] TC SE CE
Daytime Shortest route 550m 1.14 4 4.00 4.25

[80] 980m 0.83 10 3.80 3.35
[4] 740m 0.95 10 3.90 3.00
Ours (daymode) 730m 1.12 3 4.20 4.40

Nighttime [49] 660m 1.16 7 4.00 4.10
Ours (nightmode) 610m 1.22 3 4.30 4.65

5.6.2 Comparison results

Table 5.11 summarizes the results. The routes generated by our algorithm have longer
distances compared to the shortest route because our algorithms take lightings and
landmarks into considerations.

In the daytime, the UTC value of our algorithm is only 2% slower than that of the
shortest route, even though the total distance of the proposed method was around 33%
longer. This is because more main roads with multiple visible landmarks can guide
the participants find their positions and directions more easily and unnecessary turning
points are detruncated in the proposed algorithm. Also, the UTC value of our algorithm
is higher than [80] and [4]. The algorithms in [4, 80] only take safety factors into
considerations while ignoring the usefulness of landmarks as route guidances. Too many
turns confuse and slow down testers during route findings.

In the nighttime, the UTC value of our algorithm is even larger than that of the
shortest route and [49]. This relies on the clear and lighting landmark guidances along
the roads that not only light up the sight view but also help pedestrians find the direction
to the goal more confidently. In conclusion, the results refer that long distances obtained
by our algorithm have a smaller negative effect on testers if enough and clear navigation
information such as salient landmarks are available.

From the viewpoint of TC, the shortest route, [80], [4] and [49] have more than four
turnings. Both the daytime and nighttime routes by our proposed algorithm have only
three turnings.

The testers’ average scores of SE and CE of our proposed algorithms are more than
four points which are higher than those of the shortest route and [49]. This is definitely
because our algorithm takes into account the five indicators.

Overall, our proposed algorithm has outperformed the previously proposed algo-
rithms in terms of improving safe and comprehensive walking environments.
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Figure 5.6: Questionnaire sheet on landmark recognition.

5.6.3 Discussion for Landmark Recognition

There is a possibility that we have a difference between the location of a landmark
registered on the map and its location visually recognized by the users in the real world.
In this section, we confirm to what extent users can recognize the edge landmarks
introduced in Section 5.4.2.

We have randomly selected ten edge landmarks generated by our algorithm in
Takadanobaba area. Then we have asked 20 testers to what extent they can connect
the landmarks in the real world with the landmarks on the map. The testers’ mean age
was around 25 (10 males and 10 females). The testers were required to fill a questionnaire
with Q1–Q3 in Fig. 5.6 and the results are listed in Table 5.12. In Table 5.12, “Q1”–”Q3”
show the answers that the a tester fills in. “False recognition” shows the counts that a
tester failed to recognize landmarks’ locations in the real world. “Successful recognition”
shows the counts that a tester successfully recognized landmarks’ locations in the real
world. (“False recognition” + “Successful recognition”) in Table 5.12 should always be
10 since we totally used ten edge landmarks.

From Table 5.12, we obtain an average score of Q1 with 4.55 points. The results of
Q1 suggest that testers could recognize the landmarks immediately. From the results of
Q2, there exist some coordinate differences between the location of a landmark registered
on the map and its location visually recognized in the real world. However, the results
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Table 5.12: The results of landmark recognition.
User ID Q1 Q2 Q3 False Successful

recognition recognition

User1 5 4 4 0 10
User2 5 4 5 1 9
User3 4 3 4 2 8
User4 4 4 4 1 9
User5 5 3 4 0 10
User6 5 4 4 0 10
User7 5 4 4 1 9
User8 5 4 5 1 9
User9 5 4 4 0 10
User10 5 4 5 0 10
User11 4 4 5 0 10
User12 5 5 5 0 10
User13 4 4 4 1 9
User14 4 4 4 0 10
User15 4 4 5 1 9
User16 4 4 4 2 8
User17 4 4 4 1 9
User18 4 4 4 0 10
User19 5 4 5 0 10
User20 5 4 5 1 9

Mean 4.55 3.95 4.4 0.6 9.4
SD 0.50 0.38 0.49 0.66 0.66

of Q3 indicate that the differences do not have a large negative impact on the landmark
recognition for testers.

Also, although there do exist gaps between the registered coordinates and actual
coordinates, as long as those landmarks are salient enough to catch, the issue can
be solved in the most cases. This is the main reason why we take the “visibility” into
consideration. Generally speaking, our proposed algorithm is robust but how to eliminate
the coordinate discrepancies will be one of our significant future works.



5.7. CONCLUSION 87

5.7 Conclusion
This chapter proposes a route finding algorithm using landmark and lighting indicators
to provide route guidance that enhances the safety and comprehensiveness levels during
walking. Simulation and real outdoor experiments indicate that our proposed algorithm
is effective enough in improving safety and comprehensiveness.

In the future, our proposed algorithm can be further improved using other indicators,
such as gender, weather, and temperature.



Chapter 6

A Personalized Landmark and Route
Recommendation Algorithm for
One-Day Trip 1

6.1 Introduction

One-day travel has become one of the most important ways of entertainment and several
travel recommendation systems have been developed [32, 37, 83].

In this chapter, we propose a new personalized travel route recommendation algo-
rithm. Firstly, we evaluate a given area to select the top-6 interesting regions based on
personalized preferences. Second, we build a travel map based on geographical and time
relations among landmarks. Finally, a travel route planning algorithm is proposed to
recommend the best travel route. Experimental results show that our proposed algorithm
outperforms previous algorithms in precision in landmark recommendation and travel
time planning.

