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Abstract: Positive geometries encode the physics of scattering amplitudes in flat space-

time and the wavefunction of the universe in cosmology for a large class of models. Their

unique canonical forms, providing such quantum mechanical observables, are characterised

by having only logarithmic singularities along all the boundaries of the positive geom-

etry. However, physical observables have logarithmic singularities just for a subset of

theories. Thus, it becomes crucial to understand whether a similar paradigm can underlie

their structure in more general cases. In this paper we start a systematic investigation of

a geometric-combinatorial characterisation of differential forms with non-logarithmic sin-

gularities, focusing on projective polytopes and related meromorphic forms with multiple

poles. We introduce the notions of covariant forms and covariant pairings. Covariant forms

have poles only along the boundaries of the given polytope; moreover, their leading Laurent

coefficients along any of the boundaries are still covariant forms on the specific boundary.

Whereas meromorphic forms in covariant pairing with a polytope are associated to a spe-

cific (signed) triangulation, in which poles on spurious boundaries do not cancel completely,

but their order is lowered. These meromorphic forms can be fully characterised if the poly-

tope they are associated to is viewed as the restriction of a higher dimensional one onto a

hyperplane. The canonical form of the latter can be mapped into a covariant form or a form

in covariant pairing via a covariant restriction. We show how the geometry of the higher di-

mensional polytope determines the structure of these differential forms. Finally, we discuss

how these notions are related to Jeffrey-Kirwan residues and cosmological polytopes.
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1 Introduction

The study of positive geometries has been increasingly acquiring relevance in physics as

they turned out to be the underlying mathematical structure for quantum mechanical

observables in a quite large class of theories in particle physics and cosmology.

The original interpretation of scattering amplitudes in gauge theories as volumes of cer-

tain polytopes [1, 2] suggested that geometrical and combinatorial ideas could play a more

fundamental role in understanding the structure of scattering amplitudes and the physics

they encode. This became clearer when first the geometry and combinatorics of the positive

Grassmannian [3] was introduced to describe the integrand of the perturbative scattering

amplitudes in planar N = 4 supersymmetric Yang-Mills theory at all loop order [4], and

then the very same amplitudes turned out to be encoded in the canonical differential form

associated to the amplituhedron [5], a geometrical structure which generalises both (certain

types of) polytopes and the positive Grassmannian.

A further indication was provided by the fact that positive geometries did not get

confined to the realm of the maximally supersymmetric gauge theory, but they also emerged

– 1 –



J
H
E
P
0
8
(
2
0
2
0
)
0
2
3

in the context of scalar scattering in the form of the ABHY associahedron [6, 7] for the

bi-adjoint cubic interactions, and Stokes polytopes [8, 9] for planar quartic interactions.1

Even more surprisingly, they appeared in cosmology, where the canonical form of the so-

called cosmological polytopes encodes the wavefunction of the universe [10], which is the

relevant quantum mechanical observable, for a large class of toy models. Finally, it was

recently introduced an extension of canonical forms for general polytopes, named stringy

canonical form, which depends on a certain deformation parameter (which resembles the

α′ parameter in string theory) and, when applied to the ABHY associahedron return the

Koba-Nielsen integral known in string theory [11].

From the physics perspective, the excitement about such geometric-combinatorial pic-

ture on scattering amplitude and the wavefunction of the universe is indeed not due to

having acquired new computational tools to play with. These quantum mechanical observ-

ables carry the imprint of the fundamental rules for the physics in flat and cosmological

space-times respectively, and, in particular, how causal time evolution is encoded into them

is far from being understood as well as it is not understood what fundamentally fixes their

properties. Positive geometries offer a new perspective on these basic questions: they are

mathematical structures with their own first principle intrinsic definition and no a-priori

reference to any physics notion, and the principles and properties we ascribe to scatter-

ing amplitudes and the wavefunction of the universe can be seen as emergent from these

mathematical principles.

An example of such emergence phenomenon was observed in the context of the cos-

mological polytopes. The wavefunction of the universe is a non Lorentz invariant quantity

defined on a space-like surface, and contains the flat space scattering amplitudes [12]: the

vertex structure of a specific facet of the cosmological polytopes provides a geometrical-

combinatorial origin for the cutting rules determining the unitarity of the scattering am-

plitudes, while the structure of its dual does it for Lorentz invariance [13].

The common denominator among all the positive geometries is the fact that they can

be characterised by a canonical form, which has logarithmic singularities on all its bound-

aries, and it is precisely such a canonical form which returns the quantum mechanical

observables in flat space-times and in cosmology. However, meromorphic functions with

logarithmic singularities represent a special corner: in general both scattering amplitudes

and the wavefunction of the universe have a much more complicated structure. There is a

plethora of examples of theories whose (integrand of the) scattering amplitudes or wave-

function of the universe possess non-logarithmic singularities: from less supersymmetric

gauge theories [14–16] and the non-linear sigma model [6], to gravity [17, 18] and pretty

much any theory in cosmology. Hence, in order for the geometrical-combinatorial prin-

ciples behind the positive geometries to have any chance to play any fundamental role

in the understanding of physical processes in both flat space-time and cosmology, it is

necessary either to make a connection between positive geometries and functions with non-

logarithmic singularities, or to find new ideas that generalise positive geometries to include

functions with non-logarithmic singularities.

1Interestingly, amplitudes for quartic interactions can be also viewed as differential forms with non-

logarithmic singularities [6].
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While a systematic characterisation of positive geometries and canonical form has

already started independently of any physical interpretation [19], to our knowledge a link

between positive geometries and functions with non-logarithmic singularities has not been

explored. There is a beautiful exception in the context of the cosmological polytopes [20].

The definition of cosmological polytopes as generated from a space of triangles embedded

in projective space by intersecting them in the midpoints of their sides and taking the

convex hull of their vertices, can be generalised by including a collection of segments in the

building blocks allowing to get intersected in their only midpoint; a specific limit of the

canonical form of the polytopes constructed in this way returns a differential form with

higher order poles whose coefficient represents the correct wavefunction of the universe for

certain scalar states in cosmology. As a striking feature, all the information encoded into

such a differential form with higher order poles could be extracted from the canonical form

of the (generalised) cosmological polytope: as the flat-space limit is encoded in the leading

Laurent coefficient of the differential form, it can be extracted from the polytope as the

canonical form of a higher codimension face, whose codimension provides the multiplicity

of the relevant pole in the differential form [20].

These results constitute a first example of association of a differential form with non-

logarithmic singularities with a projective polytope, and bring the question of whether

a similar construction might exist also for scattering amplitudes in less supersymmetric

gauge theories and in gravity, which admit a description in terms of the Grassmannian.

In this paper we start a systematic exploration of a geometrical-combinatorial charac-

terisation of differential forms with non-logarithmic singularities, focusing on meromorphic

forms with multiple poles on one side and projective polytopes on the other. In section 2

we review the general concepts of positive geometries and canonical forms, and projective

polytopes in particular, as well as the Jeffrey-Kirwan residue [21] and the cosmological

polytopes which will be used as important examples in the rest of the paper. In particular,

the Jeffrey-Kirwan residue can be used to compute the canonical form of any projective

polytope and provides a way to capture all (regular) triangulations at once [22]. In sec-

tion 3 we define the association of classes of meromorphic differential forms to projective

polytope, introducing the notions of covariant forms, as meromorphic forms with a certain

GL(1)-scaling and multiple poles along the boundaries of the associated polytope such that

its leading Laurent coefficient is still a meromorphic form with the same properties, and

covariant pairings as a pairing between a given polytope and a meromorphic form with

multiple poles with a certain GL(1) scaling and poles along the boundaries of the elements

of a certain signed triangulation of the paired polytope such that the multiplicity of the

poles related to a subset of faces which sign-triangulates the empty set is lowered but still

non-zero. The geometry and combinatorics of the projective polytope partially characterise

and determine these differential forms, as for each projective polytope these associations

are not unique. We complete these characterisation by constructing a projective polytope

as a restriction of a higher dimensional one onto a hyperplane, and associating it the mero-

morphic differential form with multiple pole via the covariant restriction of the canonical

form of the higher dimensional projective polytope, i.e. as the leading Laurent coefficient

along the hyperplane the higher dimensional projective polytope is restricted onto. We

– 3 –
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provide a geometrical interpretation of the multiplicity of the poles of the meromorphic

form generated in this way and relate its leading Laurent coefficients to the faces of the

higher dimensional polytope. We also provide a number of explicit examples. Sections 4

and 5 are respectively devoted to the discussion of the relation between the notions we

introduced and the Jeffrey Kirwan method, and their realisation in the context of the

cosmological polytopes. Finally, section 6 contains our conclusions and future directions.

2 Positive geometries and canonical forms

In this section we briefly review the definition as well as the salient features of positive

geometries and the associated canonical forms. This allows us to set the notation and

make our discussion self-contained. For a detailed treatment of the subject, see [19] and

references therein. We will explicitly discuss the projective polytopes, and a special subclass

of them, the so called-cosmological polytopes [10, 20].

2.1 Generalities on positive geometries and canonical forms

Let us consider a pair (X, X≥0), where:

(i) X is an (irreducible) complex projective variety of complex dimension D, i.e. the set

of solutions of homogeneous polynomial equations in the complex projective space

PN (C)
{
x ∈ PN (C)

∣∣∣ p(x) = 0
}

, whose coefficients are taken to be real by assump-

tion;

(ii) X≥0 ⊂ X(R) is a (non-empty) closed semi-algebraic set of real dimension D, i.e. a

finite union of subsets in X(R), which is the set of solutions in P(R) of the very same

homogeneous polynomial equations {x ∈ PN (R)
∣∣∣ p(x) = 0} defining X cut out by

homogeneous real polynomial inequalities {x ∈ PN (R) | q(x) > 0}. The interior X>0

of X≥0 ⊂ X(R) is assumed to be a D-dimensional open oriented real submanifold of

X(R), and X>0 = X≥0;

(iii) its boundary components are given by the pairs (C(j), C(j)

≥0) (j = 1, . . . , ν̃), with C(j)

(j = 1, . . . , ν̃) being the irreducible components of the set ∂X of the homogeneous

polynomial equations which are satisfied in X if they are satisfied in any arbitrary

point of ∂X≥0 := X≥0\X>0, and C(i)

≥0 being the closure of the interior of C(i)
⋂
∂X≥0

inside C(i)(R).

Then a positive geometry is defined as such a pair with the following features:

(a) if D > 0, then all the boundary components (C(j), C(j)

≥0) (j = 1, . . . , ν̃) of the

positive geometry (X, X≥0) is a codimension-one positive geometry;

(b) if D = 0, there is a unique positive geometry (X, X), with X being a point and

X≥0 = X.

– 4 –
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Any positive geometry (X, X≥0) is in 1 − 1 correspondence2 with a canonical form

ω(X, X≥0), i.e. a non-zero meromorphic D-form on X, such that its residue along any

of the boundary components (C(j), C(j)

≥0) is the canonical form of the positive geometry

constituted by the boundary component (C(j), C(j)

≥0) itself:

Res
C(j) {ω(X, X≥0)} = ω(C(j), C(j)

≥0). (2.1)

Let us parametrise X with a set of local holomorphic coordinates (yj , hj) such that the

locus hj = 0 locally identifies C(j), while yj collectively indicates the remaining local

coordinates. Then the canonical form ω(X, X≥0) shows a simple pole in hj = 0 such that

ω(X, X≥0) = ω(yj) ∧
dhj
hj

+ ω̃, (2.2)

with ω̃ being the part of the canonical form which does not have a pole in hj = 0 and thus

does not contribute to its residue. Hence, the residue of the canonical form with respect

to such a simple pole is nothing but the codimension one differential form ω(yj) which

depends only on the collective local coordinates yj and it constitutes the canonical form of

the (codimension-one) boundary component (C(j), C(j)

≥0):

Res
C(j) {ω(X, X≥0)} = Reshj = 0 {ω(X, X≥0)} = ω(yj) = ω(C(j), C(j)

≥0), (2.3)

where the equalities are valid locally. Applying the Res operator (2.1) on ω(X, X≥0)

iteratively D times along different boundary components one must obtain ±1, depending

on the orientation. Such highest codimension singularities are the leading singularities.

For D = 0, when X is a single point and X≥0 = X, the associated canonical form

on X is the 0-form ±1 depending on the orientation of X≥0. Notice that the leading

singularities are associated to points, whose canonical form is precisely ±1.

The canonical form ω(X, X≥0) provides a characterisation of the positive geometry

(X, X≥0), associating the boundary components {(C(j), C(j)

≥0)} of (X, X≥0) to its singular-

ities.

2.2 Projective polytopes

We now specialize to a specific class of positive geometries, the projective polytopes. Given

a set of vectors Zk ∈ RN+1 (k = 1, . . . , ν), then a projective polytope is defined as the

pair (PN , P), where P ⊂ PN (R) is the convex hull identified by

P(Y, Z) :=

{
Y =

ν∑
k=1

ckZk ∈ PN (R)
∣∣∣ ck ≥ 0, ∀k = 1, . . . , ν

}
, (2.4)

with the Zk’s being its vertices, and Y which can vanish if and only if ck = 0 for all

k = 1, . . . , ν. Notice that any projective polytope is invariant under the transformation

Y −→ λY (λ ∈ R+) — or, equivalently, Zk −→ λZk, ∀ k = 1, . . . , ν.

2In principle, the canonical forms are defined up to an overall constant a ∈ R, so that the highest

codimension singularity turns out to be ±a depending on the orientation. As we will see shortly afterwards,

such a constant can be fixed by convention with a requirement on the leading singularities or, which is the

same, on the canonical form for D = 0. Once this freedom is fixed, the canonical form is defined uniquely.

– 5 –
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Alternatively, P can be defined via a set of homogeneous polynomial inequalities

qj(Y) ≥ 0 (Y ∈ PN (R), j = 1, . . . , ν̃), with every polynomial qj(Y) being linear, i.e.

via qj(Y) ≡ YIW (j)

I ≥ 0, where the dual vectors W (j)

I are co-vectors in RN+1 and corre-

spond to the facets of the polytope. Given a certain facet identified by W (j)

I , a vertex Zk
is on it if and only if it satisfies the relation W (j)

I ZIk = 0. Let Zaj+1
, . . . , Zaj+N a subset of

vertices of P on the facet W (j)

I forming a basis in RN , then

W (j)

I = (−1)(j−1)(N−1)εIK1 . . . KNZ
K1
aj+1

. . . ZKN
aj+N

, (2.5)

εIK1 . . . KN being the totally anti-symmetric (N + 1)-dimensional Levi-Civita symbol.

Given a projective polytope (PN , P), with P defined via a set of homogeneous linear

polynomial inequalities qj(Y) ≥ 0 (j = 1, . . . ν̃), its associated canonical form ω(Y, P)

is given by a meromorphic form with singularities only where the homogeneous linear

polynomials qj(Y), j = 1, . . . ν̃, vanish, and whose numerator n(Y) is a polynomial of

degree ν̃ − N − 1, such that the residue of ω(Y, P) at any of poles qj(Y) = 0 is the

canonical form of a codimension-one boundary component:

ω(Y, P) =
n(Y)〈YdNY〉∏ν̃

j=1 qj(Y)
, deg{n} = ν̃ −N − 1, (2.6)

where deg{n} is the degree of the homogeneous polynomial n(Y) and 〈YdNY〉 is the stan-

dard measure in PN , which is defined as

〈YdNY〉 := εI1I2 . . . IN+1
YI1dYI2 ∧ . . . ∧ dYIN+1 . (2.7)

Importantly, the degree of the homogeneous polynomial n(Y) makes the canonical form

ω(Y, P) invariant under the GL(1) transformation Y −→ λY, λ ∈ R+. Geometrically, it

is fixed by the locus of the intersections of the faces of P outside P [23].

