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ABSTRACT The sparse Cholesky parametrization of the inverse covariance matrix is directly related to
Gaussian Bayesian networks. Its counterpart, the covariance Cholesky factorization model, has a natural
interpretation as a hidden variable model for ordered signal data. Despite this, it has received little attention
so far, with few notable exceptions. To fill this gap, in this paper we focus on arbitrary zero patterns in
the Cholesky factor of a covariance matrix. We discuss how these models can also be extended, in analogy
with Gaussian Bayesian networks, to data where no apparent order is available. For the ordered scenario,
we propose a novel estimation method that is based on matrix loss penalization, as opposed to the existing
regression-based approaches. The performance of this sparse model for the Cholesky factor, together with
our novel estimator, is assessed in a simulation setting , as well as over spatial and temporal real data where a
natural ordering arises among the variables. We give guidelines, based on the empirical results, about which
of the methods analysed is more appropriate for each setting.

INDEX TERMS Covariance matrix, sparse matrices, regression analysis, graphical model, Gaussian
distribution

I. INTRODUCTION
The multivariate Gaussian distribution is central in both
statistics andmachine learning because of its wide applicabil-
ity and well theoretical behaviour. Whenever it is necessary
to reduce model dimension, such as in a high dimensional
setting [1] or in graphical models [2], [3], sparsity is imposed
in either the covariance matrix 6 or its inverse � = 6−1.
The inverse covariance matrix� directly encodes informa-

tion about partial correlations; therefore, when a zero pattern
is present in �, it represents absent edges in the undirected
graph of a Gaussian Markov network [4], [5]. Furthermore,
letting � = WWt be its Cholesky decomposition, a zero
pattern in the lower triangular matrix W yields the acyclic
digraph associated with a Gaussian Bayesian network [6], [7]
model, up to a permutation of the variables [8]. As a result,
much of the academic focus has been on sparsity in either
the inverse covariance matrix or its Cholesky decomposition
[9]–[13].

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

Conversely, a zero pattern in the covariance matrix 6
represents missing edges from the undirected graph of a
covariance graph model [14]–[17]. However, a structured
zero pattern on the Cholesky decomposition 6 = TTt of
the covariance matrix has only been addressed by few works:
[18] and [19]. In [18] the authors briefly analyse zeros in T
mainly as a tool for better understanding of a higher-level
graphical model called covariance chain, which is the main
focus of their work. More directly related to our interests
is the work of Rothman et al. [19], who directly explore a
regression interpretation of the Cholesky factor T over the
error variables. However, the authors do not address a struc-
tured zero pattern directly; instead, they focus on a banding
structure for T, inspired by the popularity of this estimator
for the covariance matrix. In fact, a significant amount of
the paper is devoted to analysing the relationship between
the covariance matrix, or its inverse, and banded Cholesky
factorization.

To fill this gap, in this paper we focus on arbitrary
zero patterns in the Cholesky factor T of the covariance
matrix6. We argue how this naturally models scenarios with
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ordered variables representing noisy inputs from hidden sig-
nal sources, see for example [20] where latent brain regions
are assumed to influence neural measurements. We discuss
how this model could be extended to unordered variables by
defining a new Gaussian graphical model over the Cholesky
factorization of the covariance matrix. This new graphical
model can be thought of as the analogue of a Gaussian
Bayesian network, which is defined via sparse factoriza-
tions of the inverse covariance matrix. For ordered variables,
we propose a novel learning method by directly penalis-
ing a matrix loss, in contrast with existing regression-based
approaches in the literature [19]. This new estimator is feasi-
ble to compute thanks to a simplification of the loss gradient
computation similar to the one proposed in [21]. Finally,
we empirically assess themodel performance in a broad range
of experiments, exploring multiple simulation scenarios as
well as real data where a natural spatial or temporal order
arises between the variables.

The rest of the paper is organized as follows. In Section II
we introduce the theoretical preliminaries necessary to follow
the exposition. Then we detail the proposed sparse model for
the Cholesky factor T of the covariance matrix 6, as well
as introduce its extension to a Gaussian graphical model,
in Section III. Afterwards, we discuss existing state-of-the-
art estimation methods in Section IV, where we also detail
our novel penalized matrix loss proposal. We assess the
previously explained estimation methods in both simulated
and real experiments, whose results are shown in Section V.
Finally, we close the paper in Section VI, discussing the con-
clusions that can be drawn from the presented work, and also
outlining the planned lines of future research. Appendices A,
B and C are referenced throughout the paper and contain
additional material for the interested reader.

II. THEORETICAL PRELIMINARIES
We will denote as N (µ,6) the multivariate Gaussian distri-
bution with mean vector µ and covariance matrix 6. Since
we focus on the zero pattern in 6, in the following we
will set µ = 0 for notational simplicity, without loosing
generality. As in the previous section, we will denote the
inverse covariance matrix as � = 6−1.

A. THE INVERSE COVARIANCE MATRIX AND SYSTEMS OF
RECURSIVE REGRESSIONS
As we stated previously, the inverse covariance matrix and its
decompositions have been thoroughly researched. If X is a p-
variate Gaussian random vector, that is, ifX ∼ N (0,6), then
the upper Cholesky factorization of � can be used to model
ordered sequences of regressions [7], [9], as follows.