This chapter belongs to Sequential Travel Route Generation in Fig. 1.1

6.2 Related works

Many existing studies recommend interesting landmarks throughout social media [67,
77,86], they provide a user with a list of popular landmarks based on users’ preferences.
However, it is significant to provide a user with a completed travel route rather than a list
of individual landmarks. Xu et al. [77] focus on generating travel routes for a sequence of
landmarks based on the route distance and landmark attractiveness. But there is still an

1Technical contents in this chapter have been presented in the publications ⟨7⟩ and ⟨10⟩.
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issue that a user may arrive at a landmark beyond the business time. As the satisfaction
of visiting landmarks is highly related to the arrival time [29]. In other words, a good
travel route should guarantee that a user can visit the landmark during its business time,
and meanwhile, the total visiting time should not exceed the user’s time limitation.

Other studies take time limitations into considerations [22, 71]. Gionis et al. [22]
focuses on the order of types of landmarks visited, and distances between any two
landmarks, while the opening time is ignored. Vansteenwegen et al. [71] provides
personalized travel routes with considerations of users’ preferences on landmark types,
opening time and break time. However, only art-related landmark types are considered
which are not suitable for landmarks such as stadiums or cinemas. Also, transpiration
ways (train, taxi and bus etc.) between landmarks are not considered which is not suitable
if two landmarks are far way from each other.

Therefore, in this paper, we define 8 landmark types to ensure that every landmark
can be described properly. Also, the shortest transportation time and the most convenient
ways between any two landmarks are provided in order to help user move smoothly.

6.3 Proposed Route Recommendation Algorithm

6.3.1 Landmark Categorization and User Profile

We set user’s current position S as starting point and visiting area is set to be a square
around S with the width of 10 km and height of 10 km. Then we establish a landmark
database with all landmarks in the area. Let L be a set of landmarks in this area. LT
is a set of eight landmark types, which are History, Nature, Entertainment, Art, Sport,
Food and Drink, Shopping, and Night Life. Table 6.1 lists 8 example landmarks’ type.
Every landmark ℓ ∈ L is characterized by its type(s) t, its name label and its coordinates.
A landmark can have more than one types. For example, MeijiJingu shrine has two
landmark types of History and Nature.

After collecting nearby landmark information, then we assign a weight to a landmark
type. A user creates a user profile with his/her interest weights w(t) for every landmark
type t ∈ LT by the five-point scale, with an explicit definition of each possible weight:
very dislike (1), dislike (2), fair (3), like (4), and very like (5).

6.3.2 Region Evaluation

We divide the given 10 km×10 km area into 100 small regions with the width of 1 km
and height of 1 km (see Fig. 6.1(a)). We assume that landmarks are distributed evenly
in the target area and every small region r has one region landmark p(r) in most of the
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Table 6.1: Landmark type in Shinjuku area.

Landmark type Landmarks

History Meiji Jingu, Shinjuku Gyoen, Imperial Palace, State Guest House
Nature Meiji Jingu, Shinjuku Gyoen, Imperial Palace

Entertainment Cinema I, Tokyo Tower, Tokyo Metropolitan City Hall, Yoyogi Stadium
Art State Guest House, Museum of Modern Japanese Literature

Sport Yoyogi Stadium
Food+Drink Department Store I-III
Shopping Department Store I-III, Clothing I-II
Night Life Cinema I

Table 6.2: Region landmark weight.

Region ri r1 r2 r3 r4 r5 r6

Weight w(tp(r)) 4 3 4 5 5 4

cases. Let tp(r) be the landmark type of p(r). If p(r) has more than one landmark types,
we select the one with the largest weight as tp(r).

With the user’s preferences, the algorithm matches the personal preferences in each
landmark. Then we can evaluate each region with a possible visit score. Let R be a set
of such small regions. For a region r ∈ R, we assign it with a visit score visit(r):

visit(r) = w(tp(r)) × α (6.1)

α =

{
1 if w(tp(r)) = 3, 4, 5
0 otherwise

(6.2)

where w(tp(r)) is a weight of the landmark type given by the user and α is a constant
given above. If r does not include any landmark inside, visit(r) = 0.

For a one-day trip, as duration time over each landmark is around 1–2 hours, we
select 6 regions with the 1st to 6th highest visit scores given by Eqn. (6.1) as candidate
regions.

6.3.3 Travel Map
As described in Section 1, it is important to schedule the visiting time so that users can
visit each region at the proper time. Thus, to further consider the open-closing time and
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Figure 6.1: An example of the region evaluation.

transition relationships among candidate regions, a travel map among candidate regions
is built as in Fig. 6.3, where, for each region r , OT(r) is open time, CT(r) is closing time
and DUT(r) is duration time of its region landmark p(r).

We define that a transition between any two candidate regions ri and r j is valid if and
only if CT(ri) ≥ CT(r j). We record them as a pair of (head, tail) = (ri, r j). For example,
for the regions r2 and r3, as r2 has early closing time than r3, r2 should be visited first
and then we consider (head, tail) = (r2, r3) and set a directed edge from r2 to r3 in the
travel map.

Fig. 6.3 shows an example of a travel map with user’s current location S and 6
candidate regions. The transition distance dis(ri, r j) between any two candidate regions
ri and r j is the shortest distance between them. If the dis(ri, r j) is longer than 1km, then
the moving time move(ri, r j) is the time cost by bus or trains. Otherwise, the moving time
move(ri, r j) is the time cost on foot. In instance, for the regions r1 and r2, the moving
time move(r1, r2) is 0.4 hours. Every direct edge in the travel map has its associated
moving time as in Fig. 6.3.
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Figure 6.2: An example of travel map.