The canonical form (2.6) can be explicitly written in terms of the dual vectors W (j)

I as

well as in terms of the vertices ZIk via (2.5):

ω(Y, P) =
n(Y)〈YdNY〉∏ν̃
j=1 (Y · W (j))

=
n(Y)〈YdNY〉∏ν̃

j=1〈YZaj+1 . . . Zaj+N 〉
(2.8)

where Y·W (j) := YIW (j)

I and 〈. . .〉 identifies the contraction via the Levi-Civita symbol, i.e.

the determinant of the matrix built out the vectors appearing inside the angular brackets.

Given a projective polytope (PN , P), with P defined via a set of vertices Zk (k =

1, . . . ν), its associated canonical form can be expressed in terms of the so-called canonical

function and the standard measure in PN , with the canonical function which has as a

contour integral representation [19]

ω(Y, P) = Ω(Y, P)〈YdNY〉,

Ω(Y, P) =
1

N !(2πi)ν−N−1

∫
Rν

ν∏
k=1

dck
ck − iεk

δ(N + 1)

(
Y −

ν∑
k=1

ckZk

)
(2.9)

in the limit for εk −→ 0, ∀ k = 1, . . . , ν. There are several contours along which the above

integral can be performed and all of them provide different triangulations of the polytope.

– 6 –
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Integration contours capturing all the (regular)3 triangulations of a given polytope can

be defined via a method [22] which relies on the Jeffrey-Kirwan Residue [21, 25]. We will

give a brief review and refer to [22] and the upcoming work [26] for further details. In

section 4 we will present an explicit example and explain its connection with this work.

The computation of the canonical form of a polytope P can be recasted as a residue

computation of a (covariant) ν −N − 1 differential form defined on Pν−N−1 as:

ω̃Y(C,P) :=
ν∧
k=1

dck
ck

δ(N + 1)

(
Y −

ν∑
k=1

ckZk

)
. (2.10)

Let ω̃ be a top differential form in Pr which has poles on each of the hyperplanes

{Hk}νk=1 and let us denote their dual vectors as {Bk}νk=1, with ν ≥ r. For each collection

{Hk}k∈I of r of such hyperplanes, with4 I ∈
(

[ν]
r

)
, let us define the cone CI as the subset

in Pr spanned by positive linear combinations of the corresponding dual vectors {Bk}k∈I .
Let us now fix a reference point ξ ∈ Pr, then we define the Jeffrey-Kirwan residue as:

JKξω̃ :=
∑
CI3ξ

ResCI ω̃, (2.11)

where the sum is over all cones CI containing the point ξ. Moreover, ResCI is the multi-

variate residue of ω̃ computed around the poles corresponding to the hyperplanes {Hk}k∈I
in the order (Hk1 , . . . ,Hkr) such that the corresponding dual vectors (Bk1 , . . . ,Bkr) are

positively oriented.5

The Jeffrey-Kirwan residue has remarkable properties. Let us consider two points

ξ, ξ′ ∈ Pr such that the set of cones which contain each of them is the same, then from (2.11)

we have that:

JKξω̃ = JKξ′ω̃. (2.12)

Points ξ, ξ′ of this type are said to be in the same chamber c. Chambers can be equivalently

characterised as the disconnected components of the set Pr to which we remove all the

codimension one boundaries of all cones C.

Considering the differential form ω̃Y(C,P) in (2.10), one can show that it has poles

on a set of hyperplanes H1, . . . ,Hν . Therefore, we can apply Jeffrey-Kirwan residue to it,

obtaining the following result:

Theorem 2.1 ([22]). Given a projective polytope (PN ,P) with vertices Zk, k = 1, . . . , ν,

its canonical function Ω(Y,P) can be obtained by applying the Jeffrey-Kirwan residue to

3Regular triangulations are a special class of triangulations which can be obtained in the following way.

Consider a real-valued function Zi 7→ α(Zi) on the vertices of P. Then consider the points (Zi, α(Zi)) and

take their convex hull. Take the lower faces (those whose outwards normal vector have last component

negative) and project them back down to P. This gives a subdivision of P, which is called regular. In case

its elements are all simplices it is a regular triangulation. See [24] for a extensive review on the topic.
4Given n ∈ N, throughout the text, we will denote as [n] the set {1, . . . , n}. Moreover,

(
[n]
r

)
will be the

set of r-element subsets of [n].
5This means that they will have positive determinant in an affine chart. We recall indeed that if we

compute multivariate residues iteratively, then the sign of the result depends on the order of the iterations.

– 7 –
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the (covariant) top form ω̃Y(C,P) on Pν−N−1 defined as in (2.10):

Ω(Y,P) = JKc ω̃Y(C,P), (2.13)

where c is a chamber in Pν−N−1. Moreover, the result is independent form the chosen

chamber: there is a bijection between chambers and representations of Ω(Y,P) associated

to (regular) triangulations of the polytope P.

In summary, the configuration of chambers beautifully encodes all (regular) triangula-

tions of the polytope, and the Jeffrey-Kirwan translates this into an algebraic method to

compute the canonical function of the polytope associated to each of these triangulations.

Finally, given a projective polytope (PN , P), its dual polytope (PN , P̃) is defined as

the convex hull P̃ ⊂ PN (R) identified by the vertices W (j)

I , j = 1, . . . , ν̃, in the linear

dual PN of PN :

P̃(Y, Z) :=

Y =
ν̃∑
j=1

cjW (j) ∈ PN (R)
∣∣∣ cj ≥ 0, ∀j = 1, . . . , ν̃

 , (2.14)

Notice that the vertices and the facets of the P̃ respectively correspond to the facets and

vertices of P: P̃ can be defined via a set of inequalities qk(Y) := YIZIk ≥ 0, (k =

1, . . . , ν), with the Zk’s identifying the facets of P̃. Given a Zk, the vertices W (j)

I of P̃
on it are the ones satisfying the relation ZIkW

(ja)

I = 0. Hence, considering the canonical

form (2.8) written in terms of the dual vectors W and interpreting them as the vertices of

P, the canonical function Ω(Y, P) is the volume of P̃.

2.2.1 Disjoint unions and triangulations

Let (PN , P (1)) and (PN , P (2)) be two projective polytopes such that P (1) ∩ P (2) = ∅.

Then, their disjoint union (PN , P (1) ∪ P (2)) is still a positive geometry, whose boundary

components are either boundary components of one (PN , P (j)), j = 1, 2, or the disjoint

union of the boundary components of P (1) and P (2). Furthermore, the canonical form

associated with (PN , P (1) ∪ P (2)) is given by the sum of the canonical forms of (PN , P (1))

and (PN , P (2)):

ω
(
Y, P (1) ∪ P (2)

)
= ω(Y, P (1)) + ω(Y, P (2)). (2.15)

Let (PN , P (1)) and (PN , P (2)) be two projective polytopes such that P (1)
> 0 ∩ P (2)

> 0 = ∅
and P (1) ∩ P (2) = ∂P (12) with (PN−1, ∂P (12)) having opposite orientation as a boundary

component of (PN , P (1)) or (PN , P (2)), i.e. the two polytopes have their interiors disjoints

and share a facet with opposite orientation. If P := P (1) ∪ P (2), then (PN , P) is still a

polytope, whose boundary components are either boundary components of one (PN , P (j)),

except (PN−1, ∂P (12)), or the union of the boundary components of P (1) and P (2). The

canonical form associated to such a union is still given by the sum of the canonical forms

of each polytope as in (2.15), and it is such that the sum of the residues of each individ-

ual canonical form ω(Y, P (j)) along the boundary (PN−1, ∂P (12)) is zero. The polytopes

(PN , P (1)) and (PN , P (2)) provide a triangulation of (PN , P). More generally, if (PN , P)

is a polytope and {(PN , P (j))}nj=1 is a collection of polytopes, then the latter provide a

triangulation of the former if
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(i) (PN , P (j)
> 0) ⊂ (PN , P> 0), ∀ j = 1, . . . , n, with compatible orientations;

(ii) given (PN , P (j)
> 0) and (PN , P (l)

> 0), then P (j)
> 0 ∩ P (l)

> 0 = ∅ ∀ j, l = 1, . . . , ν̃ (j 6= l);

(iii)

PN ,
n⋃
j=1

P (j)

 = (PN , P);

and, then, the canonical form of (PN , P) is given by the sum of the canonical forms of the

collection {(PN , P (j))}nj=1:

ω(Y, P) =

n∑
j=1

ω(Y, P (j)). (2.16)

It is possible to further generalise the notion of triangulation. Let {(PN , P (j))}n+1
j=1 a

collection of polytopes. For any given point Y ∈ PN , let n(+)
Y and n(−)

Y be respectively the

number of P (j) containing Y (Y /∈ ∂P (j)) with positive/negative orientation of P (j) at Y. If

∀ Y ∈
n+1⋃
j=1

P (j) &Y /∈ ∂P (j) (∀ j = 1, . . . , n+ 1) : n(+)
Y = n(−)

Y , (2.17)

then the collection {(PN , P (j))}n+1
j=1 interior triangulates the empty set. Consequently,

given a collection {(PN , P (j))}n+1
j=1 of polytopes which interior triangulate the empty set,

then the polytope (PN , P (n + 1)

− ) is interior triangulated by {(PN , P (j))}nj=1.6 If any point

Y ∈ PN is contained in exactly one of the element of the collection, then the interior

triangulation reduces to the previous notion of triangulation.

Given a collection {(PN , P (j))}n+1
j=1 of polytopes, it is a canonical-form triangulation of

the empty set if
n+1∑
j=1

ω(Y,P (j)) = 0. (2.18)

Consequently, given a collection
{

(PN , P (j))
}n+1

j=1
of projective polytopes which sign

triangulates the empty set, we say (PN , P (n + 1)

− ) is canonical-form triangulated by{
(PN , P (j))

}n
j=1

with

ω(Y, P (n + 1)

− ) =
n∑
j=1

ω(Y,P (j)), (2.19)

where P− denotes P with reversed orientation.

These are two different notions of signed triangulations [19]. In the rest of the paper

we will use this latter term indistinctly for both of them.

2.3 Cosmological polytopes

Let us further specialise to a special class of projective polytopes, the cosmological poly-

topes [10, 20].

6Here P(j)
− denotes P(j) but with reversed orientation.
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Let (P2, 4) be a triangle and let (P3nt−1, {4(j)}ntj=1) be a collection of nt triangles

whose vertices are linearly independent as vectors of R3nt . The cosmological polytopes

are defined as those polytopes obtained from such a collection of triangles by intersecting

them in the midpoints of at most two out of their three facets. If {(Z(j)

1 , Z(j)

2 , Z(j)

3 )}nej=1

are the vertices for {4(j)}nej=1, then the cosmological polytope is a projective polytope

(P3nt−r−1, P) with P being the convex hull

P(Y,Z) :=

{
Y =

ne∑
j=1

3∑
k=1

c
(j)
k Z

(j)
k ∈ P3nt−r−1

∣∣∣∣ c(j)k > 0, ∀k= 1,2,3,∀j ∈ [1,nt]

{Z(j)
k−1 +Z

(j)
k ∼Z

(j′)
k−1 +Z

(j′)
k }r, k= 1,2, j 6= j′ ∈ [1,nt]

}
,

(2.20)

where {Z(j)

k−1 + Z(j)

k ∼ Z(j′)

k−1 + Z(j′)

k }r indicates a set of r ∈ [nt − 1, 2(nt − 1)] relations

between pairs of vertices of different triangles (see figure 1).

convex
hull−−−−−→

xi x′i
convex

hull−−−−−→

Figure 1. Cosmological polytopes constructed from (P5, {4(j)}2j=1). The (red) blue facets in the

triangles indicate the ones which can(not) be intersected. The figures at the bottom left and bottom

right depict the convex hull of the vertices of triangles after one and two linear relations has been

respectively imposed, so that the first one lives in P4 and the second in P3.

The construction just presented can be extended. Let (P1, S) be a segment, which can

be seen as a codimension-1 projection of a triangle, so that its two intersectable facets are

projected onto each other to be the interior of the segment, and its non-intersectable one is

shrunk to a point [27] that will be referred to as the non-intersectable vertex of the segment.

Let
(
P3nt+2nh−1, {{4(j)}ntj=1, {S(g)}nhg=1}

)
be the collection of ne triangles and nh segments

whose vertices are all linearly independent of each other as vectors of R3nt+2nh . The ex-

tended cosmological polytopes are then defined as the projective polytopes (P3nt+2nh−1, P),

where P is the convex hull of all the vertices of the triangles and segments after triangles and

segments are intersected in their midpoints. Hence (P3nt+2nh−r−1, P) can be constructed

out of triangles only (for nh = 0), segments only (for nt = 0 — in this case there is just

one of such polytopes for fixed nh given that any segment has only one midpoint where it

can get intersected), or both triangles and segments, which is the most general case [20].
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There is a 1 − 1 correspondence between cosmological polytopes7 (P3nt+2nh−r−1, P),

and graphs GP . To each triangle let us associate a two-site line graph, i.e. a graph with

two sites,8 one for each intersectable facet, and one edge, which corresponds to the non-

intersectable facet; as far as the segment is concerned, thinking of it as a codimension-1

projection of a triangle, the associated graph is a tadpole (or one-loop one-site) graph, i.e. a

graph with a single site, corresponding to its interior which is given by the two intersectable

facets of the original triangle projected onto each other, and a loop closing itself onto this

site, which corresponds to its non-intersectable facet which got shrunk to a point. Then,

given a cosmological polytope (P3nt+2nh−r−1, P) generated as an intersection of a collection

of triangles and segments, its associated graph GP is obtained by merging a collection of

two-site line graphs and tadpoles in their sites:

←→ ←→

←→
←→

Notice that the number of edges ne of a graph GP is given by the sum of the number of

triangles and segments, while its number of sites ns depends on the number r of intersec-

tions: ne = nt + nh, ns = 2nt + nh − r. Thus, given a graph G it is possible to associate

a polytope (Pns+ne−1, PG), with the convex hull PG = P as described above.

Given a cosmological polytope and its associated graph G, there is a canonical way

to assign a local coordinate chart in projective space for parametrising the polytope with

a correspondence between such local coordinates and weights on sites and edges of G.

