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We derive Ward identities for the standard model effective field theory using the background-field
method. The resulting symmetry constraints on the standard model effective field theory are basis
independent, and constrain the perturbative and power-counting expansions. A geometric description of the
field connections, and real representations for the SU(2); x U(1)y generators, underlies the derivation.
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I. INTRODUCTION

The standard model (SM) is an incomplete description
of observed phenomena in nature. However, explicit
evidence of new long-distance propagating states is
lacking. Consequently, the SM is usefully thought of as
an effective field theory (EFT) for measurements and data
analysis, with characteristic energies proximate to the
electroweak scale (/2(H"H) = 1), such as those made
at the LHC or lower energies.

The standard model effective field theory (SMEFT) is
based on assuming that physics beyond the SM is present at
scales A > vy. The SMEFT also assumes that there are no
light hidden states in the spectrum with couplings to the
SM; and a SU(2), scalar doublet (H) with hypercharge
Y, = 1/2 is present in the EFT.

A power-counting expansion in the ratio of scales
vr/A < 1 defines the SMEFT Lagrangian as

Lsverr = Lsy + LO) + L£O +£0)

(d)
C:
L) — Z Af;—“ di)

for d > 4. (1)

i

The higher-dimensional operators Ql@ are labeled with a

mass dimension d superscript, and multiply unknown,

: : . . d .
dimensionless Wilson coefficients Cf- ). The sum over i,

after nonredundant operators are removed with field
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redefinitions of the SM fields, runs over the operators
in a particular operator basis. In this paper we use the
Warsaw basis [1]. However, the main results are formu-
lated in a basis independent manner and constrain rela-
tionships between Lagragian parameters due to the linear
realization of SU(2); x U(1)y in the SMEFT.

The SMEFT is a powerful practical tool, but it is also a
well-defined field theory. Many formal field-theory issues
also have a new representation in the SMEFT. This can lead
to interesting subtleties, particularly when developing
SMEFT analyses beyond leading order. When calculating
beyond leading order in the loop (%) expansion, renormal-
ization is required. The counterterms for the SMEFT
at dimension five [2,3], and six [4-7] are known and
preserve the SU(3) x SU(2) x U(1) symmetry of the SM.
Such unbroken (but nonmanifest in some cases) symmetries
are also represented in the naive Ward-Takahashi identities
[8,9] when the background-field method (BFM) [10-15] is
used to gauge fix the theory. In Ref. [16] it was shown how
to gauge fix the SMEFT in the BFM in R; gauges, and we
use this gauge-fixing procedure in this work.

The BFM splits the fields in the theory into quantum and
classical background fields (F — F + F), with the latter
denoted with a hat superscript. By performing a gauge-
fixing procedure that preserves the background-field gauge
invariance, while breaking explicitly the quantum-field
gauge invariance, the Ward identities [8] are present in a
“naive manner’—i.e., the identities are related to those that
would be directly inferred from the classical Lagrangian.
This approach is advantageous, as otherwise the gauge-
fixing term, and ghost term, of the theory can make
symmetry constraints nonmanifest in intermediate steps of
calculations.

The BFM gauge-fixing procedure in the SMEFT relies
on a geometric description of the field connections, and real
representations for the SU(2); x U(1)y generators. Using
this formulation of the SMEFT allows a simple Ward-
Takahashi identity to be derived, which constrains the
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n-point vertex functions. The purpose of this paper is to
. o ]
report this result and derivation.

II. PATH INTEGRAL FORMULATION

The BFM generating functional of the SMEFT is
given by

I AgA i(S[F+F)+Lgr+source terms)
Z[F,J]: DF det A—aB e GF .

The integration over d*x is implicit in L. The generating
functional is integrated over the quantum-field configura-
tions via DF, with F field coordinates describing all long-
distance propagating states. J stands for the dependence on
the sources that only couple to the quantum fields [18]. The
background fields also effectively act as sources of the
quantum fields. S is the action, initially classical, and
augmented with a renormalization prescription to define
loop corrections.

The scalar Higgs doublet is decomposed into field
coordinates ¢ 534, defined with the normalization

1 ¢2+i¢1]
H=— .
\/5[454—1'(153

The scalar kinetic term is defined with a field space metric
introduced as

(2)

‘Cscalar,kin = y¢)I(DM¢)J’ (3)

S ($)(D

where (D*¢p)! = (98} — S WAH7, ))¢’, with real gener-
ators (7) and structure constants (€3.) defined in the

appendix. The corresponding kinetic term for the
SU(2);, x U(1)y spin-one fields is
1
Loaugekin = _ZQAB(¢)WﬁIJWB.ﬂ Y, (4)
where A, B,C, ... run over {1,2,3,4}, (as do I, J) and

Wﬁ,, = B,,. Extending this definition to include the gluons
is straightforward.

