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Ecdysone-dependent feedback regulation of prothoracicotropic
hormone controls the timing of developmental maturation

Christian F. Christensen, Takashi Koyama, Stanislav Nagy, E. Thomas Danielsen, Michael J. Texada,

Kenneth A. Halberg and Kim Rewitz*

ABSTRACT

The activation of a neuroendocrine system that induces a surge in
steroid production is a conserved initiator of the juvenile-to-adult
transition in many animals. The trigger for maturation is the secretion
of brain-derived neuropeptides, yet the mechanisms controlling the
timely onset of this event remain ill-defined. Here, we show that a
regulatory feedback circuit controlling the Drosophila neuropeptide
Prothoracicotropic hormone (PTTH) triggers maturation onset. We
identify the Ecdysone Receptor (EcR) in the PTTH-expressing
neurons (PTTHnN) as a regulator of developmental maturation onset.
Loss of EcR in these PTTHn impairs PTTH signaling, which delays
maturation. We find that the steroid ecdysone dose-dependently
affects Ptth transcription, promoting its expression at lower
concentrations and inhibiting it at higher concentrations. Our
findings indicate the existence of a feedback circuit in which rising
ecdysone levels trigger, via EcR activity in the PTTHn, the PTTH
surge that generates the maturation-inducing ecdysone peak toward
the end of larval development. Because steroid feedback is also
known to control the vertebrate maturation-inducing hypothalamic-
pituitary-gonadal axis, our findings suggest an overall conservation of
the feedback-regulatory neuroendocrine circuitry that controls the
timing of maturation initiation.

KEY WORDS: Drosophila, Ecdysone, Maturation,
Prothoracicotropic, Ptth, Steroid

INTRODUCTION

The activation of a neuroendocrine axis leading to the production of
steroid hormones is a conserved trigger of maturation onset in
animals (Rewitz et al., 2013; Sisk and Foster, 2004; Tennessen and
Thummel, 2011). In vertebrates, neuronal gonadotropin-releasing
hormone (GnRH) secretion awakens the hypothalamic-pituitary-
gonadal (HPG) axis leading to the production of sex steroids at
puberty. Similarly, the insect neuropeptide Prothoracicotropic
hormone (PTTH) induces steroidogenesis that drives the juvenile-
to-adult transition. Multiple signals converge on these
neuroendocrine axes to couple the timing of maturation with
external and internal stimuli including nutritional and metabolic
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states (Mirth and Riddiford, 2007; Navarro et al., 2007). In humans,
the prevalence of childhood obesity is believed to be a key factor in
the growing incidence of early puberty, which affects growth and
final body size (Ahmed et al., 2009; Kaplowitz, 2008). In
Drosophila and other insects, the onset of maturation is governed
by a nutritional checkpoint associated with the attainment of critical
body size or weight, after which maturation will occur irrespective
of nutritional intake (Edgar, 2006; Mirth and Riddiford, 2007).
Thus, maturation is not initiated until the juvenile has accumulated
sufficient energy and material to ensure successful maturation and
adult fitness.

PTTH is produced by a pair of neurosecretory cells (PTTHn) in
each brain hemisphere (McBrayer et al., 2007). The axons of these
neurons terminate on the steroid-producing cells of the prothoracic
gland (PG) (McBrayer et al., 2007), forming a neuroendocrine
circuit functionally similar to the mammalian HPG axis. PTTH
released here binds to Torso, its cognate receptor tyrosine kinase,
initiating a mitogen-activated protein kinase (MAPK) cascade that
leads to the production of the steroid ecdysone (Rewitz et al., 2009).
Ecdysone is then released from the PG cells through a regulated
vesicle-mediated process (Yamanaka et al., 2015) and, in peripheral
tissues, is converted into its more potent form, 20-hydroxyecdysone
(20E) (Rewitz et al., 2013). Actions of 20E are mediated by its
binding to the nuclear Ecdysone Receptor (EcR), which, in a
heterodimeric complex with Ultraspiracle (Usp), induces time- and
tissue-specific transcriptional responses that initiate metamorphosis, a
transition from the juvenile larval stage to the adult similar to
mammalian puberty (King-Jones and Thummel, 2005).

Uncovering the signals that affect the production and release of
PTTH is key to understanding how maturation timing is controlled.
Drosophila Insulin-like Peptide 8 (DILPS; Ilp8 — FlyBase) secreted
by adult precursor tissues developing within the larva prevents
maturation onset until these tissues are sufficiently developed,
through regulation of neurons that inhibit the PTTHn (Colombani
et al., 2015, 2012; Garelli et al., 2012, 2015; Vallejo et al., 2015).
The neuropeptide Pigment-Dispersing Factor (PDF) (McBrayer
et al., 2007), a signal associated with the circadian clock, also
regulates PTTH, suggesting that the fly maturation pathway, like the
mammalian HPG axis, is under photoperiodic control (Walton et al.,
2011). In mammals, the peptide kisspeptin (KISS1) and its receptor
GPR54 (KISSIR) are key triggers of puberty onset that regulate
GnRH secretion. Similarly, the Drosophila KISS1 ortholog,
Allatostatin A (AstA), and its receptor regulate maturation onset
via control of PTTH signaling (Deveci et al., 2019; Pan and
O’Connor, 2019). Furthermore, the HPG axis is under feedback
control, whereby gonadal steroids act on the upstream
neuroendocrine components to regulate signaling through this
axis (Acevedo-Rodriguez et al., 2018). In Drosophila, ecdysone
provides positive and negative feedback on the PG in a classical
feedback loop to shape the pulses of ecdysone necessary to drive the
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genetic programs underlying the juvenile-to-adult transition
(Moeller et al., 2013). However, whether feedback also regulates
the neurocircuitry that triggers these steroid pulses in animals, and
thus the overall timing of the juvenile-to-adult transition, is
presently unknown.