6.3.4 Travel map construction

As the challenge described in Section 6.1, it is important to schedule the visiting time so
that users can visit each landmark at the proper time. Thus, we need to decide visiting
orders among the candidate landmarks obtained by the algorithm in Section 6.3.2. A
route searching algorithm is proposed for travel route generation.

Firstly, we build a travel map as shown in Fig. 6.3. We denote a travel map as a
directed graph G = (V, E), where V is the set of the staring point s and 6 candidate
landmarks, i.e., V = {s, l1, ..., l6}. E is the set of all valid trajectories among V . Every
landmark l ∈ V has its open time ot(l), closing time ct(l) and duration time dut(l).

Pre-processing: Every edge e = (x, y) ∈ E has a direction. If the closing time of
the landmark x is earlier than that of y, i.e., ct(x) ≤ ct(y), we set a directed edge (x, y)
in G. This means that we have to visit the landmark x before the landmark y so that we
can visit as many landmarks as possible within the limited time.

Transportation determination: The distance dis(x, y) associated with every edge
e = (x, y) ∈ E is the shortest distance between two vertices x and y. If dis(x, y) is longer
than 1km, then the moving time Tmove(x,y) is the time cost by bus or train. Otherwise, the
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moving time Tmove(x,y) is the time cost on foot. In instance, for l1 and l2 in Fig. 6.3, the
moving time Tmove(l1,l2) is 0.4 hours. Every edge e = (x, y) ∈ E is associated with the
moving time Tmove(x,y) between its two vertices.

6.3.5 Travel route recommendation

We regard the travel route recommendation procedure as a problem of finding all feasible
routes in G that fits the user’s travel query. The user u’s travel query is query(u) =
{s,Ts,Te, q}, where s is the starting point, Ts is the starting time, Te is the ending time
and q is the least number of landmarks that the user wants to visit in a day.

Travel route generation: We use a route planning algorithm based on depth-first
search and enumerate all the possible routes passing through all or part of the landmarks
in G. We consider s as the starting point, and then, we explore as far as possible before
backtracking. Meanwhile, the number of landmarks in a route should be equal to or
larger than q. After that, we add s as the ending point of each route to construct a
completed travel route. Let T R′ be a temporal set of all such generated routes.

Travel route ranking: Then, we check if the enumerated route tr ∈ T R′ is feasible or
not. When the user can visit all the landmarks in tr at their opening time in the order of
tr staying every landmark during their duration time and come back to the starting point,
the route tr is considered to be feasible. Let T R be a set of such feasible routes.

Finally, we introduce the Fin score to evaluate the attractiveness of a route tr by
Equ. (6.3).

Fin(tr) =
∑
l∈tr

Su,l (6.3)

Fin(tr) shows the sum of satisfaction values Su,l’s of all landmarks l’s included in a travel
route tr . Then the route tr ∈ T R with the highest Fin score is recommended.

In a summary, our travel route recommendation algorithm for a user u is described
as follows:

Step R1: Obtain the top-6 landmarks using the algorithm described in Section 2.2.

Step R2: Construct the travel map as a directed graph described in Section 2.3 and
Section 2.4.

Step R3: Enumerate all the feasible routes and store them into T R.

Step R4: Evaluate the Fin score in every route in T R and recommend the highest one
to the user u.



94 CHAPTER 6. LANDMARK AND ROUTE RECOMMENDATION

Table 6.3: Evaluation result on landmark recommendation precision..
Algorithm Ours Random Popular-first
Precision 100% 10% 70%

6.4 Experimental Results

6.4.1 Experimental settings

The algorithm is coded in Java and we have examined one-day-trip cases with 15 different
user profiles. We have used the landmark data in [84]. We set the experimental area to be
Shinjuku area with the height of 10 km and the width of 10 km, where the starting point
S is at the Shinjuku railway station. Our goal is to offer a user a travel route with visiting
the top-k landmarks. In addition, every candidate region includes only one interesting
landmark (its region landmark p(r) in this experiment and these region landmarks are
recommended landmarks that a user will visit.

6.4.2 Landmark type recommendation performance

In this subsection, we first recommend top-6 landmarks for 15 users in each city respec-
tively based on their user profiles. Then, we evaluate if recommended landmarks fit
users’ type weights or not.

The number of true positives (TP) is defined by how many types of recommended
top-6 landmarks that successfully fit the user’s type weights (w(t) ≥ 3). The number of
false positives (FP) is defined by how many types of the recommended top-6 landmarks
that fail to fit the user’s type weights (w(t) < 3). Precision can be obtained by:

Precision = (TP)/(TP + FP). (6.4)

Table. 6.3 shows the precision of our proposed algorithm, the Random algorithm,
and the Popular-first algorithm.

• Random algorithm randomly recommends 6 landmarks in each city.

• Popular-first algorithm always recommends top-6 ranked landmarks in each city
on TripAdvisor.

According to Table. 6.3, it is shown that Random algorithm obtained the worst
performances. It can be explained that Random algorithm has no concerns about user
preferences rather than randomly choose a set of 6 landmarks. For Popular-first algorithm,
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Table 6.4: Comparison result on average Fin score and time planning.
Algorithm Ours Xu [77]

Avg. Fin score 1.44 1.41
Avg. STPR 0.87 0.67

it recommends the top-6 popular landmarks rated by a group of users on TripAdvisor,
and the results show that this algorithm improves the precision around 10% compared
with the random algorithm. However, the recommended landmarks by the popular-
first algorithm are only based on the users’ general preferences. In other words, the
popular-first algorithm cannot deal with personalized travel preferences. This explains
why our proposed algorithm achieves 20% improvement on precision compared with the
popular-first algorithm.

