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® Radon flux density was predicted from
the activities of radionuclides in the
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® Mean radon flux distribution was
mapped by the artificial neural net-
works (ANN).

® Ordinary kriging and ANN were used
as a hybrid model for spatial analysis.

® Radon flux density was estimated for
non-sampling locations with ANN.
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ABSTRACT

In this study, average radon flux distribution in the Rize province (Turkey) was estimated by the artificial neural
networks (ANN) method. For this purpose, terrestrial gamma dose rate (TGDR), which is defined as an important
proxy in determining radon flux distribution, was used. Input parameters that were used for ANN were the
natural radionuclide (**®U, 2*>Th and “°K) activity values in soil samples taken from 64 stations in Rize Province,
data from ambient gamma dose rates (AGDR) directly affecting the distribution of radon flux and data of geo-
graphical coordinates. Randomly chosen 42 stations were used for ANN training and data from 22 stations were
used for testing the ANN model. Performance test results gave a Pearson's r value of 0.60 (p < 0.001) and RMSE
of 0.296. The area that was used for the model was divided into grids of 100 m by 100 m and a spatial dis-
tribution map was composed by using ANN predicted radon flux rates at grid nodes, whereby natural radio-
nuclide values and Ordinary Kriging predicted values of external gamma dose rates were used for composing the
map.

1. Introduction

atmospheric transport models (Gupta et al., 2004).
A major radon source is terrestrial in nature. The most stable radon

Radon is a radioactive gas that can have severe consequences for the
health, i.e. cancer, making it crucial to monitor for public safety reasons
(Field and Vi, 2011; Tchorz-Trzeciakiewicz and Klos, 2017). Beside its
hazardous effects, radon trace monitoring has gained importance lately
with regard to air pollution detection (Chambers et al., 2015), tectonic
and seismological studies (Nevinsky et al., 2018), and evaluation of
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isotope is **?Rn, which is a decay product of 2*3U. Less stable isotopes
such as 2°Rn and 2?°Rn are decay products of 2°°U and 23°Th, re-
spectively. These elements can, however small the quantities might be,
be found in soil, rock and water (Durrance, 1986). Although radon gas
concentration differs spatially and temporally according to different
rock formations, soil types (Sakoda et al, 2011) and seasonal
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conditions (Groves-Kirkby et al., 2015), it leaks in average rate through
openings and fissures in the ground depending on the intensity of ra-
dinuclides in the decay chain. This exhalation rate is referred to as the
transfer density per unit area of radon from the soil surface to the at-
mosphere and is called the radon flux with units in Bq m™2s~! or
atoms cm~2s~}(Wilkening, 1990). Radon flux is one of the most im-
portant factors in determining the radon distribution since it shows the
rate of radon penetration from the soil into the atmosphere (Bourai
et al.,, 2016). In recent years, spatial analysis methods, especially
geostatistical methods, have been used to detect radon flux distribu-
tions and to estimate radon flux rates in un-sampled areas (Griffiths
et al., 2010; Manohar et al., 2013; Szegvary et al., 2007a; Van Der Laan
et al., 2016). In this paper, artificial neural networks (ANN) are pro-
posed as an alternative method in the estimation and mapping of the
radon flux rate. As input parameters for the ANN model, use of factors
such as radionuclides in the soil and the ambient gamma dose rate,
which directly affects the radon flux density, are important for com-
posing more accurate distributions (Yesilkanat et al., 2017). Further-
more, the ability of artificial neural networks to analyze non-parametric
systems provides a significant advantage in determining the spatial
distribution (Black, 1995).

2. Background and novelty

Radon flux distributions have been usually determined according to
the soil's texture, surface temperature and diffusion models based on
seasonal variables (Hinton and Whicker, 1985; Schery et al., 1989).
Later, these diffusion models were developed and global radon flux
variations were mapped (Goto et al., 2008; Hirao et al., 2010). Devel-
opment in spatial analysis methods, new diffusion models as well as
geostatistical approaches and radon flux distributions were estimated
(Szegvary et al., 2009; Zhuo et al., 2008).