We report here the identification of EcR and usp in an RNAIi-
based screen for regulators of PTTH production or release. We find
that ecdysone-mediated feedback via EcR in the PTTHn drives the
pupariation-triggering PTTH surge, thereby determining the timing
of maturation. Under rising ecdysone levels, EcCR mediates Ptth
transcriptional upregulation, leading to the steep rise in PTTH prior
to metamorphosis. This generates a PTTH surge that induces a high-
level ecdysone peak that initiates maturation; high ecdysone levels
subsequently feed back negatively to suppress PTTH production.
Mammalian gonadal steroids act in positive and negative feedback
loops to modulate the HPG axis (Acevedo-Rodriguez et al., 2018).
Our results show that the developmental transition to adulthood in
Drosophila is similarly controlled by positive and negative
feedback mechanisms that modulate the PTTHn, suggesting that
neuroendocrine feedback control of developmental maturation is
evolutionarily ancient.

RESULTS

EcR induces maturation onset through positive regulation

of the PTTHn

PTTH release is thought to be the main trigger of the juvenile-adult
transition in insects (Rewitz et al., 2013). Loss of PTTH extends the
larval period of feeding and growth, leading to increased pupal and
adult size. To identify signals controlling maturation onset,
upstream of PTTH, we performed an RNAi-based pupal-size
screen targeting 608 membrane-associated proteins (known or
potential receptors) and transcription factors in the PTTHn (Fig. 1A,
Table S1). In this screen, expression of RNAi constructs (along with
the RNA-processing enzyme Dicer-2) was driven in the PTTHn by
NP423-GAL4 (NP423>) (Deveci et al., 2019; Gong et al., 2010;
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Yamanaka et al., 2013). Among the strongest hits was EcR,
knockdown of this gene, or of usp, which encodes a transcriptional
co-factor of EcR, in the PTTHn led to larval overgrowth and thus
to increased pupal size (Fig. 1B). To verify these findings, we
reduced EcR expression in the larval PTTHn and measured
developmental timing and final body size. Knockdown using two
independent RNAI lines (#1 and #2) confirmed that loss of EcR in
the PTTHn causes developmental delay and overgrowth, like
reduced expression of Ptth itself (Fig. 1C-E). This suggested that
EcR might act in the PTTHn as a positive regulator of PTTH
production and release.

Next, we used the Ptth-GAL4 (Ptth>) driver, a weaker but
PTTHn-specific line, to confirm that these effects were caused by
knockdown of EcR in the PTTHn. Because of Ptth-GAL4’s relative
weakness, we recombined EcR-RNAi constructs #1 and #2 to
increase the strength of RNAi-mediated knockdown. Animals
expressing Ptth>EcR-RNAi-1+2 exhibited delayed pupariation and
increased pupal size comparable to knockdown of Prth itself, and
we re-confirmed these effects using a third independent EcR-RNAi
line, #3 (Fig. 2A,B). All further EcR-RNAi experiments used RNAi
lines #1 and #2 combined. To further attribute these defects to
PTTHn-specific EcR deficiency, we disrupted the EcR gene in only
these cells using tissue-specific somatic CRISPR/Cas9 gene
editing. We generated a transgenic UAS-regulated construct that
expresses a pair of guide RNAs (gRNAs) targeting exon 3 of the
EcR gene, which encodes the DNA-binding domain of EcR and is
shared between all its isoforms. By expressing this construct along
with UAS-Cas9 under Ptth> control (at 29°C to boost the activity of
the GAL4 transcription factor and the Cas9 enzyme), we disrupted
the EcR locus specifically in the PTTHn. To assess the efficacy of
this setup, we immunostained brains from larvae at 96 h AEL (after
egg laying) using antibodies against the PTTH neuropeptide, EcR,
and the ecdysone-biosynthetic enzyme Phantom (Phm) to label the
PG (Rewitz et al., 2006; Warren et al., 2004). No anti-EcR signal
was visible in the PTTHn of knockout animals, whereas clear

Fig. 1. Screening for regulators of PTTH
identifies the Ecdysone Receptor (EcR)
complex. (A) Outline of the PTTHN screen
for factors regulating growth. Gene
expression was knocked down in the
PTTHn using the strong NP423-GAL4
(NP432>) driver, and pupal size was

-3 usp EcR measured. In Drosophila, growth is
Altered body size 6 (1.7) (+3.1) restricted to the larval stage, and pupal size
9 thus determines final adult size. (B) Pupal-
C Manipulations in PTTH neurons size distribution from the screen, presented
- as a Z score (standard deviations from the
E NP423>+ NP423>EcR-RNAI(1 mean of all RNAI lines). RNAi against EcR
= NP423>Ptth-RNAj = NP423>EgR:RNA;§23 or its partner ultraspiracle (usp) led to
; increased pupal size (+3.1 and +1.7 s.d.).
100 g i (C) Images of representative pupae of
;\; 80- animals with NP423-driven overexpression of
o = UAS-Ptth (Ptth 1), UAS-usp-RNAi (usp 1),
Pttht Ctrl usp| EcR| Ptth] S 60 UAS-EcR-RNAI (EcR |) or UAS-Ptth-RNAi
D 8 (Ptth ). (D) EcR knockdown using NP423>
— g 401 with two independent RNA lines led to
X 40 e o -~ & increased pupal size, similar to RNAi against
9 20 Fga 20+ Ptth. (E) RNAi knockdown of EcR or Ptth
@ 0 C=7% i delays pupariation, prolonging the feeding
g -?- 0 stage of development. Top: curve showing
& -204 N ’ \,\\ \\?'\ . \\\P:‘ 3 . the fraction of pupated animals over time;
< _40. 0 A ?\Pﬁp‘\ o \a ?‘x‘(\’?\ a kI bottom: the corresponding 50%-pupariated
: 9 7 ‘P50’ times. Statistics: one-way ANOVA with
%3760 ‘2:576 ?D‘(ﬂ 120 130 . 140 150 160 e Dunnett's multiple com arisonytest' *P<0.05;
ok VL W Time (hours after egg lay) p P ; !
W W **P<0.01; ***P<0.001.
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Ptth>Cas9,+ -e= Ptth>Cas9,EcR.gRNA

