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Abstract: Hypopigmented mycosis fungoides (HMF) is a form of cutaneous T-cell lymphoma (CTCL),
a heterogeneous group of extranodal non-Hodgkin’s lymphomas. HMF has a unique set of defining
features that include light colored to achromic lesions, a predilection for darker skin phototypes, an
early onset of disease, and predominance of CD8+ T-cells, among others. In the current review, we
detail the known pathways of molecular pathogenesis for this lymphoma and posit that an active
Th1/cytotoxic antitumor immune response in part explains why this variant is primarily seen in
children/adolescents and young adults, who do not exhibit signs of immunosenescence. As a result
of this potent cytotoxic response, HMF patients experience mostly favorable overall prognosis, while
hypopigmentation may in fact represent a useful surrogate marker of cytotoxic immunity targeting
the malignant cells. Understanding the molecular processes behind the specific features that define
HMF may lead to improved diagnostic accuracy, personalized prognosis by risk stratification, and
improved management of HMF. Moreover, improving our knowledge of HMF may aid our further
understanding of other cutaneous lymphomas.

Keywords: mycosis fungoides; cutaneous T-cell lymphomas; hypopigmentation; hypopigmented mycosis
fungoides; Th1; antitumor immune response; cytotoxic cells; immunosurveillance; immunoediting

1. Introduction

Mycosis fungoides (MF) is a form of cutaneous T-cell lymphoma (CTCL), a heterogeneous group of
extranodal non-Hodgkin’s lymphomas characterized by the expansion of monoclonal T-cells involving
the skin [1–3]. MF and the leukemic disease Sézary syndrome (SS) are the two most commonly recognized
forms of CTCL and account for approximately 53% of all CTCL cases [4,5]. Within MF, there are several
variants, including, but not limited to, conventional Alibert-Bazin, granulomatous, granulomatous
slack skin, poikilodermatous/poikiloderma vasculare atrophicans, pagetoid reticulosis, folliculotropic,
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syringotropic, and hypopigmented MF [6,7]. Hypopigmented mycosis fungoides (HMF) is an important
variant of MF to investigate, due to its high incidence in pediatric and juvenile populations, as well as its
favorable prognosis when compared to the conventional Alibert-Bazin MF [8].

2. Characteristics of Hypopigmented Mycosis Fungoides

HMF is characterized by light colored to achromic lesions, mostly patches or thin plaques
(Figure 1) [8,9]. Nonetheless, tumors have been reported in rare patients [10,11]. Currently, the most
accepted hypothesis explains that the light colored to achromic skin lymphoma is due to damaged and
reduced number of melanocytes in addition to abnormal melanogenesis [8,12].
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Figure 1. Clinical images of hypopigmented mycosis fungoides (HMF).

HMF lesions are commonly found in non-sun exposed areas, predominantly on the extremities, the
buttocks, and the trunk in a bathing-suit pattern [7,13]. There are a few documented cases of HMF with
facial involvement [9]. The number, size, and shape of the lesions are variable, with some case reports
ranging from a single lesion [14] to lesions covering large body surface areas, with poorly circumscribed
or irregular shapes. Lesions are occasionally accompanied by pruritus, sensitivity, telangiectasia,
and/or atrophy. In rare cases, systemic signs, such as lymphadenopathy, are present [8,9,15]. In this
review, we classified case reports/case series of HMF cases based on whether they took the Fitzpatrick
skin phototype classification into account (Supplementary Materials Table S1) or not (Supplementary
Materials Table S2). In addition, we highlighted key demographic features of the disease.

HMF is more prevalent in populations with darker skin phototypes (Fitzpatrick phototypes
IV–VI), including African-American, South Asian, Middle Eastern, and Hispanic individuals, where
the hypopigmented skin lesions are more clinically apparent [4,9]. Nevertheless, there are reports
of HMF in Caucasian populations as well [16]. There is a debate whether a female predominance
exists [17]; however, most publications agree that the female to male ratio is approximately 1:1 [18].

HMF has an earlier age of onset than the conventional MF. Conventional Alibert-Bazin MF commonly
appears in older patients with a median age between 55 and 60 years at diagnosis [7]. In contrast, the age
of onset for HMF is much earlier, with several cases reported in pediatric, adolescent, and early adulthood
populations. The disease has been reported in children as young as 6 months of age [19].

HMF has a better prognosis than the conventional MF. Stratification and clinical staging remain the
best prognostic factors for conventional Alibert-Bazin MF [1], which are determined by the skin disease
burden and extracutaneous involvement. Conventional MF diagnosed at an early stage (IA–IIA) often
has an indolent course and slow progression [4], whereas the life expectancy for advanced stages (≥IIB)
ranges between 3.2 and 9.9 years [2]. HMF, in general, has an excellent prognosis and the majority of
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patients are diagnosed at an early stage (IA–IB) of the disease. They present with an indolent form and
they rarely progress beyond stage IB [8].