6.4.3 Route travel time optimization

Next, we evaluated whether the route recommendation meets users’ all requirements with
15 user profiles. We have compared our proposed algorithm with the algorithm in [77],
which does not take the visiting time order into consideration.

Two goodness functions are used: (1) Fin score based on Eqn. (6.3) and (2) success
ratio that user can visit all the landmarks within business hours. (2) is the ratio of the
cases that a user successfully visits all the landmarks over all the 15 cases. Table 6.4
shows the results of comparisons, where average successful time planning ratio is denoted
as STPR.

In the second line in Table 6.4, for average Fin score, it suggests that our proposed
algorithm has an even or better performance than [77], while [77] has a poor performance
on scheduling visiting time as it does not consider occasions about exceeding business
hours.

Also, according to the third line in Table 6.4, although we did not ensure a perfect
travel time schedule every time, still our proposed algorithm is better than [77] with
20% improvement. Generally speaking, our proposed algorithm is effective in providing
personalized travel recommendations with a proper time schedule.

Generally speaking, our proposed algorithm is effective in the service of personalized
travel recommendation.
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Figure 6.3: An example constructed travel map.

6.4.4 Example of Travel Route Recommendation in Shinjuku Area

Fig. 6.3 shows a recommendation example when a user specifies a one day trip in Shinjuku
area, requiring a route with visiting more than 3 landmarks, starting the trip at 10:00 am
and finishing the trip before 21:00 pm. We provide the user with a route which visits 5
landmarks, starting at 10:00 am and finishing at 20:20 pm.

The recommended travel route is shown as follows:

S(User) (10:00)→
Department Store I (10:10–12:10)→
Clothing Shop I (12:30–13:30)→
Department Store II (13:40–15:40)→
Clothing Shop II (15:50–17:50)→
Department Store III (18:10–20:10)→
S(User) (20:20)
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6.5 Conclusion
In this chapter, we have proposed an algorithm recommending personalized travel route.
Experimental results indicate that our proposed algorithm retrieves interesting travel
routes for users and outperforms conventional algorithms effectively.

In the future, we will perform more field tests and focus on incorporating additional
constraints such as weather and healthy conditions.



Chapter 7

Conclusion

This dissertation aimed to provide users with not only personalized landmark recom-
mendations but also realistic travel routes under different constraints.

In Chapter 2, Chapter 3 and Chapter 4, we focus on landmark recommendation with
personalized preferences using a great deal of online travel comments. In Chapter 2, a
personalized landmark recommendation algorithm is proposed which is aiming at explor-
ing new sights into the determinants of personalized landmark satisfaction prediction.
The proposed algorithm considers features of landmark type preference, data-source, and
language, and selects the most suitable based on satisfaction prediction through the three
features. Experimental results show that our proposed algorithm has better performances
than previous studies from the viewpoints of landmark recommendation and landmark
satisfaction prediction. In Chapter 3, an activity-related comment extraction algorithm
is proposed based on the linguistic characteristics of Japanese. The proposed algorithm
can assistant users to have a better understanding of what they can experience and enjoy
while visiting landmarks selected by the algorithm in Chapter 2. According to user
feedbacks upon two case studies, top-5 comments extracted do provide rich landmark
activity information. In Chapter 4, a seasonal landmark recommendation algorithm
is proposed with consideration of language-specific factors. The algorithm concludes
418,788 user comments from TripAdvisor and analyzes the differences in travel distribu-
tion under the impacts of year and language factors. Based on that analysis, we predict
future travel distribution for each language group. Then potential peak and off seasons of
each landmark are identified and representative seasonal activities are extracted through
comment contents for peak and off-seasons, respectively. According to the experimental
results in the three cities, it suggests that the proposed algorithm is more accurate in
terms of peak season detection and seasonal activity prediction than previous studies.

In Chapter 5 and Chapter 6, we focus on the generation of travel routes. In
Chapter 5, a safe and comprehensive travel route generation algorithm is proposed. The
algorithm recommend routes based on five factors (1) lighting conditions, (2) landmark
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visibility, (3) landmark effectiveness, (4) turning counts along a route, and (5) road
widths. We conduct experiments both in rural and urban areas in the day and night
periods respectively, and simulated results and user feedbacks both confirm that obtains
better performances compared to several existing algorithms in terms of better safety and
comprehensiveness with higher scores. In Chapter 6, a one-travel route recommendation
algorithm is proposed. The algorithm recommends top-6 landmarks based on users’ type
preferences, and generate a realistic travel route for a one-day visit under the constraints
of the number of landmarks to visits and travel time consumptions. Experimental results
confirm the advantages of our proposed algorithm beyond previous studies from the
viewpoints of landmark recommendation precision and travel time optimization.

In the future, we will be dedicated to the development of personalized travel route
recommendation system with considerations of other indicators, such as gender, weather,
and temperature. Also, we will be continuing to deepen our works and intend our scope
to other language-specific travel comments such as Korean and Spanish.



Acknowledgment

Throughout the writing of this dissertation I have received a great deal of support
and assistance. I would like to to firstly give my deepest and most heartfelt thanks
to Prof. Nozomu Togawa (戸川望教授) at the Department of Computer Science and
Communications Engineering of Waseda University for his all supports on my research
work for almost seven years. I could not have imagined having a better advisor and
mentor for my research.

I’m genuinely grateful to Prof. Masao Yanagisawa (柳澤政生教授) at the Department
of Electronic and Physical Systems of Waseda University, Prof. Hayato Yamana (山名早
人教授) at the Department of Computer Science and Communications Engineering of
Waseda University, for their strong support and advice.