For J ⊆ {1, . . . , p}, i 6∈ J and j ∈ J , let β i|J = (6iJ6
−1
JJ )

t

denote the vector of regression coefficients of Xi on XJ ,
with its j-th entry being βij|J , the coefficient corresponding to
variable Xj. We may equivalently write the statistical model
for X as a system of recursive linear regression equations
(also called a linear structural equation model [22]), where

for each i ∈ {1, . . . , p},

Xi =
i−1∑
j=1

βij|1,...,i −1Xj + Ei, (1)

with Ei independent Gaussian random variables of zero mean
and var(Ei) = var(Xi|X1, . . . ,Xi−1). The above regression
system can also be expressed as X = BX + E , where B is a
strictly lower triangular matrix with entries bij = βij|1,...,i −1.
Rearranging the previous equation, we obtain

X = LE, (2)

where L = (Ip − B)−1 with Ip the p-dimensional identity
matrix. Now if we take variances and inverses on Equa-
tion (2), we arrive at the upper Cholesky decomposition of
the inverse covariance matrix,

� = 6−1 = L−tD−1L−1 = UD−1Ut
=WWt , (3)

where U = L−t = (Ip − B)t and W = U
√
D−1 are upper

triangular matrices, andD is a diagonal matrix containing the
variances of E .
Equations (1) and (3) are intimately related: all parameters

of the recursive regression system are encoded in the upper
Cholesky factorization. Indeed, we have that D = var(E)
and the (j, i) entry of matrix U, uji, is equal to −βij|1,...,i −1,
therefore all the regression coefficients can also be recovered,
and U is explicitly written as

U =


1 −β21|1 · · · −βp1|1,...,p−1

0 1
. . .

...
...

. . .
. . . −βpp−1|1,...,p−1

0 · · · 0 1

 . (4)

B. THE CHOLESKY DECOMPOSITION OF A COVARIANCE
MATRIX
From Equation (2) we could have proceeded differently.
Instead of taking variances and then inverses, most suited for
analysing ordered sequences of variable regressions and sub-
sequent Gaussian Bayesian networks (GBNs), we could have
just taken variances and would have arrived at the Cholesky
decomposition of the covariance matrix [19]

6 = LDLt = TTt , (5)

where now L = (Ip − B)−1 and T = L
√
D are lower

triangular.
Observe that Equation (5) is a direct analogue of Equa-

tion (3); although now there is not a natural interpretation
of L entries in terms of regression coefficients. However,
we will now show that the entries of L are in fact regression
coefficients, just over a different conditioning set. Alternative
derivations of this result can be found in [23, p. 158] and [18,
p. 846]. The one in [23] is computational, based on the sweep
matrix operator [24], whereas [18] provides a sketch based
on a recursive expression for regression coefficients. We use
instead simple identities over partitioned matrices.
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Proposition 1: For i ∈ {1, . . . , p} and j < i, the (i, j) entry
of matrix L, denoted as lij, is equal to βij|1,...,j.

Proof: For each i ∈ {1, . . . , p}, j < i and J =
{1, . . . , j}, the following partitioned identities hold [23, Equa-
tion (4.2.18)]

6iJ = LiJDJJLtJJ ,

6JJ = LJJDJJLtJJ .

Therefore,

β ti|J = 6iJ6
−1
JJ

= LiJDJJLtJJ (LJJDJJLtJJ )
−1

= LiJL−1JJ .

Furthermore, observe that, since LJJ is lower triangular
with ones along the diagonal, the last column ofL−1JJ is always
a vector of zero entries except the last entry, which is 1. This
means, in particular, that for each i ∈ {1, . . . , p}, j < i and
J = {1, . . . , j}, the j-th element of row vectorLiJL−1JJ is equal
to lij, which in turn is equal to the j-th entry of β i|J , βij|J . �
The explicit expression in terms of regression coefficients

for L is therefore,

L =


1 0 · · · 0

β21|1 1
. . .

...
...

. . .
. . . 0

βp1|1 · · · βpp−1|1,...,p−1 1

 . (6)

From Equations (4) and (6) useful relationships can be deter-
mined; see, for example, [18, p.847] and Appendix A.

C. THE GAUSSIAN BAYESIAN NETWORK MODEL AND
SPARSE CHOLESKY FACTORIZATIONS OF �
The upper Cholesky factorization in Equation (3) is typically
used as a parametrization for GBNs, see, for example, [8],
[13], [25]. In the following we will explain why, since this is
closely related to the extension of our proposal to a graphical
model.