A quantum-field gauge transformation involving these
fields is indicated with a A, with an infinitesimal quantum
gauge parameter Aa?. Explicitly, the transformations are

AWS = &4 AP (VS + WEH) — 9 (Aa),
=1
A = —BaA 2L (¢ + ). (5)

The BFM gauge-fixing term of the quantum fields W* is [16]

"Modified Ward identities in the SMEFT have been discussed
in an on-shell scheme in Ref. [17].

f_QA_B AGB
Lgr = 2§gg,

Gh = 9 WA — B WP (sgAcqﬁ’thyCJA . (6)
The introduction of field space metrics in the kinetic terms
reflects the geometry of the field space due to the power-
counting expansion. These metrics are the core conceptual
difference of the relation between Lagrangian parameters,
compared to the SM, in the Ward identities we derive. The
field spaces defined by these metrics are curved; see
Refs. [19-21]. The background-field gauge fixing relies
on the basis independent transformation properties of g, p
and #, 1,2 and the fields, under background-field gauge
transformations (6F) with infinitesimal local gauge param-
eters S, (x) given by

6¢ _ VAJ

SWAH = —(aﬂafg + eBCWC")éa

N N a7 . o7k
ohyy = hgy 5 Al y hix 2A’J,

A A ~C eAD | A ~C <sAD
89ap = Gcp€pada~ + Jac€ppda”,

5GX = —&X,601GB,
ofi = AJA,,-(XAfj,
5fi = &A}j[_\i,i’ (7)

where we have left the form of the transformation of the
fermion fields implicit. Here i, j are flavor indicies. The
background-field gauge invariance of the generating func-
tional, i.e.,

SZ[F,J]
sact

=0, (8)

is established by using these gauge transformations in
conjunction with the linear change of variables on the
quantum fields.

The generating functional of connected Green’s func-
tions is given by
where J = {J4, /1, o dpd f} As usual the effective action is
the Legendre transform

[[F,F] = W[F,J] —/dx4J~F|F%_vJv. (10)

The explicit forms of g,p and h;; are basis dependent. The

forms of the corrections for the Warsaw basis at £ are given in
Ref. [16].

013005-2
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Here our notation is chosen to match Ref. [22]. S-matrix
elements are constructed via [22-24]

il 0] = T[F,0] 4 i / d*xLBE. (11)

The last term in Eq. (11) is a gauge-fixing term for the
background fields, formally independent from Eq. (6), and
introduced to define the propagators of the background
fields.

Finally, we define a generating functional of connected
Green’s functions W,[J] as a further Legendre trans-
form [24],

W, [J] = TRl [R] + i/d4x [Zjﬂﬁ' + Z(]_cjj + jff):| ,
F f

(12)
with F = {W4,¢'} and
R 5Ffull 5Ffull 5Ffull
Ui =5 T / F’

III. WEAK EIGENSTATE WARD IDENTITIES

The BFM Ward identities follow from the invariance of
I'[F,0] under background-field gauge transformations,

ST[F,0]
508

In position space, the identities are

= 0. (14)

oI YBJ J ol
OV 2 s

or’
+Z<f/ Btéfl 5fz B]fj) (15)

For some n-point function Ward identities, the background
fields are set to their vacuum expectation values (vevs).
This is defined through the minimum of the classical action
S, where the scalar potential is a function of H TH, which
we denote as (). For example, the scalar vev defined in this
manner is through \/2(H'H) = 7 and explicitly (¢’)
with an entry set to the numerical value of the vev does not
transform via 7/ ;.

A direct relation follows between the tadpoles (i.e., the
one-point functions 6I'/8¢") and, (¢’), given by

0 = (0"} — e V)

U Fhy a0 OO
0=0—57——= 7. 16
S Kb (16)
Requiring a Lorentz-invariant vacuum sets the tadpoles for
the gauge fields to 0. Thus, for the scalars

or
5"
v5{@’) # 0 and the unbroken combination (y3+y,){¢’)=
corresponds to U(1),,,. Equation (17) with B = 3, 4 does
not given linearly independent constraints. This leads to

the requirement of a further renormalization condition to

define the tadpole 6I'/ 6(,7)4 to vanish.
The Ward identities for the two-point functions are

S (17)

ey T Thy s T
SWASWEL 2 WA st

8T 71’91( sy 0T o
0=0—5+———= Jﬁ"‘é"T). 19
5¢K5WB'” 2 <¢ >5¢K5¢1 K5¢1 ( )

(18)

The three-point Ward identities are

3 ~1 3
_ g 5FA _;/B_J<AJ>_5FA
Sfof VP 2 5f iof 159"
_ 5T 8T .
Apimmr == N (20)
Tfiof, ofisfi