Szegvary et al. (2007b) have mapped radon flux distributions for
Europe and show that the terrestrial gamma dose rate (TGDR) is a good
proxy to predict radon flux changes. The main reason for the significant
positive correlation (Pearson's r = 0.74, p < 000.1) is due to the fact
that the radon flux density and the terrestrial gamma radiation rate are
both connected to the presence of radionuclides in the studied soil. The
regression equation of the proposed empirical relationship is follows;

22Rn flux[atoms cm=2s71] = Ax TGDR[uSv h~1] — B (D)

where, the A= 11.75(£1.27) and B= 0.15(+0.11) show the regression
coefficients. The uncertainties indicate the standard error at level 1o.
Automatic imaging systems based on routine monitoring data were
used to derive the TGDR in Equation (1) (Szegvary et al., 2007b). TGDR
was calculated by subtracting, from ambient gamma dose rate data
reported in European Radiological Data Exchange Platform (EURDEP)
(Vries et al., 2005), all components origin from cosmogenic and an-
thropogenic. Manohar et al. (2013) have mapped the radon flux dis-
tribution by a different approach than that proposed by Szegvary et al.
(2007b). Their approach was based on the determination of the TGDR
from soil-radionuclides (3*®U, 222Th and “°K) instead of automatic
monitoring networks. The activity levels of *®U, >Th and “°K in the
soil (Bq kg™!) were calculated from the geochemical atlas data base,
which was composed according to different soil types depending on the
concentration of the elements (Manohar et al., 2013).

In this study, a different approach was used. TGDR was determined
directly from the experimental measurements of the activity con-
centrations of radionuclides in the soil and from the AGDR values. In
addition, in order to reveal the general distributions of 2°3U, 232Th, “°K
and AGDR in the study area, 100 X 100 m?grid maps were created with
the Ordinary Kriging (OK) method. The interpolation method allows
the determination of the predictive activities for the nodes of a regular
grid which covers the study area. In these interpolated maps, the pre-
dictions obtained for every 100 m for soil-radionuclides and AGDR were

208

Applied Radiation and Isotopes 151 (2019) 207-216

used as input parameters in ANN modeling. Finally, Radon flux maps
were created by colorizing the ANN model according to the estimated
results.

3. Material and methods
3.1. Study area and sampling

The study area is located in north-east Turkey in Rize Province with
coordinates N 40°31’12”- N 41°19’18”and E 40°19’47” - E 41°22'28”.
The topographic nature of Rize can be described as rugged and steep
terrains with many river valleys streaming to the Black Sea resulting in
soil movement towards the coastal areas. In more inland parts, there are
brown lime forest soil and sandy alluvial, colluvial, podzolic (usually
found in moist areas) type soils (Akbulut Ozen et al., 2018). In this
respect, it is important to determine the radon flux density in the
coastal areas of Rize.

The geological structure of the study area can be traced back to
different eras such as Middle to late Eocene, Jura - Cretaceous and Late
Cretaceous volcanic and Sedimentary, and Paleocene-Eocene Granitoid
(Demir et al., 2017). A significant amount of terrestrial radioactivity
(*38U,%32Th and “°K) is connected to geological rock structures at a
depth up to 30cm and high radiation levels are seen in volcanic
(rhyolite) and granitoid rocks (Chiozzi et al., 2002).

Fig. 1 shows the study area and the stations where the soil samples
were collected (64 stations). Samples have been collected from open,
flat and untreated soils with different geological formations, close to
coastal areas. The collected samples were dried at 85 °C for 24 h, sieved
with 63 um mesh and placed in Marinelli type beakers.

3.2. Gamma spectrometric analysis

Gamma spectrometry analyses were conducted with a coaxial HPGe
detector of 55% relative efficiency and a resolution of 1.9keV at the
1332 keV gamma of ®°Co (Ortec, GEM55P4-95 model). During radio-
activity analysis, various radioactive imbalances such as U-Th, U-Ra,
Pb-Ra, Ra-Rn, Bi-Rn, Pb-Rn e.t.c. may occur. The samples were kept
for 1 month before counting and the radioactive equilibrium between
the products was ensured and the samples were prepared for counting.
Each sample was counted for 50,000 s, to obtain significant statistical
results. At the end of the counting process, the specific activity results of
the samples were determined, and 351.9 keV (***Pb), 609.3keV (*'*Bi)
for the 238U series, 583.1keV (*°®T1), 911.1keV (**®Ac) for the **Th
series and 1460.8 keV for “°K gamma energy lines were used (Cevik
et al., 2010).