Let G = (V ,E) be an acyclic digraph, where V =

{1, . . . , p} is the vertex set and E ⊆ V × V is the edge set.
Assume that 1 ≺ · · · ≺ p is a topological order of V , which
means that for all i ∈ V , denoting as pa(i) the parent set in G
of node i, it holds that pa(i) ⊆ {1, . . . , i − 1}. The ordered
Markov property of Bayesian networks states that [7]

Xi | H Xj|Xpa(i) for all j < i and j 6∈ pa(i), (7)

whereXi | H Xj|Xpa(i) stands for conditional independence [26],
that is, Xi and Xj are independent given Xpa(i) = xpa(i),
for any value of xpa(i). In the multivariate Gaussian distribu-
tion, the above conditional independence is equivalent to the
regression coefficient βij|1,...,i −1 being zero (see for example
[27]). Since βij|1,...,i −1 = 0 if and only if uji = 0, then the
zero pattern containing absent edges in G can be read off from
U in Equation (3).
Now allow the ancestral order to be arbitrary, and denote as

U(G) the set of matrices that have positive diagonal and zeros

compatible with a given acyclic digraph G = (V ,E); that is,
such that if (j, i) 6∈ E , j 6= i, then mji = 0 for all M ∈ U(G).
The GBN model can thus be expressed as

N (0,6) s.t. 6−1 =WWt withW ∈ U(G). (8)

Remark 1: Observe that if X = (X1, . . . ,Xp)t ∼ N (0,6)
follows a GBN model with graph G, the parameter matrixW
of Equation (8) is not the Cholesky factor of � = 6−1. This
only occurs when the ancestral order of the nodes in G is 1 ≺
· · · ≺ p; that is, when the variables follow a natural order
(the direct analogue of our model).
However, if we denote as κ(M) the permutation of rows and

columns inM following the ancestral order of G, then κ(W)
is the upper Cholesky factor of κ(�).

III. SPARSE CHOLESKY DECOMPOSITION OF THE
COVARIANCE MATRIX
Wewill hereby introduce the sparse Cholesky decomposition
model 6 = TTt for the covariance matrix, which consists of
allowing an arbitrary zero pattern in T. The entries of T are
in correspondence with those in L and D (see Equation (5),
tij = lij

√
dii), and therefore sometimes we will indistinctly

refer to each of these matrices .

A. THE REGRESSION INTERPRETATIONS FOR THE
COVARIANCE CHOLESKY FACTOR
In terms of model estimation, in U (Equation (4)) each
column corresponds to the parameters of a single recursive
regression, whereas each entry of matrix L (Equation (6))
corresponds to a different regression model.

Fortunately, [19] gave an alternative regression interpreta-
tion for matrix L: recalling Equation (2), where the original
variables X are written as a linear function of the error terms
E , and unfolding this matrix equation, we obtain

Xi =
i−1∑
j=1

lijEj + Ei. (9)

Thus obtaining an analogue of Equation (1), but now
instead of regressing the original variables, the regression
is performed over the error terms of the ordered recursive
regressions in Equation (1).
Remark 2: The (i, j) entry of matrix L for j < i, lij, has

therefore two interpretations as a regression coefficient:
1) It is the coefficient of the error Ej on the regression of

Xi over E1, . . . , Ei−1.
2) It is the coefficient of variable Xj in the regression of Xi

over X1, . . . ,Xj.
Furthermore, from Equations (1) and (9) we have another
dual interpretation for variable Ei: it is the error of the
regression of Xi onto X1, . . . ,Xi−1, but also of Xi onto
E1, . . . , Ei−1.

B. A HIDDEN VARIABLE MODEL INTERPRETATION
The sparse Cholesky parametrization of the covariance
matrix naturally models a hidden variable structure [28]–[31]
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over ordered Gaussian observables (Equation (2)). Interpret-
ing the error terms E as latent signal sources, then the model
is a sort of restricted GBN. This interpretation is naturally
associated with the first regression coefficients outlined in
Remark 2.

The constraints for this GBN that represents our model are:
• All arcs are from hidden variablesE to the observed ones
X .

• There is always an arc from Ei to Xi, for all i ∈
{1, . . . , p}.

• For each i ∈ {1, . . . , p}, only variables E1, . . . , Ei−1 can
have arcs to Xi.

Figure 1 represents one such restricted GBN compatible with
our model.

FIGURE 1. Hidden variable model interpretation. We have omitted the
index set notation for vertices and directly used variables for clarity.

The sparse Cholesky factor for Figure 1 would have the
following lower triangular pattern∗

0 ∗

 , (10)

where an asterisk means a non-zero entry. Observe that the
zero value in entry (3, 1) corresponds to the missing edge
from E1 to X3 in Figure 1.

C. A GRAPHICAL MODEL EXTENSION FOR UNORDERED
VARIABLES
In direct analogy with GBNs and Equation (8), we can define
a graphical model which is parametrized by a Cholesky fac-
torization, up to a permutation. LetG = (V ,E) be an arbitrary
given acyclic digraph, and denote with ≺ its ancestral order.
Let pr≺(i) = {j ∈ V : j ≺ i} be the predecessor set of a node
i ∈ V .