5T >
— OH —
SWAvsWEAs WP PC
LEpr .,
2 Sl WA S

8T
SWP P sWAY

” 5T ., 6T
SWH WP oK PSP 5K

v 3 2
Vs (12 5T , or )
- == e+ Ok | (22
2 <<¢ >5WA’”5¢’5¢K LoWtesp! 22)

’ 5T ¥8s a0 OT
0= bkl ~ o5 W) Akt
SWP#5K 5 50505 50

% 5T 5T
_1Bs (5@ o 48— AK). (23)
2 o o¢ op o

IV. MASS-EIGENSTATE WARD IDENTITIES

The mass-eigenstate SM Ward identities in the BFM are
summarized in Ref. [15]. The transformation of the gauge

fields, gauge parameters, and scalar fields into mass
eigenstates in the SMEFT is

WA = B U A, (24)

&A = \/EABUBCZ\}C7 (25)

¢’ = Vn'" vy, o, (26)

013005-3



CORBETT, HELSET, and TROTT

PHYS. REV. D 101, 013005 (2020)

with A=W W™, 2 4), & ={d" &3, A°).
This follows directly from the formalism in Ref. [16]
(see also Ref. [25]). The matrices U, V are unitary, with
VI /Gy = 54 and VI hge = 52. The square root
metrics are understood to be matrix square roots and the
entries are () of the field space metrics entries. The
combinations ,/gU and VRV perform the mass-eigenstate
rotation for the vector and scalar fields, and bring the
corresponding kinetic term to canonical form, including
higher-dimensional-operator corrections. We define the
mass-eigenstate transformation matrices

Ug = /9" Uge. UP = U"Vggp.
Vi = ViV, (V2 = VPEV gy,

to avoid a proliferation of index contractions. The structure

constants and generators, transformed to those correspond-

ing to the mass eigenstates, are defined as

1

c _ D7 E I _ L 9a

Gy = (U™ §eppoUs. YeL = EVA,LU ,
i

Ay ;= Ny Uy,

The background-field gauge transformations in the mass
eigenstate are

SAH = — (046G + €5y AT|5pC

5O% = —(V)fy ViV apC. (27)
The Ward identities are then expressed compactly as
_or
5p°
or - <j o or .
_ 6ﬂ—5,2tx‘” + Z:(f,AX,,.é—ﬂ—a—ﬁAxyjf,)
or ~ or R
A YV Ofrkviet. (28)

oA A g
In this manner, the “naive” form of the Ward identities is
maintained. The BFM Ward identities in the SMEFT take
the same form as those in the SM up to terms involving the
tadpoles. This is the case once a consistent redefinition of
couplings, masses, and fields is made.

V. TWO-POINT FUNCTION WARD IDENTITIES

The Ward identities for the two-point functions take the
form

8T 8T

0 = aﬂ 5.21)(”6“21}/” - 6.21}/1/5&1( (V_l)fYQ,ka<éN>’
5T 5T 5 .
0= 560 ~ sikee0 DITR L V(@)
or
T 5&K (VHKyk V5. (29)

VI. PHOTON IDENTITIES

The Ward identities for the two-point functions involving
the photon are given by

5T 5T
0= sama O Y eamew Y

Using the convention of Ref. [15] for the decomposition of
the vertex function

_irfl/l;‘?/(k’ _k) = (_g/ka + kukv + gﬂt/M%/)(sVV”

KN oo kky oo
(g 252 - 2

an overall normalization factors out of the photon two-point
Ward identities compared to the SM, and

224§4MEFT(k2) =0, 2?§4MEFT(O) =0. (31)
The latter result follows from analyticity at k*> = 0.

VIL. W*, Z IDENTITIES

Directly, one finds the identities

2 2

0= 5215”52” Mz 5<i>§52l“ ’ (2

=M 52—F -M (SZ—F

s 5bIsd!

gzz 55F4 (Vhig VR = iy Vi) 53
- QEZ% (Vha VP - Vi s Vil st (33)
and
2 2

ozaﬂmii};:wimwﬁ)i—(;n, (34)

0 g T - 8T

W Y shEsd!
ig, oI
+ — 4 567 (f44 ¢lf43)
W [(VAM 4 VAR £ /R0 g /AR
— (VA" = VAP £ i/ iR (35)

These identities have the same structure as in the SM. The
main differences are the factors multiplying the tadpole