Let us consider the collection
(
P3nt+2nh−1, {{4(j)}ntj=1, {S(g)}nhg=1}

)
of nt triangles and nh

segments and choose the midpoints of the facets of the triangles, the midpoints of the

segments as well as non-intersectable vertex of the segment, as a basis for R3ne+2nh . Let

us indicate these vectors as {xj , yj , x′j} for 4(j), where xj , x′j are the midpoints of the

intersectable sides of 4(j) and yj is the midpoint for the non-intersectable one, and let

{x′′g , hg} be the midpoint and the non-intersectable vertex for S(g) respectively. Then, on

this basis a generic point Y ∈ P3ne+2nh−1 can be written as

Y =

ne∑
j=1

(xjxj + yjyj + x′jx
′
j) +

nh∑
g=1

(x′′gx
′′
g + hghh), (2.21)

where the coefficients {{xj yj , x′j}, {x′′g , hg}} are the homogeneous coordinates in this

patch. Then, in the association of a two-site line graph to a triangle, one assigns xj

7Since now on with cosmological polytopes we will identify its extended notion, omitting to explicitly

specify it for the sake of conciseness.
8In order to avoid confusion in the terminology, we will reserve vertices for the highest codimension face

of the projective polytopes, and use sites for the graphs.
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and x′j as weights of the graph sites and yj as weight of the edge connecting the sites;

similarly, in the association of a tadpole to a segment, one assigns x′′j and hj to the site

and edge respectively. In constructing a cosmological polytope, each intersection condi-

tion (2.20) identifies two elements of this basis, reducing the midpoint coordinates by one

and, hence, each two-site line and tadpole subgraphs has the very same weight assignation

as just described, but identifying the weights of common sites. Taking the midpoint basis,

P is the convex hull of the vertices

{xj − yj + x′j , xj + yj − x′j , −xj + yj + x′j}, {2x′′g − hg, hg} (2.22)

with suitable identifications among the midpoint vectors.

The definition of the cosmological polytopes as intersection of triangles and segments,

allows for a simple and direct characterisation of its face structure. Given a cosmological

polytope (Pns+ne−1, P) with associated graph G, any of its faces F is given as a collection

VF of vertices ZIa (a = 1, . . . , 3nt + 2nh) of P such that WIZ
I
a = 0, where WI :=

x̃sI x̃sI + ỹeI ỹe + h̃gh̃g
9 is the hyperplane in Pns+ne−1 where the facet lives such that,

compatibly with the constraints on the midpoints of the generating triangles and segments,

x̃sIx
I
s′ = δss′ , ỹeIy

I
e′ = δee′ , h̃gIh

I
g′ = δgg′ , and ỹeIy

I
e′ = δee′ with all the other scalar

products between vectors and co-vectors vanishing. All the other vertices of P which are

not on the facet identified by the hyperplane Wi are such that WIZ
2 > 0. Each of these

hyperplanes is in a 1−1 correspondence with a subgraph g ⊆ G, so that given any subgraph

g ⊆ G, it can be written as WI =
∑

s∈g x̃sx̃s +
∑

e∈Eextg
ỹeỹe +

∑
g∈Hext

g
h̃gh̃g, with E ext

g and

Hext
g being the sets of edges and tadpoles respectively which are external to the subgraph

g and depart from the sites of g.

The correspondence between cosmological polytopes and graphs allows to extract all

the information about the polytope from the associated graph. For example, it allows

to know all the vertices belonging to a certain face identified by an hyperplane W, by

introducing a marking on the graphs that identifies those which do not live on W

xs xs′ye
W · (xs + xs′ − ye) > 0

xs xs′ye
W · (xs′ + ye − xs) > 0

xs xs′ye
W · (xs + ye − xs′) > 0

xs hg

W · (2xs − hg) > 0

xs hg

W · hg > 0

where the two vertices indicated by a marking close to the only site indicate the very same

vertex h. Hence considering a general face of a cosmological polytope, the associated graph

9Here the summation over the indices s, e and g is understood, with s running on the number of sites

of the associated graph G, e on the number of its edges connecting two different sites, and g on the number

of its tadpoles subgraphs.

– 12 –



J
H
E
P
0
8
(
2
0
2
0
)
0
2
3

G gets marked in the middle of its edges which are internal to the subgraph g, and in the

extreme close to g for those edges which are external to g:

g = G g

where the subgraph is encircled. Summarising, the marking in the middle of an edge of G
indicates that the corresponding vertex xs−ye+ xs′ does not belong to the face, while the

marking in the extreme of the edge close to the graph site with weight xs′ indicates that

the vertex −xs + ye + xs′ does not belong to the relevant face.

3 Projective polytopes and covariant forms

Projective polytopes, as well as more generally positive geometries, are in 1− 1 correspon-

dence with canonical forms, which are meromorphic forms with simple poles only. In this

section, we show that:

(a) given a projective polytope (PN , P), it is possible to associate a class of differential

forms ω(k)(Y,P) to it, which we call covariant forms. These are meromorphic forms

with poles of higher multiplicity on the boundaries of P, and are distinguished by a

GL(1)-scaling of degree k. For a fixed GL(1) scaling and fixed multiplicities mj ’s of

the poles, the covariant meromorphic form associated to a given polytope (PN , P) is

not unique;

(b) given a projective polytope (PN , P), we define a more general way of associating

differential forms with GL(1) scaling to it. In particular, we introduce the notion of

covariant pairing (P, ω(k)) as the association of a differential meromorphic form with

GL(1) scaling of degree k whose poles are along the boundary components of a signed

triangulation of (PN , P), including the collection of subsets of boundary components

which triangulates the empty set. Moreover, the sums over such subsets are such

that the order of the associated poles is lowered in the sum, but in general remains

non-zero;

(c) it is possible to complete the geometric-combinatorial characterisation of covariant

forms and covariant pairings by relating them to higher dimensional projective poly-

topes whose restrictions onto certain hyperplanes return the polytope they are associ-

ated to. In particular, we introduce the notion of covariant restriction of a canonical

form of a polytope onto a given hyperplane, which maps the canonical form of the

polytope into a covariant form associated to the restriction of the polytope on the

hyperplane, or into a differential form in covariant pairing with it.
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3.1 Covariant forms

Let us begin with defining a covariant form. Let (PN , P) be a projective polytope with

canonical form (2.6) with P defined via the set of inequalities {qj(Y) := YIW (j)

I ≥ 0, j =

1, . . . , ν̃}, and let {mj ∈ N, j = 1, . . . , ν̃} be a set of strictly positive integers, then a

covariant form of degree k ∈ N0 is defined as

ω(k)(Y, P) =
nδ(Y)〈YdNY〉∏ν̃

j=1 q
mj
j (Y)

, deg{nδ} := δ, (3.1)

such that

(i) under the action of a GL(1) transformation Y −→ λY, λ ∈ R+, the covariant form

ω(k)(Y,P) transforms as

ω(k)(Y,P) −→ λ−kω(k)(Y,P), k ∈ N0, (3.2)

with k being the covariant degree of the differential form.10 Such a property fixes the

degree δ of the numerator nδ(Y) of ω(k) to be δ =
∑ν̃

j=1mj −N − 1− k. The forms

of degree k that differ from each other by (3.2) belong to the same equivalence class:

ω(k)(Y, P) ∼ λ−kω(k)(Y, P);

(ii) its leading Laurent coefficient along any of the boundary components (PN−1, ∂P (j))

is a covariant form of degree k−mj + 1 of the polytope constituted by the boundary

component (PN−1, ∂P (j)) itself:

L(mj)

∂P(j)

{
ω(k)(Y, P)

}
= ω(k −mj + 1)(Y ′, ∂P (j)), (3.3)

where Y ′ ∈ PN−1, L(mj) is the Laurent operator (of order mj) applied to the covariant

form ω(Y, P) along the boundary component (PN−1, ∂P (j)).

The Laurent operator in eq. (3.3) is defined as follows. Let us parametrise PN with a set

of local holomorphic coordinates (yj , hj) such that the locus hj = 0 locally identifies the

facet (PN−1, ∂P (j)), while yj collectively indicates the remaining local coordinates. Then

the covariant form ω(k)(Y,P) shows a multiple pole in hj = 0 with multiplicity mj such that

ω(k)(Y,P) = ω(k −mj + 1)(yj) ∧
dhj

h
mj
j

+ ω̃(k), (3.4)

with ω̃(k) being the part of the covariant form which at most shows poles in hj = 0

with multiplicity lower than mj , i.e. it does not contribute to the leading coefficient in

the Laurent expansion around hj = 0, and ω(k −mj + 1)(yj) is a covariant form of degree

k −mj + 1 ∈ N0 with poles in any of the other local variables included in the collective

one yj whose multiplicity can be lower or equal to ml (l 6= j):

L(mj)

∂P(j)

{
ω(k)(Y, P)

}
= L(mj)

hj = 0

{
ω(k)(Y, P)

}
= ω(k −mj + 1)(yj) =

= ω(k −mj + 1)(Y ′, ∂P (j)),
(3.5)

with equalities being valid locally.

10In most of the text, when there is no ambiguity, we will refer to the covariant degree as simply as degree

of the differential form with a little abuse of terminology.
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Importantly, the requirement (ii) implies the existence of an upper bound for the

multiplicity mj of a given pole for fixed covariance degree-k: mj ∈ ]0, k + 1], ∀ j =

1, . . . , ν̃. Furthermore the conditions (i) and (ii) do not fix uniquely the covariant form

ω(k) for a given polytope (PN , P), except for the case k = 0.

Proposition 3.1. Given a polytope (PN , P), there is a unique covariant form ω(0)(Y,P)

of degree k = 0, and it is given by its canonical form ω(Y, P).

Proof. Let us consider the most generic form (3.1) for a covariant form of degree k = 0.

The scaling property (i) — in this case the invariance under GL(1) transformations —

fixes the degree of the homogeneous polynomial nδ(Y) constituting the numerator to be

δ =
∑ν̃

j=1mj −N − 1:

ω(0)(Y, P) =
nδ(Y)〈YdNY〉∏ν̃

j=1 q
mj
j (Y)

, δ =

ν̃∑
j=1

mj −N − 1. (3.6)

Let us now parametrise PN via the local holomorphic coordinates (yj , hj) such that the

locus hj = 0 identifies one of the facets of the polytope, while yj collectively indicate the

other coordinates. Then, property (ii) implies that

ω(0)(Y,P) = ω(0−mj + 1)(yj) ∧
dhj

h
mj
j

+ ω̃(0), (3.7)

However, by definition the degree of the covariant forms is non-negative and all the mul-

tiplicities mj ’s are strictly positive. Hence mj = 1. Iterating this argument for all the

singularities of (3.6), then

∀ j = 1, . . . , ν̃ : mj = 1. (3.8)

Hence, a covariant form of degree 0 satisfying the property (ii) has simple poles only

and (3.7) reduces to (2.2), so that the residues of ω(0)(Y,P) along any of the facets returns a

degree-0 form with simple poles only associated to the facets itself. Thus, the covariant form

of degree-0 satisfying property (ii) is the canonical form associated to the polytope (PN , P):

ω(0)(Y,P) ≡ ω(Y,P) (3.9)

For k > 0, the conditions (i) and (ii) are not sufficient to fix the covariant form

with fixed degree k and fixed multiplicities mj (j = 1, . . . , ν̃): one could imagine it to be

defined up to an overall constant only (it is a GL(1) covariant form), however the defining

conditions (i) and (ii) are not sufficient to fix the numerator nδ up to an overall constant.

Example. Let us consider a simple visualisable example. Let us take (P1, P) with P
being a segment and let us try to fix a covariant form of degree 1. Because of the bound

mj ≤ k + 1 for the multiplicities of the poles, our degree-one covariant form can have

simple and double poles only. Let us take both poles to have multiplicity two. Then the

scaling condition (i) fixes the degree δ of the numerator nδ to be 1. Taking Y = (y1, y2) as
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homogeneous local coordinates, then the most generic form for such a degree-1 covariant

form is given by

ω(1) =
a1y1 + a2y2

y2
1y

2
2

dy1 ∧ dy2

Vol{GL(1)}
, a1, a2 ∈ R. (3.10)

Let us now check whether the condition (ii) fixes one of the coefficients aj (j = 1, 2)

in function of the other one. Notice that in correspondence of any of the facets yj = 0

(j = 1, 2) we get

ω(1) =
(−1)j

Vol{GL(1)}
dyl
yl︸ ︷︷ ︸

ω(0)(yl)

∧ al
dyj
y2
j

+ . . . , j, l = 1, 2 (l 6= j). (3.11)

Taking the patch yl = 1, the covariant form (3.11) acquires the form

ω(1) = (−1)j al
dyj
y2
j

+ . . . (3.12)

and the leading Laurent coefficient of this double pole is an arbitrary constant.

Notice that the constant al is not fixed by requiring that the canonical form ω(0) is ± 1

because it reflects the covariance degree of the differential dyj/y
2
j .

11 Hence, the leading part

of the covariant form along a given boundary is still defined up to a constant. Consequently,

the expression (3.11) does not fix a1 and a2 to be proportional to each other, neither a

GL(1) transformation does it, given that it can allow to fix one of the two to one, but

leaving the other arbitrary.

Differently from the canonical forms, that are in principle defined up to an overall

constant a which can be fixed by requiring that the leading singularities are ±1 rather

than ±a, the covariant forms of degree k define equivalence classes as a consequence of the

property (i).

3.2 Unions, triangulations and covariant pairings

Let (PN , P (1) ∪ P (2)) be the disjoint union of two projective polytopes (PN P (1)) and

(PN P (2)). Then, the equivalence class of covariant forms of degree k associated to such a

disjoint union is defined by the sum of any representative of the covariant forms of each

element of the union:

ω(k)(Y, P (1) ∪ P (2)) = ω(k)(Y, P (1)) + ω(k)(Y, P (2)). (3.13)

Because the boundaries of (PN , P (1)∪P (2)) are either boundaries of one of the (PN , P (j))’s

or the union of their boundaries, the property (ii) is guaranteed for ω(k)(Y, P (1) ∪ P (2)).

11This is the important point which marks the difference between the cases k = 0, for which the unique-

ness theorem 3.1 holds, and k > 0: while in the first case all the poles are forced to be simple so that

requiring the leading singularity to be ±1 fixes the form completely, in the case of covariant forms we still

have an equivalence class of forms because of (3.11) albeit along a boundary degree-0 form is singled out.
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Equation (3.13) is just the statement that the sum of any representative of the covari-

ant forms of degree k for (PN P (1)) and (PN P (2)) such that P (1) ∩ P (2) = ∅ returns a

representative of the covariant forms for their disjoint union (PN , P (1) ∪ P (2)).

We would like now to generalise the notion of (signed) triangulation reviewed in sec-

tion 2.2.1 to the case of covariant forms. Recall that, given a polytope (PN , P) and a

collection of polytopes {(PN , P(j))} which sign-triangulates it, then the canonical form of

(PN , P) can be expressed as a sum of the canonical forms of the elements of the collection

{(PN , P(j))}:
ω(Y, P) =

∑
j

ω(Y, P(j)). (3.14)

In particular, for any collection {Q(i)} of faces of some of the polytopes {(PN , P(j))} such

they triangulate the empty set, the canonical form ω(Y, P) does not have poles on them.

Therefore, the simple poles {ω(Y, P(i))} have on {Q(i)} all cancel in the sum (3.14): they

are called spurious. In the case of covariant forms, they have in general poles of higher

multiplicity and the poles related to those faces which triangulate the empty set might no

longer be spurious, but their order could be lowered.