Like in other forms of MF, the treatment of HMF depends on the clinical stage at presentation.
In most cases, a skin-directed therapy is used. Phototherapy (e.g., narrowband ultraviolet B or in
select cases, ultraviolet A1) and photochemotherapy (e.g., psoralen and ultraviolet A (PUVA)) are the
treatments most commonly used first-line together with topical products (e.g., topical steroids, retinoids,
imiquimod, or nitrogen mustard). Photochemotherapy, also known as PUVA, involves the ingestion of
8-methoxypsoralen about 1.5–2 h prior to an exposure to ultraviolet A (UVA) radiation (320–400 nm).
In younger patients with folliculotropic HMF, UVA1 (340–400 nm) treatment, if available, may be
a safer alternative to PUVA. Photochemotherapy induces DNA damage, suppresses keratinocyte
cytokine production, reduces the number of Langerhans cells, and induces apoptosis on malignant cells.
Narrowband ultraviolet B light (NUVB; 311 nm) is the first-line method of treatment of HMF, where it
works by suppressing malignant cell proliferation through increased keratinocyte cytokine production
and through inhibition by antigen-presenting cells [7,8]. Often, a course of phototherapy that lasts
several months to a year, together with the aforementioned topical products, enables dermatologists to
achieve disease control and induce a long-lasting remission. Very rarely, in aggressive disease, a total
skin electron beam therapy (TSEBT) may be considered [7]. However, since HMF patients are usually
adolescents/young adults, most physicians try other treatment options before resorting to radiation.

Regarding the topical products, topical steroids are most commonly used early in MF. Steroids
modify lymphocyte adhesion to the endothelium, downregulate Nuclear factor-κB (NF-κB) and
Activator protein-1 (AP-1), decrease cytokine and growth factor production, and induce apoptosis.
Topical nitrogen mustard is an alkylating agent that induces DNA damage and may affect
keratinocyte–Langerhans cell interactions. Retinoids and bexarotene specifically and selectively bind to
retinoid receptors (Retinoid X Receptor or RXR in the case of bexarotene), which affects cell differentiation
and induces apoptosis. Imiquimod activates Toll-Like Receptor-7 (TLR7) receptor signaling, leading to
local interferon-α (IFN-α) and interferon-β (IFN-β) production, which augments antitumor immune
response. Fortunately, HMF patients do not require systemic therapy. Some dermatologists may
offer these patients a systemic retinoid (e.g., alitretinoin, isotretinoin, or bexarotene) to make the
phototherapy more effective. Despite the long-term skin-directed treatments and the indolent behavior
of HMF, recurrence is often reported, which may occur after months or years of total remission [8].

HMF has similar histopathological features to other MF variants. Lesions show epidermotropism of
single or clusters of malignant T-cells forming Pautrier’s microabscesses, surrounding Langerhans cells.
The malignant cells are haloed, small to medium in size, and have an irregular and hyperconvoluted
nucleus [4]. Focal parakeratosis and spongiosis are common in HMF. A striking epidermotropism and
a predominance of clonal malignant CD8+ T-cells are the two common histologic features of HMF,
which other MF variants do not exhibit as often [6,8].

3. Immunopathogenesis of Alibert-Bazin and Hypopigmented Mycosis Fungoides

The pathogenesis of MF and HMF is incompletely understood and several theories have been
proposed, highlighting the importance of external triggers, including Staphylococcus aureus toxins, and
the activation/deregulation of JAK-STAT, NOTCH, MAPK, and other signaling pathways [3,20–24]. It is
believed that malignant T-cells in MF arise from mature resident CD45RO+ T-cells engaged in normal
cutaneous immune surveillance [25]. Cutaneous immune surveillance maintains homeostasis between
the host and the environment. However, when this homeostasis is challenged by environmental or
pathogen-driven damage to the skin, cellular injury, or stress, keratinocytes respond by releasing
pro-inflammatory cytokines. These cytokines may have two consequences.

The first consequence results in the mobilization of the innate immune system. It is manifested by
the recruitment of several immune cell types, such as dendritic cells (DCs), mast cells, and macrophages.
These newly recruited immune cells initiate and maintain cutaneous inflammation, facilitated by
the recognition of pathogen patterns, identified by their receptors such as toll-like receptors (TLRs).
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This recognition activates the NF-κB pathway within these immune cells, which results in direct effects
on pathogens. This process constitutes the innate immune surveillance occurring in the skin [25,26].

The link between the innate and adaptive immune responses is facilitated by the activation of the
NF-κB pathway in antigen-presenting cells (APCs). The specialized APCs in the epidermis are the
Langerhans cells and their dermal counterparts are the dermal DCs. Research indicates that Langerhans
cells may be the source of sustained antigen stimulation, resulting in a chronic inflammatory response
in the skin, which is characteristic of MF. The activation of the NF-κB pathway triggers APCs to migrate
toward the skin-draining lymph nodes. Once in the lymph nodes, APCs encounter naive T-cells
and activate them [25]. These newly active T-cells are antigen-specific cells and express cutaneous
lymphocyte antigen (CLA) as well as CC chemokine receptor 4 (CCR4), which induce a skin-targeted
migration via chemotaxis.

The second consequence of primary cytokine release by the keratinocytes directly results in the
recruitment of adaptive immune cells, mostly active T-cells, in the skin. As such, the upregulation
of adhesion molecules in the dermal vessels is observed. The adhesion molecules E-selectin and CC
chemokine ligand 17 (CCL17) are complementary to the CLA and CCR4 receptors expressed on the
newly activated T-cells, respectively. Specific recognition of these ligands allows active T-cells to tether
and roll along the endothelium and extravasate into the dermis. Once in the dermis, T cells produce
signaling molecules and cytokines. These signaling molecules and cytokines can have an effector
function (i.e., elimination of infection) or can mediate an inflammatory response [27].