Analogous to U(G) in GBNs, denote as L(G) the set of
matrices which have a zero pattern compatible with G. By this
we mean that if (j, i) 6∈ E , j 6= i, then tij = 0. We may define
the Gaussian graphical model (comparable to Equation (8))

N (0,6) s.t. 6 = TTt with T ∈ L(G). (11)

Remark 3: As in the case of GBNs (Remark 1), the param-
eter matrix T in Equation (11) is lower triangular, and thus
coincides with the Cholesky factor of 6, when the vari-
ables are already ancestrally ordered. Otherwise, the sparse
Cholesky factorization model applies when the ancestral
order ≺ is known, that is, denoting as κ(M) the permutation
of rows and columns of M following ≺, then κ(T) is the
Cholesky factor of κ(6).
This extension has a more natural correspondence with

the second regression interpretation of Remark 2, which holds

after reordering rows and columns of T to comply with ≺,
as follows. First note that Equation (6) holds for an unordered
version of L, and thus we have that tij ∝ βij| pr≺(j) for j ≺ i.
Therefore, we retrieve a sort of ordered Markov property
(comparable to Equation (7))

Xi | H Xj|Xpr≺(j) for all j ≺ i and j 6∈ pa(i). (12)

A simple example of an arbitrary graph would be that
in Figure 2. In this model, factor T would be lower triangular
after reordering its rows and columns following the ancestral
ordering of the graph, 2 ≺ 1 ≺ 3,

T =

∗ ∗ 0
0 ∗ 0
∗ 0 ∗

 , κ(T) =

∗ 0 0
∗ ∗ 0
0 ∗ ∗

 .

FIGURE 2. Graph with ancestral order 2 ≺ 1 ≺ 3. We have omitted the
index set notation for vertices and directly used variables for clarity.

In the example of Figure 1, where variables already exhibit
a natural order, the graph that would represent such interac-
tions would be that in Figure 3, whose parameter matrix T is
already lower triangular (see also Remark 3).

FIGURE 3. Graph corresponding to the model in Figure 1. We have
omitted the index set notation for vertices and directly used variables for
clarity.

A further study of this graphical model extension is out of
the scope of this work, since we focus on naturally ordered
variables from hidden signal sources, but we have discussed
it here for completeness and interest for future work.

IV. MODEL ESTIMATION
We will first review two regression-based existing estimators
for this model that can be found in [19], and then will detail
our proposed penalized matrix loss estimation method.

A. EXISTING WORK: BANDING AND LASSO
Throughout this section denote as xi a sample of size N
corresponding to variable Xi, where X = (X1, . . . ,Xp) is
assumed to follow the regression model of Equation (9).

The banding estimate for T builds upon the respective for
L. The idea is to estimate by standard least squares only the
first k sub-diagonals ofL and set the rest to zero. Specifically,
if b(k) = max(1, i − k) denotes the starting index, with
respect to the band parameter k , of the i-th row vector l i =
(lib(k), . . . , lii−1)t in matrix L, then, letting ε̂b(k) = xb(k),

l̂ i = argmin
l i
‖xi − (ε̂b(k) · · · ε̂i−1)l i‖22,

ε̂i = xi − (ε̂b(k) · · · ε̂i−1)l̂ i,

d̂ii =
1
N
‖ε̂i‖

2
2, (13)
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where ‖·‖2 is the Euclidean or l2-norm. In order to ensure
positive definiteness of all matrices involved in the compu-
tations, k must be smaller than min(N − 1, p) [19]. Matrix
T̂ = L̂

√

D̂ inherits the band structure from L̂. The main
drawback of this banding estimator is the restrictive zero
pattern that it imposes. Note also that this method requires
previous selection of the parameter k .
An alternative to banding which gives more flexibility over

the zero pattern is to use lasso regression over Equation (9),

l̂ i = argmin
l i
‖xi − (ε̂1 · · · ε̂i−1)l i‖22 + λ‖l i‖1,

ε̂i = xi − (ε̂1 · · · ε̂i−1)l̂ i,

d̂ii =
1
N
‖ε̂i‖

2
2, (14)

where this time ε̂1 = x1, l i = (li1, . . . , lii−1)t , and ‖·‖1
is the l1-norm and λ > 0 is the penalisation parameter.
Observe that such penalty could be replaced with any other
sparsity inducing penalty over l i, for example, [19] discussed
also the nested lasso [32] because the sparsity pattern is
preserved in the covariance matrix. We have discarded such
penalty because we are primarily interested in an arbitrary
zero pattern in T̂ and not worried about the induced one in 6̂.

B. PENALIZED GRADIENT-BASED LEARNING OF THE
COVARIANCE SPARSE CHOLESKY FACTOR
The above approaches are based on the regression interpre-
tation of the sparse Cholesky factor model, Equation (9).
By contrast, we propose to directly estimate all of the param-
eters, that is, matrix T entries, by solving one optimization
problem. This allows for example to recover maximum like-
lihood estimates, as well as have the potential to be eas-
ily extended to the graphical model interpretation (Equa-
tion (11)) following an approach similar to [33].