I would also like to thank Prof. Youhua Shi (史又華教授) at the Department of
Electronic and Physical Systems of Waseda University for his valuable guidance on my
research work. I have also received technical support from Dr. Kazushi Kawamura (川
村一志講師) at Waseda University, Dr. Masashi Tawada (多和田雅師講師) at Waseda
University to conduct this research.

My sincere thanks also goes to Ms. Shuko Watanabe (渡部周子氏) and all the students
in the Togawa Laboratory, the Yanagisawa Laboratory and the Shi Laboratory for their
kindness.

I have had a wonderful time in the last six years. with my colleagues especially
Mr. Masaru Oya (大屋優氏)at Waseda University, Mr. Kento Hasegawa (長谷川健人氏)at
Waseda University, Mr. Oku Daisuke (於久太祐氏) at Waseda University, Mr. Ishikawa
Ryota (石川遼太氏)　 at Waseda University. In particular, I am grateful to Mr. Terutaka
Orihara (折原照崇氏) at Hitachi, Ltd. and Ms. Huiqian Jiang (蒋慧倩氏) at NEC
Corporation for enlightening me the first glance of research.

In addition, I would like to thank family and friends for their continuous support and
love.

100



References

[1] 4travel, http://4travel.jp.

[2] D. Ahn, H. Park, and B. Yoo, “Which group do you want to travel with? A study
of rating differences among groups in online travel reviews,” Electronic Commerce
Research and Applications, vol. 25, pp. 105–114, 2017.

[3] M. Amoretti, L. Belli, and F. Zanichelli, “UTravel: Smart mobility with a novel
user profiling and recommendation approach,” Pervasive and Mobile Computing,
vol. 38, pp. 474–489, 2017.

[4] Z. Asadi-Shekari, M. Moeinaddini, and M. Shah, “Pedestrian safety index for
evaluating street facilities in urban areas,” Safety Science, vol. 74, pp. 1–14, 2015.

[5] R. Baayen, Word frequency distributions. Kluwer Academic Pulishers, 2001.

[6] S. Banerjee and A. Chua, “In search of patterns among travellers’ hotel ratings in
TripAdvisor,” Tourism Management, vol. 53, pp. 125–131, 2016.

[7] S. Bao, T. Nitta, D. Shindou, M. Yanagisawa, and N. Togawa, “A landmark-based
route recommendation method for pedestrian walking strategies,” in Proc. of the
2015 IEEE Global Conference on Consumer Electronics, pp. 672–673, 2015.

[8] C. Boom, S. Canneyt, T. Demeester, and B. Dhoedt, “Representation learning for
very short texts using weighted word embedding aggregation,” Pattern Recognition
Letters, vol. 80, pp. 150–156, 2016.

[9] D. Boyd, S. Golder, and G. Lotan, “Tweet, tweet, retweet: Conversational aspects
of retweeting on twitter,” in Proc. of the 2010 IEEE International Conference on
Hawaii International Conference on System Sciences, pp. 1–10, 2010.

[10] J. Bullough, M. Rea, and Y. Zhou, “Analysis of visual performance benefits
from roadway lighting,” Report prepared for the Transportation Research Board
on NCHRP project 5-19, 2009. http://onlinepubs.trb.org/onlinepubs/nchrp/docs/
nchrp05-19_visibilitybenefits.pdf

101



102 REFERENCES

[11] Z. Cheng, J. Caverlee, and K. Lee, “You are where you tweet: A content-based
approach to geo-locating twitter users,” in Proc. of the 2010 ACM International
Conference on Information and Knowledge Management, pp. 759–768, 2010.

[12] J. Cranshaw, R. Schwartz, J. I. Hong, and N. Sadeh, “The livehoods project:
utilizing social media to understand the dynamics of a city,” in Proc. of the 2012
AAAI International Conference on Weblogs and Social Media, 2012.

[13] Ctrip, http://www.ctrip.com.

[14] Y. Cui, C. Meng, Q. He, and J. Gao, “Forecasting current and next trip purpose with
social media data and Google Places,” Transportation Research Part C: Emerging
Technologies, vol. 97, pp. 159–174, 2018.

[15] R. Darlington and A. Hayes, Regression Analysis and Linear Models Concepts,
Applications, and Implementation. GUILFORD PRESS, 2016.

[16] S. Dolnicar and B. Grun, “Assessing analytical robustness in cross-cultural compar-
ison,” International Journal of Culture, Tourism and Hospitality Research, vol. 1,
pp. 140–160, 2009.

[17] G. Fang, S. Kamer, and S. Fujita, “A Japanese Tourism Recommender System
with Automatic Generation of Seasonal Feature Vectors,” International Journal of
Advanced Computer Science and Applications, vol. 8, pp. 347–354, 2017.

[18] S. Farrall, J. Bannister, J. Ditton, and E. Gilchrist, “Social psychology and the fear
of crime,” British Journal of Criminology, vol. 40, pp. 399–414, 2000.

[19] E. Farran, Y. Courbois, J. Herwegen, and M. Blades, “How useful are landmarks
when learning a route in a virtual environment?” Journal of Experimental Child
Psychology, vol. 111, pp. 571–586, 2012.

[20] R. Filieri, S. Alguezaui, and F. McLeay, “Why do travelers trust TripAdvisor?
Antecedents of trust towards consumer-generated media and its influence on rec-
ommendation adoption and word of mouth,” Tourism Management, vol. 51, pp.
174–185, 2015.

[21] E. Frees, R. Derrig, and G. Meyers, Predictive Modeling Applications in Actuarial
Science: Volume 1, Predictive Modeling Techniques. Cambridge University Press,
2014.

[22] A. Gionis, T. Lappas, K. Pelechrinis, and E. Terzi, “Customized tour recommenda-
tions in urban areas,” in Proc. of the 2014 IEEE International Conference on Web
Search and Data Mining, pp. 313–322, 2014.