Let (PN , P) be a projective polytope, {(PN , P (j))}nj=1 a collection of projective poly-

topes and ω(k) a differential form of covariant degree k such that:

(i) {(PN , P(j))} is a signed triangulation of (PN , P);

(ii) the form ω(k) can be written as a sum of (representatives of) covariant forms

ω(k)(Y, P(j)) of degree k associated to the projective polytopes (PN , P (j)):

ω(k) =
n∑
j=1

ω(k)(Y, P(j)); (3.15)

(iii) for every collection of faces {Q(i)} of some of the polytopes {(PN , P(j))} such they

triangulate the empty set, the order of spurious poles {ω(Y, P(i))} have on {Q(i)}
are lowered in the sum;

then the association (P, ω(k)) is called a covariant pairing. Moreover, {(P(j), ω(k)(P(j)))}
will be referred to as a covariant triangulation of (P, ω(k)).

As the collection {(PN , P (j))}nj=1 provides a signed triangulation for (PN , P), there

exist a common pole in a subset of the collection of covariant forms {ω(k)(Y, P (j))}nj=1 such

that the boundary components of the relevant elements of {(PN , P (j))}nj=1 triangulate the

empty set. If such class of poles have multiplicity higher than 1, then the covariant form ω(k)

in covariant pairing (P, ω(k)(Y, P)) with (PN , P) shows a pole of lower multiplicity: the co-

variant form ω(k) has poles in correspondence of both the boundary components of (PN , P)

and of the boundary components of (PN , P (j)) which are not boundaries of (PN , P). If

instead such a pole is a simple, it becomes spurious upon the summation (3.15) and we

recover the covariant form has only poles along the boundary components of (PN , P).

Hence, the covariant pairing generalises the association between a covariant form and a

projective polytope originally defined in section 3.1. With a little abuse of notation, in what
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follows we will indicate with ω(k)(Y, P) (a representative of) a covariant form with poles

only along the boundary components of (PN , P), as well as a covariant form in covariant

pairing with the projective polytope (PN , P), which have (multiple) poles both along the

boundary components of (PN , P) and along the empty-set-triangulating boundary compo-

nents of a collection of projective polytopes providing a signed triangulation of (PN , P).

Example. Let us consider two segments (P1, P (32)) and (P1, P (31)) such that they provide

a signed triangulation of (P1, P (12)).12

3 21

Let (Z3, Z1), (Z3, Z2) and (Z1, Z2) be the pair of bound-

ary components of (P1, P (32)), (P1, P (31)) and (P1, P (12)) re-

spectively, with Zj ∈ P1. Let us consider a covariant form

of degree 1 for with a double pole along one of the boundary components of (P1, P (3j))’s,

namely:

ω(1)(Y, P (32)) =
〈23〉〈YdY〉
〈Y3〉2〈Y2〉

, ω(1)(Y, P (31)) =
〈31〉〈YdY〉
〈Y3〉2〈Y1〉

. (3.16)

Then the covariant form ω(k) in covariant pairing with (P1, P) is:

ω(1)(Y, P (12)) =
2∑
j=1

ω(1)(Y, P (3j)) =
〈21〉〈YdY〉
〈Y1〉〈Y2〉〈Y3〉

, (3.17)

which shows a pole in each boundary component of the collection {(P1, P (3j))}2j=1, with

the pole along the common boundary of lower multiplicity.

We can also consider the following covariant forms associated to {(P1, P (3j))}2j=1

ω(1)(Y, P (32)) =
〈23〉2〈YdY〉
〈Y3〉〈Y2〉2

, ω(1)(Y, P (31)) = − 〈31〉2〈YdY〉
〈Y3〉〈Y1〉2

. (3.18)

Then the covariant form ω(k) in covariant pairing with (P1, P (12)) is:

ω(1)(Y, P (12)) =

2∑
j=1

ω(1)(Y, P (3j)) =
〈21〉 (〈32〉〈Y1〉+ 〈31〉〈Y2〉) 〈YdY〉

〈Y1〉2〈Y2〉2
. (3.19)

Notice the this covariant form has poles only along the boundary components of (P1, P (12))

and it is one of the covariant forms of degree-1 naturally associated to the segment

(P1, P (12)).

Summarising, in the previous two subsection we have introduced a natural way of asso-

ciating the subclass of differential forms with non-logarithmic singularities constituted by

forms whose coefficients are meromorphic homogeneous functions, to projective polytopes,

through the notions of covariant forms and differential forms in covariant pairing with

polytopes, with the latter generalising the former. Neither covariant forms nor covariant

pairings are in 1−1 correspondence with a polytope, not even fixing the multiplicity of the

poles in the covariant form: the defining conditions for the covariant forms as well as the

requirement that spurious higher codimension singularities cancel, constrain the numerator

of the covariant forms but they do not fix it uniquely.

12The apex (ij) in P(ij) indicates that the vertices of that segment are i and j.

– 18 –



J
H
E
P
0
8
(
2
0
2
0
)
0
2
3

In the next subsection we will see how it is possible to complete the geometric-

combinatorial characterisation of covariant forms and covariant pairings by associating

them to higher dimensional polytopes and their canonical forms.

3.3 Parent polytopes, child polytopes and covariant forms

Let (PN , P) be a projective polytope and let FP := {W (j)

I ∈ PN (R), j = 1, . . . , ν̃} be

the set of dual vectors identifying its facets. Let H := {Y ∈ PN (R) |hl(Y) := YIH(l)

I =

0, H(l)

I * FP , ∀ l = 1, . . . , N −M} be an hyperplane of codimension N −M in PN —

i.e. it lives in PM ⊂ PN , with M < N — such that it intersects the convex hull P. Let

PH := P ∩ H be the restriction13 of P on H. We will refer to the projective polytope

(PN , P) as parent polytope, and to its restriction (PM , PH) on the hyperplane H as its child

polytope with respect to H.

If ω(Y, P) is the canonical form associated to (PN , P), then it is possible to define the

covariant restriction of ω(Y, P) onto H as the differential form

ω(N −M)(YH) :=
1

(2πi)N−M

∮
H

ω(Y, P)∏
N −M
l=1 hl(Y)

. (3.20)

The differential form (3.20) can be equivalently defined as

ω(N −M)(YH) := L(0)
H {ω(Y, P)} , (3.21)

where L(0) is the Laurent operator defined in (3.4) but now acting along a codimen-

sion N − M hyperplane and extracting the zero-th order coefficient. More explic-

itly, let us parametrise PN with a set of local holomorphic coordinates (y, h), where

h := {h1, . . . , hN −M} collectively indicates the coordinates such that the locus h = 0

locally identifies the hyperplane H ⊂ PN , while y collectively indicates the remaining local

coordinates. Then, the canonical form ω(Y, P) can be written as

ω(Y, P) = ω(N −M)(y) ∧ dh + ω̃, (3.22)

with ω̃ being the part of the canonical form which depends polynomially on h (with degree

equal or greater than 1), and which does not contribute to the leading Laurent coefficient

of the canonical form, which is now of order zero because the locus h = 0 does not identify

neither poles nor zeroes of the canonical form. Hence, locally:

L(0)
H {ω(Y, P)} = L(0)

h = 0 {ω(Y, P)} = ω(N −M)(y) = ω(N −M)(YH). (3.23)

Notice that ω(N −M)(YH) is a differential form of covariant degree N−M . This property

is manifest in both (3.20) and (3.21): the canonical form ω(Y, P) of (PN , P) is invariant

under a GL(1)-transformation Y −→ λY (with λ ∈ R+), while each homogeneous poly-

nomial hl(Y) in the definition of the hypersurface H transform as hl(Y) −→ λhl(Y) being

linear. Hence the integrand differential form in (3.20) transforms as λ−(N−M). Finally, the

13The term ‘restriction’ is just equivalent to section of the polytope, on the geometric side. In our case,

it will also carry extra information about an operation on differential forms, as in (3.20).
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contour integration computes the residue of the integrand differential form at all the simple

poles hl(Y) = 0, leaving the GL(1)-scaling behaviour unchanged.

Properties of the covariant restrictions ω(N −M) are inherited from the property of

the canonical ω(Y, P) associated to (PN , P) that its residue along any of the boundary

components (PN−1, ∂P (j)) is the canonical form of the projective polytope (PN−1, ∂P (j))

itself. First, let W (j1 . . . jmj ) :=
⋂mj
r=1W(jr) be the intersection of mj facets, each of which

is identified by a dual vector W (jr). If H
⋂
W (j1 . . . jmj ) 6= ∅, then the linear homogeneous

polynomials qjr(Y) = Y ·W jr (r = 1, . . . , mj) providing a subset of poles of the canonical

form ω(Y, P) become equal to each other on the covariant restriction on the hypersurface

H — i.e. when the residues of the integrand (3.20) at all the poles hl(Y) = 0 are taken –,

generating a multiple pole of multiplicity mj . Let us now parametrise PN via a set of local

holomorphic coordinates (yj , qj) such that the locus qj = 0 locally identifies a particular

boundary ∂P(j), with yj collectively indicating the remaining local coordinates. As we

already saw in (2.2), it shows a simple pole in qj = 0 and it can be locally written as

ω(Y, P) = ω(yj) ∧
dqj
qj

+ ω̃. (3.24)

Considering now (3.20), the covariant restriction of the canonical form ω(Y, P) generates

multiple poles and, hence, in the local holomorphic coordinates (yj , qj), the differential

form (3.20) can be written as

ω(N −M)(YH) = ω(N −M −mj)(yj) ∧
dqj

q
mj
j

+ ω̃(N −M), (3.25)

which is exactly the very same structure as (3.7), with ω̃(N −M) having a lower order pole

it qj = 0. Hence, the differential form satisfies also the property (3.4) in the definition of

the covariant forms.

Let us now analyse the structure of these covariant restriction in detail as well as the

covariant forms obtained from the canonical form of (PN , P). As we will discuss in detail

later on, the Laurent coefficients of the differential form ω(N −M)(YH) are related to the

residues of the canonical form ω(Y, P) (a manifestation of this fact was first observed in the

context of the cosmological polytopes [20]), which is a consequence of the property (3.25).

Interestingly, as we will prove shortly afterwards, the differential form ω(N −M)(YH) turns

out to be in covariant pairing with the child polytope (PM , PH), with poles reflecting

boundaries both inside and outside PH, which occurs when the intersections between H and

the facets of P lie outside of PH, or just poles along the boundary components of (PM , PH)

which occur when the intersections between H and the facets of P are boundaries of PH.

From (3.24) and (3.25), it is possible to see that in general the multiplicity of the poles of

the differential form ω(N −M)(YH) is given by the number of facets of the parent polytope

which have a common intersection inside the polytope and on the hyperplane H. There are

two exceptions. The first one is when the subspace where the facets of the parent polytope

and H intersect is on the hypersurface which determines the zeroes of the canonical form

of the parent polytope itself. In this latter case, the multiplicity of the pole is lower. The

second exception occurs when the number of facets on the common intersection with the

– 20 –



J
H
E
P
0
8
(
2
0
2
0
)
0
2
3

hyperplaneH is higher than the codimension of such intersection. Because of the properties

of the canonical form of the parent polytope, if the child polytope has dimension M , then

its poles with order great than one are on faces of dimension M −1 of the parent polytope.

Therefore, the maximal order of these poles equals N − (M − 1) = k + 1, where k is the

covariant degree of ω(N−M)(YH), consistently with what discussed in section 3.1.

In order to prove that statement that the differential form ω(YH) is in covariant pairing

with (PM , PH), let us first consider the case of simplices as parent polytopes and then

generalise to arbitrary projective polytopes.

Lemma 3.1. Let (PN ,∆) be a simplex and ω(Y,∆) its canonical form. Given an hyper-

plane H of codimension N − M in PN , let ω(N −M)(YH) be the covariant restriction of

ω(Y,∆) onto H, and ∆H := ∆ ∩ H so that (PM , ∆H) is the restriction of (PN ,∆) onto

H. Then (∆H, ω
(N −M)(YH)) is a covariant pairing. In particular, there exist a collection

of simplices {(PM ,∆(σ)
H )} which is a signed triangulation of (PM ,∆H) and

ω(N −M)(YH) ≡ ω(N −M)(YH,∆H) =
∑
σ

ω(N −M)(YH,∆(σ)
H ), (3.26)

where ω(N −M)(YH,∆(σ)
H ) are covariant forms of degree N −M associated to (PM ,∆(σ)

H ).

Proof. Let (PN , ∆) be a simplex and let F∆ := {W (j)

I ∈ PN (R), j = 1, . . . , N + 1} be

the set of dual vectors identifying its facets Fj := {Y ∈ PN (R) |Fj(Y) := YIW (j)

I = 0}.
Let Z1, . . . ZN+1 be the vertices of ∆, with Zi being the only vertex which does not

belong to Fi. Let us denote consider the M − 1 dimensional intersection FN + 1 ∩ H lies

outside P.

Let us now consider the M dimensional hyperplane14 B = ∩a∈[N−M ]Ba, with Ba =

{Y ∈ PN (R) | YIX (a)

I = 0}, which includes the M −1 hyperplane FN + 1∩H and the vertex

ZN + 1.

Furthermore, the linear space of vectors dual to hyperplanes passing by ZN + 1 is N

dimensional and that {W (1) . . .W (N)} provides a basis for such a space. Therefore, since

ZN + 1 ⊂ Ba, then

X (a) =
N∑
i=1

caiW (i), a ∈ [N −M ]. (3.27)

Let us now consider the canonical form of the simplex and re-write it as:

ω(Y,∆) ∼

N−M∏
a=1

Ba 〈YdNY〉

N−M∏
a=1

Ba

N+1∏
i=1

Fi

=
∑

i1,...,iN−M∈[N ]

c1i1 . . . cN−MiN−M

N−M∏
a=1

BaFN+1

M∏
s=1

Fīs

〈YdNY〉 (3.28)

where we used (3.27) and we denoted {̄i1, . . . , īM} = [N ] \ {i1, . . . , iN−M}. If we denote

as ∆(σ) the simplices whose facets are B1, . . . , BN −M , FN + 1, Fσ1 , . . . , FσM , with σ ∈
([N ]
M

)
,

14Without loss of generality H does not pass through ZN+1, otherwise we choose another facet.
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then one can show that (3.28) produces the oriented triangulation of ∆ into {∆(σ)}, in

particular:

ω(Y,∆) ∼
∑

σ∈([N ]
M )

ω(Y,∆(σ)). (3.29)

We now consider the covariant restriction of ω(Y,∆) onto H and use (3.29). Let us choose

a set of local holomorphic coordinates (y, ỹa) such that the locus ỹa = 0 locally identifies

the hyperplane H, with y collectively indicating the remaining local coordinates. Then the

covariant restriction of ω(Y,∆(σ)) to H is:

ω(N −M)(y, ∆
(σ)
H ) ∼ 〈y dMy〉

fN+1(y)N−M+1
∏M
s=1 fσs(y)

(3.30)

which is a covariant form of degree N −M of the simplex (PM ,∆(σ)
H ), whose facets are

{fN + 1, fσ1 , . . . , fσM }, where fi(y) := Fi(Y)|ỹa=0 for i ∈ [N + 1]. Notice that the covariant

form has a pole of order N−M+1 in fN+1 since ∆(σ) has N−M+1 facets which intersect

in fN + 1:

fN + 1 = FN + 1 ∩H = Ba ∩H, a ∈ [N −M ]. (3.31)

Then, by (3.29), we have:

ω(N −M)(YH) ∼
∑

σ∈([N ]
M )

ω(N−M)(Y,∆(σ)
H ) (3.32)

Since {∆(σ)} provides a signed triangulation of ∆, then {∆(σ) ∩ H = ∆
(σ)
H } is a signed

triangulation of ∆H. Therefore, {(∆(σ)
H , ω(N −M)(YH, ∆

(σ)
H )} is a covariant triangulation of

(∆H, ω
(N −M)(YH, ∆H)). We comment on why ∆

(N)
σ ∩H is a simplex.