The activity concentrations of terrestrial radionuclides are calcu-
lated from the following equation.

N

CBgkgH=———
(Bq kg™ EXBXMXt

(2)
where C is the activity concentration of a radionuclide, N the net
counting rate of the y-ray, ¢ is the efficiency of the used detector for the
specific gamma emission, P, is the absolute transition probability for,
gamma decay, M is the amount of the dried sample as kilogram and t is
the counting time in seconds.

3.3. Determination of AGDR

Ambient gamma dose rate (AGDR) is a combination of different
dose rates originating from terrestrial (50.7%), cosmic (25.85%), in-
herent background (22.31%) and artificial (1.68%) sources (Szegvary
et al., 2007a). Since the greatest contribution to the AGDR comes from
the terrestrial component, AGDR is a good identifier in representing the
Terrestrial gamma dose rate or indirectly the radon flux density.
Therefore, AGDR were determined from the stations which are taken
soil samples. Measurements were taken with a portable device
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Fig. 1. Study area and sampling stations.
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Fig. 2. a) Processing units of artificial neural cells, b) Structure of multi-layer feed forward (MLFF) neural networks used in the study.

(Eberline, ESP-2) connected to the plastic scintillation detector (Eber-
line, SPA-6) 1m above ground for 3 min and were recorded asuSv h~'.

3.4. Artificial neural networks

Artificial Neural Networks are computer programs that predict the
unknown values of the system by processing the basic information
defined in a system, such as the biological nerve cell. Fig. 2a shows the
processing elements of an artificial nerve cell, the smallest unit of this
system. These units are inputs obtained from measurements; weights
that are showing the efficiency of inputs; summing unit that is com-
bining weighted values of all inputs; activation unit where threshold
information is evaluated as a result of processing net information col-
lected by summing unit and outputs obtained from activation unit
(Yesilkanat et al., 2017).
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In artificial neural network modeling, the most important issue is
the training of ANN (Sozen and Arcaklioglu, 2005). ANN learning
models are two types, i.e. Supervised and Unsupervised learning. In
supervised learning, the input and output values of the system to be
estimated are introduced to ANN. Initially, randomly determined
weight coefficients are updated according to these input-output pairs
introduced to ANN. Thus, the general structure of the system is learned
by ANN. In Unsupervised learning, only input values without output
values are introduced into the system, and ANN predicts the results by
defining close weight values for similar inputs. In this study, supervised
learning is used. Although there are different learning algorithms in this
type of training, the most popular algorithm is the back propagation
algorithm used in multi-layer feed forward (MLFF) neural networks
(Rumelhart et al., 1986). Fig. 2b shows the general structure of feed-
forward and back propagation artificial neural networks. In this figure,
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Fig. 3. Process steps used to estimate the radon flux distribution.

the input layer is the section where the data is introduced to the ANN.
The hidden layer is the unit where the incoming data from the input
layer is processed by the connection networks and the incoming data is
sent to the output layer. There may be more than one intermediate layer
in the hidden layer. The output layer processes the data from the hidden
layer to produce an output for each input data, depending on the
connection weights. The forward black arrows indicate the feed-for-
ward weights, while the red backward arrows show the back-propa-
gation of errors. The main purpose of the back propagation algorithm is
to minimize the errors at the end of each iteration and to propagate the
errors with the gradient descent approach. The following is the total
error (Ey) for the MLFF neural network (Graupe, 2013):

1 2
Br=—2 2 @&" =y
n k

where d,E") is the desired output for unit k of nth pattern vector and y,g")is
the predicted result of neural network for unit k of nth pattern vector.
When the gradient descent is applied to minimize the total error, the
change of the weights in the hidden layer with logistic activation
function at the end of T iteration is as follows.

3)

E
L+ adwy(t — 1)

0
Aw; (1) = -1
! 3wy (€]

Here, n and a are the learning rate and momentum factor respec-
tively. Detailed description of the back-propagation algorithm can be
found in Graupe (2013).