REFERENCES 103

[23] Z. Guo, “Does the pedestrian environment affect the utility of walking? a case of
path choice in downtown boston,” Transportation Research Part D: Transport and
Environment, vol. 14, pp. 343–352, 2009.

[24] A. Haans and Y. A. Kort, “Light distribution in dynamic street lighting: Two
experimental studies on its effects on perceived safety, prospect, concealment, and
escape,” Journal of Environmental Psychology, vol. 32, pp. 342–352, 2012.

[25] Q. Hao, R. Cai, C. Wang, R. Xiao, J. Yang, Y. Pang, and L. Zhang, “Equip tourists
with knowledge mined from travelogues,” in Proc. of the 2010 ACM International
Conference on World Wide Web, pp. 401–410, 2010.

[26] S. Hasan and S. Ukkusuri, “Urban activity pattern classification using topic mod-
els from online geo-location data,” Transportation Research Part C: Emerging
Technologie, vol. 44, pp. 363–38, 2014.

[27] T. Hoang and J. Mothea, “Location extraction from tweets,” Information Processing
and Management, vol. 54, pp. 129–144, 2018.

[28] I. Howard and B. Rogers, The visual fields. New York: Oxford University Press,
1995.

[29] H. Hsieh and C. Li, “Mining and planning time-aware routes from check-in data,”
in Proc.of the 2014 IEEE International Conference on Information and Knowledge
Management, pp. 481–490, 2014.

[30] W. Hsu, Y. Wen, L. Wei, and W. Pen, “Skyline Travel Routes: Exploring Skyline
for Trip Planning,” in Proc. of the 2014 IEEE International Conference on Mobile
Data Management, pp. 31–36, 2014.

[31] Jaran, https://www.jaran.jp.

[32] K. Jiang, H. Yin, P. Wang, and N. Yu, “Learning from contextual information of
geo-tagged web photos to rank personalized tourism attractions,” Neurocomputing,
vol. 119, no. 7, pp. 17–25, 2013.

[33] S. Jiang and X. Qian, “Personalized travel sequence recommendation on multi-
source big social media,” IEEE Transactions on Big Data, vol. 2, no. 1, pp. 43–56,
2016.

[34] N. Jindal and B. Liu, “Mining comparative sentences and relations,” in Proc. of the
2006 AAAI National Conference on Artificial Intelligence, pp. 1331–1336, 2006.



104 REFERENCES

[35] S. Khopkar and A. Nikolaev, “Predicting long-term product ratings based on few
early ratings and user base analysis,” Electronic Commerce Research and Applica-
tions, vol. 21, pp. 38–49, 2017.

[36] K. Kim, O. Park, S. Yun, and H. Yun, “What makes tourists feel negatively about
tourism destinations? Application of hybrid text mining methodology to smart
destination management,” Technological Forecasting and Social Change, vol. 123,
pp. 362–369, 2017.

[37] Q. Le and D. Pishva, “An innovative tour recommendation system for tourists in
japan.” in Proc. of the 2015 IEEE International Conference on Advanced Commu-
nications Technology, pp. 489–494, 2015.

[38] G. Li, Y. Wang, M. Li, and Z. Wu, “Similarity match in time series streams
under dDynamic time warping distance,” in Proc. of the 2008 IEEE International
Conference on Computer Science and Software Engineering, pp. 399–402, 2008.

[39] D. Lian and X. Xie, “Collaborative activity recognition via check-in history,” in
Proc. of the 2011 ACM SIGSPATIAL International Workshop on Location-Based
Social Networks, 2011.

[40] C. Liang and W. Bi, “Seasonal variation analysis and SVR forecast of tourist flows
during the year: A case study of Huangshan mountain,” in Proc. of the 2017 IEEE
International Conference on Big Data Analysis, pp. 921–927, 2017.

[41] H. Liu, L. Wei, Y. Zheng, M. Schneider, and W. Peng, “Route discovery from
mining uncertain trajectories,” in Proc. of the 2011 IEEE International Conference
on Data Mining Workshops, pp. 1239–1242, 2011.

[42] I. Lourentzou, A. Morales, and C. Zhai, “Text-based geolocation prediction of
social media users with neural networks,” in Proc. of the 2017 IEEE International
Conference on Big Data, pp. 696–705, 2010.

[43] X. Lu, C. Wang, J. Yang, y. Pang, and L. Zhang, “Photo2trip: generating travel
routes from geotagged photos for trip planning,” in Proc. of the 2011 ACM Inter-
national Conference on Multimedia, pp. 143–152, 2011.

[44] W. Ma, D. Liao, Y. Liu, and H. Lo, “Optimization of pedestrian phase patterns and
signal timings for isolated intersection,” Transportation Research Part C: Emerging
Technologies, vol. 58, pp. 502–514, 2015.

[45] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information Retrieval.
Cambridge University Press, 2008.



REFERENCES 105

[46] H. Millward, S. Jamie, and D. Scott, “Active-transport walking behavior: destina-
tions, durations, distances,” Journal of Transport Geography, vol. 28, pp. 101–110,
2013.

[47] H. Miura, S. Takeshima, N. Matsuda, and H. Taki, “A study on navigation system
for pedestrians based on street lightings,” Human-Computer Interaction, vol. 6883,
pp. 49–55, 2011.

[48] M. M̈uller, Information retrieval for music and motion. Springer, 2007.

[49] K. Nakazawa, N. Kita, K. Takagi, T. Inoue, H. Shigeno, and K. Okada, “A dynamic
map based on landmark’s visibility,” IPSJ Journal, vol. 49, no. 1, pp. 233–241,
2008.