013005-4
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terms. By definition, the vev is defined as \/2({H'H) = 7.
The substitution of the vev leading to the Z boson mass in the
SMEFT (M ) absorbs a factor in the scalar mass-eigenstate
2(H'H) = \/2(H"V-'VH).1fa
scheme is chosen so that 6"/ 547)4 vanishes, then trans-
formation to the mass-eigenstate basis of the one-point
vector 51“/5&7 is still vanishing in each equation above.
One way to tackle tadpole corrections is to use the Fleischer-
Jegerlehner (FJ) tadpole scheme; for discussion see
Refs. [26,27].

transformation matrix as

VIIIL. A,Z IDENTITIES
The mapping of the SM Ward identites for I’y in the
BFM given in Ref. [15] to the SMEFT is
&r

0=0"——+.
SA 5 ZH

(36)

As an alternative derivation, the mapping between the mass
eigenstate (Z, A) fields in the SM and the SMEFT (Z, A)
reported in Ref. [28] directly follows from Eq. (27). Input
parameter scheme dependence drops out when considering
the two-point function 'y, in the SM mapped to the
SMEFT and a different overall normalization factors out.

One still finds Zﬁ’SZMEFT(kZ) = 0 and, as a consequence of

analyticity at k> = 0, Z“T‘l SZMEFT(O) = 0. This result has been
used in the BFM calculation reported in Refs. [29,30].

IX. CONCLUSIONS

We have derived Ward identities for the SMEFT,
constraining both the perturbative and power-counting
expansions. The results presented already provide a clar-
ifying explanation to some aspects of the structure of the
SMEFT that has been determined at tree level. The utility of
these results is expected to become clear as studies of the
SMEFT advance to include subleading corrections.
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APPENDIX: NOTATION

The metric forms and transformations to £© in the

Warsaw basis are explicitly [6,31]

1+ Cyw 0 0 0
. 0 1+ Cyw 0 0
vat=1 0 1+Cpy —Cam |
0 0 —Cn 1 4 Oy
M1 1
i 00
Upe = | V2 s 000 ,
0 0 ¢z sp
10 0 —s5 ¢p
10 0 0
Vi — 0 1 0~ 0
0 0 1-1Cy 0 ’
L0 0 0 1+ Cuyn—1Cup
s 00
1 1
vg=|v i 00 (A1)
0 0 -1 0
Lo 0 0 1

The notation for dimensionless Wilson coefficients is C; =
9%3.C;/A%. The convention for s5 here has a sign consistent
with Ref. [6], which has an opposite sign compared to
Ref. [15]. For details and explicit results on couplings for
the SMEFT including L) corrections in the Warsaw basis,
we note that we are consistent in notational conventions
with Ref. [6].
The generators are given as

00 0
, 0010}
Nag=
10 0 O
0
0

00 -1
00 O
10 0
0
0
1.(A2)
0

0
1
0
0

The y, generator is used for the U(1)y embedding. The
couplings are absorbed into the structure constants and
generators leading to tilde superscripts,

Ec = Ga€per  With &)y = +gs,

I _
1 {927’/4,1’ forA=1,2,3 (A3)
A gk, forA=4.
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In the mass-eigenstate basis, the transformed generators

ro 0 i -=17
G |0 0 -1 —i
"a=oal=i1 0 o
1 i 0 0]
0 0 —i -—-17
a2t 0]
2V2 | i 0 0
1 =i 0 0]
0 —(cz-s3) 0 0
7%,1—% (2-4) 0 0 0|
0 0 0 -1
0 0 0
0 -1 0 0
. |1 000
Yag =€ 0 0 0 0 (A4)
0 0 0 0

Connected Green’s functions formulation. An alternative
approach is to derive the Ward identities in terms of the
generating functional for connected Green’s functions, W..
The noninvariance of £8% under background-field gauge
transformations leads to

oW . o
e / de 2 LB

We choose the gauge-fixing term for the background
fields

(AS)

1
L8 = T2z (945)GAG",

G = 0, +5 ()@ ~ ) (hii)FES ). (A6)

The variation of the gauge-fixing term with respect to the
background-gauge parameter is

P 1 . W,
L8 = 1 (o) (mag i e
3 Voy [ .OW. 3
+§<9AE>T _15J&s-' (hig)7EL(P") |G,
(A7)
where
. oW, & oW, B
G? = =il ———i <9DX> <h11<>7§,1<¢]>-

5T gpe 2 57

Consider the difference between the vev defined by ()
and an alternate vev denoted by (¢’)’ where the minimum
of the action still dictates the numerical value, but in
addition (¢’)" transforms as 5(¢’) =7, (@)’
Replacing all instances of () in the above equations with
this expectation value, and related transformation proper-
ties on the modified metrics, one finds

1
sa8

1
E?}E ==z <gBD>,|:|G9'

¢

(A8)

The two results coincide for on-shell observables; for
further discussion this point, and tadpole schemes, see
Ref. [24]. We postpone a detailed discussion of these two
approaches to a future publication.
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