In this study, as ANN's architecture, 6 inputs and 1 output parameter
are defined to predict the radon flux density. Input parameters are
the?38U, 2*2Th, *°K activity levels (Bq kg™"), the ambient gamma dose
rate (uSv h™1), and the East-West coordinate (X) and South-North
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coordinate (Y) in meters. The output parameter is the radon flux, which
is derived from Equation (1) by using terrestrial gamma dose rate. From
the 64 stations in the study area, randomly selected 42 stations were
reserved for ANN training, and the remaining 22 stations were used for
performance evaluation of the neural networks. The ANN estimated
results were evaluated with three descriptive statistic criteria. These are
Pearson's r correlation coefficient, which shows the relationship be-
tween the predicted and the actual values, the mean error (ME, Eq (5)),
which is the criterion of unbiasedness, and the root mean squared error
(RMSE, Eq (6)), which shows the distribution degree of errors from the
regression line.

1 n
ME=— ) (A - R)
n ; )]

n
RMSE = |1 > (A - By
n i=1

(6)
where, A; and P; are the actual and the predicted value at ith station,
respectively.

3.5. Interpolation method and mapping

Fig. 3 shows the process steps used to estimate the radon flux dis-
tribution. Initially, the network was trained with 6 inputs and 1 output
parameter in the training stations (42 locations). Second, radon flux
density of test stations (22 locations) were estimated to evaluate the
performance of the neural networks. ANN input parameters for the test
stations were obtained from the ordinary kriging interpolation method.
Finally, the study area is divided into grids of 100 X 100 m?and radon
flux estimation values were calculated with artificial neural networks at
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Fig. 4. Statistical summary for 238y, 232Th, 4K and AGDR.

the nodes of a regular grid which covers an area of interest. For this
reason, the most popular interpolation method in the literature, or-
dinary kriging method, is used to estimate all input parameters of each
nodes of a regular grid. The ordinary kriging method is a method that
has been used to determine and predict spatial variables in recent years
(Bai et al., 2011; Elbasiouny et al., 2014; Yesilkanat et al., 2015). This
method uses variograms to reveal spatial correlation to estimate the
variability of non-measured stations (Diggle and Riberio, 2007). Var-
iograms are diagrams that show similarities between the spatial vari-
ables (Clark, 1979). Kriging weights are determined from these vario-
grams and unbiased estimates can be made for stations that are not
measured.

All analyses were carried out in the R environment for statistical
computing and visualization (R Development Core Team, 2005) and the
gstat (Pebesma and Wesseling, 1998), sp (Pebesma and Bivand, 2005)
for ordinary kriging method and RSNNS (Bergmeir and Benitez, 2012)
for ANN, R packages which is an open-source code. All maps were
created using Quantum Geographic Information System (QGIS) version
2.18.23(Quantum GIS Development Team, 2018).

4. Results and discussion
4.1. Results of soil radioactivity and AGDR

Fig. 4 shows the statistical summary for the radioactivity con-
centration of 3®U, 232Th and “°K in soil samples collected from the
study area and the ambient gamma dose rate (AGDR) measured from
the air. The mean activity values of 2>®U, 232Th and “°K for soil samples
were measured as, respectively, 118, 52 and 309 Bq kg™!, and the
average AGDR measured near the soil samples was found as
0.05uSv h™. Soil-radioactivity levels in the study area were found to be
non-normal distribution based on histograms in Fig. 4 and Shapiro-Wilk
normality test (p < 0.05).This may lead to miscalculations of kriging
weights by disrupting the structure of the variogram used in the esti-
mation of grid node values, which is not of great importance for the
ANN that appropriately identifies non-parametric states. To eliminate
this problem the non-normal distribution needs to be converted to a
normal distribution(McGrath et al., 2004). Furthermore, since the use
of a nonlinear activation function (logistic function) in ANN calcula-
tions compresses the output of a neuron within the range (0, 1), all of
the data must be normalized before initiating training (Fine, 1999). In
this study, data for ANN calculations were standardized by the statis-
tical normalization rule, as follows
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Fig. 5. Relationships between ANN input parameters and radon flux density.