Denote as6(T) the parametrization of a covariance matrix
6 with its Cholesky factor T (Equation (5)). We propose to
learn a sparse model for T by solving the following optimiza-
tion problem

argmin
T
φ (6(T))+ λ‖T‖1, (15)

where φ(·) is a differentiable loss function over covariance
matrices, λ > 0 is the penalisation parameter, and ‖·‖1 is
the l1-norm for matrices, which induces sparsity on T [34].
Note that, as in the regression case, the l1 penalty could
be replaced with any other sparsity inducing matrix norm.
Solving Equation (15) can be done via proximal gradient
algorithms, which have optimal convergence rates among
first-order methods [34] and are tailored for a convex φ but
also competitive in the non-convex case [21]. In this work
we have used two such smooth loss functions: the negative
Gaussian log-likelihood and the triangular Frobenious norm.

The negative Gaussian log-likelihood for a sample
x1, . . . , xN when µ is assumed to be zero is [27] proportional
to

φNLL(6) = ln det(6)+ tr(6−16̂), (16)

where 6̂ = 1/N
∑N

n=1 xnx
t
n is the maximum likelihood

estimator for6. On the other hand, the Frobenious norm loss
that we also consider is

φFR(6) = ‖6 − 6̂‖2F =
p∑
i=1

p∑
j=1

(σij − σ̂ij)2. (17)

BothφNLL andφFR are smooth, and in generalφNLL renders
the optimization problem of Equation (15) non-convex [35],
whereas φFR is a convex function. In Appendix B we provide
the details on gradient computations forφNLL andφFR, as well
as the proximal algorithm pseudocode.

V. EXPERIMENTS
In all of the experiments we compare the four estimation
methods outlined in the previous section: banding T (Equa-
tion (13)), lasso regressions (Equation (14)), and our two
proposed penalized losses φNLL (Equation (16)) and φFR
(Equation (17)). These four methods will be denoted in the
remainder as band, lasso, grad_lik and grad_frob, respec-
tively. All data was standardized, and therefore in our pro-
posed losses the sample correlation matrix was used instead
of 6̂. The implementation of our loss optimization methods
grad_frob and grad_lik can be found in the R [36] package
covchol1.

A. SIMULATION
We have conducted simulation experiments in two different
scenarios. First, because as the work of Rothman et al. [19]
is the most directly related to our model, we have repli-
cated their simulation setting for completeness. Therein they
select three fixed covariance matrices with either a fixed
known banded sparsity pattern or no zeros at all. By contrast,
in the second experiment we explore how the methods per-
form when the sparsity pattern is arbitrary.

In both experiments we have measured two statistics in
order to assess both model selection (how precise the zero
pattern is recovered) and estimation (how numerically close
is the retrieved matrix to the original one). These metrics are
evaluated over6 and 6̂ in the second experiment instead ofT
and T̂, for better comparability with [19]. Specifically, we use
the F1 score for evaluating the zero pattern,

F1(T, T̂) = 2
TPR(T, T̂) TDR(T, T̂)

TPR(T, T̂)+ TDR(T, T̂)
, (18)

where TPR and TDR are the true positive and discovery rate,
respectively,

TPR(T, T̂) =
|{tij 6= 0 and t̂ij 6= 0}|

|{tij 6= 0}|
,

TDR(T, T̂) =
|{tij 6= 0 and t̂ij 6= 0}|

|{t̂ij 6= 0}|
;

1Version under development: https://github.com/irenecrsn/covchol. The
experiments described throughout this section can be reproduced fol-
lowing the instructions and using the code available at the repository
https://github.com/irenecrsn/chol-inv.
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and the induced matrix 1-norm,

NORM(T, T̂) = ‖T− T̂‖1 = max
1≤j≤p

p∑
i=1

|t̂ij − tij|.

1) FIXED COVARIANCE MATRICES
The fixed covariance matrices used in the simulations by
Rothman et al. [19] are:
• The autoregressive model of order 1, where the true
covariance matrix 61 has entries σij = ρ|i−j|, with
ρ = 0.7.

• The 4-banded correlation matrix 62 with entries σij =
0.4I(|i−j| = 1)+0.2I(2 ≤ |i−j| ≤ 3)+0.1I(|i−j| = 4)
for i 6= j, I being the set indicator function.

• The dense correlation matrix 63 with 0.5 in all of its
entries except for the diagonal.

Similarly to [19], we use for matrix dimension p values rang-
ing from 30 to 500, and draw from the respective distribution
N (0,6i), i ∈ {1, 2, 3}, a sample of size 200 which allows
to visualize both the p > N and p < N scenarios. With this
experiment we measure how sparsity inducing methods for
learning T behave in scenarios which are not specially suited
for them, except for band and 62.

Figure 4 shows the results of the aforementioned simula-
tion scenario. The norms are shown in logarithmic scale for
a better comparison between the methods, since there were
significant disparities. 61 and 63 are both dense matrices,

FIGURE 4. Results of the simulation experiment set out in [19]. Metric
NORM is in logarithmic scale.

with 61 having entries that decay when moving away from
the diagonal. We observe that the inexistent sparsity pattern
is best approximated by grad_lik and lasso, but interestingly
grad_frob and band achieve competitive norm results, some-
times even outperforming the rest. Matrix 62 is banded,
therefore, as expected, band achieves both the highest F1
measure and lowest norm difference.