Once homeostasis is reestablished, the former activated T-cells should be eliminated; however,
monoclonal T-cells in MF continue to proliferate [27]. Such proliferation is driven by inappropriate
activation of STAT signaling pathways, upregulation of oncogenic miRNAs, activation of Thymocyte
Selection-Associated HMG Box (TOX) oncogene, production of autocrine growth factors, and exposure
to S. aureus enterotoxins [28–40]. Uncontrolled proliferation of active malignant T-cells (initiated by
inappropriate and prolonged antigen stimulation) in the skin eventually dysregulates the normal host
immune system, consequently affecting the antitumor immune response as well [25,28].

4. Cancer Immunoediting in Mycosis Fungoides

Uncontrolled monoclonal proliferation of active malignant T-cells homing to the skin elicits
an antitumor immune response in MF [28,41]. Disease progression along with specific cellular and
cytokine profiles can be associated with one of the three phases of cancer immunoediting: elimination,
equilibrium, and escape (Figure 2). During the elimination phase, the immune system is able to
control the proliferation of the malignant T-cells; hence, the malignant T-cells remain occult/incognito
(Figure 2A) [42]. It is worth mentioning that no specific antigens or immunogenic characteristics of
malignant T-cells in MF have been discovered thus far [23,24,41].

Progressively, the malignant cells and the immune system advance into the equilibrium phase
of cancer immunoediting (Figure 2B). This phase is a period of latency characterized by the balance
between surviving and dying tumor cells, sustained by the immune response [43]. Evidence of this
steady state in MF includes high numbers of tumor infiltrating CD8+ T-cells and a Th1 cytokine
profile in lesional skin. The equilibrium phase often corresponds to clinical stages IA–B and IIA in
MF [41,42,44,45]. Recent research suggests that HMF remains in the equilibrium phase of the cancer
immunoediting process. Research regarding cytotoxic molecules and cytokines secreted by neoplastic
and/or infiltrating cells, along with the absence of infiltrating regulatory T-cells (Tregs), constitutes
evidence that HMF has a better antitumor immune response, when compared to the conventional
Alibert-Bazin MF.

In conventional MF, research suggests that infiltrating CD8+ cytotoxic T-lymphocytes have a major
role in determining disease prognosis and antitumor immune response [46]. T-cell intracytoplasmic
antigen 1 (TIA1) is a cytotoxic molecule constitutively expressed by CD8+ cytotoxic cells, either in their
active or resting state [47]. It has been reported that, in HMF, malignant CD8+ lymphocytes are TIA1
positive [16,17,48], whereas malignant CD8– lymphocytes are TIA1 negative [49]. However, given
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that CD8+ cells express TIA1 regardless of whether they are active or resting, this does not reflect an
active antitumor immune response. On the other hand, tumor-infiltrating lymphocytes (TILs), that are
part of the antitumor immune response, also express TIA1 along with a series of cytotoxic cytokines
(e.g., granzyme B and granulysin) [50], suggesting an active antitumor immune response.
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Figure 2. Cancer immunoediting in mycosis fungoides. Each phase of cancer immunoediting can be
associated with specific cellular and cytokine profiles. In the elimination phase (A), the immune system,
depicted here by cytotoxic CD8+ T-lymphocytes and Natural Killer (NK) cells, controls the proliferation
of malignant T-cells, keeping them occult/incognito. Several evidences suggest that HMF remains in the
equilibrium phase (B). Specifically, CD8+ tumor-infiltrating cells (TILs) secrete TIA1, granzyme B, and
granulysin, which are cytotoxic granules that induce apoptosis in malignant T-cells. The production
of Tumor Necrosis Factor-α TNF-α by keratinocytes and TILs induce an active antitumor immune
response. A low level of regulatory T-cell (Treg) infiltration reported in HMF suggests that TILs are
able to induce apoptosis in malignant T-cells. Finally, in the escape phase (C), a shift to Th2 cytokine
profile allows malignant cells to overcome immune recognition and proliferate in the skin and beyond.
Figure created with BioRender.com.

Another cytotoxic molecule produced by active CD8+ cytotoxic cells is granzyme B. Granzyme B
is a serine protease which induces apoptosis on its target cells [51]. The expression of granzyme B in
several HMF patient samples has been demonstrated on dermal TILs, but not in malignant epidermal
lymphocytes. Malignant cells do not express granzyme B, providing a possible explanation to the
lack of ulceration and necrosis in HMF patients, when compared with the other forms of MF [52].
Furthermore, granzyme B positivity in dermal TILs represents a plausible evidence of the antitumor
immune response that is a characteristic feature in HMF.

An analysis of granulysin, an additional cytotoxic molecule, further confirms the active
involvement of antitumor immune response in HMF patients. Granulysin is expressed by activated
cytotoxic lymphocytes and NK cells [53]. A differential staining between malignant cells and TILs for
granulysin has been reported. Malignant CD8+ CD7– cells often stained negatively for granulysin,
while CD8+ CD7+ TILs were positive for granulysin [50]. CD8+ along with granulysin positivity in
TILs constitutes additional support for the robust antitumor immune response provided by cytotoxic
CD8+ tumor-infiltrating lymphocytes.

