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In the context of planar holography, integrability plays an important role for solving certain massless
quantum field theories such as N ¼ 4 super Yang-Mills theory. In this Letter, we show that integrability
also features in the building blocks of massive quantum field theories. At one-loop order we prove that all
massive n-gon Feynman integrals in generic spacetime dimensions are invariant under a massive Yangian
symmetry. At two loops similar statements can be proven for graphs built from two n-gons. At generic loop
order we conjecture that all graphs cut from regular tilings of the plane with massive propagators on the
boundary are invariant. We support this conjecture by a number of numerical tests for higher loops and legs.
The observed Yangian extends the bosonic part of the massive dual conformal symmetry that was found a
decade ago on the Coulomb branch of N ¼ 4 super Yang-Mills theory. By translating the Yangian level-
one generators from dual to original momentum space, we introduce a massive generalization of
momentum space conformal symmetry. Even for non-dual-conformal integrals this novel symmetry
persists. The Yangian can thus be understood as the closure of massive dual conformal symmetry and this
new massive momentum space conformal symmetry, which suggests an interpretation via AdS=CFT. As an
application of our findings, we bootstrap the hypergeometric building blocks for examples of massive
Feynman integrals.

DOI: 10.1103/PhysRevLett.125.091602

Introduction.—In 1954, Wick and Cutkosky noticed that
a certain class of ladder-type Feynman integrals with
massive propagators features a massive dual conformal
symmetry [1,2]. While most of the formal insights into
quantum field theory inspired by the AdS=CFT correspon-
dence are limited to massless situations, this massive dual
conformal symmetry is naturally realized in the context of
this duality [3,4]. In particular, the extended dual conformal
symmetry limits the variables that certain massive Feynman
integrals can depend on and thus simplifies their compu-
tation. In the present Letter we argue that for large classes
of Feynman integrals, this massive dual conformal sym-
metry is in fact only the zeroth level of an infinite
dimensional massive Yangian algebra. In addition to limit-
ing the number of variables, this new symmetry strongly
constrains the functional form of the integrals. While these
symmetry properties naturally extend the observations on
the integrability of massless Feynman integrals [5–7], to the
knowledge of the authors this is the first occurence of

quantum integrability in massive quantum field theory in
D > 2 spacetime dimensions.
For massless N ¼ 4 super Yang-Mills (SYM) theory it

was recently argued that planar integrability is preserved in
a certain double scaling limit, which (in the simplest case)
results in the so-called biscalar fishnet theory [8]. Here,
individual (massless) Feynman integrals inherit the
Yangian symmetry that underlies the integrability of the
prototypical examples of the AdS=CFT duality [5,6]. A
similar starting point, i.e., an integrable massive avatar of
N ¼ 4 super Yang-Mills theory, is not known. We thus
investigate massive Feynman integrals directly; i.e., we
consider the properties of functions of the type

ð1Þ

where xμjk ¼ xμj − xμk and x̂2jk ¼ x2jk þ ðmj −mkÞ2. Here the
dashed internal propagator is massless, i.e., m0 ¼ m0̄ ¼ 0,
while the other propagators are massive. The x variables
denote dualized momenta (dotted green diagram) related
via pμ

j ¼ xμj − xμjþ1 [9]. Our findings suggest that all
Feynman graphs, which are cut from regular tilings of
the plane and have massive propagators on the boundary,
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feature a massive D-dimensional Yangian symmetry. We
will demonstrate the usefulness of this Yangian for boot-
strapping massive Feynman integrals. Finally, we will show
that, when translated to momentum space, the nonlocal
Yangian symmetry can be interpreted as a massive gener-
alization of momentum space conformal symmetry. This
suggests to interpret this novel symmetry within the
AdS=CFT correspondence.
Massive Yangian.—Massive dual conformal symmetry

is realized in the form of partial differential equations
obeyed by coordinate space Feynman integrals. That is,
the integrals are annihilated by the tensor product
action of the level-zero dual conformal generators
Ja ¼ P

n
j¼1 J

a
j , where Jaj denotes one of the following

densities acting on xj:

Pμ̂
j ¼ −i∂ μ̂

xj ; Lμ̂ ν̂
j ¼ ixμ̂j∂ ν̂

xj − ixν̂j∂ μ̂
xj ;