Fig. 2. EcR activity in the PTTHn controls
the onset of maturation. (A) RNAi-induced
knockdown of EcR with RNAI lines #1 and #2
combined or a third (single) RNAI line (#3)
against EcR using the specific Pith-GAL4
(Ptth>) driver delayed pupariation to a similar
extent as knockdown of Ptth, recapitulating

the results seen with the strong NP423>
driver. Top: pupariation over time; bottom: P50
values. (B) PTTHn-specific manipulations of
EcR expression alter pupal size.
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shown in A). (G) EcR disruption in the PTTHn
leads to reduced PTTH immunostaining in
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anti-EcR signal was present in the PTTHn nuclei of controls, and in
neighboring cells in both controls and EcR knockouts (Fig. 2C,D).
Although the CRISPR/Cas9 system has induced cytotoxicity in
some reports, we did not observe any morphological abnormalities
in the PTTHn or their projections to the PG. Next, to investigate
how this manipulation affected PTTHn activity, we measured
developmental timing and final body size. PTTHn-specific EcR
disruption significantly delayed pupariation and resulted in larger
pupae, compared with controls (Fig. 2E,F). Furthermore, PTTH
levels (anti-PTTH staining intensity in the PTTHn cell body) were
significantly reduced in EcR knockouts (Fig. 2G). Together, these
data support a role for EcR as an inducer of PTTH expression. We
therefore next overexpressed EcR in the PTTHn to analyze whether
this might lead to a precocious juvenile-adult transition. Indeed,
overexpressing EcR.A or EcR.BI variants resulted in advanced

pupariation onset, thereby shortening the larval growth period and
reducing pupal size (Fig. 2B,H), consistent with a positive effect of
EcR on PTTHn activity.

EcR induces the PTTH surge prior to the juvenile-adult
transition

Because EcR induces pupariation through its actions in the PTTHn,
we investigated EcR levels in these cells during the juvenile-adult
transition. We found that EcR is present in PTTHn nuclei from early
L3 (80 h AEL) throughout the L3 stage, increasing in abundance at
the onset of the wandering stage (112 h AEL), when ecdysone levels
rise prior to pupariation (Fig. 3A). Knockdown of EcR in the
PTTHn attenuated this EcR rise, confirming that EcR expression is
reduced by the RNAI, albeit not eliminated as with CRISPR-
induced deletion (Fig. 2C,D).
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Fig. 3. EcR is required in the PTTHn to
induce PTTH toward the end of larval
development. (A) Late-third-instar
upregulation of EcR in nuclei of PTTHn is
attenuated by EcR knockdown. PTTHn were
identified by PTTH immunostaining (the same
cells are shown in B) and are circled in the
representative image pairs below. (B) EcR

dek ok

-
0)

(J

2'5 @Pith>EcR-RNAI
24 OPtth>+

'4

104 116 120

urs after egg lay)

oN

11
Time (h

*k

1
el HE
28| |27 33 36 38 32 32 29

Normalized aPTTH
quorescence

DD m’{—‘ 33 36 38 32 32 29 40 30 41| |39 31| [38
g

knockdown in the PTTHn prevents the late-
third-instar increase in PTTH expression. PTTH
immunostaining intensity increases in control
animals at 112 h AEL, whereas this increase
does not take place in EcR-knockdown
animals. Top: quantification of PTTH
immunostaining intensity; bottom:
representative images. In A and B, the number
(n) of individual neurons measured at each time
pointis indicated in bars. All intensity values are

gk

5-?0'

80 96
Cc

40 30

normalized against the average value of
controls at 80 h for each channel. (C) EcR
knockdown in the PTTHnN reduces Ptth

104 112 116 120 124 128 . e ) d
Time (hours after egg lay) zxpre_sshlon te;]t all time ;laotl_nts afn_t prevents_or
500 . . . * iminishes the upregulation of its expression
S % 400 Eggﬂi’fc’? A toward the end of larval development (a 128-h
E E time point is included for knockdown animals to
Y 300 *k illustrate the lack of further increase). (D) The
T < 200 . * late-third-instar peak in 20-hydroxyecdysone
& g 100 |+| — I’I—‘ ’—}‘ ﬁ ’—I“ levels is reduced or delayed by EcR
€l e FE C= Pl = ] knockdown in the PTTHn. (E) The
96 100 104 108 112 116 120 124 128 corresponding expression increase in the
Time (hours after egg lay) ecdysone-responsive proxy gene E75B is
D Ecd Ptth>Cas9, +-= Pfth>Cas9,EcR.gRNA delayed in EcR-knockdown animals; again, a
2 160 ¢ Ys°“° 100- Pith>Cas9,Pith::HA,ECR.gRNA 128-h measurement is included for the
&3 EPﬁh>ECR'RNA’ * e 1 developmentally delayed knockdown animals,
3 é 120 Ptth>+ &:’ 801 1 g illustrating that the increase in E75B expression
9= S 601 eventually appears, although it is delayed by 8-
5 g’ 80 .8 40 : 12 h. (F,G) Rescue of developmental timing
'E.?g_) 40 S 204 1 " and growth phenotypes induced by CRISPR/
g =~ . rjl:, I—I—Ilfl EI g Cas9-mediated EcR knockout in the PTTHn by
N 0 112 116 120 124 g— '* . ! ' Ptth overexpression. Statistics: unpaired two-
Time (hours after egg lay) H’ﬁ:’" : i . . tailed t-test for pairwise comparison; *P<0.05;
£ E E75B 95 105 115 125 135 **P<0.01; **P<0.001.
by 6000 * Time (hours after egg lay)
o OPtth>EcR-RNAI - G ek
T 4500 OPtth>+ £ 30- — |
< ek o 154 %,
Z 3000 N %
x 2 o
1500 e
g * ek Kk ’Jr‘ %_1 51 591 9 x ‘(\'."\/\P“
T 0 = L3041 | G ol 9 W N
& 96 100 104 108 112 116 120 124128 ?“‘(\ qg“ ?‘«\7 095 \R\q
Time (hours after egg lay) @GR' ?»(\‘(\7 e(;?"g