Theorem 3.2. Let (PN ,P) be a projective polytope and ω(Y,P) its canonical form. Given

a hyperplane H of codimension N−M in PN , let ω(N −M)(YH) be the differential form of de-

gree N−M of the restriction as in (3.20). Then (PH, ω(N −M)(YH)) is a covariant pairing.

Proof. Given a projective polytope (PN , P), let us consider its triangulation via the sim-

plices {∆(j)}. Then, it is possible to triangulate each ∆(j) using the signed triangulations

defined in Lemma 3.1 as {∆(jσj)}. Of course {∆(jσj)} is a signed triangulation of (PN , P)

as well. By Lemma 3.1, the covariant restriction of ω(Y, ∆(jσj)) on H is a covariant form

of degree N −M of the simplex ∆
(jσj)

H = ∆(jσj) ∩H. Therefore:

ω(N −M)(YH) =
∑
j,σj

ω(N −M)(YH,∆
(jσj)

H ). (3.33)

In Lemma 3.1 we encountered restrictions of simplices on hyperplanes, and we will see

them again in section 4 as well. In general, every polytope can be realised as a restriction

from a simplex of suitable dimension. Therefore, restrictions of arbitrary polytopes are

subsumed under the study of restrictions of simplices. Surprisingly, despite the simplicity
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of simplices, little is known about the geometric and combinatorial properties of restrictions

of simplices in full generality. We refer to [28, 29] for related questions and answers on such

properties. In particular, in [28] it is shown that, given a simplex ∆ in PN , there exists an

hyperplane H of even dimension M such that it intersects the interior of all the faces of

∆ of dimension N −M/2. The only visualisable example is a 2-plane which intersects all

the facets of a tetrahedron: the restriction on such plane gives a quadrilateral. Therefore,

curiously enough, we can always intersect the interior of all N+1 facets of a simplex in PN

with a 2-plane. If we perform a covariant restriction of the canonical form ω(Y,∆) of ∆ onto

such 2-dimensional hyperplaneH, we get a differential form ω(N−2)(YH,∆H) of degree N−2

in covariant pairing with ∆H, i.e. a polygon with N+1 edges. This form has all simple poles

on the edges of the polygon, since H intersects the all facets of ∆ on the simplex. However,

it is not its canonical form: it has poles outside, where non-adjacent edges intersect.

There is an analogous statement [29] for polytopes in PN , with N ≥ 3: if the polytope

has at most 2N facets,15 then there is always an hyperplane which intersects the interior

of all its facets.

Theorem 3.3. Let (PN ,P) be a projective polytope and ω(Y,P) its canonical form. Then,

given an hyperplane H of codimension N − M in PN , let ω(N −M)(YH, PH) be the co-

variant restriction of ω(Y,P) onto H, which is in covariant pairing with (PM , PH). Let

(PM−1, ∂P (j)

H ) be a boundary component of the restriction (PM , PH) of (PN ,P) onto H,

corresponding to a pole with multiplicity N − M + 1 in ω(N −M)(YH, PH). Then, if

{(PN−1, ∂P(α))} is the collection of boundary components of (PN , P) such that ∂P (α)∩H =

∂P (j)

H = ∩α∂P(α), then

Res⋂
α ∂P

(α) {ω(Y, P)} = L
∂P(j)
H

(N −M + 1)
{
ω(N −M)(YH, PH)

}
. (3.34)

Proof. Let (PN ,P) be a projective polytope and ω(Y,P) its canonical form. If ν̃ is the

total number of its facets, then its canonical form can be decomposed as:16

ω(Y,P) =
∑

σ∈( [ñ]
N+1)

aσ
Fσ1 . . . FσN+1

〈Y dNY〉 (3.35)

where Fi = Fi(Y) is the linear homogeneous polynomial identifying the facet Fi, with

i ∈ [ν̃]. Among these, let us denote as Qα the linear homogeneous polynomial identifying

the facet ∂P(α), with α = 1, . . . ,m. Then the residue operator receives contributions only

from terms of the following type:

1∏
α∈[m]Qα

∑
σ̃∈I

aσ̃
Fσ̃1 . . . Fσ̃M

〈Y dNY〉 (3.36)

where I ⊆
([ν̃]
M

)
such that {Fσ̃1 . . . Fσ̃M } does not contain any of the Qα, and we used the

fact that N + 1 − m = M . Let us now parametrise PN via a set of local holomorphic

15Under the condition that the polytope has at least a simple vertex (i.e. it belongs to exactly N facets

of the polytope), then the result is true also if the polytope has 2N + 1 facets, N ≥ 4.
16This corresponds to picking a triangulation of the polytope.
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coordinates (xj , hα) such that the locus hα = 0 locally identifies with the facet Qα, with

xj collectively indicating the remaining local coordinates. Then:

Res{Qα = 0} ω(Y,P) ∼
∑
σ̃∈I

aσ̃
Fσ̃1 . . . Fσ̃M

∣∣∣∣
hα=0

〈x dM−1x〉, (3.37)

where ∼ expresses the result up to an overall constant.

We now focus on the differential form ω(N −M)(YH,PH). Using the expansion (3.35),

the only term contributing to its leading Laurent coefficient around the pole corresponding

to the boundary ∂P(j)
H is the restriction on H of the form in (3.36). If we parametrise PN via

a set of local holomorphic coordinates (y, ỹa) such that the locus ỹa = 0 locally identifies

with the hyperplane H, with y collectively indicating the remaining local coordinates, then

this restriction reads:
1

qm

∑
σ̃∈I

aσ̃
Fσ̃1 . . . Fσ̃M

∣∣∣∣
ỹa=0

〈y dMy〉, (3.38)

where we denoted q the linear homogeneous polynomial corresponding to the boundary

∂P(j)
H and used the fact that Qα|ỹa=0 = q, since ∂P(α) ∩ H = ∂P(j)

H . Furthermore, let us

choose coordinates (x̃, xj) such that the locus x̃ = 0 locally identifies with the locus of

the pole q = 0, and x collectively indicating the remaining local coordinates. Then:

L{q = 0} ω
(N−M)(Y,PH) ∼

∑
σ̃∈I

aσ̃
Fσ̃1 . . . Fσ̃M

∣∣∣∣
ỹa,x̃=0

〈x dM−1x〉. (3.39)

By hypotheses, (Fi ∩H)∩∂P(j)
H = Fi ∩α∈[m] ∂P(α), then the restriction to hα = 0 in (3.37)

and the restriction to ỹa, x̃ = 0 in (3.39) coincide. The statement of theorem follows

immediately, once we consider a representative of (3.39) such that it has unit leading

singularities.

3.4 Visualisable examples: polygons and polyhedra

In order to illustrate the covariant restriction map between the canonical form of a parent

polytope and the covariant pairing of its child polytope, and how their structures are

tied to each other, we will discuss some non-trivial example in the two visualisable cases,

i.e. polytopes in P2 and P3, distinguishing between the cases in which the restriction is

with respect to a hyperplane intersecting the parent polytope inside only, and when the

hyperplane can intersect its facets outside.

3.4.1 Polygons and internal intersections

Let us consider the simplest non-trivial examples of polytopes in P2, and let us indicate

the n-gons as Pn. First, notice that just for n = 3, 4 there exist hyper-planes H which

intersect Pn inside or on its boundaries only: For all n ≥ 5 such hyperplanes do not exist,

and any hyperplane intersects Pn≥5 both inside and outside (see figure 2). Let us begin

with discussing the two examples in which the intersection H
⋂
Pn lies completely inside

the convex hull Pn, i.e. for the triangle and the square depicted above. Let us choose
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4

H

P3

1

2
3

4
H

P4

the local coordinates Y = (y1, y2, y3). For the triangle P3, let us take its vertices to be

Z1 = (1, 0, 0), Z2 = (0, 1, 0), Z3 = (0, 0, 1), then its canonical form is given by

ω(Y, P3) =
〈123〉2

〈Y12〉〈Y23〉〈Y31〉
〈Yd2Y〉 =

3∧
j=1

dyj
yj

1

Vol{GL(1)}
. (3.40)

Let us now consider the hyperplane H defined as

H =
{
Y ∈ P2 | 〈Y14〉 = 0 = αy3 − (1− α)y2

}
, (3.41)

where Z4 = αZ2 + (1 − α)Z3 = (0, α, 1 − α), with α ∈ ]0, 1[ so to guarantee that it lies

inside the boundary (2, 3), and the last equality is just the representation of the hyperplane

in our local coordinates. The restriction PH := P3∩H is just the segment with boundaries

in Z1 and Z4. Then, the covariant restriction (3.20) of (3.40) yields:

ω(1)(YH PH) =
〈Z?14〉

〈YHZ?1〉2〈YHZ?4〉
〈Z?YHdYH〉 ∼

1

y2
2 y1

dy1 ∧ dy2

Vol{GL(1)}
, (3.42)

where Z? := (0, −(1 − α), α) identifies the restriction on H, and the symbol ∼ indicates

that the form is defined up to an overall constant, i.e. there is an equivalence class of degree-

1 covariant forms, and (3.40) is a representative. In this case the boundary components

of the parent polytope are mapped to boundary components of the child polytope, and

the covariant form (3.42) in covariant pairing with the segment (P1, PH) has poles only on

the boundary components of the segment, i.e. the vertices (1, 4). Notice that the double

pole in the facet of the child polytope is the manifestation of the fact that there are two

boundaries of the parent polytope (the triangle) which are projected onto it, while there is

a single pole in correspondence of the facet of the child polytope encoding just one facet

of the parent polytope. Notice also that the covariant form (3.42) does not depend on

α, which parametrises the intersection between the hyperplane H and the facet (2, 3) of

P3, or, more precisely, such a dependence results in an overall coefficient. Hence, the form

structure is not changed and all the forms differing by the α-dependent scale factor belongs

to the same equivalence class.

Finally notice that the leading Laurent coefficients of the covariant form (3.42) of the

child polytope of each of the poles — for the simple pole it is just its residue — return

the canonical form of a lower codimension boundary of the parent polytope, which for the

double pole is simply the canonical form of the vertex 1 of the parent triangle.
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We can repeat the same analysis for a square P4 intersected by the hyperplane H =

{Y ∈ P2 | 〈Y24〉 = 0} in the figure above. For the sake of concreteness, let us take

the vertices of the square to be Z1 = (1, 0, 0), Z2 = (0, 1, 0), Z3 = (0, 0, 1), Z4 =

αZ1 − (α + β − 1)Z2 + β Z3 (with α + β − 1 > 0). The the canonical form associated

the square is given by

ω(Y, P4) =
〈YZ13Z24〉

〈Y12〉〈Y23〉〈Y34〉〈Y41〉
〈Yd2Y〉 =

=
β(α+ β − 1)y1 + αβy2 + α(α+ β − 1)y3

y3y1[(α+ β − 1)y1 + αy2][βy2 + (α+ β − 1)y3]

3∧
j=1

dyj
1

Vol{GL(1)}

(3.43)

where Zij := (i, i + 1)
⋂

(j, j + 1) := Zi〈i + 1, j, j + 1〉 − Zi+1〈i, j, j + 1〉 represents the

intersection between the two facets (i, i+ 1) and (j, j + 1). The line identified by the two

points Z13 and Z24 provide a zero of the canonical form (3.43). In such local coordinates,

the line H is identified by the equation α y3− β y1 = 0, and the restriction of P4 onto it is

simply the segment with boundaries Z2 and Z4. The covariant restriction of the canonical

form (3.43) is therefore

ω(1)(YH,PH) =
〈YHZ?Z◦〉

〈YHZ?2〉2〈YHZ?4〉2
〈Z?YHdYH〉 ∼

2(α+ β − 1)y1 + αy2

y2
1[(α+ β − 1)y1 + αy2]2

dy1 ∧ dy2

Vol{GL(1)}
,

(3.44)

with Z? := (β, 0,−α) identifying the restriction on H, and Z◦ := (24)
⋂

(Z13Z24) being the

projection of the locus identifying the zero of the canonical form of the parent polytope onto

H. Here we can see how a covariant form of a polytope inherits the zero of the canonical

form of the parent polytope, which is now a point outside the segment (2, 4) in P1. If we

were to start from the segment (P1, P) and associate to it a covariant form of degree-1

with both poles of second order, the homogeneity condition would fix the numerator to be

linear, but then, as we already saw in the previous section, no other defining property of a

covariant form, would fix the coefficients up to an overall constant. We would need some

extra information, but we have no reason to choose any special point outside the segment

as a zero given that does not arise from any geometrical feature of the segment itself.

3.4.2 Polygons with outer intersections

Let us now consider the case of n-gons (P2, Pn) and a hyperline H intersecting their facets

both inside and outside the convex hull Pn (see figure 2). We begin with the simplest

example of the triangle P3. For any hyper-line H, its intersection with the facets of the

triangle P3 occurs on three points, which we label Z4, Z5, Z6 following the notation of

figure 2, with two of them inside the polytope Z4, Z5 and the third one Z6 outside. Hence,

the hyper-line H is identified by

H =
{
Y ∈ P2

∣∣ 〈Y45〉 = 0
}
, (3.45)

with

Z4 ∼ αZ2 + (1− α)Z3, Z5 ∼ βZ3 + (1− β)Z1, Z6 = (12) ∩ (45) (3.46)
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Figure 2. Examples of projective polytopes (P2, Pn) intersected by a hyperplane on its facets both

inside and outside Pn. For polygons Pn≥ 5 the latter is the only choice for an hyperplane H such

that H
⋂
Pn≥ 5 6= ∅.

where α, β ∈ ]0, 1[. The canonical form of the triangle (3.40) reduces to a differential form

of degree 1 in P1 with three simple poles:

ω(YH, PH) =
〈Z?45〉〈Z?YHdYH〉

〈YHZ?6〉〈YHZ?4〉〈YHZ?5〉
, (3.47)

where Z? is the orthogonal complement of W (H)
I := εIJKZ

J
4Z

K
5 . Such a differential form

is in covariant pairing with (P1, PH), where PH := P (45)

2
17 and it can be seen as the sum

of the covariant forms associated to the two segments (P1, P (65)

2 ) and (P1, P (46)

2 ) which

provide a signed triangulation of (P1, P (45)

2 ) through Z6 and, consequently, the covariant

pairing (PH, ω(1)(YH, PH)) is covariant triangulated by the covariant forms ω(1)(YH, P (65))

and ω(1)(YH, P (46)

2 ):

ω(YH, PH) = ω(YH, P (65)

2 ) + ω(YH, P (46)

2 ) =

=
〈Z?65〉〈Z?YHdYH〉
〈YH6〉2〈YH5〉

+
〈Z?46〉〈Z?YHdYH〉
〈YH6〉2〈YH4〉

,
(3.48)

i.e. PH is triangulated via an external point, and the differential form in covariant pairing

with it is the sum of the covariant forms associated with the two segments in the signed tri-

angulation via the external point which now have poles only in the boundaries of the associ-

ated polytope, with a double pole in the common boundary which get lowered to simple pole

17The superscript (ab) in P(ab)
2 labels the boundaries (vertices) of the segment.
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upon summation. Here we see the phenomenon of how covariant forms which are elements

of a covariant triangulation show a certain multiplicity of a pole. We can understand (3.48)

also from the perspective of the parent polytope. The parent polytope is a triangle with ver-

tices (123) which can be triangulated via the external point Z6 into (123) = (163) + (236),

and its canonical form can be written as sum of the canonical forms of (163) and (236).