In addition to CD8+ TILs, a Th1 cytokine profile secreted by keratinocytes and lymphocytes
provides evidence of an active antitumor immune response in HMF patients. This Th1 cytokine profile
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maintains the equilibrium phase of cancer immunoediting [42]. Among the cytokines that comprise
the Th1 phenotype, tumor necrosis factor-α (TNF-α) has been extensively studied in HMF patients.
High levels of TNF-α mRNA [54] and protein in HMF skin lesions [52] have been reported. Blocking
this cytokine proves detrimental and promotes carcinogenesis and CTCL progression. Patients with
hypopigmented T-cell dyscrasia, who receive TNF-α inhibitor (etanercept) treatment for rheumatoid
arthritis, have been known to progress to HMF/conventional MF [55]. In summary, the same level of
expression of TNF-α in hypopigmented T-cell dyscrasia and HMF suggests an active antitumor immune
response. However, when this immune response is blocked, progression of carcinogenesis ensues.

The last evidence indicating that HMF has an active antitumor immune response, which maintains
the equilibrium phase of cancer immunoediting, is provided by Tregs. It has been established that
Tregs inhibit natural or therapeutic immune response against tumors and can be identified by their
immunophenotype CD4+ CD25+ FOXP3+ [43]. When compared to conventional MF, HMF presents a
decreased ratio of FOXP3+/CD4+ and FOXP3+/CD25+ cells [50]. Knowing that Tregs inhibit antitumor
immune responses, this decreased ratio suggests that tumor immune response is active in HMF more
so than in conventional MF. How HMF patients maintain a controlled antitumor immune response has
yet to be determined.

The final phase of cancer immunoediting, the escape phase, is enabled by the genomic instability of
cancer cells, activation of oncogenes, downregulation of tumor suppressor genes, ectopic reactivation of
developmental/cancer testis/meiosis genes, deregulation of JAK/STAT signaling, further upregulation
of TOX, contribution of external disease triggers/promoters (e.g., S. aureus enterotoxins), and Darwinian
pressure by the immune system [28,32,56–62] (Figure 2C). These factors, in part, provide malignant cells
with an increased resistance to immunosurveillance and promote their proliferation [43,63]. This last
phase in MF is characterized by a shift to a Th2 cytokine profile with the concomitant expression
of pro-eosinophilic/immunosuppressive molecules (IL-4, IL-10, and IL-13) and additional molecules
such as Fas ligand, among others. This shift contributes to the escape of cancer cells from immune
recognition, allowing neoplastic cells to proliferate in the skin, forming thick plaques/tumors, and
beyond lymph nodes, blood, and visceral organs. [42].

5. Hypopigmentation as a Surrogate Marker of Antitumor Immune Response in MF

Hypopigmentation in MF has been proposed to be a result of an immune response originating
from neoplastic cells or reactive immune cells [12]. However, we hypothesize that hypopigmentation
is caused mainly by the active antitumor immune response. Specifically, we hypothesize that the
damage and alteration of melanocyte function and differentiation are results of reactive CD8+ cytotoxic
T-lymphocytes mostly, rather than the neoplastic CD8+ cytotoxic T-lymphocytes. This cytotoxic activity
of T lymphocytes in addition to secretion of toxic granzyme B, granulysin, and other molecules has
been shown to impact two melanocyte activation pathways: the first is activated by basic fibroblast
growth factor (bFGF) and the second is activated by the stem cell factor (SCF), (i.e., c-kit ligand)
(Figure 3). Both factors are produced by keratinocytes and act in a paracrine fashion on melanocytes.
Furthermore, a Th1 inflammatory environment rich in TNF-α likely further contributes to melanocyte
damage (Figure 3).

Specifically, bFGF binds to fibroblast growth factor receptor (FGFR) expressed on melanocytes,
initiating the Ras/MAP kinase signaling pathway, among others. Whereas SCF binds to the CD117
(i.e., c-kit) receptor on melanocytes, leading to the upregulation of the microphtalmia-associated
transcription factor (MiTF) and other melanocyte-specific proteins. Both pathways result in melanocyte
growth and survival [12,64]. When compared to normal skin and conventional MF samples, HMF
has lower levels of expression of bFGF mRNA [54] and CD117, tyrosinase, MART-1/melan-A [12,65],
gp100 [65], and MiTF [12] proteins. This decrease in mRNA and protein leads to pigment loss caused by
fewer and damaged melanocytes, abnormal melanogenesis, and melanocyte apoptosis. The decreased
levels of molecules involved in melanocyte development are independent of the predominant T-cell
phenotype of the malignant cells, CD4+ or CD8 (Figure 3).



Cancers 2020, 12, 2007 7 of 20

Cancers 2020, 12, x 6 of 21 

 

 

Figure 3. Hypopigmentation as a surrogate marker of antitumor immune response in mycosis 

fungoides (MF). In normal skin, keratinocytes produce basic fibroblast growth factor (bFGF) and stem 

cell factor (SCF). The binding of bFGF to FGF receptor (FGFR) in melanocytes activates the Ras/MAP 

kinase pathway, while the binding of SCF to its cognate receptor CD177 in melanocytes upregulates 

microphtalmia-associated transcription factor (MiTF) and additional melanocyte molecules, leading 

to melanogenesis. Both pathways lead to melanocyte growth and survival. In HMF, cytotoxic CD8+ 

lymphocytes, which act as part of the antitumor immune response, releasing granulysin and 

granzyme B, combined with the Th1 inflammatory response rich in TNF- result in damage to 

keratinocytes and melanocytes. This damage to keratinocytes leads to a decreased level of the 

melanocyte molecules bFGF and CD117, among others. Without the signals needed for melanocyte 

growth/survival and in the presence of granzyme B, granulysin, and TNF-, HMF skin eventually has 

fewer and damaged melanocytes, abnormal melanogenesis, and apoptotic melanocytes. These 

features lead to the characteristic pigment loss of HMF. Figure created with BioRender.com. 