Dj ¼ −iðxjμ∂μ
xj þmj∂mj

þ ΔjÞ;
Kμ̂

j ¼ −2ixμ̂j ðxjν∂ν
xj þmj∂mj

þ ΔjÞ þ iðx2j þm2
jÞ∂ μ̂

xj : ð2Þ

These can be understood as massless generators in
Dþ 1 dimensions with xDþ1

j ¼ mj. Only the components
μ̂ ¼ 1;…; D of the generators correspond to symmetries.
Here we work with the Euclidean metric and the index μ̂
runs from 1 to Dþ 1, while μ runs from 1 to D.
The massive Yangian is spanned by the above level-zero

Lie algebra generators and the bilocal level-one generators
defined as

Ĵa ¼ 1

2
fabc

Xn
j<k¼1

JcjJ
b
k þ

Xn
j¼1

sjJaj ; ð3Þ

where fabc denotes the Lie algebra structure constants.
The so-called evaluation parameters sj depend on the
considered Feynman integral and will be specified
below. The level-one momentum generator for instance
reads

P̂μ̂ ¼ i
2

Xn
j;k¼1

signðk − jÞðPμ̂
jDk þ PjνL

μ̂ν
k Þ þ

Xn
j¼1

sjP
μ̂
j : ð4Þ

Here we do not sum the internal index ν over Dþ 1
dimensions but rather define this contribution separately,
e.g., P̂μ̂

extra ¼ ði=2ÞPj;k signðk − jÞPj;Dþ1L
μ̂;Dþ1
k . Note

that the whole Yangian algebra is spanned by the above
level-one momentum generator (4) and the level-zero
generators (2).
One and two loops.—First, we consider a generic scalar

n-point Feynman integral at one-loop order with massive
propagators. Propagator powers aj and the spacetime
dimension D are arbitrary:

ð5Þ

Here ρn ¼
Q

n
j¼1ðx20j þm2

jÞ−aj and we use the notation
xμjk ¼ xμj − xμk. These integrals have been expressed in
terms of hypergeometric functions by Davydychev [10].
Surprisingly, we find that the integrand is invariant under
the massive level-one generators acting on legs 1 to n
defined in (3); i.e., we have Ĵaρn ¼ 0, which implies

ĴaIn ¼ 0: ð6Þ

The scaling dimensions in (2) take values Δj ¼ aj and the
evaluation parameters entering the level-one generators (3)
can be written in the compact form

sj ¼
1

2

Xn
k¼1

signðk − jÞak: ð7Þ

We emphasize that this symmetry also holds for cases
where an arbitrary subset of the masses is set to zero [11].
Moreover, the above level-one symmetry holds even if we
do not impose conformal level-zero symmetry, i.e., the
constraint

P
n
j¼1 aj ¼ D on the propagator powers. Hence,

the level-one symmetry can be used to constrain dual
conformal and non-dual-conformal integrals. Finally we
should mention that also the generators as P̂μ̂

extra given
below (4), which can be interpreted as contributions to an
internal sum over Dþ 1 dimensions, define a separate
symmetry of the above one-loop integrands [12].
While (6) represents the central symmetry equation that

extends to higher loop integrals, see Table I, at one-loop
order even stronger invariance statements can be formu-
lated. First, the one-loop invariance even holds at the
integrand level. Second, due to the total permutation
symmetry, the n-gon integrand is even invariant under
the two-point generator density:

Ĵajkρn ¼ 0; Ĵajk ¼
1

2
fabcJcjJ

b
k þ sjJaj þ skJak; ð8Þ

for j; k ∈ f1;…; ng and with sj ¼ ak=2 and sk ¼ −aj=2.

TABLE I. Overview of nonlocal symmetries. We speak of a
(dual) conformal integral if at each x-space vertex the propagator
powers aj sum up to the spacetime dimension D.