1

2 3
4

5

6

HP3

1

2 3
4

5

6

HP3

The line H defined as (3.45) intersects both such trian-

gles inside only, and hence the covariant restriction of their

canonical form onto it is as the example discussed in the

previous subsection: upon the restriction, these triangles

are mapped into segments and the related covariant forms

show a double pole at the boundary of the segment where

two facets of the parent polytope intersect (in other words,

two codimension-1 boundary of the parent polytope reduce

to the same codimension-1 boundary of the child polytope).

The covariant forms in the second line of (3.48) are exactly

the restriction of the canonical forms of the triangles (163)

and (236), which are mapped to the segments (65) and (46)

respectively. The fact that such segments share a boundary

manifests itself in the lower multiplicity of the related pole.

The same happens for any other polygon: its restric-

tion on a line is still a segment which can be decomposed as a signed-triangulation via

segments each of which is the restriction of the terms of the triangulation of the parent

polytope. From the perspective of the differential form in P1 obtained as covariant re-

striction of the canonical form of the parent polytope, each covariant form obtained from a

single term in the triangulation of the parent polytope has simple poles at those boundaries

in P1 identified by the intersection of H with a single facet of Pn and a double pole if the

boundary in P1 is identified by the intersection between H and two of the facets of Pn.

If the double poles are related to facets which are common to two segments, then it will

become a single pole upon summation of all the covariant forms, while if it is a simple pole,

it will become spurious. Let us briefly discuss it for some of the cases depicted in figure 2.

1
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Let us consider a square and a line which intersects

its facets outside just in one point. The hyperplane H
intersects the facets (12) and (23) in the same point

Z2, while intersects the facet (41) in Z5 ∼ αZ4 + (1 −
α)Z1 which lies between the vertices Z4 and Z1 (i.e.

α ∈]0, 1[), and the facet (34) outside, in Z6 = (25)∩(34).

Hence, we can already expect that, upon the covariant

restriction on H, the canonical form of the square gets

mapped into a covariant form of degree-1 with a double

and two single poles.

Such a covariant form is associated to the

signed-triangulation via the segments (P1,P (26)

2 ) and

(P1,P (65)

2 ). Let us take again the perspective of the par-

ent polytope.
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We can see it as a triangulation (1234) = (1236) + (641) through the external point

Z6 = (25) ∩ (34), which decompose it into a square and a triangle. The hyperplane

H intersects both terms of this triangulation just on their facets, so that the covariant

restriction of the canonical form of the square (1236) generated a covariant form of degree-

1 associated to the segment (P1, P (26)

2 ) with two double poles (both boundary components

of the segment arise from the intersection of two facets of the parent polytope on the same

point on H), while the covariant restriction of the canonical form of the triangle (641)

generates a covariant form of degree-1 associated to the segment (P1, P (65)

2 ) with a double

and a single pole. The common boundary component between (P1, P (26)

2 ) and (P1, P (65)

2 )

is identified by a double pole in both the covariant form and, because of the orientation

inherited from the triangulation of the parent polytope, it becomes a single pole upon their

summation. Explicitly

ω(1)(YH, PH) =
〈YHZ?Z◦〉〈Z?YHdYH〉

〈YHZ?2〉2〈YHZ?5〉〈YHZ?6〉
=

=
〈YHZ?Z̃◦〉〈Z?YHdYH〉
〈YHZ?2〉2〈YHZ?6〉2

+
〈Z?65〉〈Z?YHdYH〉
〈YHZ?6〉2〈YHZ?5〉

=

= ω(1)(YH, P (26)

2 ) + ω(1)(YH, P (65)

2 ),

(3.49)

where PH = P (26)

2 ∪ P (65)

2 , Z◦ = (Z13Z24) ∩H, and Z̃◦ = (Z13Z25) ∩H.
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As a final illustrative example in P2, let us con-

sider a pentagon intersected in his facets by H in three

external points.

The line H intersects the convex hull P5 in its

facets inside on Z7 ∼ αZ2−(1−α)Z3 and Z9 ∼ βZ4+

(1 − β)Z5, with α, β ∈ ]0, 1[, while it intersects the

facets outside of P5 in Z6 = (51)∩H, Z8 = (34)∩H,

Z10 = (12) ∩ H: all the facets of P5 are projected on

different points upon the restriction on the line H and,

consequently, they will be reflected on a single pole

each in the differential form of degree-1 ω(1)(YH, PH)

obtained via (3.20) from the canonical form of

(P2, P5). Such a differential form can be understood

as a sum of the covariant forms associated to the seg-

ments (P1, P (86)), (P1, P (78)), (P1, P (8, 10)), (P1, P (69)).

From the perspective of the parent polytope, this sum comes from the (signed) trian-

gulation of P5 as

P5 = (1846) ∪ (238) ∪ (821) ∪ (645). (3.50)

Upon the covariant restriction (3.20) of the canonical form of each of the terms in (3.50)

on H, one obtains the covariant form for the segments (P1, P (86)), (P1, P (78)), (P1, P (8, 10)),

(P1, P (69)) respectively, which are characterised by having a double pole in the two bound-

aries identified by the vertices Z8 and Z6: these are the only two vertices on which two

facets of the parent polytope are restricted. Upon the summation such double poles are

lowered to simple poles.
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3.4.3 Polyhedra with internal intersections

Let us now discuss some example in P3: the general relation between high order poles

in the covariant forms of the child polytope and the number of facets intersecting each

other in the lower dimensional hypersurface does not change, but it is instructive to see

the restriction at work for examples other than P2.

The simplest example is given by a tetrahedron (P3, P) and a hyperplane such that

P ∩H is a triangle with two vertices being vertices of P and the third one lying on one of

its edges.

41

3

2

5

H
Taking the labeling of the vertices of P as in the pic-

ture here on the left, the hyperplane H is identified by

H =
{
Y ∈ P3 | 〈Y245〉 = 0

}
, (3.51)

with Z5 ∼ αZ1 + (1 − α)Z3 (α ∈ ]0, 1[), and the child

polytope is (P2, H ∩ P), i.e. the triangle PH identified

by the vertices 245. The covariant restriction of the

canonical form of (P3, P) onto H is a covariant form

of degree-1 with a double pole and two simple poles:

the facets (124) and (234) intersect the hyperplane H in the same segment (24) which is

a codimension-1 boundary of the child polytope, while the other two facets of the parent

polytope intersect H alone. Hence

ω(Y, P) =
〈1234〉3〈Yd3Y〉

〈Y123〉〈Y124〉〈Y234〉〈Y134〉
−→ ω(1)(YH, PH) ∼ 〈Z?234〉2〈Z?YHd2YH〉

〈YHZ?25〉〈YHZ?54〉〈YHZ?42〉2
(3.52)

with Z? indicating the orthogonal complement of H.

45

32

1

6

H

Let us now look at a slightly different example, con-

sidering (P3, P) as a square bipyramid with an hyper-

plane H intersecting the convex hull P along the com-

mon basis of the two pyramids.

The child polytope obtained as a restriction of P
onto H is the square in P2 identified by the vertices

2345. In this case, the facets of the bipyramid inter-

sect H in pairs in the same segment: the codimension-1

boundaries of the parent polytope are mapped in pairs

to the same codimension-1 boundary of the child poly-

tope. Consequently, the canonical form of the parent

polytope is mapped to a covariant form of degree-1 of

the child polytope with double poles only, which inherits the structure of its zeros as well

ω(1)(YH, PH) ∼ 〈YZ?Z24Z35〉〈Z?YHd2YH〉
〈YHZ?23〉2〈YHZ?34〉2〈YHZ?45〉2〈YHZ?52〉2

, (3.53)

with Z? being the orthogonal complement of H.
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4 Jeffrey-Kirwan residue and covariant forms

In this section we explain how covariant restrictions are relevant for the Jeffrey-Kirwan

computation introduced in section 2.2.

Let us consider the map Z̃ from Pν−1 to PN :

Z̃ : C 7→ C · Z =: Y, (4.1)

where C = (c1, . . . , cν) are homogeneous coordinates in Pν and Z is ν × (N + 1) matrix.

Then the projective polytope defined in (2.4), with vertices Zk, k = 1, . . . , ν which are rows

of the matrix Z, is just the image of the simplex ∆ in Pν−1 via the map Z̃. Let us now fix

a point Y inside the polytope P, and let us consider the fiber over Y:

Z̃−1(Y) = {C ∈ Pν−1 : C · Z = Y}. (4.2)

Then the differential form ω̃Y(C,P) defined in eq. (2.10) is a top (covariant) differential

form on the fiber Z̃−1(Y). In particular, it is the covariant restriction of the canonical form

of the simplex ω(C,∆) into the hyperplane H ≡ Z̃−1(Y), i.e.

ω̃Y(C,P) ≡ ω(N + 1)(CH,∆H), (4.3)

where ∆H = ∆∩H. Therefore, ω̃Y(C,P) has poles on the (N−1)-dimensional hyperplanes

H1, . . . ,Hν which are the intersections between the ν facets of ∆ν−1 and H. In general18

ω̃Y(C,P) has only simple poles, however it is not the canonical form of ∆H. Indeed, some

of the poles are on the intersection between the hyperplanes corresponding facets of ∆ and

H which lie outside ∆H. Nevertheless, thanks to Theorem 3.2, the covariant form ω̃Y(C,P)

is in covariant pairing with the child polytope ∆H.

In full generality, by Theorem 2.1 one can compute the canonical function Ω(Y,P) of

a polytope P in PN with ν vertices (or the volume of the dual polytope P̃ , see (2.14))

by applying the Jeffrey-Kirwan residue to a covariant differential form ω(N)(CH,∆H) in

covariant pairing with the restriction of the standard simplex ∆ in Pν−1 onto hyperplanes

H ≡ Z̃−1(Y) of dimension N .

Let us consider an easy visualisable example. Let P be the pentagon with vertices

Z1, . . . , Z5 ∈ P2. The pentagon can be obtained as the image in P2 of the simplex ∆ in P4

under the map in eq. (4.1). We would like to compute the restriction of the canonical form

of the simplex

ω(C,∆) =

5∧
k=1

dck
ck

(4.4)

onto the 2-dimensional hyperplane

Z̃−1(Y) =

{
C ∈ P4 :

5∑
k=1

ckZk = Y

}
≡ H . (4.5)

18The set of Y in the interior of the polytope for whichH doesn’t intersect the simplex in lower dimensional

faces is dense. Therefore these covariant restrictions in general do not produce higher order poles.
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We can choose a parametrisation of Z̃−1(Y) using local inhomogeneous coordinates

(x1, x2, 1) ∈ P2 as:

ck = x · Z⊥k + c̃(Y)k, k = 1, . . . , 5. (4.6)

We denoted as Z⊥k the columns of a 2× 5 matrix orthogonal Z, i.e. Z⊥ · Z = 0 and C̃(Y)

is a particular solution of Y = C̃(Y) · Z. For example:

Z⊥ =

 I2
− 〈145〉
〈345〉

〈135〉
〈345〉 −

〈134〉
〈345〉

− 〈245〉
〈345〉

〈235〉
〈345〉 −

〈234〉
〈345〉

 , C̃(Y) =

(
0, 0,
〈Y45〉
〈345〉

,−〈Y35〉
〈345〉

,
〈Y34〉
〈345〉

)
. (4.7)

Then we have:

C · Z = (x · Z⊥ + C̃(Y)) · Z = c̃(Y) · Z = Y, (4.8)

and

ω̃Y(C,P) ∼ d2x∏5
k=1(x · Z⊥k + c̃k(Y))

. (4.9)

We notice that the intersections between the facets of the simplex {ck = 0} and the hyper-

plane Z̃−1(Y) appear in the factors in the denominator of (4.9). This phenomenon is exactly

the one described in section 3.4.2, where we considered cases in which the hyperplane can

intersect the facets of the parent polytope outside. The child polytope ∆H ≡ Z̃−1(Y) ∩∆

can be a triangle, a quadrilateral or a pentagon, according to where Y is located in the

pentagon P. Nevertheless, by Theorem 3.2 in all cases the child polytope is in covariant

pairing with the differential form (4.9), i.e. using the notation in section 2.2 we can write:

ω̃Y(x,P) ≡ ω(3)(x,∆H). (4.10)

Figure 3. Illustration of Cones and Chambers.

For completeness, we briefly show how to apply Jeffrey-Kirwan to the covariant form

ω(3)(x,∆H) in order to obtain triangulations for the pentagon P. We will refer to section 2.2

for the notations used in the following. With our choice of our inhomogeneous coordinates

y, the cones Ck1k2 are spanned by positive linear combinations of {Z⊥k1 , Z
⊥
k2
}. We depict

them in R2 in figure 3. Let us now fix a vector ξ ∈ P2 as in figure 3 such that ξ is in the

chamber c1. Then by definition in (2.11) the Jeffrey-Kirwan residue is computed as:

JKξ ω
(3)(x,∆H) =

∑
CI3ξ

ResCIω
(3)(x,∆H) = (ResC25 + ResC45 + ResC23)ω(3)(x,∆H),

(4.11)
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since ξ is contained in the cones C25,C45,C23. In this example, Ck1k2 is positively oriented

if det(Z⊥k1Z
⊥
k2

) > 0.

This produces the following representation of the canonical function of the pentagon:

JKξ ω
(3)(x,∆H) = Ω(Y,∆134) + Ω(Y,∆123) + Ω(Y,∆145) = Ω(Y,P), (4.12)

where ∆k1k2k3 are triangles in P2 with vertices k1, k2, k3. Clearly, this corresponds to the

triangulation of the pentagon into {∆134,∆123,∆145}. All the other 4 triangulations can be

analogously obtained by choosing the reference vector ξ in different chambers, see figure 3.

5 Cosmological polytopes and covariant forms

Let us now turn to the cosmological polytopes, which allows us to discuss higher dimen-

sional examples. Recall that a cosmological polytope is constructed by taking a collection

of triangles and segments, and intersecting them in the midpoints of their edges with the

constraint that the triangles can be intersected on at most two out of its three sides. Using

the notation introduced in section 2.3, we indicate with {xs}, {ye}, {hh} the collection of

vectors of the midpoints of the intersectable edges of the triangles and the segments, of the

non-intersectable ones, and the non-intersectable vertex of the segments respectively and

use it as a basis for the space where the cosmological polytope lives. Furthermore, they

present natural hyperplanes on which the covariant restriction of their canonical form can

be performed to produce covariant forms.