As Ptth is transcriptionally upregulated to induce the ecdysone
pulse that triggers maturation (McBrayer et al., 2007), we analyzed
whether EcR is required in the PTTHn for this upregulation. Anti-
PTTH immunostaining intensity in cell bodies of the PTTHn
displayed a dynamic profile in control animals, with a strong
increase at 112 h AEL that coincided with the increase in EcR
abundance (Fig. 3B), consistent with EcR being responsible for
PTTH upregulation at this time. PTTHn-specific EcR knockdown
markedly changed this pattern, eliminating the increase in PTTH
intensity at 112 and 116 h AEL observed in control animals.
Although a reduction in PTTH staining could potentially be
explained by increased secretion, this would be inconsistent with
these animals’ delayed development. Thus, this altered profile
suggests that EcR positively regulates PTTH production, consistent
with the results showing that EcR expression in the PTTHn
correlates with pupariation advance. Because EcR is a

transcriptional regulator, we asked whether EcR is required for
transcriptional upregulation of Prth during the late L3 stage by
performing a temporal gene-expression analysis of larvae
expressing EcR-RNAi in the PTTHn throughout the second half of
L3. Consistent with previous findings (McBrayer et al., 2007), in
control animals, Ptth expression underwent a dramatic upregulation
from about 12 h prior to pupariation (112-124 h AEL) until the
onset of metamorphosis (Fig. 3C). EcR knockdown significantly
reduced Ptth expression across the time series and prevented its
pre-wandering enhancement, indicating that EcR is required for the
late-larval transcriptional upregulation of Prth.

Loss of EcR in the PTTHn impairs the steroid increase that
triggers maturation

PTTH signaling stimulates the production of ecdysone in the PG by
inducing transcriptional upregulation of the ecdysone-biosynthetic
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Halloween genes (McBrayer et al., 2007; Shimell et al., 2018). To
examine the effects of EcR in the PTTHn on ecdysone production,
we first analyzed the expression of these genes in the PG.
Expression of spookier, phantom, disembodied and shadow are all
upregulated in the PG in response to PTTH/Torso signaling. The
enzyme Shade mediates the conversion of ecdysone to 20E in
peripheral tissues, and its expression is therefore not regulated by
PTTH signaling (McBrayer et al., 2007; Ou et al., 2016). Consistent
with the requirement of EcR for inducing PTTH production, we
found that the ecdysone-synthesis genes were not properly
upregulated in Ptth>EcR-RNAi animals, whereas levels of shade
were unaffected (Fig. S1A-E). This is consistent with a model in
which the delay observed in EcR-knockdown animals is caused by a
failure to upregulate PTTH towards the end of larval development,
thus impairing the ecdysone biosynthetic pathway. To determine
whether this is the case, we analyzed ecdysone levels directly by
enzyme-linked immunosorbent assay (ELISA) and found reduced
levels of ecdysone in animals with EcR knockdown in the PTTHn
towards the end of larval development (Fig. 3D), indicating that
they do not produce a proper maturation-promoting ecdysone pulse.
As a result, expression of the ecdysone-inducible genes £754 and
E75B, which serve as proxies for the ecdysone titer, show a
significantly reduced and delayed rise in Ptth>EcR-RNAi animals
(Fig. 3E, Fig. S2). These data suggest that EcR stimulates Pth
transcription to generate the PTTH surge that initiates metamorphosis.
We therefore examined whether the developmental-delay phenotype
caused by knockout of EcR in the PTTHn could be rescued by
simultaneous overexpression of Ptth. Indeed, Ptth overexpression in
the PTTHn of animals with CRISPR/Cas9-mediated knockout of EcR
in these same neurons partially rescued the delayed pupariation and
completely rescued their overgrowth, showing that the phenotype is
caused by lack of PTTH (Fig. 3F,G). Together, our results suggest that
EcR acts as a positive regulator of Prth expression, just as steroids
modulate the mammalian HPG axis, and that feedback through the
steroid ecdysone is a key trigger of the neuroendocrine cascade that
drives maturation onset in Drosophila.