Loops Graphs Conformal Not conformal

One n-gons Full Yangian & Ĵaextra All Ĵa & Ĵaextra
Two l-r-gons Full Yangian P̂μ

All Tilings Full Yangian P̂μ
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At two loops we find that n-point integrals (not inte-
grands) built from an lþ 1-gon and an rþ 1-gon with n ¼
lþ r connected by a massless internal propagator are
Yangian invariant:

ð9Þ

Using the permutation symmetries of this class of diagrams
as well as their level-zero symmetry and the two-point
level-one symmetry (8) of the one-loop integrals, it is not
difficult to prove this two-loop invariance.
Higher loops.—Beyond the analytic proofs for one- and

two-loop integrals, we have numerically tested the invari-
ance of higher loop diagrams for various examples,
cf. Table II. To be precise, we have checked for the
presence of the symmetry by acting on the respective
Feynman parametrization and numerical integration of the
result. On this basis we conjecture that all planar Feynman
graphs, which are cut along a closed contour from one of
the three regular tilings of the plane, have massive Yangian
symmetry if all internal propagators are massless. The
external propagators can be massive or massless. Here an
x-space propagator is called external if it is connected to
an external point of the diagram. The integration can be
evaluated in generic spacetime dimension D and
propagator powers may take generic values aj. For full
Yangian invariance we require the conformal constraint
D ¼ P

j∈vertex aj at each integration vertex. If this con-
straint is not satisfied, we still have level-one momentum
symmetry P̂μ, which corresponds to a massive generaliza-
tion of momentum space conformal symmetry that we
introduce below. In the massless limit this matches the

observations of [5–7] on the integrability of massless
Feynman integrals in D ¼ 3, 4, and 6 spacetime
dimensions.
The values of the evaluation parameters sj entering (4)

can be read off from the Feynman graph as follows:
(i) choose an arbitrary leg 1 with s1 ¼ 1

2

P
n
k¼2 ak, (ii) walk

clockwise along the external boundary of the (x-space)
graph and pick up the respective propagator weights,
(iii) here an external propagator with power aj contributes
−aj=2 while an internal propagator with weight bk con-
tributes −bk þD=2. The evaluation parameter sjþ1 is
obtained from sj by adding the respective terms, e.g.,

ð10Þ

Yangian bootstrap.—Let us now employ the above
nonlocal symmetry to bootstrap Feynman integrals with
massive propagators. This discussion extends the algorithm
of [7] to the massive case. We start with some examples
containing conformal vertices obeying the conditionP

j aj ¼ D. Notably, after solving these integrals, we
can obtain an infinite class of integrals by acting with r
mass derivatives ∂mk

, which yields an integral with propa-
gator weights ãj with

P
j ãj ¼ Dþ r.

Conformal, two points, two masses, one loop: As a
simple starting example consider the two-point integral
(see, e.g., [10,13,14] for the nonconformal case)

ð11Þ

written in terms of a function ϕ of the conformally invariant
variable v ¼ ðm2

1 þm2
2 þ x212Þ=2m1m2. For convenience

we set 2α ¼ a1 − a2 − 1 and 2β ¼ −a1 − a2 þ 1. Acting
on I2 with the level-one momentum generator yields the
associated Legendre differential equation [15]:

�
αðαþ 1Þ þ β2

v2 − 1

�
ϕ − 2vϕ0 þ ð1 − v2Þϕ00 ¼ 0: ð12Þ

The general solution to the above differential equation is
easily found, e.g., in MATHEMATICA, to be a linear combi-
nation of the associated Legendre functions of the first and
second kind, i.e., Pβ

α and Qβ
α. The coefficients of these

functions can be fixed using numerical input for the
integral, which yields

ϕðvÞ ¼ 2βπ1−βPβ
αðvÞ: ð13Þ

We have thus completely constrained the integral.

TABLE II. Examples of integrals up to 6 loops and 12 legs
explicitly tested for level-one momentum invariance by acting on
the Feynman parametrization. Graphs cut from regular tilings are
invariant if propagators on the boundary of the graph are massive
or massless (solid), while internal propagators have to be
massless (dashed). Graphs not cut from regular tilings have no
level-one symmetry as described here.