Specifically, bFGF binds to fibroblast growth factor receptor (FGFR) expressed on melanocytes, 

initiating the Ras/MAP kinase signaling pathway, among others. Whereas SCF binds to the CD117 

(i.e., c-kit) receptor on melanocytes, leading to the upregulation of the microphtalmia-associated 

transcription factor (MiTF) and other melanocyte-specific proteins. Both pathways result in 

melanocyte growth and survival [12,64]. When compared to normal skin and conventional MF 
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pigment loss, is associated with an active Th1 cytokine profile, as shown by increased TNF-α 
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Indeed, skin hypopigmentation or depigmentation is commonly associated with immune-

related diseases (inflammatory dermatoses), such as Darier disease, lichen striatus, incontinentia 
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melanocyte apoptosis. Specifically, infiltrating T-cells in vitiligo are associated with a Th1 phenotype, 

which induces melanocyte destruction via direct cytotoxicity and modulation of cytokine 

Figure 3. Hypopigmentation as a surrogate marker of antitumor immune response in mycosis
fungoides (MF). In normal skin, keratinocytes produce basic fibroblast growth factor (bFGF) and
stem cell factor (SCF). The binding of bFGF to FGF receptor (FGFR) in melanocytes activates the
Ras/MAP kinase pathway, while the binding of SCF to its cognate receptor CD177 in melanocytes
upregulates microphtalmia-associated transcription factor (MiTF) and additional melanocyte molecules,
leading to melanogenesis. Both pathways lead to melanocyte growth and survival. In HMF, cytotoxic
CD8+ lymphocytes, which act as part of the antitumor immune response, releasing granulysin
and granzyme B, combined with the Th1 inflammatory response rich in TNF-α, result in damage
to keratinocytes and melanocytes. This damage to keratinocytes leads to a decreased level of the
melanocyte molecules bFGF and CD117, among others. Without the signals needed for melanocyte
growth/survival and in the presence of granzyme B, granulysin, and TNF-α, HMF skin eventually has
fewer and damaged melanocytes, abnormal melanogenesis, and apoptotic melanocytes. These features
lead to the characteristic pigment loss of HMF. Figure created with BioRender.com.

Furthermore, a lower level of bFGF mRNA is associated with an increased level of TNF-α in stage
I HMF patients [54]. This suggests that the decreased level of bFGF, which ultimately leads to pigment
loss, is associated with an active Th1 cytokine profile, as shown by increased TNF-α expression.

Indeed, skin hypopigmentation or depigmentation is commonly associated with immune-related
diseases (inflammatory dermatoses), such as Darier disease, lichen striatus, incontinentia pigmenti,
pityriasis alba, and vitiligo, among others. The most accepted theory for vitiligo development
is centered on an autoimmune response with CD8+ cytotoxic T-lymphocytes inducing melanocyte
apoptosis. Specifically, infiltrating T-cells in vitiligo are associated with a Th1 phenotype, which induces
melanocyte destruction via direct cytotoxicity and modulation of cytokine microenvironment [66].
Concomitant MF and vitiligo have been reported [67]; however, no studies have assessed whether
vitiligo development impacts disease progression. Vitiligo patients also present a lower risk of skin
cancer development, including melanoma [68].

Loss of pigmentation is one of the several immune-related adverse events in cancer patients under
immunotherapy. These adverse events reflect an autoimmune attack on healthy tissue. Specifically, loss
of pigmentation (depigmentation) has been reported in melanoma patients under immune checkpoint
inhibitors and is thought to be a result of immune recognition of antigens on healthy melanocytes after
breakage of immune privilege caused by malignant cell destruction [69,70]. In melanoma patients
receiving either anti-programmed cell death-1 (PD-1) or cytotoxic T-lymphocyte antigen-4 (CTLA-4)
therapies, the development of vitiligo-like lesions has been associated with a complete or partial
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response [71,72]. Moreover, tumor-infiltrating lymphocytes in these patients tend to skew towards
CD8+ T-cell phenotype, along with increased production of interferon-γ (IFN-γ) and TNF-α [70].
Reports of vitiligo-like lesions developed after immune checkpoint therapy in patients with cancers
other than melanoma are less common [73].

Notably, following treatment, skin re-pigmentation is a common feature in HMF patients [12].
This suggests that the depletion of neoplastic cells, along with the consequent decline in the antitumor
immune response, allows the re-establishment of melanosomes and melanocytes.

In summary, current literature suggests that hypopigmentation or depigmentation (as in vitiligo)
may serve as a surrogate marker of an active immune response, specifically an antitumor immune
response against malignant T-cells in MF, regardless of the T-cell phenotype. It has been established
that skin cancers are highly immunogenic, reflecting the emergence of tumor-associated antigens,
neoepitopes, and/or viral oncoproteins and immunosurveillance in this organ [69]. Consequently, the
presence of hypopigmented patches and/or plaques in MF patients can be considered as a favorable
prognostic marker.

6. Clinical/Demographic Patient Characteristics as a Result of Antitumor Immune Response

In addition, hypopigmentation, clinical/demographic features that are specific to HMF can be
understood within the scope of active antitumor immunity found in these patients. Such clinical
features include a younger age of onset and the overall good prognosis observed in HMF patients,
regardless of the predominant phenotype of epidermotropic T-cells.