2) ARBITRARY SPARSITY PATTERN IN THE CHOLESKY
FACTOR T
In this experiment the sparse Cholesky factor T is simulated
using essentially the method of [37, Algorithm 3] with a
random acyclic digraph to represent zero pattern, that is,

the latent structure (see Figure 1). Observe that in general this
does not yield a uniformly sampled Cholesky factor, but it
is more flexible that the standard diagonal dominance proce-
dure, see [37] for further discussion on this issue.We generate
three Cholesky factors Ti with a proportion of i/p non-zero
entries (density/average edge number of the corresponding
acyclic digraph), where i ∈ {1, 2, 3}. Then we draw a sample
of size 200 from N (0,TiTti ) for p ranging between 30 and
500, as in the previous experiment.

Figure 5 depicts the results. Note that as the density

FIGURE 5. Results of the simulation experiment for an arbitrary sparsity
pattern in T. Metric NORM is in logarithmic scale. Density indicates the
average proportion of lower triangular non-zero entries in the simulated
T Cholesky factors.

decreases, the F1 score and matrix norm results slightly
worsen, but in general the methods behaviour is maintained.
The band estimator exhibits a performance similar to the pre-
vious experiment: although achieving a small F1 score, it has
a relatively small matrix norm difference. This behaviour
is shared in this case with grad_lik, which has in general
poor performance. However, the worst performing method is
lasso, which neither is able to recover the sparsity pattern,
nor gets numerically close to the original Cholesky factor
(it has a significantly high value for the norm difference).
Conversely, method grad_frob has the best performance, with
a significantly high F1 score when compared with the rest and
competitive or best norm difference results.

B. REAL DATA
In this section we have selected two data sets from the UCI
machine learning repository [38] where a natural order arises
among the variables, and which are therefore suitable for
our sparse covariance Cholesky factorization model. Both
of them are labelled with a class variable, therefore after
estimating the respective Cholesky factors with each method,
we assess classification performance.

For classifying a sample x we use quadratic discriminant
analysis [19], where x is classified in the class value c that
maximizes

ln f̂ (x, c) = ln f̂ (x|c)+ ln f̂ (c),
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where f̂ (c) is the proportion of observations for class c and
we have expressed f̂ (x|c) in terms of T instead of 6,

ln f̂ (x|c) ∝
1
2
ln det(6̂c)−

1
2
(x− µ̂c)

t 6̂
−1
c (x− µ̂c)

= ln det(T̂c)−
1
2
(x− µ̂c)

t T̂−tc T̂−1c (x− µ̂c)

=

p∑
i=1

ln tii−
1
2
(T̂−1c (x−µ̂c))

t T̂−1c (x−µ̂c), (19)

with µ̂c, 6̂c and T̂c the respective estimates from training
samples belonging to class c.
Finally, for evaluating classification performance we have

used:

• The F1 score, already defined in Equation (18) in terms
of TDR and TPR, but adapted to classification instead
of matrix entries.

• The true negative rate, TNR, since it is not contained in
the F1 score, which is the proportion of observations that
have been correctly not classified as class c.

• The accuracy, ACC, which measures the proportion of
observations that have been correctly assigned a class.
Observe that this last metric, unlike the other two, is not
class-dependent, but instead global.

1) SONAR: MINE vs. ROCKS
The first real data set we explore is the Connectionist Bench
(Sonar, Mines vs. Rocks) data set, which contains numeric
observations from a sonar signal bounced at both a metal
cylinder (mine) and rocks. It contains 60 variables and 208
observations. Each variable corresponds to the energy within
a certain frequency band, integrated over a period of time,
in increasing order. Each observation represents a different
beam angle for the same object under detection. Over this data
set the objective is to classify a sample as rock or mine. This
data set was also analysed in [19], but without the expression
in terms of T for Equation (19) and only using method band
for T.
As a first exploratory step, we have applied each of the

methods for learning the Cholesky factorT to all the instances
labelled as M (mines), and R (rocks), which we show as a
heatmap in Figure 6. The Cholesky factor for mines retrieved

FIGURE 6. Heatmaps of the Cholesky factors of rock and mine samples.
M: Mines; R: Rocks.

by grad_lik and lasso look fairly similar, whereas the one for
rocks that lasso estimates is nearly diagonal. Bands can be
clearly observed from heatmaps by band, and all methods
impose zero values for variables near to or higher than 50,
which could be motivated by the problem characteristics
and hint at high sonar frequencies being nearly noiseless.
This latter behaviour is inherited by the covariance matrices,
whose heatmaps are shown in Appendix C, Figure 9. The
entries in the Cholesky factor estimated by grad_frob are the
most extreme, sincemost of them are zero, and the oneswhich
are not have the highest and lowest values among all the
estimates recovered. Despite the outlined differences among
the Cholesky factors, the induced covariance matrices exhibit
rather similar heatmaps and eigenvalues (Figures 9 and 10 in
Appendix C).
For the quadratic discriminant analysis we have used leave-

one-out cross-validation, since the sample size was suffi-
ciently small to allow it. Table 1 contains the results thus
obtained. We see that lasso is the method that performs
poorest overall. Conversely, band is arguably the best for this
problem, except for the TNR of rock samples, which is high-
est for grad_frob. However, observing the rest of statistics for
grad_frob, it can be deduced that this method over-classifies
samples as mines: it has the lowest TNR for them. On the
other hand, grad_lik performs competitively for this problem,
but is in general outperformed or matched by band. Since the
sonar behaviour hints at a band structure for the covariance
(frequency patterns being related to those close to them), and
therefore for its Cholesky factor, the good performance of
band could be expected.