Initiation of maturation is triggered by feedback that
activates PTTH

EcR and 20E sit atop a large network of transcriptional regulators
(King-Jones and Thummel, 2005). Our results show that EcR is
required in the PTTHn for Pzth upregulation, suggesting a model in
which PTTH or other factors induce a small ecdysone rise that acts
via EcR in the PTTHn to increase PTTH production, leading to the
activation of the metamorphosis-initiating neuroendocrine cascade.
In this model, in vivo ecdysone manipulations should feed back to
affect PTTH levels. Thus, we reduced ecdysone synthesis by
silencing torso, which encodes the PTTH receptor, in the PG [PG-
specific phm-GAL4 (phm>) driving UAS-torso-RNAi (torso-RNAi):
phm>torso-RNAi]. As ecdysone synthesis is downregulated in these
animals, their larval feeding stage was prolonged, resulting in
overgrowth and increased pupal size (Fig. S3A). Next, we measured
Ptth levels during L3 prior to the onset of pupariation. In controls,
Prth expression increased as expected from 96 h AEL to 120 h AEL
(Fig. 4A). By contrast, when ecdysone synthesis was reduced via
phm>torso-RNAi, Ptth expression remained uninduced, even when
these animals eventually pupariated (at 189 h AEL). Expression of
the PG-specific ecdysone-biosynthetic gene disembodied and the
ecdysone-induced gene E75B remained low in phm>torso-RNAi
animals, confirming reduced ecdysone synthesis (Fig. S3B,C).
Thus, blocking ecdysone synthesis in the PG prevents the
pre-metamorphic upregulation of Ptth.

We next dissected larval brains, preserving PTTHn projections to
the ring gland, which contains the PG, and cultured them ex vivo for
6 h in media containing 20E. Consistent with our model, 20E at
5ng/ml (in the low physiological concentration range occurring
during L3, prior to the large pre-metamorphosis pulse) increased
Ptth expression (Fig. 4B). This suggests that pre-pulse ecdysone
levels suffice to awaken the neuroendocrine system through Ptth
upregulation, which then induces the steroid pulse initiating
maturation. Interestingly, higher concentrations of 20E inhibited
Pr1th transcription, inconsistent with a solely positive role for 20E/
EcR. Prth-inhibitory 20E concentrations (500 ng/ml) correspond to
high physiological levels that occur during the large pupariation-
associated ecdysone pulse. Consistent with this, these
concentrations induced E75B upregulation (Fig. 4C), which
occurs during this maturation-inducing pulse. We further tested
the potential of negative feedback downregulation of PTTH
following pupariation when the ecdysone titer falls rapidly. To do
this, we induced RNAi-mediated knockdown of EcR 10 h before
pupariation, at a time when Ptth expression has already been
upregulated, to prevent interference with the positive effect of
EcR on the pupariation-triggering rise in Ptth expression. This
manipulation led to increased Ptth expression 3 h following
pupariation (Fig. 4D), suggesting that EcR is required following
pupariation to downregulate Ptth transcription to suppress ecdysone
production. Consistent with this, these animals exhibited ecdysone
levels similar to (or perhaps lower than) those of controls at
pupariation, as reflected by £754 transcription, but they displayed
increased E75A4 expression 3 h later, potentially because of a failure
to downregulate ecdysone production (Fig. 4E; note that in Fig. S2,
E75A4 expression was delayed when EcR was knocked down
constitutively, suggesting that at pupariation in the temperature-shift
experiment, EcR-RNAi had not had time to affect EcR levels). These
data are consistent with a model in which an initial small 20E rise
during L3 triggers a positive feedback circuit that generates the
metamorphic PTTH/ecdysone surge. Surge-level 20E then
suppresses PTTH production following pupariation (Fig. 4F).

DISCUSSION

EcR-mediated feedback induces developmental maturation
by triggering PTTH neuronal activity

The activation of a neuroendocrine signaling cascade triggers
maturation onset in most animals. This activation is associated with
body-size gating to ensure the fitness of the reproductive adult. In
insects, attainment of ‘critical weight’ during the last larval instar is
the main such checkpoint gating the transition to adulthood (Mirth
and Riddiford, 2007). After this checkpoint, a larva becomes
committed to maturing on a fixed schedule irrespective of further
nutrition. Thus, critical weight likely reflects energy stores sufficient
to survive the non-feeding maturation process (metamorphosis) and
obtain a final adult body size that maximizes fitness (Rewitz et al.,
2013). Nutritional status is likewise a main factor permitting the
entry into maturation in mammals (Mirth and Riddiford, 2007,
Navarro et al., 2007). In humans, body weight correlates with the
timing of menarche, which led to the use of the term “critical weight’
for the onset of reproductive cycles in humans (Frish and Revelle,
1971). Obese children enter puberty earlier than height-matched
non-obese children, and malnutrition and lack of body fat can lead
to delayed puberty (Kaplowitz, 2008; Soliman et al., 2014). These
observations suggest that the maturation gate reflects not body size
per se but rather the amount of body fat, and thus that the
neuroendocrine system controlling the timing of this process
somehow assesses nutritional and energetic stores. Interestingly,
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Fig. 4. Ptth is upregulated by ecdysone-mediated feedback at the onset of maturation. (A) The larval peak of Pfth expression observed in the control
genotype does not appear in phm>torso-RNAi animals, indicating feedback from ecdysone produced by the PG to the PTTHn. (B,C) Expression of (B) Ptth in ex-
vivo brains is increased by low levels of 20-hydroxyecdysone (20E, the more active form of ecdysone), but inhibited by larger concentrations, whereas expression
of (C) the EcR-regulated proxy gene E75B increases in ex vivo cultured brains with increasing concentration of 20E in the medium, indicating biphasicity of
ecdysone response at the Ptth locus. (D) RNAi-induced knockdown of EcR beginning 10 h before pupariation leads to increased Ptth transcription 3 h post-
pupariation, consistent with a lack of EcR-mediated inhibition. (E) Levels of the ecdysone-induced transcript E75A are higher at the time of pupariation in
temperature-induced EcR-knockdown animals than in controls, but after 3 h, E75A levels have fallen to a lower level in these animals than in controls, suggesting
increased or prolonged ecdysone levels, consistent with loss of EcCR-mediated Ptth inhibition. Colors in E are the same as in D. Statistics: one-way ANOVA with
Dunnett’'s multiple comparisons or an unpaired two-tailed t-test for pairwise comparison; *P<0.05; **P<0.01; ***P<0.001. (F) Graphical summary of

the model presented here. A small rise in ecdysone production by the PG feeds back in an EcR-dependent manner in the PTTHn to drive the metamorphosis-
inducing surge of PTTH release and ecdysone production; high ecdysone levels at the peak of the surge in turn inhibit further PTTH expression.