Proposition 5.1. Let (Pne+ns−1, P) be a cosmological polytope constructed from a collec-

tion of nt triangles and nh segments. Let G be the associated graph with ns sites and ne
edges of which nh are tadpoles subgraphs. Let k ∈ [1, nh] be an integer, then if

H(k) =

{
Y ∈ Pne+ns−1

∣∣∣∣Y · h̃l, = 0,

{
hh · h̃l = δhl, ∀ l ∈ [1, k], h ∈ [1, nh]

(xs, ye) · h̃l = 0, ∀ s ∈ [1, ns], e ∈ [1, ne]

}
(5.1)

the restriction (Pns+ne−k−1, PH(k)), with PH(k) := P ∩ H(k) of the cosmological polytope

(Pne+ns−1, P) onto H(k) is still a cosmological polytope whose associated graph GH(k) is

obtained from G suppressing k tadpoles, and the covariant restriction of the canonical form

of (Pne+ns−1, P) is a covariant form of degree-k associated to (Pns+ne−k−1, PH(k)).

Proof. Let us consider the cosmological polytope (Pne+ns−1, P) and let G be its associated

graph. By definition, P is the convex hull of the collection of vertices of nt triangles and

nh segments with suitable identifications {xa = xb} of the midpoints of triangles and

segments, with the prescription that each triangle can be intersected on the midpoints at

most two of its three sides. Hence, the vertices of P have the form (modulo midpoint

identifications)

{xs − ye + xs′ , xs + ye − xs′ , −xs + ye + xs′}, {2xs′′ − hs′′ , hs′′}

with the two collections being the vertices of the triangles and segments respectively. Be-

cause of the definition (5.1) of H(k), the vertices of the polytope which are on H(k) are
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all vertices of the generating triangles, and all those vertices of the segments such that

s′′ 6= l, ∀ l ∈ [1, k]. In other words, the child polytope (Pne+ns−k−1, PH(k)) obtained as a

restriction of (Pne+ns−1, P) onto H(k) is such that PH(k) is the convex hull of the vertices of

all the generating triangles of (Pne+ns−1, P) and a subset of the vertices of its generating

segments, with the very same intersections among triangles and segments as (Pne+ns−1, P).

Thus, (Pne+ns−k−1, PH(k)) is a cosmological polytope and its associated graph GH(k) can

be obtained from the graph G by suppressing the k tadpoles related to the segments which

are not on H(k). Hence, given that the facets of a polytope are given by the subgraphs

of the associated graphs, the subgraphs g ⊆ G are mapped into subgraphs gH(k) ⊆ GH(h)

by excluding in g the vertices corresponding to the tadpoles that one has to eliminate to

map G into GGH(k)
: all the facets of the parent polytope are mapped into facets of the child

polytope. However, counting how many subgraphs of G (and therefore how many facets of

the parent polytope) return the same subgraph of the child polytope does not provide the

correct counting of the multiplicity of the poles of the covariant form on the child polytope:

the configuration of vertices obtained from g ⊆ G by excluding the vertices of the tadpoles

which are eliminated upon restriction, can be equivalently obtained by considering the com-

mon vertices among subgraphs of G, i.e. the intersections of the facets of the parent polytope

that give a higher codimension face. In order for l facets to intersect, the number of nv
common vertices must be such that they can span Pns+ne−l−1, i.e. nv ≥ ns+ne− l. When

nv < ns+ne−l, the vertices cannot span Pns+ne−l−1 and the facets do not intersect. Thus,

given l facets of the parent polytope which intersecting provide the same vertex configura-

tion of a facet of the child polytope and such that their common vertices nv span Pns+ne−l−1,

these l facets intersect each other on H(k) and l provides the multiplicity of the pole in the

covariant form of the child polytope. Finally, notice that l is also the codimension of the

face of the parent polytope identified by the intersection of its l facets and, consequently,

it is possible to state that the multiplicity of a pole in the child polytope along a certain

facet is given by the codimension of the face of the parent polytope with the same vertex

configuration, and the Laurent coefficient of the covariant form along this facet of the child

polytope is the residue of the canonical form of the parent polytope along such a face.

We will show a realisation of the Preposition 5.1 in an explicit example afterwords.

For the time being, it is important to remark that, given a cosmological polytope, it is

possible to systematically construct a full class of covariant forms associated to it.

Proposition 5.2. Let (Pn′e+ns−1, P ′) a cosmological polytope constructed from a collection

of nt triangles and nh segments. Let G′ be the associated graph with ns sites and n′e edges of

which n′h are tadpoles subgraphs. Let {2xa−ha, ha}ka=1 be a collection of segments, and Ta
the corresponding tadpole graph. Then, it possible to generate a class of covariant forms of

degree-k associated to (Pn′e+ns−1, P ′) from the covariant restriction of the canonical form

of the cosmological polytope {(Pne+ns−1, P)} (ne = n′e + k) that can be constructed by

intersecting in all possible ways the k segments with P ′. The graphs associated with such

polytopes are obtained from the graph G′ by attaching k tadpoles according to the intersec-

tions of the segments with P ′ and the restriction is on the hyperplane which suppresses the

additional tadpoles. The covariant forms of degree k generated in this way all have poles
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along the boundaries of (Pn′e+ns−1, P ′) (all of them are associated to this polytope) but with

different multiplicities.

Proof. Let (Pn′e+ns−1, P ′) a cosmological polytope, whose graph G′ has ns sites and n′e
edges, with n′e including both the edges connecting different sites and the edges in the tad-

pole subgraphs. Let {2xa−ha, ha}ka=1 be a collection of segments, and Ta the corresponding

tadpole graph. Following the definition of the cosmological polytope, we can construct a

new polytope by merging the site of each tadpole {Ta}ka=1 with the sites of G′ generating

a graph G with the same number ns of sites and ne = n′e + k edges which describes a

cosmological polytope (Pne+ns−1, P). However, there are

(
k + ns − 1

ns − 1

)
ways of attaching

k tadpoles to a graph G′ with ns sites. Thus, given G′ and the collection {Ta} of k tadpoles,

it is possible to construct

(
k + ns − 1

ns − 1

)
inequivalent graphs and, hence, cosmological poly-

topes in Pne+ns−1. Let us label the convex hull of these polytopes as Pσ, with σ labeling

the inequivalent configuration of the k tadpoles. Each polytope generated in this way can

be now restricted on a hyperplane (5.1) such that the resulting polytope has again G′ as

an associated graph. As from Proposition 5.1, the facets of (Pn′e+ns−1, P ′) are encoded in

higher codimension faces of {(Pne+ns−1, Pσ)} which are given by intersection of their facets.

However, for each σ such intersections change and hence the codimension of the face corre-

sponding to a given facet of (Pn′e+ns−1, P ′). Then, for each σ, the covariant restriction of the

canonical form returns a covariant form of degree-k whose poles along each facet has multi-

plicity given by the codimension of the face of {(Pne+ns−1, Pσ)} with the same vertex con-

figuration, and such a codimension depends on σ. Hence we obtain

(
k + ns − 1

ns − 1

)
covariant

forms of degree k associated to (Pn′e+ns−1, P ′) with different multiplicity for their poles.

Let us illustrate both Propositions 5.1 and 5.2, starting with the latter. As the simplest

example let us consider a two-site line graph G (whose associated polytope is a triangle) and

two tadpoles. There are three inequivalent ways of generating a new graph by attaching

the tadpoles to the sites of G:

x1 x2
y

x′1

h1

x′2

h2

x1 x2
y

h1

h2

x1 x2

y
h1 h1

x1 x2
y h1

h2

Let us label G11, G12, G22 the three graphs appearing on the right, with the indices ij

indicating the site where each tadpole has been merged. All the polytopes associated

to these graphs live in P4: the number of sites and edges is the same in all three cases,

what changes is the way that the triangle associated to the two-site line graph has been
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intersected with the two segments associated to the two tadpoles. The polytopes associated

to G11, G12, G22 are the convex hulls of, respectively, the following list of vertices

{x1 − y + x2, x1 + y − x2, −x1 + y + x2, 2x1 − h1, h1, 2x1 − h2, h2},
{x1 − y + x2, x1 + y − x2, −x1 + y + x2, 2x1 − h1, h1, 2x2 − h2, h2},
{x1 − y + x2, x1 + y − x2, −x1 + y + x2, 2x2 − h1, h1, 2x2 − h2, h2},

The canonical function can be readily written for all three polytopes

Ω(11) =
1

(x1 +x2)(x1 +2h1 +2h2)(y+x2)

[
2(x1 +y+x2 +h1 +h2)

(x1 +y)(x1 +y+2h1)(x1 +y+2h2)
+

+
2x1 +y+4h1 +2h2

(x1 +x2 +2h1)(x1 +y+2h1)(x1 +x2 +2h1 +2h2)
+

+
2x1 +y+2h1 +4h2

(x1 +x2 +2h2)(x1 +y+2h2)(x1 +x2 +2h1 +2h2)

]
,

Ω(12) =
1

(x1 +x2)(x1 +y+2h1)(y+x2 +2h2)

[
x1 +y+2x2 +2h1 +2h2

(x1 +x2 +2h1)(x1 +x2 +2h1 +2h2)(y+x2)

+
2x2 +y+x2 +2h1 +2h2

(x1 +x2 +2h2)(x1 +y)(x1 +x2 +2h1 +2h2)

]
,

with the canonical function Ω(22) that can be obtained from Ω(11) via the exchange x1 ←→
x2. In order to obtain covariant forms on the triangle (whose associated graph is the two-

site line graph), the canonical forms of the polytopes associated to G11, G12 and G22 has to

be restricted on the following hyperplane

H =

{
Y ∈ P4

∣∣∣∣∣ Y · h̃1 = h1 = 0

Y · h̃2 = h2 = 0

}
.

It is easy so see that the only vertices which are on H are {x1−y+x2, x1+y−x2, −x1+y+

x2, } in all three cases. The covariant restriction of the canonical forms produces covariant

forms of degree-2 on the triangle, whose canonical functions are

Ω(2)

(11) =
3x2

1 + 3x1y + 3x1x2 + y2 + yx2 + x2
2

(x1 + x2)3(x1 + y)3(y + x2)
,

Ω(2)

(12) =
x2

1 + 2x1y + 3x1x2 + y2 + 2yx2 + x2
2

(x1 + x2)3(x1 + y)2(y + x2)2

(5.2)

and, again, Ω(2)

(22) can be obtained from Ω(2)

(11) via the exchange x1 ←→ x2. As for the

Proposition 5.2, the poles of the three covariant forms are all along the facets of the triangle,

with just different multiplicities, which is a reflection of the face structure of the different

parent polytopes. The multiplicity of each pole in the covariant forms, whose canonical

functions are given by (5.2), is the codimension l of the face of the parent polytope which

matches the relevant facet of the child polytope, recalling that l facets intersect each other

in a codimension-l face if their common vertices span P4−l.

Let us now consider the cosmological polytope associated to a two-site graph with 4

edges, two of which are tadpoles on the two different sites
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x1 x2

y12

y21

h1 h2

This cosmological polytope lives in P5 and it is the

convex hull of the following 10 vertices:

{x1 − y12 + x2, x1 + y12 − x2, −x1 + y12 + x2,

x1 − y21 + x2, x1 + y21 − x2, −x1 + y21 + x2,

2x1 − h1, h1, 2x2 − h2, h2} (5.3)

where the first two lines are the vertices of the triangles

and the last one the ones of the two segments which are

intersected to generate it. We label them as Za (a =

1, . . . , 10) in the same order as they appear in (5.3). The weights on the graph are the local

coordinates Y := (x1, y12, y21, x2, h1, h2) ∈ P5 corresponding to the collection of vectors

of midpoints for both the generating triangles and segments and the non-intersectable

vertex for the segments, as a basis for R6. This cosmological polytope has 16 facets, whose

hyperplanes W are given as YIWI by taking all the possible subgraphs and associating to

them the sum of the weights of the vertex plus the sum of the weights of those edges which

depart from the vertices of the subgraph but are not contained in the subgraph:

x1 x2

y12

y21

h1 h2

〈Y2358(10)〉 = 0

(x1 +x2 = 0)

x1 x2

y12

y21

h1 h2

〈Y23579〉 = 0

(x1 +x2 +2h1 +2h2 = 0)

x1 x2

y12

y21

h1 h2

〈Y2357(10)〉 = 0

(x1 +x2 +2h1 = 0)

x1 x2

y12

y21

h1 h2

〈Y23589〉 = 0

(x1 +x2 +2h2 = 0)

x1 x2

y12

y21

h1 h2

〈Y1568(10)〉 = 0

(x1 +x2 +2y12 = 0)

x1 x2

y12

y21

h1 h2

〈Y15679〉 = 0

(x1 ++2y12 +x2 +2h1 +2h2 = 0)

x1 x2

y12

y21

h1 h2

〈Y1567(10)〉 = 0

(x1 +2y12 +x2 +2h1 = 0)

x1 x2

y12

y21

h1 h2

〈Y15689〉 = 0

(x1 +2y12 +x2 +2h2 = 0)

x1 x2

y12

y21

h1 h2

〈Y2348(10)〉 = 0

(x1 +2y21 +x2 = 0)

x1 x2

y12

y21

h1 h2

〈Y23479〉 = 0

(x1 +2y21 +x2 +2h1 +2h2 = 0)

x1 x2

y12

y21

h1 h2

〈Y2347(10)〉 = 0

(x1 +y21 +x2 +2h1 = 0)

x1 x2

y12

y21

h1 h2

〈Y23489〉 = 0

(x1 +x2 +2y21 +2h2 = 0)

x1 x2

y12

y21

h1 h2

〈Y13489〉 = 0

(x1 +y12 +y21 = 0)

x1 x2

y12

y21

h1 h2

〈Y13479〉 = 0

(x1 +y12 +y21 +2h1 = 0)

x1 x2

y12

y21

h1 h2

〈Y1247(10)〉 = 0

(x2 +y12 +y21 = 0)

x1 x2

y12

y21

h1 h2

〈Y12479〉 = 0

(x1 +y12 +y21 +2h2 = 0)

– 37 –



J
H
E
P
0
8
(
2
0
2
0
)
0
2
3

There are three natural hyperplanes where to restrict this cosmological polytope, two being

of codimension-1 and one of codimension-2:

H1 :=
{
Y ∈ P5

∣∣h1(Y) := Y · h̃1 = h1 = 0, h1 · h̃1 = 1, (xs,ye,h2) · h̃1 = 0
}
,

H2 :=
{
Y ∈ P5

∣∣h2(Y) := Y · h̃2 = h2 = 0, h2 · h̃2 = 1, (xs,ye,h1) · h̃2 = 0
}
, (5.4)

H12 :=

{
Y ∈ P5

∣∣∣∣ h1(Y) := Y · h̃1 = h1 = 0, h1 · h̃1 = 1, (xs,ye,h2) · h̃1 = 0

h2(Y) := Y · h̃2 = h2 = 0, h2 · h̃2 = 1, (xs,ye,h1) · h̃2 = 0

}

where the equation Y · W = 0 identifying each facet is indicated both projectively and

in our preferred local coordinate system below each graph — as explained in section 2.3,

the markings on the graphs indicate those vertices that do not belong to the facet, and the

double marking in the tadpole subgraphs close to its side indicates (the absence of) the

very same vertex.