Childhood/juvenile MF is not common and it ranges from 2.7% to 16.6% of all MF cases. It is
usually diagnosed in early stages with no lymph node involvement, and although recurrence is
common, progression is unusual. Additionally, HMF is commonly overrepresented in pediatric case
series [74–76], where patients maintain adequate immunity.

In general, pediatric, adolescent, and early adulthood populations have a robust immune
system [77], whereas elderly patients’ immune system is declining in a process termed immunosenescence.
Immunosenescence is characterized by a lower number of naive T-cells in peripheral blood, reduction in
diversity in the T-cell receptor (TCR) repertoire, and decreased diversity and integrity of CD4+ and CD8+

cells, among others. The innate immune response is well preserved in elderly populations; however,
adaptive immune response is susceptible to deleterious changes that may enable carcinogenesis [78].
Children, adolescents, and young adults do not have a declining adaptive immune response or decreased
number of CD8+ cells, which are the features that may have an impact on antitumor immune response.

Normally, HMF has a better prognosis than conventional MF, regardless of the predominant
cell phenotype of the epidermotropic neoplastic T-cells. Patients with a T-cell phenotype different
than CD8+ represent only 7.3% (Table 1) of all HMF cases reported (Tables S1 and S2). Almost all
staged cases with an immunophenotype other than CD8+ present with early (≤IB) disease as well.
In fact, the majority of cases that report progression of the disease still remain in the early stages
(Table 1), thereby exhibiting an indolent course and slow progression [1,4]. Only two CD4+ patient
deaths were reported, with accelerated progression [79,80]. In general, we consider that there are
no critical differences regarding disease staging and prognosis between CD8+ HMF cases and HMF
cases with other immunophenotypes. Thus, the literature indicates that the differential behavior of
HMF compared to conventional MF is not caused directly by the predominant cell phenotype of the
epidermotropic neoplastic T-cells.

HMF is characterized by hypopigmented lesions; however, it can be associated with lesions of
other variants of MF or with different clinical presentations (i.e., mixed MF) (Table 2). Mixed MF
represents 11.6% of all reported HMF cases (Tables S1 and S2). Among all the mixed MF cases reported,
three were staged as≥II, two patients in stage IIA (early disease), and one patient in stage IVA. The latter
was treated with chemotherapy and remained disease-free after 7 years of follow-up [76] (Table 2).
In addition, one patient was reported to have large cell transformation (Table 2), which usually portends
a worse prognosis; however, the patient responded well to phototherapy and topical steroids [81].
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African-American and dark-skinned patients that presented with hypopigmented lesions had a longer
overall survival rate, regardless of whether the hypopigmentation was the only clinical feature or
if there were additional lesional variants of MF [82]. A previous publication concluded that mixed
MF has an earlier onset than HMF, and most cases show a phenotype different than CD8+. Despite
these differences, the authors suggested that hypopigmented lesions represent a marker of a favorable
prognosis when compared with the conventional erythematous patch/plaque MF [83]. These combined
results indicate that the presentation of hypopigmented lesions, solely or concomitantly with other
variants of MF or other clinical presentations, represents an active antitumor immune response, and
therefore portends a favorable disease prognosis.



Cancers 2020, 12, 2007 10 of 20

Table 1. Cases of hypopigmented mycosis fungoides with T-cell phenotype other than CD8+. Cases published up to March 2020.

Study Number of Patients T-Cell Phenotype Age of Onset (years)
Fitzpatrick

Phototype/Color of
Skin/ Ethnicity

Stage at Diagnosis Disease Progressed

Sigal et al., 1987 [79] 1 CD4+ 64 Caucasian NS a Yes a

Lambroza et al., 1995 [84] 1 CD4+ 25 Trinidadian IB No

Moulonguet et al., 1998 [85] 1 CD4+ 31 Caucasian/Light
skinned IA No

Grunwald and Amichai, 1999 [86] 1 CD4+ 12 Caucasian NS No

Quaglino et al., 1999 [87] 1 CD4+ 16 White IA No

Qari et al., 2000 [88] 3 CD4+: 2 patients
CD4+/CD8+: 1 patient 31 (mean)

Hispanic, Portuguese
black, and African-

American
NS NS

Stone et al., 2001 [80] 1 CD4+ 56 Black I Yes b

Ardigo et al., 2003 [16] 5 CD4+: 4
CD4+/CD8+: 1 34.4 (mean) Caucasian NS NS

Gulekon et al., 2005 [89] 1 CD4+ 3 Turkish NS NS

Hodak et al., 2005 [90] 2 CD4+ 1 (mean) NS IB and IA 1 patient (IIA)

Wain et al., 2005 [91] 2 CD56+ 21.5 (mean) Asian and Somalian IA and IB No

Onsun et al., 2006 [92] 1 CD4+ 8 Type II IB No

Hodak et al., 2006 [48] 5 CD4–/CD8– 17.8 (mean at
diagnosis) NS IA: 1 patient

IB: 4 patients No

Grover et al., 2010 [93] 1 CD4+ 2 Indian IB No

Koorse et al., 2012 [94] 4 CD4+ NS Indian NS NS

Hassab-El-Naby and El-Khalawany,
2013 [95] 9 CD4+ 37 (mean) Type III: 4 patients

Type IV: 5 patients
IA: 7 patients
IB: 2 patients No

Zhang and Yu, 2013 [96] 1 CD4+/CD8+ 9 Chinese NS NS

Alhumidi, 2014 [97] 4 CD4+: 2 patients
CD4+/CD8+: 2 patients 23 (mean) Saudi Arabian

Type III NS No c

Boulos et al., 2014 [98] 7 CD4+ 8.8 (mean) IA: 3 patients
IB: 4 patients 1 patient (IB)

Furlan et al., 2014 [12] 4 CD4+ 31 (mean) Caucasian mixed race
and black

IA: 1 patient
IB: 2 patients
IIA: 1 patient

NS
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Table 1. Cont.