the adipokine leptin regulates pubertal maturation in mammals
(Shalitin and Phillip, 2003). Circulating leptin levels correlate with
adiposity, and leptin-deficient humans and mice fail to undergo
puberty. Leptin may therefore communicate body-fat levels to the
neuroendocrine system controlling puberty, which could explain the
link between childhood obesity and early onset of puberty. In insect
larvae, the fat body is the main nutrient-storage and -sensing organ,
releasing numerous nutrient-dependent insulin-regulating hormones
(Boulan et al., 2015). Insulin is a stimulator of ecdysone production,
thus coupling adipose-tissue nutrient sensing to the neuroendocrine
maturation axis in Drosophila (Colombani et al., 2005; Mirth et al.,
2005). Among the insulinotropic adipokines is Unpaired 2 (Upd2),
which is structurally and functionally similar to human leptin. Upd2
acts through the JAK/STAT receptor Domeless (Dome) in
GABAergic neurons that regulate insulin secretion from the
insulin-producing cells (IPCs) in the brain, which are the primary
source of circulating insulin (Rajan and Perrimon, 2012). Thus,
related adiposity hormones that signal nutrition and energy storage
influence the neuroendocrine events that lead to the onset of
maturation in divergent systems.

Mammalian GnRH-producing neurons regulate the timing of
puberty onset, and these cells are activated by the neuropeptide
KISS1. The PTTHn, activated by the KISS1 ortholog AstA and its

receptor AstA-R1 (Deveci et al., 2019), serve this function in
Drosophila. This suggests conservation of the overall neuroendocrine
architecture of the maturation-initiation system. AstA is regulated by
nutritional intake, providing another potential link between energy
status and maturation onset (Hentze et al., 2015). Furthermore,
PTTHn-specific knockdown of Insulin receptor (InR) or dome,
encoding the Upd2 receptor, produced size phenotypes in our screen
(Table S1), suggesting that the PTTHn integrate systemic nutrition-
regulated signals and may also receive input via insulin from the IPCs
themselves. Because PTTH controls developmental timing, and
insulin is the main growth-regulatory factor, these results suggest that
Upd2 may link growth and maturation by coordinating the activity of
both the IPCs and the PTTHn. Knockdown of the amino-acid
transporters Polyphemus and Minidiscs also induced strong growth
effects in our screen, suggesting that the PTTHn may also sense
nutrient status autonomously; in the IPCs, Minidiscs is required for
inducing insulin secretion after intake of the amino acid leucine
(Manigre et al., 2016).

This raises the key question of how these nutritional cues lead to
the surge mode of GnRH/PTTH release that initiates maturation.
Our findings suggest that ecdysone feedback, via EcR in the
PTTHn, is the mechanism that induces the PTTH and ecdysone
surge towards the end of larval development. This is further
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reinforced by EcR-mediated positive feedback on ecdysone
production in the PG (Moeller et al., 2013). We propose that the
triggering event that begins the feedback cycle is a small nutrient-
dependent ecdysone peak early in the L3 stage. Nutritional
signaling via insulin acts directly on the PG and is required for
ecdysone production pre-critical weight but not post-critical weight
(Koyama et al., 2014; Shingleton et al., 2005). Furthermore, PTTH
secretion is also controlled by nutrition and is required for normal
attainment of critical weight (Galagovsky et al., 2018; Shimell et al.,
2018), suggesting that PTTH acts together with insulin before
attainment of critical weight to generate a small nutrient-dependent
rise in ecdysone production at the beginning of L3. This small
ecdysone peak upregulates Ptth via EcR and, under this scenario,
corresponds to critical weight, which occurs ~10 h after the L2-L3
transition. Thus, when ecdysone reaches the threshold corresponding
to critical-weight attainment, it generates an irreversible, self-
sustaining feedback activation of the neuroendocrine system by
promoting the PTTH surge that triggers the maturation-inducing
ecdysone pulse towards the end of L3 (Fig. 4F). This model is
supported by findings showing that a small nutrient-sensitive
ecdysone peak early in L3 does indeed signal critical weight
(Koyama et al., 2014).

The main feature of this model is ecdysone feedback onto the
PTTHn via a mechanism requiring EcR in these cells. EcR/Usp may
regulate Ptth expression by direct binding to the Ptth enhancer or
through downstream target transcription factors regulated by this
complex. Many transcription factors are known to be targets of ECR
(King-Jones and Thummel, 2005), and EcR may indirectly regulate
Pith expression by altering the expression of one or more of these.
Indeed, RNAI against certain known EcR-induced transcription
factors, such as Hr39, Hr3 and fiz-f1, produced phenotypes in our
screen, consistent with a possible role in Prth regulation. Hr3 and
Ftz-F1 are also known to participate in ecdysone regulation in the
PG (Parvy et al., 2005, 2014), as is another nuclear receptor, Knirps
(Danielsen et al., 2014), which was also identified in our screen as a
potential regulator of PTTH. Clarifying the precise mechanism by
which EcR controls Ptth expression will be an interesting topic for
future investigation.