[50] Y. Ni, M. Wan, J. Sun, and K. Li, “Evaluation of pedestrian safety at intersections:
A theoretical framework based on pedestrian-vehicle interaction patterns,” Accident
Analysis and Prevention, vol. 96, pp. 118–129, 2016.

[51] NIST, NIST/SEMATECH e-Handbook of Statistical Methods: Single Exponential
Smoothing. U.S. Department of Commerce, 1957.

[52] I. Önder, “Classifying multi-destination trips in Austria with big data,” Tourism
Management Perspectives, vol. 21, pp. 54–58, 2017.

[53] R. Pain, R. MacFarlane, K. Turner, and S. . Gill, “When, where, if and but. qualifying
gis and the effect of street lighting on crime and fear,” Environment and Planning
A, vol. 38, pp. 2055–2074, 2006.

[54] M. Panou, K.Touliou, E. Bekiari, and E. Gaitanidou, “Pedestrian and multimodal
route guidance adaptation for elderly citizens,” in Proc. of the 2010 IEEE IST-Africa,
pp. 1–7, 2010.

[55] E. Pantano, C. Priporas, and N. Stylos, “You will like it ! using open data to
predict tourists ’ response to a tourist attraction,” Tourism Management, vol. 60,
pp. 430–438, 2017.

[56] S. Park and D. Kim, “Assessing language discrepancies between travelers and
online travel recommendation systems: Application of the Jaccard distance score
to web data mining,” Technological Forecasting and Social Change, vol. 123, pp.
381–388, 2017.

[57] G. Ramchand, The Oxford Handbook of Linguistic Interfaces (Oxford handbooks
in Linguistics). Oxford University Press, 2007.



106 REFERENCES

[58] T. H. Rashidi, A. Abbasi, M. Maghrebi, S. Hasan, and T. S. Waller, “Exploring the
capacity of social media data for modelling travel behaviour: Opportunities and
challenges,” Transportation Research Part C: Emerging Technologies, vol. 75, pp.
197–211, 2017.

[59] R.Filieri, “ What makes an online consumer review trustworthy?” Annals of
Tourism Research, vol. 58, pp. 46–64, 2016.

[60] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems Handbook.
Springer-Verlag, 2011.

[61] RMeCab, https://code.google.com/p/mecab/downloads/list.

[62] H. Shen, G. Liu, H. Wang, and N. Vithlani, “SocialQ&A: An online social network
based question and answer system,” IEEE Transactions on Big Data, vol. 3, pp.
91–106, 2017.

[63] R. Shumway and D. Stoffer, Time series analysis and its applications: With R
examples. Springer, 2006.

[64] A. Siegel and S. White, “The development of spatial representations of large-scale
environments,” Advances in Child Development and Behavior, vol. 10, pp. 9–55,
1975.

[65] H. Spiers and E. Maguire, “The dynamic nature of cognition during wayfinding,”
Journal of Environmental Psychology, vol. 28, no. 3, pp. 232–249, 2008.

[66] V. Sugumaran, Recent Advances in Intelligent Technologies and Information Sys-
tems. IGI GLOBAL, 2015.

[67] C. Sun, “Tour recommendations by mining photo sharing social media,” Decision
Support Systems, vol. 101, pp. 28–39, 2017.

[68] T. Tatenami, D. Matsushita, and J. Munemo, “Transition of level of anxiety in
wayfinding with pedestrian navigation system on mobile telephone,” Journal of
Architecture and Planning, vol. 608, pp. 59–64, 2006.

[69] TripAdvisor, https://www.tripadvisor.jp.

[70] P. Vansteenwegan, W. Souffriau, G. Berghe, and D. Oudheusden, “The City Trip
Planner: An expert system for tourists,” Expert Systems with Applications, vol. 38,
pp. 6540–6546, 2011.



REFERENCES 107

[71] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. VanOudheusden, “The City
Trip Planner: An expert system for tourists,” Expert Systems with Applications,
vol. 38, no. 6, pp. 6540–6546, 2011.

[72] D. Weaver, A. Kwek, and Y. Wang, “Cultural connectedness and visitor segmen-
tation in diaspora Chinese tourism,” Tourism Management, vol. 63, pp. 302–314,
2017.

[73] L. Wei, Y. Zheng, and W. Peng, “Constructing popular routes from uncertain
trajectories,” in Proc. of the 2012 ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 195–203, 2012.

[74] L. Wen, C. Rissel, and H. Fu, “The effect of active transport, transport systems, and
urban design on population health,” Journal of Environmental and Public Health,
vol. 13, pp. 1–13, 2013.

[75] Y. Wen, K. Cho, W. Peng, J. Yeo, and S. Hwang, “KSTR: Keyword-aware skyline
travel route recommendation,” in Proc. of the 2015 IEEE International Conference
on Data Mining, pp. 449–458, 2015.

[76] X. Xu, W. Sasaki, C. Yu, and Y. Takama, “Proposal of collecting lighting situation
of roads at night for recommendation of safety walking route using smartphone,”
in Proc. of the 2014 IEEE International Symposium on System Integration, pp.
414–418, 2014.

[77] Y. Xu, T. Hu, and Y. Li, “A travel route recommendation algorithm with per-
sonal preference,” in Proc. of the 2016 IEEE International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery, pp. 390–396, 2016.

[78] T. Yamasaki, A. Gallagher, and T. Chen, “Geotag-based travel route recommen-
dation featuring seasonal and temporal popularity,” in Proc. of the 2013 IEEE
International Conference on Information, Communications and Signal Processing,
pp. 1–4, 2013.