Study Number of Patients T-Cell Phenotype Age of Onset (years)
Fitzpatrick

Phototype/Color of
Skin/ Ethnicity

Stage at Diagnosis Disease Progressed

Abdel-Halin et al., 2015 [99] 8 CD4+: 3 patients
CD4+/CD8+: 5 patients NS Egyptian NS NS

Mateeva and Kadurina, 2015 [100] 1 CD4+ 22
Caucasian/Bulgarian

descent
Type III

NS No

Rowe et al., 2016 [11] 1 CD4+ 71 Dark skin NS d NS

Cervini et al., 2017 [76] 8 CD4+: 2 patients
CD4+/CD8+: 6 patients

11.8 (mean at
diagnosis) Argentinian IA: 1 patient

IB: 7 patients Yes e

Rodney et al., 2017 [9] 5 CD4+: 3 patients
CD4+/CD8+: 2 patients 36 (mean) African-American

and African
IA: 1 patient
IB: 4 patients No

Joseph et al., 2018 [101] 1 CD4+ 50 NS IA No

Vilas Boas et al., 2018 [102] 1 CD4+ 5 Hispanic NS NS

Landgrave-Gomez et al., 2019 [103] 6 CD4+: 2 patients
CD4+/CD8+: 4 patients NS NS NS NS

NS, not specified. a Staging not specified. However, since the initial diagnosis, the patient presented with lymph node involvement and after 2 years, the patient died of septicemia and
bone marrow aplasia. b Disease progression to another stage not specified. After 2 years, the patient presented with erythematous plaques, nodules, and tumors and the authors suspected
lymphomatous spread from MF. The patient died of acute respiratory distress syndrome. c The authors mentioned an indolent course for the cohort of patients. d Staging was not stated.
However, the authors reported lymphadenopathy and tumor stage MF. e The new stage was not stated. However, the authors mentioned that two patients progressed to a higher body
surface area involvement, but no systemic disease.

Table 2. Cases of hypopigmented mycosis fungoides concomitant with other MF variants. Cases published up to March 2020.

Study Number of Patients Age of Onset (years)
Fitzpatrick

Phototype/Color of
Skin/ Ethnicity

Other Variants of MF as
Published Stage at Diagnosis Disease

Progressed

Sigal et al., 1987 [79] 1 64 White Erythematous papules NS a Yes a

el-Hoshy and Hashimoto,
1995 [104] 1 15 Black Erythematous nodules NS No

Lambroza et al., 1995 [84] 1 21 Jamaican-American Hyperpigmented IB No

Qari et al., 2000 [88] 3 25.3 (mean) Hispanic/dark and
Portuguese/black

Red papules, pink patches,
erythematous, and scaly

plaques
NS No
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Table 2. Cont.

Study Number of Patients Age of Onset (years)
Fitzpatrick

Phototype/Color of
Skin/ Ethnicity

Other Variants of MF as
Published Stage at Diagnosis Disease

Progressed

Stone et al., 2000 [80] 1 56 Type V
Hyperpigmented macules

later evolved to
erythematous lesions

I Yes b

Ardigo et al., 2003 [16] 6 30.1 (mean) Caucasian Erythematous lesions NS 2 patients c

Ben-Amitai et al., 2003 [105] 5 4.6 (mean) Light and pigmented Classic erythematous lesions IA: 2 patients
IB: 3 patients No

Wain et al., 2003 [75] 2 10.5 (mean) NS Poikiloderma and pilotropic IB No

Hodak et al., 2005 [90] 2 1 (mean) NS Psoriasiform IB and IA 1 patient (IIA)

Wain et al., 2005 [91] 2 21.5 (mean) Asian and Somalian Poikiloderma and
hyperpigmented IA and IB No

Hodak et al., 2006 [48] 1 12 (at diagnosis) NS Classic IB No

Hsiao et al., 2006 [106] 1 12 NS Hyperpigmented IA No

Onsun et al., 2006 [92] 1 5 (mean) Type II: 1 patient
Type III: 1 patient Erythematous IB No

Ozcan et al., 2008 [107] 1 30 Turkish Erythematous NS NS

Cho-Vega et al., 2010 [108] 1 34 African-American Poikiloderma IB No

Nanda et al., 2010 [109] 3 7.5 (mean) Bedouin and Kuwaiti
Pityriasis lichenoides

chronica-like and
folliculotropic

IA, IB, and IIA NS

Khopkar et al., 2011 [110] 5 19 (mean) Asian with dark skin
type

Poikiloderma and
erythematous NS d NS d

Yazganoglu et al., 2013 [74] 8 6.1 (mean) NS Erythematous and purpuric IA: 5 patients
IB: 3 patients No

Rizzo et al., 2012 [111] 1 15 (at diagnosis) NS Erythematous IB NS

Uhlenhake and Mehregan,
2012 [112] 1 49 African-American

Hypopigmented macules
with

hyperpigmented/erythematous
centers

NS NS

Wongpraparut and Setabutra,
2012 [113] 1 36 Type IV Erythematous IA No
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Table 2. Cont.