TABLE 1. Statistics for the sonar problem. M: mines; R: rocks.

2) WALL-FOLLOWING ROBOT NAVIGATION
The other real data set we use is the Wall-Following Robot
Navigation one. Here a robot moves in a room following
the wall clockwise. It contains 5456 observations and 24
variables. Each variable corresponds to the value of an ultra-
sound sensor, which are arranged circularly over the robot’s
body. Here the increasing order reflects the reference angle
where the sensor is located. Since the robot is moving clock-
wise, here the classification task is between four possible
class values: Move-Forward, Sharp-Right-Turn, Slight-Left-
Turn or Slight-Right-Turn.

As in the previous problem, we obtain the Cholesky fac-
tors for each of the movements, depicted in Figure 7. We
notice that grad_frob outputs a similar matrix (except for the
Slight-Left-Turn movement) than the other three methods,
which means that the extreme behaviour we observed in
the sonar experiment was problem related. By contrast,
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the Cholesky factor for Slight-Left-Turn is nearly diagonal.
The othermatrices are rather similar among themethods, with
band notably choosing in general a high banding parameter
k (few to no bands). Here we have a similar structure as
in the sonar problem: we appreciate for all the movements
except Slight-Left-Turn that most entries close to the diagonal
are positive, whereas distant ones are frequently negative.
Regarding Slight-Left-Turn, these matrices are the sparsest
and have near zero values on the diagonal. Since the robot
is moving clockwise, this movement is related to obstacles,
therefore it could hint that sensor readings are correctly iden-
tifying them.

FIGURE 7. Heatmaps of the Cholesky factor of the wall-following robot
navigation samples.

In this problem we have a larger sample size, and there-
fore we split the data into train and test, with half of the
samples on each set. The classification results are shown
in Table 2. We observe that all of the methods perform
arguably good, in fact they achieve nearly identical accuracy.
It is noticeable how competitive are lasso and grad_lik, which
performed much worse in the sonar problem. We also notice
that arguably the best results are obtained for the Slight-Left-
Turn movement, which confirms our previous intuition over
the heatmaps about sensors correctly identifying obstacles.
The worst performance over all methods is for the Slight-
Right-Turn movement, but is not noteworthy when compared
with the rest (except for Slight-Left-Turn).

C. DISCUSSION
We can draw several conclusions from both the simulated and
real experiments. First, we report in Figure 8 the execution
time for each method, where it can be seen that grad_lik is
the slowest one and band is the fastest.

Whenever there is a clear dependence between variables
that are close in the ordering, such as in the sonar example,
the band method could be preferred, because it is the one

TABLE 2. Statistics for the robot problem. MF: Move-Forward; SHR:
Sharp-Right-Turn; SLL: Slight-Left-Turn; SLR: Slight-Right-Turn.

FIGURE 8. Logarithm of the execution time (in seconds) for each of the
methods under evaluation. Density indicates the average proportion of
lower triangular non-zero entries in the simulated T Cholesky factors.

that more naturally approximates the structure induced in the
Cholesky factor (as happened in the sonar example).

Our new proposed method grad_frob has shown to be
competitive both in execution time as well as recovery results:
when interested in model selection, that is, how accurately
zeros in the Cholesky factor are estimated, it yields the best
results. Conversely, grad_lik has shown to be the most robust:
in simulations it achieved reasonable performance even when
the true covariance matrix was dense, and it also performed
competitively in the sonar example, which was mostly suited
for band as we discussed.

Finally, lasso has achieved overall poor results, except
for the wall-following robot navigation data set. Specially,
in simulations it failed to correctly recover the zero pattern
in the Cholesky factor and was the numerically farthest away
from the true matrix. Despite this, it is the second fastest of
the four methods, so when model selection or robustness are
not a concern it is a good alternative to band, since it provides
more flexibility over the zero pattern in the Cholesky factor.

VI. CONCLUSION AND FUTURE WORK
In this paper we have proposed a sparse model for the
Cholesky factor of the covariance matrix of a multivariate
Gaussian distribution. Few other works in the literature have
previously addressed this problem, and we expand them in
many ways. We have formalised the extension of an arbi-
trary zero pattern in the Cholesky factorization to a Gaus-
sian graphical model. We have proposed a novel estima-
tion method that directly optimizes a penalized matrix loss,
and we have compared it with the other already existing
regression-based approaches in different simulation and real
experiments. We have finally discussed which estimation
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method is preferable depending on the problem characteris-
tics, and argue how our estimation proposal is preferable in
many scenarios than those already existing.