There is a number of information about the resulting covariant forms that can be

deduced from the graphs without knowing the explicit expression for the canonical form

of the cosmological polytope we are restricting. Let us discuss in detail the covariant

restriction of the canonical form of (P5, P) onto H1 and H12 — indeed, the analysis of the

covariant restriction onto H2 follows from the former.

Let us begin with the restriction onto H1. Being a codimension-one hyperplane, the co-

variant form obtained has degree-1, with at most double poles. The first information we can

predict is the child polytope itself (P4, PH1), with PH1 = P ∩H1 as well as exactly which

poles of the canonical form of the parent polytope collapses to generate double poles in the

covariant form of the child polytope, i.e. which facets intersect H1 in the same subspace.

x1 x2

y12

y21

h2

The crucial observation is that on the restriction ontoH1, the

vertices Z7 := 2x1−h1 and Z8 := h1 of P are not onH1. Hence,

the child polytope (P4, PH1) is related to graph which is the one

associated to the parent polytope but without the tadpole whose

edge has weight h1. Consequently, the facets intersecting H1 in

the same subspace have the structure 〈Y7ijkl〉 and 〈Y8ijkl〉 for

fixed Zi, Zj , Zk, Zl. From the facet structure listed above for

each of the 16 facets, it is easy to see the facets have the same intersection in pairs, so that

the covariant form of degree 1 associated to the child polytope (P4, PH1) have 8 double

poles, each corresponding to a facet of (P4, PH1). Notice further that the parent polytope

contains all the facets of the child polytope as codimension-2 faces, relating in this way the

residue of the canonical form of the parent polytope along the codimension-2 faces to the

leading Laurent coefficient along the boundaries of the child polytope. This is readily seen

by comparing the vertex structure of, for example, the codimension-2 face of the parent

polytope defined by the conditions 〈Y23579〉 = 0 = 〈Y23589〉, and the vertex structure
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of the facet of the child polytope identified by 〈YH12359〉 = 0

x1 x2

y12

y21

h1 h2

〈Y23579〉 = 0

〈Y23589〉 = 0

x1 x2

y12

y21

h2

〈YH12359〉 = 0

Recall that the marking singles out the vertices which are not on the face and, con-

sequently, the codimension-2 face of the parent polytope and the facet of the child poly-

tope are the same. Notice also that in local coordinates the two conditions defining the

codimension-2 face of the parent polytope write x1 +x2 + 2h1 + 2h2 = 0 = x1 +x2 + 2h2,

which also imply h1 = 0 the defining condition for the hyperplane H1.

x1 x2

y12

y21

Let us now turn to the restriction onto H12. Being a codimension-

two hyperplane, the covariant form obtained from the restriction has

degree-2, with at most poles of multiplicity 3. Again, it is straightfor-

ward to predict the child polytope (P3,H12), with PH12 := P ∩ H12:

the vertices Z7, Z8, Z9, Z19 are not on H12. Hence, PH12 is the convex

hull of the vertices of two triangles intersecting each other in both their

midpoints of their two intersectable facets, i.e. it is a truncated tetrahe-

dron in P3 (see figure 1), and its associated graph is one-loop two site graph. Furthermore,

notice that the four facets in the first three lines in the list above intersect the hyperplane

H12 in the same codimension-3 hyperplane, which is a facet of the child polytope, while the

facets in the last line intersect it in the same hyperplane in pairs. So, one would expect the

covariant form of degree-2 associated to the child polytope to have three poles of multiplic-

ity 4 and two double poles. However, a covariant form of degree-2 can have at most poles

with multiplicity 3! Recall that the multiplicity of the pole of the covariant form of the child

polytope is also given by the codimension of the face matching a facet of the child polytope.

x1 x2

y12

y21

For the sake of concreteness, let us consider the following facet for the

child polytope which corresponds, in local coordinate, to the facet x1 +

x2 = 0. Now we should ask the question which higher codimension face

of the parent polytope has only the vertices of such a facet. Looking

at all the facets of the parent polytope listed above, it is easy to see

that the higher codimension face we are looking for is contained in the

following four facets

x1 x2

y12

y21

h1 h2

〈Y2358(10)〉 = 0

(x1 + x2 = 0)

x1 x2

y12

y21

h1 h2

〈Y23579〉 = 0

(x1 + x2 + 2h1 + 2h2 = 0)

x1 x2

y12

y21

h1 h2

〈Y2357(10)〉 = 0

(x1 + x2 + 2h1 = 0)

x1 x2

y12

y21

h1 h2

〈Y23589〉 = 0

(x1 + x2 + 2h2 = 0)
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Such four facets of the parent polytope are exactly the ones which intersect H12 in the

same subspace. Now, in order to extract a codimension-l face, we need to check which l

facets have enough vertices in common to span P5−l and these vertices are precisely the

ones whose convex hull is precisely the facet of the child polytope we are interested in.

In principle, we find the desired vertex configuration taking three possible intersections

among the four facets listed above: we can take the first two facets; the first, the third and

the fourth; or the second, the third and the fourth. In the first case, the face would be

of codimension-2 and in the other two cases it would be of codimension-3. Are all these

intersection actually possible? Let us check whether the common vertices are enough to

span P3 in the first case, and P2 in the other two. Given that we are looking at a specific

vertex configuration, the vertices are the same in all three cases and are given by

{x1 + y12 − x2, −x1 + y12 + x2, x1 + y21 − x2, −x1 + y21 + x2}.

Importantly, they are not linearly independent and they lie on a 2-plane. Hence, one

has 3 linearly independent vertices, which indeed can span P2 but they cannot span P3.

Hence, the first two facets of the four of the parent polytope listed above do not intersect

with each other, which means that when we take the residue of the canonical form with

respect a pole related to any of these two facets, the other pole become spurious (i.e. the

numerator develops a zero which cancel it). Thus, the facet of the child polytope of interest

corresponds to a codimension-3 face of the parent polytope: the pole of the covariant form

associated to the child polytope has a pole of multiplicity three along this facet, matching

the expectations. Hence, the canonical form of the parent polytope develops a simple

zero at the location of the pole on the covariant restriction onto H12 which lowers the

multiplicity of the pole to 3.

6 Conclusions and outlook

In this paper we started to scratch the surface of a combinatorial and geometrical charac-

terisation of differential forms with non-logarithmic singularities, whose understanding is

crucial in physics as they describe scattering amplitudes in flat space-time and the wave-

function of the universe in cosmology.

Specifically, we characterised meromorphic differential forms with multiple poles by

relating them to projective polytopes via the notion of covariant forms and covariant pair-

ings. Covariant forms are meromorphic differential forms with multiple poles and a certain

GL(1)-scaling. Their distinctive feature is to have multiple poles only along the boundaries

of the associated projective polytope such that its leading Laurent coefficient along any of

the boundaries is a differential form associated to the relevant boundary of the projective

polytope enjoying this same feature. The covariant pairing instead associates a meromor-

phic differential form with multiple poles to a polytope, with the differential form having

poles along the boundaries of a certain signed triangulation of the polytope. This includes

those subsets of boundaries which sign-triangulate the empty set, with the special feature

that the multiplicity of the poles related to such subsets is lowered upon summation. The
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form is expressed as the sum of covariant forms associated to the elements of the signed

triangulation.

Contrarily to what happens for canonical forms, which are in a 1 − 1 correspondence

with a positive geometry, given a polytope there is a full class of covariant forms and differ-

ential forms which can be in covariant pairing with it. Hence the geometry and combina-

torics of the polytope do not determine completely these meromorphic forms with multiple

poles. However, a complete geometrical and combinatorial characterisation of both covari-

ant forms and forms in covariant pairing with a given polytope is possible if we think of this

polytope as obtained as a restriction of a higher dimensional polytope onto a certain hyper-

plane. In the paper we named the higher dimensional polytope as parent polytope, and the

polytope obtained as its restriction onto a hyperplane as child polytope with respect to that

hyperplane. Then, a meromorphic differential form associated to the child polytope can be

obtained as covariant restriction of the canonical form of the parent polytope, i.e. it is the

leading Laurent coefficient (which is of order zero) of the canonical form of the parent poly-

tope along the chosen hyperplane. If the hyperplane intersects the parent polytope only

inside, then the differential form obtained as covariant restriction is a covariant form of the

child polytope, while if the facets of the parent polytope intersect the hyperplane also out-

side, then it is in covariant pairing with the child polytope having poles along boundaries

outside of the child polytope. Interestingly, this picture also provides a geometrical interpre-

tation for the multiplicity of each pole, which is given by the number of facets of the parent

polytope intersecting the hyperplane in the same subspace minus the multiplicity of the zero

where this subspace were to be on the hypersurface determining the zeroes of the canonical

form of the parent polytope. For covariant forms, this latter situation cannot occur given

that the intersection between parent polytope and hyperplane is inside the parent polytope.

We have seen how differential forms obtained as restrictions from the canonical form

of a parent polytope (a simplex) can be used to triangulate a given polytope. For general

projective polytopes, we know that their canonical function can be computed applying the

operation of Jeffrey-Kirwan residue to a differential form. This differential form turns out

to be the restriction of the canonical form of a simplex onto the hyperplanes identified by

the fibers of the original polytope (seen as a projection from the simplex). The form is not

the canonical form of the fiber, but it is in covariant pairing with it. In [26], these type of

forms will also be defined in the context of objects which are more general than polytopes,

such as the amplituhedra.

For cosmological polytopes generated as convex hull of the vertices of triangles and

segments intersected in their midpoints, there are natural hyperplanes onto which per-

form the covariant restriction of their canonical form. These are such that the differential

form obtained is a covariant form encoding the wavefunction of the universe for certain

massive scalar states as well as massless ones in FRW cosmologies in arbitrary dimen-

sions. Curiously, these special hyperplanes relate the covariant form associated to the

child polytope obtained as covariant restriction on them, to the canonical form of the

child polytope itself. The covariant form of the child polytope can be obtained from the

action of a differential operator onto its canonical form, with the order of the derivative

operator given by the codimension of the hyperplane where the parent polytope is re-
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stricted to give the child polytope. In other words, the canonical coefficient of the parent

polytope is the Newton’s difference quotient of the canonical form of the child polytope.

This point raises the more general question of which differential operators can be thought

of in this polytope picture. Beyond having mathematical interest, this question is also

physically motivated. The parent-child polytope relation that we observed in cosmological

polytopes is the geometrical-combinatorial realisation of a relation between wavefunctions

of the universe with different propagating states via a very simple differential operator [20].

However, this relation can be generalised to enlarge the type of propagating states in the

wavefunction, but involves a more complicated differential operator [20]. Classifying which

covariant restrictions can be interpreted as derivative operators and which derivative op-

erators have a geometrical-combinatorial picture in terms of polytopes is then crucial to

have a geometrical-combinatorial picture for more general wavefunctions.

As mentioned, we explored a very little corner of the relation between positive geome-

tries and differential forms with non-logarithmic singularities. From a physics perspective,

non-logarithmic singularities naturally appear in the context of less supersymmetric Yang-

Mills theories [6, 14, 15] and gravity [17, 18] for which in both cases a Grassmannian picture

is present but it is neither fully understood nor it has been characterised in terms of any

positive geometry. Interestingly, there is a formulation of scattering amplitudes for less

supersymmetric Yang-Mills theories as differential forms in helicity-spinor variables, which

no positive geometry has been associated to [16]. A generalisation of our ideas to the Grass-

mannian has the potential to fill this gap. In this direction, as projective polytopes can be

obtained as the image of simplices under a map induced by a fixed matrix (see section 4) one

can consider the image of the positive part of Grassmannians (or more in general, of their

cells, or of partial flags etc.) under similar maps. In this sense, amplituhedra [5], Grassmann

Polytopes [30], Momentum Amplituhedra [31, 32], etc. are all natural (but highly non-trivial,

and non-linear) generalisations of projective polytopes. The next direction would then be

to generalise our framework for these type of geometries as well. In particular, it would be

interesting to explore the constructions of parent and child positive geometries, the corre-

sponding covariant restrictions on hypersurfaces, the geometric-combinatorial description

of the resulting poles structure and their Laurent leading coefficients.

In summary, the need to tame non-logarithmic singularities comes not only from the

mathematical quest of providing a natural generalisation of the framework of positive

geometries, but it also stems on the evidence that non-logarithmic singularities enters any

attempt to geometrise physical observables in full generality.
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Birkhäuser, Basel, Switzerland (2000), pg. 43.

[37] J. Rambau, TOPCOM: triangulations of point configurations and oriented matroids, in

Mathematical software — ICMS 2002, A.M. Cohen, X.-S. Gao and N. Takayama eds., World

Scientific, Singapore (2002), pg. 330.

– 44 –

https://doi.org/10.1007/JHEP06(2016)069
https://doi.org/10.1007/JHEP06(2016)069
https://arxiv.org/abs/1604.03046
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.03046
https://doi.org/10.1007/JHEP11(2017)039
https://doi.org/10.1007/JHEP11(2017)039
https://arxiv.org/abs/1703.04541
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.04541
https://arxiv.org/abs/1909.02517
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.02517
https://doi.org/10.1016/0040-9383(94)00028-j
https://doi.org/10.1016/0040-9383(94)00028-j
https://doi.org/10.1088/1751-8121/aaf3c3
https://doi.org/10.1088/1751-8121/aaf3c3
https://arxiv.org/abs/1805.01301
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.01301
https://doi.org/10.1007/JHEP08(2015)030
https://doi.org/10.1007/JHEP08(2015)030
https://arxiv.org/abs/1412.8478
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.8478
https://doi.org/10.1007/978-3-642-12971-1
https://doi.org/10.1007/s00222-004-0375-2
https://doi.org/10.1007/s00222-004-0375-2
https://arxiv.org/abs/math.AT/0306311
https://arxiv.org/abs/1811.02515
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02515
https://doi.org/10.1155/s0161171299224015
https://doi.org/10.1007/bf01298851
https://doi.org/10.1007/bf01298851
https://doi.org/10.4310/cdm.2014.v2014.n1.a2
https://doi.org/10.4310/cdm.2014.v2014.n1.a2
https://doi.org/10.1007/JHEP08(2019)042
https://doi.org/10.1007/JHEP08(2019)042
https://arxiv.org/abs/1905.04216
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.04216
https://arxiv.org/abs/2002.06164
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.06164
https://www.sagemath.org
http://maxima.sourceforge.net/
http://sourceforge.net/projects/pgf/
https://doi.org/10.1007/978-3-0348-8438-9_2
https://doi.org/10.1142/9789812777171_0035
https://doi.org/10.1142/9789812777171_0035

	Introduction
	Positive geometries and canonical forms
	Generalities on positive geometries and canonical forms
	Projective polytopes
	Disjoint unions and triangulations

	Cosmological polytopes

	Projective polytopes and covariant forms
	Covariant forms
	Unions, triangulations and covariant pairings
	Parent polytopes, child polytopes and covariant forms
	Visualisable examples: polygons and polyhedra
	Polygons and internal intersections
	Polygons with outer intersections
	Polyhedra with internal intersections


	Jeffrey-Kirwan residue and covariant forms
	Cosmological polytopes and covariant forms
	Conclusions and outlook