Nonlocal symmetry No symmetry

Triangle Square Hexagon Irregular
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Conformal, three points, three masses, one loop:
Consider next the one-loop three-point integral with all
propagators massive and the conformal constraint D ¼
a1 þ a2 þ a3 (see, e.g., [16–18] for the case with aj ¼ 1):

ð14Þ

Here we have chosen the conformal variables u ¼ u12,
v ¼ u13, and w ¼ u23, where ujk ¼ −x̂2jk=4mjmk. Making
a series ansatz in u, v, and w, the Yangian PDEs translate
into recurrence equations for the series coefficients. These
equations can straightforwardly be solved, which yields
Srivastava’s triple hypergeometric function HC, a
generalization of Appell’s hypergeometric function F1,
see, e.g., [19]:

HCðu; v; wÞ ¼
X∞

k;l;n¼0

ða1Þkþlða2Þkþnða3Þlþn

ðγÞkþlþn

uk

k!
vl

l!
wn

n!
; ð15Þ

with γ ¼ D=2þ 1=2 and the Pochhammer symbol
ðaÞk ¼ Γaþk=Γa. This series converges for

juj þ jvj þ jwj − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − jujÞð1 − jvjÞð1 − jwjÞ

p
< 2; ð16Þ

and in this region it is the only converging solution of 29
formal series solutions to the Yangian equations. Numerical
comparison to the Feynman parameter representation of
(14) yields the overall constant such that

Im1m2m3

3 ¼ πD=2ΓD=2

ðD − 1Þ!ma1
1 ma2

2 ma3
3

HCðu; v; wÞ: ð17Þ

To the knowledge of the authors, this result has not been
given elsewhere in the literature.
Nonconformal, three points, one mass, one loop: Let us

finally demonstrate the usefulness of the level-one sym-
metry for an integral that has no massive dual conformal
(level-zero) symmetry. We write the triangle with massive
leg 1 as

ð18Þ

with u ¼ u12, v ¼ u13 and w ¼ −u23, and ujk ¼ −x2jk=m2
1.

We act with the level-one PDEs on the series ansatz

Gα1α2α3γ1γ2
xyz ¼

X
k;l;n

fkln
uk

k!
vl

l!
wn

n!
; ð19Þ

where the sum runs over k ∈ xþ Z, l ∈ yþ Z, n ∈ zþ Z
for some ðx; y; zÞ ∈ R3. The resulting recurrence equations
can straightforwardly be solved which results in

fkln ¼
ðα1Þkþlþnðα2Þkþnðα3Þlþn

ðγ1Þkþlþnðγ2Þn
; ð20Þ

with the new parameters

α1 ¼ a1 þ a2 þ a3 −
D
2
; α2 ¼ a2;

α3 ¼ a3; γ1 ¼
D
2
; ð21Þ

and the abbreviation γ2 ¼ 1 − γ1 þ α2 þ α3. We find 36
combinations of ðx; y; zÞ in (19) for which the series
terminates after rescaling, which we take as a necessary
criterion for convergence. However, only for the two
choices (0,0,0) and ð0; 0; 1 − γ2Þ of these 36 combinations,
u, v, and w are the effective series variables. In fact, the
ansatz combining these two functions, i.e., [20]

ψ3 ¼ π
D
2ðc1Gα1α2α3γ1γ2

000 þ c2G
α1α2α3γ1γ2
001−γ2 Þ; ð22Þ

maps to the solution given in [13], if the constants
c1 and c2 are chosen as c1 ¼ Γα1Γ1−γ2=Γα1−γ2þ1Γγ1 and
c2 ¼ Γγ1−α2Γγ1−α3Γγ2−1=Γα2Γα3Γγ1−γ2þ1. In this last exam-
ple we have thus successfully employed the level-one
symmetry to constrain the functional form of an integral
without conformal level-zero symmetry. This suggests an
alternative interpretation of this nonlocal symmetry.
Massive momentum space symmetry.—In the massless

case, the Yangian symmetry of amplitudes in planarN ¼ 4
SYM theory [21] as well as in the fishnet theory [5] can be
understood as the closure of a dual (region momentum
space) and an ordinary (momentum space) conformal
symmetry. It is thus a natural question whether the
discovered massive Yangian can be understood as the
closure of the massive dual conformal symmetry generated
by (2) and some massive generalization of momentum
space conformal symmetry. To address this question
we translate the level-one generator P̂μ of (4) given in
terms of region momenta xj into momenta pj defined
via pμ

j ¼ xμj − xμjþ1. The masses, on the contrary, stay
untouched because the mass dependence of the integrals
cannot be phrased in terms of dual masses mj −mjþ1 only.
By making the respective substitutions and using the chain
rule, one finds