Table 1
The general architecture of the neural network used in the study.
Number of training data 42
Number of test data 22
Number of neuron on the input layer 6 (2*8U, 222Th, “°K, AGDR, X and Y)
Number of neuron on the hidden layers (35, 15, 25)

1 (Radon Flux)

Logistic functions
Back-propagation function
Random weights

Number of neuron on the output layer
Activation functions

Training function

Initial function

The learning rate (1) 0.2
Momentum (@) 0.95
Maximum number of iterations 100

@)

where, N, is the normalized data, p, is the original data, uand o are the
mean and standard deviation of the data, respectively. At the end of the
calculation process, the output data from the artificial neural network
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was converted back to the original representation by reverse transfor-
mation.

4.2. TGDR and radon flux

Terrestrial gamma dose rate (TGDR) is the gamma radiation level
from natural radionuclides (**®U and 232Th series, and “°K) in soil and
rocks. TGDR (uSv h™!) at a height of 1 m from the ground is calculated
as follows with dose conversion coefficients and the activity con-
centrations of the natural radionuclides in the soil (UNSCEAR, 2000).

TGDR [uSv h~'] = (0.323 X Cy + 0.423 X Cpy, + 0.029 X Cy) X 1073
®)

where Cy, Cq, and Ck are activity concentrations (Bg kg™!) of 238y,
22Th and “°K, respectively, in soil samples and 0.323 x 1073 ,
0.423 x 1072 and 0.029 x 10~3 (uSv h™! per Bq kg™!) are the dose con-
version factors of 2%8U, 232Th and “°K, respectively.

In this study, the radon flux density was calculated according to Eq.
(1) based on TGDR (Szegvary et al., 2007b). Fig. 5 shows the relation of
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Fig. 6. Prediction performances of Radon flux density for both training and test
stations.

radon flux density calculated for each station according to the activity
concentrations of radionuclides in the soil, the AGDR in the air and the
X-Y coordinates (coordinate reference system WGS84,/World Mercator)
of the stations. The largest and the smallest significant positive corre-
lations with radon flux density were determined between 3®U (Pear-
son's r=0.92 and p < 0.001) and “°K (Pearson's r = 0.49 and
p < 0.001) activity concentrations, respectively. Due to the fact that
radon is a product of uranium (**®U) decay series this result was to be
expected. Furthermore, since the greatest contribution to AGDR was
from the TGDR, a significant high correlation (Pearson's r = 0.73 and
p < 0.001) was found between radon flux density and AGDR. One of
the most important reasons for the use of AGDR as one of the ANN input
parameters in determining the radon flux distribution is this high cor-
relation relationship. In addition, X and Y coordinates were found to be
negatively correlated (Pearson's r = —0.30 and p < 0.05 for X and
Pearson's r = - 0.39 and p < 0.001 for Y) with radon flux change.
Although the study area can be considered narrow, this result is con-
sistent with previous studies investigating Latitudinal Impact (Conen
and Robertson, 2002).
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4.3. Estimate of radon flux by ANN

ANN training was performed with 42 stations randomly selected
from a total of 64 stations in the study area. Before starting training,
both input (33U, 232Th, °K activities, AGDR, X and Y Coordinates) and
output (radon flux density) neuron variables were standardized by the
statistical normalization rule shown in Eq (6). Table 1 shows the
training parameters and the architectural structure of the ANN mod-
eling used in this study. ANN training was performed with parameters
given in Table 1 and test stations were estimated with this model
parameters. In Fig. 6, a prediction performance of radon flux density for
both training and test stations is presented. It was determined that the
ANN model has a high performance (Pearson's r = 0.97, ME = —0.001
and RMSE = 0.111) in estimating the training data (Fig. 6a). This result
shows that the distribution of radon flux by neural networks is learned
at a high rate depending on the input data. In addition, the estimation
results of the test stations, where the input parameters are derived from
the ordinary kriging interpolation result, are very close to the actual
results, although they were not previously introduced to the neural
networks (Fig. 6b). According to the results of cross-validation of test
data, the Pearson's r value was 0.60, ME = 0.05, and RMSE = 0.296.
These results show the high performance in predicting radon flux
density of the ANN model, which was trained with experimental data.