Conserved neuroendocrine circuitry triggers maturation
onset

Early maturation is associated with smaller adult size in both flies
and humans, as this event limits the juvenile growth period (Carel
et al., 2004; Rewitz et al., 2009). The prevalence of precocious
puberty has been linked with the increasing rates of childhood
obesity; however, the mechanisms that gate GnRH secretion at the
time of puberty are poorly understood (Tena-Sempere, 2012). The
mammalian HPG axis controlling the onset of puberty is regulated
by feedback control in which steroid hormones act to regulate the
GnRH-expressing neurons, but whether these neurons themselves
are direct steroid targets is still debated (Kaprara and Huhtaniemi,
2018). However, the KISS1-expressing neuronal population has
also emerged as a possible link between sex steroids and the GnRH
neurons (Dungan et al., 2006).

Many studies in Drosophila and other insects have explored the
neuroendocrine  PTTH-PG-ecdysone axis. The existence of
feedback control between ecdysone and PTTH has been
hypothesized for decades and is supported by studies of PTTH in
other insects, especially in lepidopterans (Hossain et al., 2006;
Sakurai, 2005), in which hemolymph titers of PTTH and ecdysone
are clearly correlated during the last larval instar (Mizoguchi et al.,
2002, 2001). A PTTH surge immediately precedes a rise in

ecdysone levels, and gradual increases in ecdysone levels appear to
reinforce the peak levels of circulating PTTH, suggesting that
ecdysone might positively influence PTTH release. This is
supported by findings that injection of ecdysone before an
endogenous PTTH peak induces a premature rise in PTTH,
whereas injection of ecdysteroid-22-oxidase, a potent enzymatic
inactivator of ecdysteroids, inhibits this rise (Mizoguchi et al.,
2015). We demonstrate here an EcR-dependent positive-feedback
mechanism, operating specifically within the PTTHn, that regulates
the transcription of Ptth. Our findings show a mechanism by which
steroid-mediated feedback signaling triggers the PTTH surge at the
onset of metamorphosis, suggesting that feedback control is an
evolutionarily conserved regulator of the neuroendocrine signaling
that initiates the onset of maturation.

MATERIALS AND METHODS

Fly husbandry

All animals were reared on a standard cornmeal diet (Nutri-Fly
Bloomington formulation) at 25°C under 12-h light/dark cycle conditions,
with 60% relative humidity, unless otherwise stated. Larvae of mixed sex
were used in all experiments. The following fly lines were used: UAS-
EcR.gRNA was generated in this study; Ptth-GAL4, UAS-Dicer-2 and
NP423-GAL4, UAS-Dicer-2 were generous gifts from Pierre Léopold
(Institut Curie, Paris, France); Ptth-GAL4 and UAS-Ptth::HA (McBrayer
et al., 2007) and phm-GAL4 (Ono et al., 2006) were kindly provided by
Michael O’Connor (University of Minnesota, Minneapolis, MN, USA);
w18 (#60000), UAS-EcR-RNAi #1 (#37058), UAS-EcR-RNAi #2 (#37059),
UAS-Ptth-RNAi (#102043) and UAS-torso-RNAi (#101154) were obtained
from the Vienna Drosophila Resource Center (VDRC); UAS-EcR.Bl
(#6469), UAS-EcR.A (#6470), UAS-EcR-RNAi #3 (#50712) and UAS-
Cas9.P (#54594) were obtained from the Bloomington Drosophila Stock
Center (BDSC).

Fly genetics

To achieve CRISPR/Cas9-mediated disruption of EcR under GAL4/UAS
control, we generated a UAS construct expressing two EcR-targeted gRNAs
(below) in the backbone of vector pCFD6 (Port and Bullock, 2016), which
was obtained from AddGene (#73915). The gRNA sequences were
designed and checked for specificity and efficiency using online tools at
http:/www.flyrnai.org/crispr/ and http://targetfinder.flycrispr.neuro.brown.
edu/. Two sequences with high predicted efficiency and no off-target
binding sites were chosen 232 base pairs apart within exon 3 of EcR, an exon
shared between all EcR transcripts that encodes the protein’s DNA-binding
domain. Efficient induction of double-strand breaks should thus delete the
DNA-binding domain and likely introduce frame-shift mutations as well,
rendering the locus nonfunctional. Oligonucleotides containing the gRNA
sequences were synthesized and inserted into pCFD6. The correct pCFD6-
UAS-EcR.gRNA product was verified by sequencing, and transgenic
animals were generated in-house and by Bestgene (Chino Hills, CA,
USA). Fly stocks were constructed using standard techniques. gRNA
sequence #l: TTCATCGCACATTGGTTCTC; gRNA sequence #2:
GCAAGAAGGGACCTGCGCCA.

Synchronization of development

To synchronize development for timed experiments, parental flies were
allowed to lay eggs for 2-4 h on an apple-juice agar plate coated with a thin
layer of yeast paste; hours AEL was measured from the midpoint of this
time. After 24 h, newly hatched L1 larvae were collected and transferred to
vials containing standard food at a density of 30 larvae per vial.

Ex vivo incubation with 20E

Four biological replicates of ten brains with an intact ring gland were
dissected from synchronized L3 larvae at 110 h AEL in Schneider’s insect
medium (Sigma-Aldrich, S0146). The tissue was transferred to Schneider’s
medium containing 20E (Sigma-Aldrich, H5142) at 0, 5, 50, 500 or
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5000 ng/ml and incubated for 6 h at room temperature (roughly 24°C). RNA
was then extracted from tissue as described below.