Study Number of Patients Age of Onset (years)
Fitzpatrick

Phototype/Color of
Skin/ Ethnicity

Other Variants of MF as
Published Stage at Diagnosis Disease

Progressed

Ahumidi, 2014 [97] 1 5 Type III e Pink papules NS NS

Furlan et al., 2014 [83] 14 29.5 (median)
Mixed race,

Caucasian, Black, and
Asian/Brazilian

Erythematous, poikiloderma,
hyperpigmented, purpuric,

and hyperkeratotic

IA: 7 patients
IB: 6 patients
IIA: 1 patient

NS

Gameiro et al., 2014 [114] 1 5 Type III Erythematous papules IB No

Heng et al., 2014 [115] 11 NS Chinese, Malay,
Indian, and others

Red, scaly papules and
plaques NS NS

Fatemi Naeini et al.,
2015 [116] 2 NS Iranian NS NS NS

Naeini et al., 2015 [117] 1 26 Iranian Erythematous IB NS

Ichimura et al., 2016 [118] 1 20 Japanese Scaly erythema IB No

Cervini et al., 2017 [76] 2 11 (mean at diagnosis) Argentinian Classic MF IVA2f and IB No

Pradhan et al., 2017 [81] 1 2 Iranian Large cell transformation IB No

Landgrave-Gomez et al.,
2019 [103] NS NS Hispanic Hyperpigmentation and

erythema NS NS

Valencia Ocampo et al.,
2019 [119] 5 7.8 (mean)

Type II: 1 patient
Type III: 1 patient
Type IV: 2 patients
Type V: 1 patient

Erythematous IA: 1 patient
IB: 4 patients No

Geller et al., 2019 [82] 34 NS African-American Erythematous and
hyperpigmented NS No

Kalay et al., 2020 [120] 4 30.5 (mean at
diagnosis) Turkish

Follicular hyperkeratosis,
erythematous, and
hyperpigmented

IA No

NS, not specified. a Staging not specified. However, since the initial diagnosis, the patient presented with lymph node involvement and after 2 years, the patient died of septicemia and
bone marrow aplasia. b Disease progression to another stage not specified. After 2 years, the patient presented with erythematous plaques, nodules, and tumors and the authors suspected
lymphomatous spread from MF. The patient died of acute respiratory distress syndrome. c Progressive disease, but no new stage mentioned. d The authors mentioned that patients did
not show lymph enlargement or visceral involvement and remained with same clinical characteristics. e The authors did not report phototype for each patient. However, the authors
mentioned that Saudi Arabian individuals are mostly skin phototype III–IV. f Lymph node involvement documented. However, this patient had a follow up of 7.5 years and remained
disease-free for 4 years without progression.
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7. Conclusions

Two of the differentiating characteristics of HMF, its earlier onset and favorable prognosis, can
be explained through the involvement of an active antitumor immune response. Specifically, the
immunopathogenesis of MF implies an activation of the cytotoxic immune response, the adaptive
antitumor immunity. Importantly, the three phases of cancer immunoediting correlate with the different
cellular and cytokine profiles of MF. We suggest that HMF remains in the equilibrium phase, which is
characterized by a balance between surviving and dying tumor cells. Evidence of HMF maintenance
of equilibrium phase includes TILs that are positive for cytotoxic molecules such as TIA1, granzyme
B, and granulysin as well as high levels of TNF-α cytokine in lesional skin, indicating a robust Th1
immune response. Additionally, lower Treg cell levels found in HMF patient skin lesions further
supports the notion of active immunosurveillance.

Furthermore, we propose that hypopigmentation in the case of HMF constitutes a surrogate
clinical marker for the active antitumor immune response, and therefore a favorable prognostic
indicator in these patients. Specifically, tumor-targeting immune cells are thought to cause the observed
inflammatory hypopigmentation. Decreased levels of bFGF, CD117, tyrosinase, MART-1/melan-A,
gp100, and MiTF indicate/lead to disrupted melanocyte function: altered melanogenesis and induction
of melanocyte apoptosis. Moreover, a decreased level of bFGF is related to an increased level of the
Th1 cytokine TNF-α in HMF.

Clinically, this active immune response correlates positively with the earlier age of disease onset
in HMF patients. Even though MF is not common among young individuals, HMF is overrepresented
in this group, with most cases diagnosed in early stages and without progression. We speculate that
there are likely many more Caucasian patients, who develop mild HMF disease and recover from it
with favorable prognosis. Since the lesions are less apparent and could be confused for mild eczema
(pityriasis alba), many are likely never brought to the attention of a dermatologist or biopsied to enable
the diagnosis of HMF in this Fitzpatrick type I–II skin phototype patient population.

The research presented in this review has limitations. The incidence of MF is relatively low and its
exact incidence is unknown. Therefore, there is limited literature investigating this variant that may be
underestimated due to misdiagnosis and clinical masquerading. The majority of publications perform
immunohistochemistry, and while this approach is valid for patient samples, recent studies use a
more comprehensive approach with several techniques such as genome or RNA sequencing. Finally,
there is a lack of continuity regarding the research results in HMF, where biomarkers remain poorly
defined/validated. Improved understanding of the molecular features that account for HMF behavior
may allow dermatologists and cutaneous oncologists to accurately diagnose and prognosticate patients
suffering from this disease. Furthermore, the knowledge generated by studying HMF can be applied
in other MF variants, other lymphomas, or even different types of cancer. HMF is an intriguing model
for the development of new targeted therapies due to the ease of accessibility to skin lesions and its
overall excellent prognosis.
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