4.4. Gridding and radon flux mapping

Mapping of the radon flux distribution with the ANN model is
possible if the ANN input parameters are known in each node of the
regular grid (Fig. 3). The X and Y geographic coordinates can be spe-
cified for each node. However, the other ANN input parameters,
i.e.238y, 232Th, 49K activities and AGDR, must be estimated in all the
nodes of regular grid that define the study area. For this purpose, or-
dinary kriging interpolation method was used, which is the best linear
unbiased estimator. This process was carried out in three stages. First,
variograms were formed to determine spatial correlations of variables.
These variograms were fit with the appropriate parametric functions
and kriging weights were calculated. Second, cross-validation was
performed to determine the performance of the ordinary kriging in-
terpolation process. Finally, interpolation estimations of spatial vari-
ables were determined for each node in the study area.

Fig. 7 shows the interpolation process steps (variograms and vali-
dations) and the distribution maps of the spatial variables. Variograms
of natural radionuclides (**®U, 2*2Th and “°K) and AGDR are, respec-
tively, fit with exponential and spherical functions. With the ordinary
kriging weights obtained from these fit functions, the measurement
results of the test stations were estimated and the findings were shown
in the validation diagrams. According to the validation results, Pearson
correlation coefficients (significance, RMSE, ME) for 2*®U, 232Th,*’K
and AGDR were 0.59 (p < 0.005, 55.62, —4.80), 0.39 (p < 0.05,
23.67, —7.74), 0.22 (p < 0.05, 180.18, —4.23) and 0.54 (p < 0.01,
0.022, 0.002), respectively. These results indicate that the ordinary
kriging method was quite successful in representing the distribution of
2381 and AGDR. In addition, the fact that the highest positive correla-
tions (Fig. 5) with radon flux density are between these two variables
make this result quite important. After the validation process, spatial
variables were estimated in each node of the regular grid (100 x 100 m?)
for the study area and interpolated maps were created (Fig. 7). Esti-
mated values for each node in these maps present ANN input para-
meters (Fig. 3). Consequently, with the input parameters obtained for
each node, the mean radon flux density of that node was estimated by
ANN modeling. All estimation results are shown in Fig. 8 as a density
distribution map. This average radon flux distribution map was esti-
mated at high densities in the south-western part of the north-east and
coastal regions, similar to the ?**U and AGDR distribution maps. The
main reason for this situation is thought to be due to the decrease in
radon flux concentrations due to increasing soil moisture content of
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Fig. 7. Interpolation process steps (variograms and validations) and the distribution maps of the spatial variables.

Rize coastal areas, which can take precipitation in every season (Annual
Total Precipitation Average = 2298 mm) (Turkish State Meteorological
Service, 2018). Similar results were reported by Zhuo et al.(2008) and
Hosoda et al. (2007), who examined the distribution of radon flux for
soil moisture content. In addition, due to the high correlation between
the average radon flux density, >*®U and AGDR (Fig. 5), the appearance
of similar distributions indicates that the predictions obtained by ANN
modeling were significant.
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5. Conclusions

In this study, which is based on the relationship between TGDR and
radon flux, it was shown that ANN modeling can be used as a suitable
alternative method in the estimation and mapping of radon flux dis-
tribution. TGDR values were obtained from the measurement data of
soil radionuclides (28U, 232Th, “°K). In addition, AGDR, X and Y co-
ordinates, which are related to the calculated radon flux density, were
used as ANN input parameter. As a result of the validation performed
for randomly designated test stations, significant and high correlation
(Pearson's r = 0.60, p < 000.1 and RMSE = 0.296) was determined
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Fig. 8. Mean radon flux density distribution map.

between ANN estimation values and actual values calculated from
TGDR. For the creation of radon flux distribution maps, the study area
is divided into regular grids (100 X 100 m?). ANN input parameters
belonging to all grids nodes were estimated by the ordinary kriging
method, which is the unbiased interpolation method. As a result, the
annual average radon flux densities for each grid node were estimated
and the radon flux distribution map was created. This map was esti-
mated at high densities in the south-western part of the north-east and
coastal regions. The main reason for this situation is thought to be due
to the decrease in radon flux concentrations due to increasing soil
moisture content of Rize coastal areas, which can take precipitation in
every season.
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