[79] Y. Yang, “Interactions between psychological and environmental characteristics and
their impacts on walking,” Journal of Transport and Health, vol. 2, pp. 195–198,
2015.

[80] K. Yew, T. H, and S. Paua, “Safe journey: A pedestrian map using safety annotation
for route determination,” in Proc. of the 2010 IEEE International Symposium on
Information Technology, pp. 15–17, 2010.



108 REFERENCES

[81] Y. Ying, L. Chen, and G. Chen, “A temporal-aware POI recommendation system
using context-aware tensor decomposition and weighted HITS,” Neurocomputing,
vol. 242, pp. 474–489, 2017.

[82] C. Yu, W. Ma, K. Han, and X. Yanga, “Optimization of vehicle and pedestrian
signals at isolated intersections,” Transportation Research Part B: Methodological,
vol. 98, pp. 135–153, 2017.

[83] Z. Yu, H. Xu, Z. Yang, and B. Guo, “Personalized travel package with multi-
point-of-interest recommendation based on crowdsourced user footprints,” IEEE
Transactions on Human-Machine Systems, vol. 46, pp. 151–159, 2016.

[84] ZENRIN, http://www.zenrin.co.jp/.

[85] V. Zheng, Y. Zheng, X. Xie, and Q. Yang, “Collaborative location and 2010 ACM
International Conference on World Wide Web, pp. 1029–1038, 2010.

[86] X. Zhou, M. Wang, and D. Li, “From stay to play-A travel planning tool based
on crowdsourcing user-generated contents,” Applied Geography, vol. 78, pp. 1–11,
2017.

[87] 総務省, “Building standards act. 1950,” https://elaws.e-gov.go.jp/search/
elawsSearch/elaws_search/lsg0100/.



List of Publications

論文（学術誌原著論文）

⟨1⟩ ⃝ S. Bao, T. Nitta, M. Yanagisawa, and N. Togawa, “A Safe and Comprehensive
Route Finding Algorithm for Pedestrians Based on Lighting and Landmark Condi-
tions,” IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E100-A, no. 11, pp. 2439–2450, Nov. 2017.

国際会議

⟨2⟩ ⃝ S. Bao, M. Yanagisawa, and N. Togawa, “A Travel Decision Support Algo-
rithm: Landmark Activity Extraction from Japanese Travel Comments,” Studies
in Computational　 Intelligence (Springer), Computer and Information Science,
2019 IEEE/ACIS International Conference on Computer and Information Science,
vol. 849, pp 109–123, Beijing, China, Jun. 2019.

⟨3⟩ ⃝ S. Bao, M. Yanagisawa, and N. Togawa, “Landmark Seasonal Travel Distribu-
tion and Activity Prediction Based on Language-specific Analysis,” in Proc. of the
2018 IEEE International Conference on Big Data, pp. 3628–3637, Seattle, USA,
Dec. 2018.

⟨4⟩ ⃝ S. Bao, M. Yanagisawa, and N. Togawa, “Personalized Landmark Recom-
mendation Algorithm Based on Language-specific Satisfaction Prediction Using
Heterogeneous Open Data Sources,” in Proc. of the 2018 IEEE International Con-
ference on Computational Intelligence and Communication Networks,, pp. 70–76,
Esbjerg, Denmark Aug. 2018.

⟨5⟩ ⃝ S. Bao, M. Yanagisawa, and N. Togawa, “Personalized Landmark Recom-
mendation for Language-specific Users by Open Data Mining,” Studies in Com-
putational　 Intelligence (Springer), Computer and Information Science, 2018
IEEE/ACIS International Conference on Computer and Information Science, vol.
791, pp.107–121, Singapore, Singapore Jun. 2018.

109



110

⟨6⟩ ⃝ S. Bao, M. Yanagisawa, and N. Togawa, “Road-illuminance level inference
across road networks based on Bayesian analysis,” in Proc. of the 2018 IEEE
International Conference on Consumer Electronics, pp. 1–6, Las Vegas, USA,
Jan. 2018.

⟨7⟩ ⃝ S. Bao, M. Yanagisawa, and N. Togawa, “Personalized one-day travel with
multi-nearby-landmark recommendation,” in Proc. of the 2017 IEEE International
Conference on Consumer Electronics Berlin, pp. 258–261, Berlin, Germany, Sept.
2017.

⟨8⟩ ⃝ S. Bao,T. Nitta, K. Ishikawa, M. Yanagisawa, and N. Togawa, “A safe and
comprehensive route finding method for pedestrian based on lighting and land-
mark,” in Proc. of the 2016 IEEE Global Conference on Consumer Electronics,
pp. 589–593, Kyoto, Japan, Oct. 2016.

⟨9⟩ ⃝ S. Bao,T. Nitta, D. Shindou, M. Yanagisawa, and N. Togawa, “A landmark-
based route recommendation method for pedestrian walking strategies,” in Proc.
of the 2015 IEEE Global Conference on Consumer Electronics, pp. 672–673,
Osaka, Japan, Oct. 2015.

国内学会

⟨10⟩ 鮑思雅, 柳澤政生, 戸川望, “One-day Trip Recommendation for Nearby Spots
Based on Users’ Locations and Preferences,”マルチメディア，分散，協調とモ
バイル（DICOMO）シンポジウム講演論文集,札幌市, Jun. 2017.

⟨11⟩ 鮑思雅, 柳澤政生, 戸川望, “An Evaluation Method of Road Illuminance Levels
Using Road Lights and Landmarks,”電子情報通信学会 2017年ソサイエティ大
会講演論文集,名古屋市, Mar. 2017.

研究費・助成金

⟨12⟩ 公益財団法人電気通信普及財団　平成 29年度 8月期海外渡航旅費援助,総額
29万円.