Real-time quantitative PCR (qPCR) analysis

Four to six biological replicates of five whole larvae or ten dissected brains of
each genotype were collected at the indicated times after egg laying (AEL) or
puparium formation. Samples were flash-frozen in dry ice and stored at —80°C.
The samples were thoroughly homogenized in 350 ul ice-cold lysis buffer
containing 1% B-mercaptoethanol, and RNA was extracted using RNeasy mini
kit (Qiagen) with DNase treatment according to the manufacturer’s instructions.
RNA concentrations from whole-larval samples were measured using a
NanoDrop spectrophotometer (Thermo Fisher) and adjusted to 300 ng/pl.
Synthesis of cDNA from RNA was carried out with a 10 ul RNA sample using
a High-Capacity ¢cDNA Transcription Kit (Applied Biosystems). qPCR
reactions were performed using the QuantiTect SYBR-Green PCR Kit
(Qiagen) on an Mx3005p qPCR system, and transcript levels were
normalized against RpL23, which is stably expressed across tissues and larval
stages (Danielsen et al., 2014). Primers used for this study are listed in Table S2.

Immunostaining and confocal microscopy

For each genotype, 15 larvae were collected at the indicated times AEL.
Each larva was rinsed in water and dissected in cold PBS, and tissues were
fixed in 4% formaldehyde in PBS for 30 min, washed in PBS+0.1% Triton
X-100 (PBST; one quick rinse followed by three 15-min washes with slow
rocking motion), and blocked in PBST+5% normal goat serum (NGS) for at
least 1 h. Blocking buffer was exchanged with PBT+5% NGS containing
primary antibodies, and tissues were incubated overnight at 4°C. Samples
were washed as before and incubated at 4°C overnight with secondary
antibodies in PBST. Samples were washed again as above, washed in PBS to
remove Triton X-100, and incubated in PBS at 4°C. Brains were mounted on
poly-lysine-coated glass slides in ProLong Gold anti-fade reagent
(Invitrogen). Fluorescence images were captured using a Zeiss LSM 800
confocal laser scanning microscope coupled with AiryScan technology and
were then analyzed using the Fiji software package (https:/imagej.net/Fiji).
All samples for time-course data were imaged with identical settings.
Quantifications of fluorescence intensity were performed by creating
summed projections of each individual PTTHn followed by measurements
of the anti-PTTH signal in the cell body and the anti-EcR signal in the nuclei
using the following formula: integrated density—(areaxmean background
fluorescence). Mean fluorescence of brain tissue without positive PTTH and
EcR signal in each individual projection was subtracted as background for
each channel. Guinea pig anti-PTTH was purified using the Melon Gel IgG
Spin Purification Kit (Thermo Scientific) from anti-PTTH serum
generously provided by Pierre Léopold (Yamanaka et al., 2013); the
purified IgG was used at 1:500. Rabbit anti-Phm (1:400) (Ono et al., 2006)
was a generous gift of Michael O’Connor. Mouse monoclonal anti-EcR
(clone Ag10.2) was obtained from Developmental Studies Hybridoma Bank
and was used at 1 pg/ml. Secondary antibodies used were Alexa Fluor 555-
conjugated goat anti-mouse, Alexa Fluor 488 goat anti-rabbit and Alexa
Fluor 647 goat anti-guinea-pig (Thermo Fisher, A21422, A1108 and
A21450), all used at 1:200.

Ecdysteroid measurements by ELISA

Ecdysteroid levels were measured using a competitive 20-hydroxyecdysone
ELISA kit (Bertin Bioreagent Cayman, 501390). Four biological replicates
of'ten larvae from each genotype were collected at the indicated times AEL.
Larvae were washed in water, dried on a Kimwipe, and weighed in groups of
ten before they were transferred into empty Eppendorftubes, flash-frozen on
dry ice, and stored at —80°C. Extraction of ecdysone was performed by
thoroughly homogenizing the frozen samples in 300 pl ice-cold methanol
with a plastic pestle. Samples were centrifuged at 17,000 g for 10 min, and
the supernatant was transferred and split into two Eppendorf tubes, each
containing approximately 150 ul supernatant. Methanol from both tubes
was evaporated in a vacuum centrifuge for 60 min, and pellets were re-
dissolved by adding 200 pl supplied EIA buffer to one of the two Eppendorf
tubes. This was vortexed, and the same 200 pl of EIA buffer was transferred
to the second tube followed by further vortexing. The ELISA was performed

using rabbit anti-20E-coated wells, acetylcholinesterase-conjugated 20E,
and serial dilutions of 20E as a standard. In brief, mouse anti-rabbit-coated
wells were washed five times with 200 pl EIA buffer. EIA buffer, rabbit anti-
20E, acetylcholinesterase-conjugated 20E, and standards/samples were then
added to their respective wells, and the plate was covered and incubated at
4°C in darkness overnight. The next day, wells were washed six times with
200 pl ETA buffer, and the activity of the remaining acetylcholinesterase
enzyme was quantified by adding Ellman’s reagent and reading absorbance
at 405 nm every 15 min with an ELx800 plate reader (BioTek).

Measurement of developmental timing and pupal size
Synchronized larvae were assayed for pupariation timing by noting newly
pupated animals at regular time intervals. The time at which 50% of animals
had pupariated, P50, was determined by linear extrapolation between scores
before and after reaching 50%. To measure pupal size, pupae were mounted
on a glass slide, and images were captured with a Chameleon3 camera
(FLIR Systems). Images were processed using a custom script (Moeller
et al., 2017) in the MATLAB environment (MathWorks). The MATLAB
script for quantification of pupal sizes has been published previously
(Moeller et al., 2017).

Statistics

Statistical analysis was performed in Prism software (GraphPad). Statistical
differences between a control group and several other groups were analyzed
by one-way ANOVA followed by Dunnett’s multiple-comparisons tests;
the difference between one control group and one other group was analyzed
by an unpaired two-tailed Student’s #-test. Bar graphs show mean+s.e.m.
P-values are indicated as: *P<0.05, **P<0.01, ***P<0.001.
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