P̂μ ¼ −
i
2
K̄μ; ð23Þ

which holds up to terms that vanish when the integral is
expressed in terms of the first n − 1 momenta by using
momentum conservation. Here, the special conformal
operator K̄μ forms part of the following massive generali-
zation of the momentum space conformal generators [22]:
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P̄μ
j ¼ pμ

j ; L̄μν
j ¼ pμ

j∂ν
pj
− pν

j∂μ
pj ;

D̄j ¼ pjν∂ν
pj
þmj∂mj

þmjþ1∂mjþ1

2
þ Δ̄j;

K̄μ
j ¼ pμ

j∂2
pj
− 2

�
pjν∂ν

pj
þmj∂mj

þmjþ1∂mjþ1

2
þ Δ̄j

�
∂μ
pj :

ð24Þ

These generators thus furnish symmetries of the above
integrals expressed in momentum space and they obey the
ordinary conformal algebra. We have Δ̄j ¼ 1

2
Δj þ 1

2
Δjþ1 −

sj þ sjþ1 with the evaluation parameters sj determined by
the rules (10) [23]. We note that the operator K̄μ

j includes a
mildly nonlocal contribution acting on the masses of
nearest-neighboring legs j and jþ 1 of the Feynman
graph. In the massless limit, the above translation (23)
of the Yangian level-one generator to momentum space also
makes connection to the momentum space Ward identities
that were recently studied for conformal correlation func-
tions, see, e.g., [24–26].
Conclusions and outlook.—The main results presented

in this Letter are summarized as follows: an infinite number
of specific massive Feynman integrals features a highly
constraining Yangian symmetry—a hallmark of integra-
bility. The observed Yangian algebra can be understood as
the closure of a novel momentum space conformal sym-
metry and the known massive dual conformal symmetry;
this strongly suggests an embedding of these findings into a
larger picture within the AdS=CFT duality. Our finding
shows that the massive IR regulator proposed in [3] does
not only preserve dual conformal symmetry but also the
Yangian symmetry of Feynman integrals.
There are plenty of further directions worth being

investigated. First, it would be important to formally prove
our conjecture of higher loop Yangian and massive
momentum space conformal symmetry. This may be
possible along the lines of the massless case [5,6], but it
could be tricky to find a proof that applies directly to all
cases considered in this Letter (e.g., to generic spacetime
dimensions D). Second, the applicability of Yangian
symmetry to massive Feynman integrals and generic
(double) n-gons allows us to refine the algorithm of [7]
on many more examples whose complexity interpolates
between the simplest massless cases with 2 and 9 variables,
respectively. This may finally open the door to computing,
e.g., the massless hexagon or double box integral.
Moreover, some of the integrals discussed above have a
geometric interpretation, see, e.g., [17,18,27,28]. It would
be fascinating to understand the considered symmetries in
this context. Another highly interesting task is to seek for a
massive generalization of the Basso-Dixon formula for
massless fishnet four-point integrals [29], whose finding
was motivated by integrability. Finally, in the massless
situation, integrability took its way from AdS=CFT via the
fishnet theory to Feynman integrals [5,6,8]. Here we have

found similar properties for the massive building blocks of
quantum field theory. Tracing back these symmetries to an
origin within the AdS=CFT duality is very suggestive and
may open the door to understanding integrability in
massive phases of AdS=CFT. In this direction we note
that, in D ¼ 4 for instance, the massive square fishnet
diagrams discussed above can be considered as planar off-
shell amplitudes generated by the Lagrangian

L ¼ Nctrð−∂μX̄∂μX − ∂μZ̄∂μZ þ ξ2X̄ Z̄ XZÞ
− Ncðmj −mk

2ÞZ̄j
kZk

j − Ncðmj −mk
2ÞX̄j

kXk
j: ð25Þ

Here, Nc − n of the masses mj are taken to be zero, such
that graphs with massless propagators in the bulk of the
diagram are dominant in the planar limit [30]. It would be
interesting to test this Lagrangian for Yangian symmetry
with the methods of [33].
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