As future research, the most direct and interesting deriva-
tive work would be to further analyse, both theoretically
and empirically, the Gaussian graphical model extension to
unordered variables of the sparse covariance Cholesky factor-
ization model. Also in this direction, its relationship with the
already established covariance graph [14]–[17], an undirected
graphical model over the covariance matrix, could yield
interesting results. Regarding our novel estimation method,
we could explore other alternatives to solve the optimization
problems that arise from the two losses that we compute in
Appendix B. For large data sets, the use of deep learning
models to find the hidden Cholesky factor could be also
explored.

FIGURE 9. Heatmaps of the covariance matrix of rock and mine samples.
M: Mines; R: Rocks.

APPENDIX
A. A TRANSFORMATION BETWEEN THE CHOLESKY
FACTORIZATIONS OF 6 AND �

The following result gives how to obtain the elements of L
from those in U. Recall that, since D is diagonal, the (i, i)
entry in D−1 is d−1ii .
Proposition 1: For each i ∈ {1, . . . , p} with j ∈
{1, . . . , i − 1} the following identity holds:

βij|1,...,j = βij|1,...,i−1 +

i−1∑
k=j+1

βik|1,...,i −1βkj|1,...,j.

Proof: First we recall that L = U−t and UU−1 = Ip.
Thus, for each i ∈ {2, . . . , p} and each j < i, if we multiply
the i-th row in U with the j-th column of U−1, this must be
equal to 0. Specifically, we obtain the following equation,

0 = −βij|1,...,i −1
−βij+1|1,...,i −1βj+1j|1,...,j

...

− βii−1|1,...,i −1βi−1j|1,...,j

+βij|1,...,j.

FIGURE 10. Scree plot of the covariance matrices of rock and mine
samples. M: Mines; R: Rocks.

FIGURE 11. Heatmaps of the covariance matrix of the wall-following
robot navigation samples.

FIGURE 12. Scree plot of the covariance matrices of the wall-following
robot navigation samples.

Therefore,

0 = βij|1,...,j −
i−1∑

k=j+1

βik|1,...,i −1βkj|1,...,j − βij|1,...,i −1,

which yields the desired result. �

B. PROXIMAL GRADIENT ALGORITHM AND GRADIENT
COMPUTATIONS FOR φNLL AND φFR
We will show how to obtain a simplified expression for the
gradient of φ(6(T)) with respect to T as a function of the one
with respect to6. We will denote these gradients as ∇Tφ and
∇6φ, respectively.
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Algorithm 1 Proximal Gradient Algorithm for Minimization
of l1-Penalized Loss
Require: φ differentiable function over positive definite

matrices,
T ∈ Rp×p lower triangular,
M ∈ N, ε, λ, α ∈ (0, 1)

1: f = φ(6(T))
2: g = λ||T||1
3: repeat
4: D = ∇Tφ(6(T))
5: s = 1
6: loop
7: T′ = T− sD
8: soft thresholding T′ at level sλ
9: f ′ = φ(6(T)), g′ = λ||T||1

10: ν = 1
2s (||T− T′||2F )+ tr((T′ − T)D)

11: if f ′ + g′ ≤ f + g and f ′ ≤ f + ν then
12: break
13: else
14: s = αs
15: end if
16: end loop
17: δ = (f + g− f ′ − g′)
18: T = T′, f = f ′, g = g′

19: until k > M or δ < ε

Ensure: T

Proposition 2: For any differentiable loss function
φ(6(T)),

∇Tφ = 2∇6φT. (20)

Proof: This proof follows some ideas from [21, Propo-
sition 2.1]. By matrix calculus [39], we have the following
gradient expression for j < i,

∂φ(6(T))
∂tij

= tr
(
∇6φ

∂6(T)
∂tij

)
, (21)

where we have used that ∇6φ is symmetric. Furthermore,
note that [39]

∂6(T)
∂tij

=
∂TTt

∂tij
= TEij + EjiTt ,

where Eij (Eji) has its (i, j) ((j, i)) entry equal to one and zero
elsewhere. Then from Equation (21) we have

∂φ(6(T))
∂tij

= tr
(
∇6φ(TEij + EjiTt )

)
= tr

(
∇6φTEij

)
+ tr

(
∇6φEjiTt

)
= tr

(
EjiTt∇6φ

)
+ tr

(
EjiTt∇6φ

)
= 2 tr

(
EjiTt∇6φ

)
.

Since aji = tr(EjiA) for any matrix A, we have the desired
result. �

The above proposition implies that once a loss function
φ(6(T)) is fixed, it is only necessary to compute∇6φ in order
to obtain∇Tφ. We would then use it for the proximal gradient
method (Algorithm 1).

We thus can easily obtain the gradient for φNLL and φFR,
whichwe consider in this work. Standardmatrix calculus [39]
gives ∇6φNLL = 6−1 −6−16̂6−1. Therefore we have

∇TφNLL = 2∇6φNLLT

= 26−1(T)(Ip − 6̂6−1(T))T

= 2T−t (Ip − T−16̂T−t ).

Conversely, from [39] we have that ∇6φFR(6) = 2(6 − 6̂).
Thus ∇TφFR = 2(TTt − 6̂)T.

C. MORE FIGURES FOR REAL DATA EXPERIMENTS
See Figure 9–12.
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